小学六年级数学竞赛题汇总
小学六年级数学竞赛试卷(附答案)
小学六年级数学竞赛试卷(附答案)一、拓展提优试题1.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.2.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).3.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.4.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).5.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).6.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.7.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.8.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.9.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.10.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.11.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)12.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.13.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.14.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.15.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.【参考答案】一、拓展提优试题1.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.2.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.3.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.4.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.5.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.6.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.7.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.8.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.9.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.10.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.11.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.12.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.13.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.14.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:915.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.。
小学六年级数学竞赛试卷(附答案)图文百度文库
小学六年级数学竞赛试卷(附答案)图文百度文库一、拓展提优试题1.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.2.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.5.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.6.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.7.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.8.已知自然数N的个位数字是0,且有8个约数,则N最小是.9.若质数a,b满足5a+b=2027,则a+b=.10.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.11.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.12.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.13.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.14.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.2.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.5.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.6.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.7.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.8.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.11.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.12.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30013.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.14.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.15.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。
小学六年级数学竞赛试题及详细答案
小学六年级数学竞赛试题及详细答案本文为小学六年级数学竞赛试题及详细答案,旨在提供有关数学竞赛的示范题目以及解答方法。
以下将按照试题的难易程度进行排列。
一、选择题1. 下面哪个数是1的百分之十?A. 0.001B. 1.001C. 0.01D. 10.001答案:C. 0.01解析:百分之十可以用小数表示为十分之一,即0.1。
转化为十进制数则为0.01。
2. 将下列数写成整数:$2 \times 10^{-5}$A. 0B. 0.0002C. 200D. 0.02答案:D. 0.02解析:$2 \times 10^{-5}$的意思是将小数点向左移动五位,因此为0.00002,可以简化为0.02。
3. 一个正整数加上自身的倒数等于19,这个正整数是多少?A. 7B. 8C. 9D. 10答案:C. 9解析:设该正整数为$x$,则$x + \frac{1}{x} = 19$。
将等式两边乘以$x$得到$x^2 + 1 = 19x$,整理得到$x^2 - 19x + 1 = 0$。
通过解一元二次方程可得$x = 9$或$x = 10$,因为$x$为正整数,所以答案为9。
二、填空题1. 用1、1、5、6四个数能组成多少个两位数?答案:11个解析:根据排列组合的原理,首位可以选取1、5或6,个位有3个数可选。
所以总共可以组成3个两位数。
2. 在三角形ABC中,顶角A的平分线和底边BC相交于点D,若BD=4 cm,DC=6 cm,那么AC的长度是多少?答案:10 cm解析:根据平分线的性质,AD:DC = AB:BC。
设AC的长度为x,则由题意可得$\frac{x}{6} = \frac{4}{10}$,通过交叉相乘解得x = 10。
三、解答题1. 已知三角形ABC中,∠ACB = 90°,CD是AB的中线,若AB =8 cm,那么CD的长度是多少?答案:4 cm解析:由题意可知AC = BC = $\frac{AB}{2}$ = 4 cm,AD =$\frac{AB}{2}$ = 4 cm。
六年级数学口算竞赛试题
六年级数学口算竞赛试题一、基础口算题(每题1分,共20分)1. 34 + 56 =2. 87 - 49 =3. 48 × 3 =4. 120 ÷ 6 =5. 72 ÷ 8 =6. 5 × 20 =7. 98 + 32 =8. 65 - 17 =9. 49 × 5 =10. 360 ÷ 9 =11. 27 + 73 =12. 56 - 28 =13. 3 × 15 =14. 48 ÷ 3 =15. 8 × 12 =16. 74 - 46 =17. 9 × 11 =18. 54 ÷ 6 =19. 63 + 47 =20. 450 ÷ 15 =二、混合运算题(每题2分,共20分)21. (36 + 24) ÷ 9 =22. 64 - 18 × 2 =23. 72 ÷ 8 + 35 =24. (56 - 48) × 3 =25. 42 × (6 - 3) =26. 81 ÷ 9 - 7 =27. 54 + 45 ÷ 5 =28. 72 ÷ (12 - 6) =29. 3 × 21 - 42 =30. 98 - 56 ÷ 8 =三、应用题(每题5分,共30分)31. 一个班级有48名学生,如果每4名学生组成一个小组,那么可以组成多少个小组?32. 一辆汽车以每小时60公里的速度行驶,3小时后它行驶了多少公里?33. 一个长方形的长是15米,宽是10米,它的面积是多少平方米?34. 一个水果店卖出了240个苹果,如果每个苹果卖2元,那么水果店总共收入多少元?35. 一个班级有24名男生和18名女生,如果每3名学生组成一个小组,那么可以组成多少个小组?36. 一个圆形花坛的直径是14米,它的半径是多少米?四、逻辑推理题(每题5分,共30分)37. 如果一个数的3倍加上8等于48,那么这个数是多少?38. 一个数加上它的一半等于30,这个数是多少?39. 一个数的5倍减去15等于35,这个数是多少?40. 如果一个数的4倍减去它的一半等于54,那么这个数是多少?41. 一个数的6倍加上它的3倍等于96,这个数是多少?42. 如果一个数的7倍减去它的2倍等于49,这个数是多少?请注意:以上题目需要学生在规定时间内完成,口算竞赛旨在考查学生的快速计算能力和数学思维能力。
2024年数学六年级竞赛题目
2024年数学六年级竞赛题目一、填空题(1 - 10题)1. 把一个圆平均分成若干份后,拼成一个近似的长方形,长方形的长是12.56厘米,这个圆的面积是()平方厘米。
解析:把圆拼成近似长方形时,长方形的长近似于圆周长的一半。
圆的周长公式为C = 2π r,那么圆周长的一半就是π r。
已知长方形长12.56厘米,即π r=12.56,r = 12.56÷3.14 = 4厘米。
圆的面积公式S=π r^2,所以圆的面积为3.14×4^2=50.24平方厘米。
2. 六班今天出勤48人,有2人因病请假,今天六班学生的出勤率是()。
解析:出勤率 = 出勤人数÷总人数×100%。
总人数 = 出勤人数+请假人数 = 48 + 2=50人。
则出勤率为48÷50×100% = 96%。
3. 一个直角三角形的两条直角边分别是3厘米和4厘米,这个直角三角形的面积是()平方厘米。
解析:直角三角形面积 = 两条直角边乘积的一半。
所以面积为(1)/(2)×3×4 = 6平方厘米。
4. 从一个边长为10分米的正方形纸里剪一个最大的圆,这个圆的周长是()分米。
解析:在正方形中剪最大的圆,圆的直径等于正方形的边长。
圆的周长公式C=π d,这里d = 10分米,所以周长C = 3.14×10=31.4分米。
5. 12÷()=(())/(25)=0.6=(())/(())(填最简分数)解析:因为12÷() = 0.6,所以括号里的数为12÷0.6 = 20;0.6=(6)/(10)=(3)/(5),(())/(25)=0.6,括号里的数为0.6×25 = 15。
6. 把(1)/(7)化成小数后,小数点后第2024位上的数字是()。
解析:(1)/(7)=0.1̇42857̇,循环节是142857,共6位数字。
小学六年级数学竞赛题汇总
小学六年级数学竞赛题汇总1.计算:4.25 × 5.24 × 1.52 ×2.51 =2.某工厂共有三个车间,总人数为180人。
第二车间的人数是第一车间的3倍加1人,第三车间的人数是第一车间的一半减1人。
请问三个车间各有多少人?3.使用加减乘除和括号,将5个9组合成21. = 2 + ((4 × 3) - 9) × 94.使用加减乘除和括号,将8个8组合成1999.xxxxxxxx = (8 + 8) × ((8 + 8) × (8 + 8) + 8) + 85.给定数列1.2.5.13.34.89,求接下来的两个数。
数列是斐波那契数列,接下来的两个数分别是233和610.6.将2004个正方形排成一行,甲、乙、丙三个人轮流染色。
甲染一个红色,乙染两个黄色,丙染三个蓝色,甲染四个红色,乙染五个黄色,丙染六个蓝色,以此类推。
问最后被染成蓝色的正方形有多少个?最后被染成蓝色的正方形共有1002个。
7.95个同学排成长方形做操,行数与列数都大于1.共有45种排法。
8.写出若干个连续自然数,使它们的和是1680.这些自然数是20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49.9.将40、44、45、63、75、78、99、105这八个数平均分成两组,使两组四个数的积相等。
这两组数分别是40、45、75、105和44、63、78、99.10.60个同学分组排队去游览,每组人数要一样多,每组不少于6人,不多于15人。
共有10种分法,每组人数为6、8、10、12或15人。
11.一个长方形的长、宽、高是三个连续的自然数,体积是3360立方厘米。
求它的表面积。
这个长方形的长、宽、高分别是14、15、16厘米,表面积是734平方厘米。
六年级数学竞赛试题及答案
六年级数学竞赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是质数?A. 2B. 4C. 9D. 10答案:A2. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,它的体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A3. 一个数的1/4加上它的1/2,等于这个数的:A. 3/4B. 5/6C. 7/12D. 1答案:B4. 如果一个圆的半径是5厘米,那么它的周长是多少厘米?A. 31.4B. 15.7C. 62.8D. 50答案:C5. 一个班级有40名学生,其中2/5是男生,那么这个班级有多少名女生?A. 16B. 20C. 24D. 32答案:B二、填空题(每题2分,共10分)6. 一个数的平方是36,这个数是______。
答案:6或-67. 一个数的3/4比它的1/2多1,这个数是______。
答案:48. 如果一个三角形的底是10厘米,高是6厘米,那么它的面积是______平方厘米。
答案:309. 一个数的5倍加上8等于38,这个数是______。
答案:610. 如果一个分数的分子是9,分母是12,化简后是______。
答案:3/4三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) 36 ÷ 6 + 4 × 2(2) (5 - 3) × 8 ÷ 2答案:(1) 12(2) 812. 解下列方程:(1) 2x + 5 = 13(2) 3x - 7 = 14答案:(1) x = 4(2) x = 713. 一个长方形的长是宽的2倍,如果长增加10厘米,宽增加5厘米,面积变为原来的2倍,求原长方形的长和宽。
答案:设原宽为x,则原长为2x。
根据题意,(2x + 10) * (x + 5) = 2 * (2x * x),解得x = 5,所以原长为10厘米,宽为5厘米。
四、解答题(每题10分,共20分)14. 一个农场有鸡和兔子共35只,它们的腿总共有94条。
六年级奥数竞赛试题(通用20篇)
六年级奥数竞赛试题(通用20篇)六年级的数学有着一定的难度,更别说是奥数了,以下是小编整理的六年级奥数竞赛试题,欢迎参考阅读!六年级奥数竞赛试题篇1一、填空(第8题4分,其他每小题均为2分共20分)1、75公顷= 平方千米 100分钟=( )天2、把一根3米长的钢材,从一头到另一头截成每段长米的小段要截( )次,每段占全( )3、1天的和( )小时的一样长。
4、六年(1)班女生占男生的,则男生占全班的( )。
5、甲比乙多,乙比丙少25%,则甲是丙的( )%。
6、一个半圆的直径是10厘米,它的周长是( )7、把360本书按4∶5∶6分给四、五、六、年级,分得最多的年级比分得最少的年级多( )本。
8、在一张长12厘米,宽8厘米的长方形纸上,剪下两个最大的圆,那么每个圆的周长是( ),剩下部分占这张纸面积的( )。
9、两个质数倒数相加,和的分子是25,分母是( )。
二、判断题:(10分)1、1米的25%是25%米。
( )2、一个数的倒数,有可能与这个数相等。
( )3、如果ab=1,则a是倒数。
( )4、直径是4分米的圆,它的周长和面积相等。
( )5、生产101个零件,101个合格,合格100%。
( )三、选择题。
(10分)1、如果a、b、c都为自然数,并都不为零,若a÷ >a,则b( )c。
A> B= C< D不能比较2、一个数和它的倒数之和一定( )1。
A> B= C< D无法比较3、两件衣服都按80元出售,其中一件赚了25%,另一件亏了25%,那么两件衣服合算在一起,结果是( )。
A赚了 B亏了 C不赚不亏 D无法比较4、一个三角形的三个内角度数比是4∶1∶1,这个三角形是( )三角形。
A直角 B等边 C等腰 D直角等腰5、甲乙两数的和是2 ,甲减去乙的差为1,则乙数是( )。
A1 B2 C8 D0四、计算:1、直接写出的得数:(8分)45÷4 = ( 256+14 )×12=152 ÷ 12=2、能简算的要简算。
六年级数学智力竞赛题
六年级数学智力竞赛题
1. 小建得了60分,他做对了几道题?
题目描述:六年级数学竞赛共20题,做一题5分,不写或写错扣3分,小建得了60分。
解答:设小建做对了x道题。
根据题目描述,做错的题目数量为20-x。
因此,可以建立方程:5x-3(20-x)=60。
解这个方程可以得到x=15。
所以,小建做对了15道题。
2. 工人植树晴天每天栽20棵,雨天每天栽12棵,几天共栽112棵,平均每天栽14棵,求共有几个雨天?
解答:设共有x个雨天。
根据题目描述,可以建立方程:12x+20(112/14-x)=112。
解这个方程可以得到x=6。
所以,共有6个雨天。
3. 小明用40元买14张贺年卡和明信片,贺年卡每张3元5角,明信片每张2元5角,贺年卡和明信片各几张?
解答:设贺年卡有x张,明信片有y张。
根据题目描述,可以建立方程:3.5x+2.5y=40和x+y=14。
解这个方程组可以得到x=8,y=6。
所以,贺年卡有8张,明信片有6张。
以上只是部分六年级数学智力竞赛题,还有更多有趣的题目可以尝试解决。
小六数学竞赛试题及答案
小六数学竞赛试题及答案试题一:计算题题目:计算下列各题的结果。
1. 36 × 252. 87 - 493. 56.8 + 34.24. 1234 ÷ 65. (23 + 19) × 12试题二:应用题题目:小明和小红一起买了一些水果,小明买了3千克苹果,每千克苹果的价格是8元,小红买了2千克橙子,每千克橙子的价格是6元。
请问他们一共花了多少钱?试题三:几何题题目:一个长方形的长是12厘米,宽是8厘米,求这个长方形的周长和面积。
试题四:逻辑推理题题目:有5个盒子,编号为1到5。
每个盒子里都装有不同数量的球,分别是1个、2个、3个、4个和5个。
现在有5个人,每个人随机选择一个盒子并打开它,每个人只能打开一个盒子。
如果第5个人打开的盒子里正好是5个球,那么第4个人打开的盒子里有几个球?试题五:数列题题目:给定一个数列:2, 4, 8, 16, 32, ...。
这个数列的第6项是多少?答案:试题一:1. 36 × 25 = 9002. 87 - 49 = 383. 56.8 + 34.2 = 914. 1234 ÷ 6 = 205...4(余数4)5. (23 + 19) × 12 = 42 × 12 = 504试题二:小明买苹果花费3 × 8 = 24 元,小红买橙子花费2 × 6 = 12 元,他们一共花费 24 + 12 = 36 元。
试题三:长方形的周长= (12 + 8) × 2 = 40 厘米,面积= 12 × 8 = 96 平方厘米。
试题四:如果第5个人打开的盒子里有5个球,那么第4个人打开的盒子里一定有4个球,因为1到5的数字是连续的,且每个人只能打开一个盒子。
试题五:这个数列是2的幂次方数列,第6项是 2^6 = 64。
结束语:本次小六数学竞赛试题涵盖了基础计算、应用题、几何题、逻辑推理题和数列题,旨在考察学生的综合数学能力。
六年级小升初奥数竞赛题100道及答案(完整版)
六年级小升初奥数竞赛题100道及答案(完整版)题目1:甲、乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行60 千米,乙车每小时行80 千米,经过 3 小时两车相遇。
A、B 两地相距多少千米?答案:(60 + 80)×3= 140×3= 420(千米)答:A、B 两地相距420 千米。
题目2:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2,这个长方体的体积是多少立方厘米?答案:80÷4 = 20(厘米)5 + 3 + 2 = 10长:20×5/10 = 10(厘米)宽:20×3/10 = 6(厘米)高:20×2/10 = 4(厘米)体积:10×6×4 = 240(立方厘米)答:这个长方体的体积是240 立方厘米。
题目3:在比例尺是1 : 5000000 的地图上,量得甲、乙两地的距离是8 厘米。
一辆汽车从甲地开往乙地,每小时行80 千米,几小时能到达乙地?答案:实际距离:8×5000000 = 40000000(厘米)= 400(千米)时间:400÷80 = 5(小时)答:5 小时能到达乙地。
题目4:一项工程,甲单独做10 天完成,乙单独做15 天完成。
甲乙合作,几天可以完成这项工程?答案:1÷(1/10 + 1/15)= 1÷(3/30 + 2/30)= 1÷5/30= 6(天)答:甲乙合作,6 天可以完成这项工程。
题目5:小明看一本120 页的故事书,第一天看了全书的1/4,第二天看了全书的1/3。
还剩下多少页没有看?答案:第一天看的页数:120×1/4 = 30(页)第二天看的页数:120×1/3 = 40(页)剩下的页数:120 - 30 - 40 = 50(页)答:还剩下50 页没有看。
题目6:一个圆形花坛的周长是31.4 米,这个花坛的半径是多少米?答案:31.4÷3.14÷2 = 5(米)答:这个花坛的半径是5 米。
六年级奥数竞赛题集锦(已整理)
小学数学竞赛题选(一)1.迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总量就就超过计划的16%。
那么原计划生产插秧机()台。
2.如果把1到999这些自然数按照从小到大的顺序排成一排,这样就组成了一个多位数:12345678910111213…996997998999。
那么在这个数里,从左到右的第2000个数字是()。
3.从1999这个数里减去253以后,再加上244,然后在减去253,再加上244……这样一直算下去,减到()次,得数恰好等于0。
4.把一长2.4米的长方体的木料锯成5段,表面积比原来加了96平方厘米。
这根木料原来的体积是()立方厘米。
5.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个。
那么,徒弟一共加工了()个零件。
6.A、B、C三人要从甲地到乙地,步行速度都是每小时5千米,骑车速度都是每小时20千米;A骑了一段后,换步行而把车放在途中,留给B接着骑;B骑了一段后,再换步行而把车放在途中,留给C接着骑到乙地。
这样A、B、C 三人恰好同时到达乙地。
已知甲地到乙地全长12千米,那么甲地到乙地他们用了()小时。
7.一辆大轿车与一辆小轿车都从甲地驶往乙地。
大轿车的速度是小轿车的速度的80%。
已知大轿车比小轿车早出发17分钟,但在两地重中点停了5分钟后,才继续驶往乙地;而小轿车出发中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。
又知大轿车是早上10时从甲地出发的。
那么小轿车是在上午()时()分追上大轿车的。
8.如果一个四位数与一个三位的和是1999,并且四位数和三位数是由7个不同的数字组成的,那么,这样的四位数最多有()个。
9.一部书搞,甲单独打字要14小时完成,乙单独打字要20小时完成。
如果甲先打1小时然后由乙接替甲1小时,再由甲接替乙1小时…….两人如此交替工作,那么,打完这部书稿是,甲、乙二人工用了多少小时。
全国数学竞赛小学六年级决赛试题汇编(共五份附答案)
全国数学竞赛小学六年级决赛试题汇编共五份全国数学竞赛小学六年级决赛试题(一)姓名____得分____一、填空题:(每小题6分,共60分)1.已知CCBA1111616161-1+++=++,其中A、B、C都是大于0且互不相同的自然数,则(A+B)÷C=。
2.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上的数字之和,如21347。
则这类自然数中,最大的奇数是。
3.如图1,△ABC中,点E在AB上,点F在AC上,BF与CE相交于点P,如果S四边形AEPF=S△BEP=S△CFP=4,则S△BPC=。
4.张老师带领六(1)班的学生去种树,学生恰好可平均分成5组。
已知师生每人种的树一样多,共种树527棵,则六(1)班有学生人。
5.两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒。
已知在电梯静止时,男孩每秒走3米,女孩每秒走2米。
则该自动扶梯长米。
6.有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,如图2,则至少需要绳子分米(结头处绳长不计,π取3.14)。
7.一个深30厘米的圆柱形容器,外圆直径22厘米,壁厚1厘米,已装有深27.5厘米的水。
现放人一个底面直径10厘米,高30厘米的圆锥形铁块,则将有立方厘米的水溢出。
8.新年联欢会共有8个节目,其中有3个非歌唱类节目。
排列节目单时规定,非歌唱类节目不相邻,而且第一个和最后一个节目都是歌唱类节目。
则节目单可有种不同的排法。
9.为了创建绿色学校,科学俱乐部的同学设计了一个回收食堂的洗菜水来浇花草的水池,要求单独打开进水管3小时可以把水池注满,单独打开出水管4小时可以排完满池水。
水池建成后,发现水池漏水。
这时,若同时打开进水管与出水管14小时才能把水池注满。
则当池水注满,并且关闭进水管与出水管时,经过小时池水就会漏完。
10.甲、乙两人分别从A、B两地同时出发,相向而行。
六年级数学奥数竞赛题附答案及解题思路(50题)
六年级数学奥数竞赛题附答案及解题思路(50题)六班级数学奥数竞赛题附答案及解题思路(50题)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再依据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288(10-1)=32(元)一张桌子的价钱:3210=320(元)答:一张桌子320元,一把椅子32元。
2. 3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+53=45+15=60(千克)答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:依据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走42千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:424=84=2(千米)答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:依据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应当得(13+7)2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6[13-(13+7)2]=0.6[13202]=0.63=0.2(元)答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站动身,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在修理,车辆禁止通行,两车需交换乘客,然后按原路返回各自动身的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)解题思路:依据已知两车上午8时从两站动身,下午2点返回原车站,可求出两车所行驶的时间。
六年级数学竞赛试卷带答案
一、选择题(每题5分,共50分)1. 下列数中,哪个数既是质数又是偶数?A. 2B. 4C. 6D. 82. 一个长方形的长是12厘米,宽是8厘米,它的周长是多少厘米?A. 24厘米B. 36厘米C. 40厘米D. 48厘米3. 下列图形中,哪个图形的面积最大?A. 正方形B. 长方形C. 三角形D. 梯形4. 小明有10个苹果,小红有12个苹果,他们一共有多少个苹果?A. 18个B. 20个C. 22个D. 24个5. 下列分数中,哪个分数的值最小?A. $\frac{1}{2}$B. $\frac{1}{3}$C. $\frac{1}{4}$D. $\frac{1}{5}$6. 一个数的平方是36,这个数可能是:A. 3B. 6C. 9D. 127. 一个班级有40名学生,其中有男生25名,女生有多少名?A. 15名B. 20名C. 25名D. 30名8. 下列运算中,哪个运算是错误的?A. 5 + 3 = 8B. 5 - 3 = 2C. 5 × 3 = 15D. 5 ÷ 3 = 1.59. 一个圆形的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π10. 下列方程中,哪个方程的解是x=3?A. 2x + 1 = 7B. 3x - 2 = 7C. 4x + 3 = 7D. 5x - 4 = 7二、填空题(每题5分,共50分)11. 1千米等于______米。
12. 下列数中,质数有______个。
13. 一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,它的体积是______立方厘米。
14. 0.25的分数形式是______。
15. 一个圆的直径是10厘米,它的半径是______厘米。
16. 一个数的平方根是4,这个数是______。
17. 下列数中,最小的整数是______。
18. 一个三角形的三边长分别是3厘米、4厘米、5厘米,它是一个______。
六年级数学竞赛100题精选
WORD 版本数学竞赛100题1.计算:2.计算:3.原计划10天完成组装一批录音机的任务,由于工人们的努力,每天比 原计划多组装7台,实际只用了原计划天数的 54就完成了任务,这批录音机有几台?4.一瓶油,第一用去1.6千克,第二次用去余下的43瓶还有油2.1千克。
这瓶油原来重多少千克?5.某车间原计划6月份加工零件3000个,结果前10天就完成了全月计划的40%多50个。
照这样计算,这个月(按30天计算)加工的零件数将超过原计划的百分之几?6.小明训练800米赛跑,如果速度提高5%,那么时间缩短百分之几?8.把一个正方形的一边增加 25%,另一边减少1.6米,就得到一个长方形,它与原来正方形的面积相等。
问正方形的面积是多少?11.育红幼儿园买来两筐苹果共220千克,取出甲筐的12.一件工程,甲队单独做,15天完成;乙队单独做,45天完成。
现在两队合做,其间甲队休息了5天,乙队休息了8天(不存在两队同一天休息)。
问从开始到完工共用多少天?空池注满水;单独开乙管,经过1小时可以把满池水放完。
如果同时打开甲、乙两管,那么几小时可以把满池水放完?14.一件工程,甲、乙两队合做,36天完成;乙、丙两队合做,45天完成;甲、丙两队合做,60天完成。
问甲队独做,需要多少天完成?15.修路队计划30天修完一条公路,先由18人修12天,完成了工程16.甲汽车由A地到B地需要8小时,乙汽车由B地到A地需要6小时。
两车同时从两地相对开出,相遇时甲汽车距离B地还有160千米,A、B两地相距多少千米?17.制作一批零件,甲车间要10天完成。
如果甲车间与乙车间一起做,只要6天就能完成;乙车间与丙车间一起做,需要8天才能完成。
现在三个车间一起做,完成任务后发现甲车间比乙车间多制作零件2400个,问丙车间制作了零件多少个?18.学校买来一批树苗,按2∶3∶4分配给四、五、六年级种植。
已知四年级比六年级少分配16棵,问三个年级各种树苗多少棵?19.甲、乙两个长方形,它们的周长相等。
通用版六年级数学竞赛试题(含答案)
六年级竞赛题1.四宫数独:把1 ~ 4 填入下面的宫格,使每一横行,每一竖列,每个粗线框中的四个格子所填数字不重复。
“?”表示的数字是.2.四宫数独:把1 ~ 4 填入下面的宫格,使每一横行,每一竖列,每个粗线框中的四个格子所填数字不重复。
“?”表示的数字是.3.4.5.6.(A) (B) (C) (D)7.(A) (B) (C) (D)8.(A) (B) (C) (D)9.10.11.阿凡提来到了魔法城堡,魔法城堡的大门是一个智能密码锁,大门上有提示语:下面这个计算的结果就是打开大门的密码了.•••1000 - 3.4 28571⨯ 2.3 =请你输入打开魔法城堡大门的密码:.12.蓝精灵热爱学习,可是她被下面这道计算题给难住了,你能帮她吗?计算:5.4321×0.5679-0.4321×5.5679+0.321=.13.已知大白拥有的魔力磁铁数量的2比小宏的少10%,则用百分数表示,大白3拥有的魔力磁铁数量比小宏的多%.14.哈利波特用魔法杖改变了一个分数,变化后发现分子增加20%,分母减少19%,则新分数比原来分数增加了%.(四舍五入精确到1%)15.霍格沃兹的魔法世界里定义了一种新运算△,规定a△b=(a+b)÷b,那么:3 4△19= .5 2016.迷糊老师在黑板上写了三个分数:2012,2013,2014,其中最大的分数是:2017 2018 2019.17.小猪佩奇的后花园是一个如图所示的梯形(单位:m ),梯形的面积是m2.18.猪八戒爱喝含糖的水,他有甲、乙两杯糖水,所含糖的重量之比为5:3,所含水的重量之比为3:5,糖水的总重量比为5:8,则甲杯的含糖量是.(结果用最简分数表示)19.皮卡丘爱做化学实验,她有一杯含盐7%的盐水重100 克,蒸发了一部分水后,盐水含盐10%,则蒸发的水是克.20.皮皮鲁在学习除法竖式,他发现一个三位数除以19,商是a,余数是b (a,b都是自然数),则a+b 的最大值是.21.鲁西西家里面有一个三层书架,其中第一,二层书的数量比为5:3,第二,三层书的数量比为7:13,若书架上的书总数不超过100 本,则第三层放有本书.22.数学王子高斯是一个数论高手,他的小学老师曾经考过他这么一个问题:从数字1,2,3,4,5,6,7,8,9 中任取3 个数组成三位数,所组成的数中,能被4 整除的三位数有个.23.欧几里得是一位伟大的古希腊时期的数学家,他写过一本书叫做《几何原本》.他曾经思考过这样一个问题:26. 小乔巴将 1 到 25 这 25 个数随意排成一行,然后将它们依次和 1,2,3,…,25 相减,并且都是大数减小数,把得到的 25 个差相加,结果最大是.27. 劳拉在最近的这次古墓任务中来到了古埃及,她在一个神秘金字塔里发现了1 , 3 , 5 , 7 , 9 , 11 , 13 ,1 123 5 8 13π取 3.14)24. 青青草原羊村里举行了一次智力大比拼.结果发现,前五名的平均成绩比前三名的平均成绩少 1 分,前七名的平均成绩比前五名的平均成绩少 3 分.若第四名到第七名的平均成绩为 84 分,则前三名的平均成绩是 分.25. 神探夏洛克·福尔摩斯发现了一个密码宝箱,已知密码是一个三位数 A .目前有一个线索,在 123,931,297,419 四个三位数中,每个数都恰好含有三位数 A 中的一个数字,且出现的位置和 A 中的位置不同,则三位数 A 是.一个有趣的数列,请你观察下面一列数的规律,这列数从左往右第 10 个数 是.如图,OAB 是一个圆心角为 45°,半径为 12 m 的扇形,以 OA 为直径画 一个半圆,交 OB 于点 C ,则图中阴影部分的面积是 m 2.(圆周率29. 阿里巴巴商城在举行促销活动,一套巴克球降价 5 元出售,和往日按原价销售相比,销量提高了 20%,获利提高了 10%,则降价后每套巴克球可获利元.30. 名侦探柯南在自己的笔记本上写了两个两位数,他发现其中一个数的 3等于其中的△ABF 和△AFD 的面积分别是 40 和 64. 则四边形 DFEC 的面积是.的 3 倍少 1 米,则短绳原来长米.1另一个数的 3,这两个数的差最大是.31. 龙猫家的大花园是一个平行四边形.如图,线段 AE 和 BD 将花园分成四块,32. 黄金梅丽号轮船从甲港经丙港到乙港,从甲港到丙港是逆水而行,从丙港到乙港是顺水而行,从甲港到丙港的路程是从丙港到乙港的 2.轮船逆水而行3的速度是顺水而行的速度的一半,轮船从甲港经丙港到乙港共行了 7 小时. 这艘轮船从乙港经丙港返回甲港需要小时.有两条绳子,长绳比短绳的 2 倍多 4 米,各截掉 6 米以后,长绳比短绳28. 所罗门是以色列最有智慧的君王,有一天,他给大臣们出了一道题:33.如图,正方形ABCD 与梯形CDEF 共边,AF 与BC 交于点G,若AD=DE=3,AG : GF=1 : 2,则梯形CDEF 的面积为.34.精灵宝可梦从1~20 这20 个自然数中任取若干个(至少两个),使这些数的乘积的末位数字是3,则它共有种不同的取法.35. 步行的菲菲和骑自行车的猪猪侠,分别从相距40 千米的A、B 两地同时出发,相向而行.已知菲菲每小时行4 千米,但每行30 分钟就休息 5 分钟;猪猪侠每小时行12 千米,分钟后,两人在途中相遇.36. 数学家高斯在研究整数问题时,发明了取整记号[x ],用[x ]表示不超过 x 的最大整数.问:自然数 n 的值依次取 1,2,3,…,2019 时,[ n ] + n + n的值共[ ] [ ]2 3 6有种可能.37. 甲、乙两个工程队合作一项大工程,计划按照甲、乙、甲、乙、……的顺序轮流施工,即每队施工一天后由另一队接替,这样甲和乙施工的天数刚好一样多;实际按照甲、乙、乙、甲、乙、乙、……的顺序施工,结果比原计划提前两天完工,且最后一天是甲施工.已知甲的工作效率是乙的 2,则完成3 这项工程实际用了天.38. 小聪明爱看故事书,他有一本故事书标记的页码是 1~m 页,所有页码的各位数字之和是 190,则 m =.39. 英国航海家库克船长在探险时发现了一个神秘的图形.如图,点 E ,F ,G ,H 分别是四边形 ABCD 各边上的点,若 2AF =FB ,2CH =HD ,BG =GC ,DE =EA ,四边形 ABCD 的面积是 12,则四边形 EFGH 的面积是.40. 史莱克和钢铁侠从同一地出发去环球影城,史莱克走得慢,比钢铁侠早出发5 分钟,钢铁侠出发后 15 分钟可追上史莱克.若史莱克每分钟多走 5 米,钢铁侠每分钟多走 10 米,其他条件不变,则钢铁侠出发后 13 分钟追上史莱克, 则史莱克初始的速度是每分钟走米答案。
六年级数学竞赛试题及答案(六套)
时间:90分钟,总分:120分
班级姓名得分
一、判断题。(共10分,每小题2分)
1、在 、0.67、66.7%中最大的数是66.7%。()
2、梯形不是轴对称图形。()
3、一种商品先提价20%,后又降价20%,这时的价格是最初价格的99%()
4、4∶5的后项增加10,要使比值不变,前项应增加8。()
(25-5)X = 4000
20 X =4000
X =200
答:略。
5、(5×3.5+3×3.5)×2 + 5×3
=(17.5 + 10.5) ×2 + 15
=56 + 15
=71(平方分米)
答:略。
6、20÷2 = 10(米)
20×25 - × 3.14 × 102
=500 – 1.57 × 100
1、阳光小学有少先队员967人,比全校学生数的 少8人。这个学校有学生多少人?
2、三个小队共植树210棵,第一小队植了总数的 ,第二小队与第三小队植树比为2:5,这三个小队各植了多少棵树?
3、小明家饲养的鸡与猪的只数比为26∶5,羊与马的只数比为25∶9,猪与马的只数比为10∶3。求鸡、猪、马和羊的只数比。
A、扩大100倍B、缩小100倍C、扩大10倍
3、一个等腰三角形,一个底角与顶角度数的比是1:2,则这个等腰三角形也是( )。
A、钝角三角形 B、直角三角形 C、锐角三角形 D、无法确定
6、某班男生是女生人数的 ,则男生占全班人数的(),女生人数与男生人数的比是()。
7、一个三位小数用四舍五入法取近似值是8.30,这个数原来最大是( ),最小是( )。
8、圆柱和圆锥的底面积比是4:3,高的比是2:5,它们的体积比是( )。
小学六年级数学能力竞赛试题及答案
小学六年级数学能力竞赛试题及答案第一组:填空题(每题5分,第3题10分)1.下面算式中的两个()内应填什么数,才能使这道整数除法题的余数为最大。
()÷25=104……()2.两根同样长的绳子,一根剪去它的12,另一根剪去12米。
这时剩下的两段绳子仍是同样长。
这两根绳子原来长。
3.下面乘法算式中的“来参加数学邀请赛”八个字,各代表一个不同的数字。
其中“赛”代表9,“来”代表,“参”代表,“加”代表,“数”代表,“学”代表,“邀”代表,“请”代表。
4.王阿姨用新机器织布。
第一天织布253.5米,以后提高了织布技术,每天都比前一天多织布15.5米。
第7天她织布米,7天共织布米。
5.下图是由边长a的6个等边三角形拼成的正六边形。
n个这样的正六边形的周长是。
6.甲、乙、丙三个组,甲组6人,乙组5人,丙组4人,现每组各选1人一起参加会议,一共有种选法;如果三组共同推选一个代表,有种选法。
7.下图中,∠1、∠2、∠3、∠4的和是。
第二组:计算题(每题5分)999×87.5+87.5199999+19999+1999+199+19732066×55555×(4-3.2÷0.8)3.49+4.47+3.51+2.38+4.53+2.62第三组:应用题(每题10分)1.某厂运来一堆煤,如果每天烧煤1500千克,比计划提前一天烧完;如果每天烧1000千克,将比计划多烧一天。
如果要求按计划规定烧完,每天应烧煤多少千克?2.筑路队原计划每天筑路720米,实际每天比原计划多筑路80米,这样在规定完成全路修筑任务的前3天,就只剩下1160米未筑。
这条路全长多少米?3.下图是两个正方形,边长分别为5厘米和3厘米。
阴影部分的面积是。
4.下面这张发票被墨汁污损了三处(用黑圆点代表被污损部分),请你算出育英中学买了多少块小黑板?参考答案第一组填空题1.2624÷25=104 (24)2.这两根绳原来长1米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.计算:4.25×5.24×1.52×2.51=2、某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半少1人.三个车间各有多少人?3、5个9,之间用加减乘除,等于21。
(可以使用括号) 9 9 9 9 9=214、 8个8,之间用加减乘除,等于1999。
(可以使用括号)8 8 8 8 8 8 8 8=19995、1,2,5,13,34,89,(),()6、把2004个正方形排成一行,甲.乙.丙三个小朋友轮流对这些正方形依次染色。
从第一个开始,甲把一个正方形染成红色,乙把两个正方形染成黄色,丙把3个正方形染成蓝色,甲再把4个正方形染成红色,乙把5个正方形染成黄色,丙把6个正方形染成蓝色,……直到将全部正方形染上色为止。
其中被染成蓝色的正方形共有多少个?7、95个同学排成长方形做操,行数与列数都大于1,共有几种排法?8、写出若干个连续自然数,使它们的和是1680。
9、把40、44、45、63、75、78、99、105这八个书平均数分成两组,使两组四个数的积相等。
10、60个同学分组排队去游览,每组人数要一样多,每组不少于6人,不多于15人,有几种分法?怎样分?11、有一个长方形,它的长、宽、高是三个连续的自然数,体积是3360立方厘米,求它的表面积?12、把30、33、42、52、65、66、67、78、105九个数平均分成三组,每组的数相乘积相等,写出这三组数。
13、甲数比乙数大9,两个数的积是792,求甲、乙数分别是多少?14、四个连续奇数的积是19305,这四个奇数各是多少?15、有四个孩子,恰好一个比一个大1岁,4人的年龄积是3204,问这四个孩子中最大的几岁?16、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?17、一堆西瓜,第一次卖出总个数的1/4又5个,第二次卖出余下的1/2又4个,还剩4个,这堆西瓜共有多少个?18、晋西小学五、六年级共有学生780人,该校去数学奥校学习的学生中,恰好有8/17是五年级学生,有9/23是六年级学生,那么该校五、六年级学生中,没进奥校学习的有多少人?19、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。
这两只蚂蚁每秒分别爬行0.04米和0.05米,且每爬行1秒、3秒、5秒……(连续奇数),就掉头爬行。
那么,它们相遇时,已爬行的时间是秒。
20、如果六位数1992□□能被105整除,那么这个六位数是()。
工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?答案为300个120÷(4/5÷2)=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?答案是15棵算式:1÷(1/6-1/10)=15棵7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=69.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?答案为40分钟。
解:设停电了x分钟根据题意列方程1-1/120*x=(1-1/60*x)*2解得x=40二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?解:4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005从1000~1999千位上一共999个“1”的和是999,也能整除;200020012002200320042005的各位数字之和是27,也刚好整除。
最后答案为余数为0。
2.A和B是小于100的两个非零的不同自然数。
求A+B分之A-B的最小值...解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)前面的1 不会变了,只需求后面的最小值,此时(A-B)/(A+B) 最大。
对于B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求(A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是A/B = 99/1(A+B)/B = 100(A-B)/(A+B) 的最大值是:98 / 1003.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?答案为6.375或6.4375因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。