实验设计与数据处理(第二版部分答案)
最新试验设计与数据处理课后答案
试验设计与数据处理》第三章:统计推断3- 13解:取假设HO : u1-u2w 0和假设H1: u1-u2 > 0用sas 分析结果如下:Sample StatisticsGroupNMeanStd. Dev.Std. Errorx8 0.231875 0.0146 0.0051 y100.20970.00970.0031Hypothesis TestNull hypothesis:Mean 1 - Mean 2 = 0Alternative:Mean 1 - Mean 2 A= 0If Varianees Aret statistie DfPr > tEqual3.878 16 0.0013 Not Equal3.70411.670.0032由此可见p 值远小于0.05,可认为拒绝原假设,即认为2个作家所写的小品文中 由 3 个字母组成的词的比例均值差异显著。
3-14解:用sas 分析如下: Hypothesis TestNull hypothesis: Variance 1 / Variance 2 = 1 Alternative:Varia nee 1 / Varia nee 2 A = 1- Degrees of Freedom -FNumer. Denom.Pr > F第四章:方差分析和协方差分析4- 1 解:Sas 分析结果如下:Dependent Variable: ySum ofSouree DF Squares Mean Square F Value Pr > F Model 41480.823000370.20575040.88<.00012.27 7 由p 值为0.2501 > 0.05 (显著性水平) 9 0.2501,所以接受原假设, 两方差无显著差异Source DF Type I SS Mean Square F ValuePr > F m 2 44.33333333 22.16666667 4.09 0.0442 n 3 11.50000000 3.83333333 0.71 0.5657 m*n627.000000004.500000000.830.5684Source DF Type III SS Mean Square F ValuePr > F m 2 44.33333333 22.16666667 4.09 0.0442 n 3 11.50000000 3.83333333 0.71 0.5657 m*n 627.000000004.500000000.830.5684由结果可知, 在不同浓度下得率有显著差异, 在不同温度下得率差异不明显, 交 互作用的效应不显著。
实验设计与数据处理(第二版部分答案)
试验设计与数据处理学院班级学号学生指导老师第一章4、相对误差x 18.2mg 0.1%0.0182 mg故 100g中维生素 C 的质量围为: 18.20.0182mg。
5 、 1 )、压力表的精度为1.5 级,量程为 0.2MPa,则| d p || x p69.947 |7.747 6.06x max0.2 1.5%0.003MPa3KPaE Rx3x 0.37582 )、 1mm的汞柱代表的大气压为0.133KPa,所以xmax0.133KPaE R x0.133 1.6625 10 2x83 )、 1mm水柱代表的大气压为gh ,其中 g9.8m / s2则:x max9.810 3 KPaE R x9.8 10 3 1.225 10 3x86.样本测定值3.48算数平均值 3.4216666673.37几何平均值 3.4214068943.47调和平均值 3.4211475593.38标准差 s0.0462240923.4标准差σ0.042196633.43样本方差 S20.002136667总体方差σ20.001780556算术平均误差△0.038333333极差 R0.117 、S ?2 =3.733 , S ?2=2.303F= S?2/S?2 =3.733/2.303=1.62123而 F 0.975( 9.9 )=0.248386, F 0.025 (9.9)=4.025994所以 F 0.975(9.9)< F <F0.025(9.9)两个人测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。
分析人员 A分析人员 B87.5样本方差 1 3.73333387.5样本方差 2 2.30277810 4.5Fa 值0.248386 4.025994104 F 值 1.621236 5.568470567.56 5.5888. 旧工艺新工艺2.69% 2.62%2.28% 2.25%2.57% 2.06%2.30% 2.35%2.23% 2.43%2.42% 2.19%2.61% 2.06%2.64% 2.32%2.72% 2.34%3.02%2.45%2.95%2.51%t- 检验 : 双样本异方差假设变量 1变量 2平均0.025684615 2.291111111方差0.0000058610.031611111观测值139假设平均差0df8t Stat-38.22288611P(T<=t)单尾0t 单尾临界 1.859548033P(T<=t)双尾0t 双尾临界 2.306004133F- 检验双样本方差分析变量 1变量 2平均0.025684615 2.291111111方差0.0000058610.031611111观测值139df128F0.000185422P(F<=f) 单尾0F 单尾临界0.3510539349.检验新方法是否可行,即检验新方法是否有系统误差,这里采用秩和检验。
实验设计与数据处理第二部分资料讲解
可以看出,此处有
ST= SA + Se= 184.90 + 1109.20 =1294.10
即总的偏差平方和可以分解为组间偏差平方和与组内偏差平
方和。
有了SA和Se之后,是否就能直接比较出由于因素水平的变化引 起的数据波动与实验误差引起的数据波动之间的差异呢?
例 3.1 考察生产某化工产品时反应温度A(℃)对收率y(%)的影响。 为此,比较两个反应温度A1=30℃,A2=40℃。
表 3.1 某化工产品收率实验数据表
实验号 水平
1
2
3
4
5 平均值
A1(30℃) 75 78 60 61 83 71.4
A2(40℃) 89 62 93 71 85 80.0
条件误差:由于实验条件的不同而引起的差异叫“条件误 差”。
3.2 方差分析的概述
方 差 分 析 (Analysis of Variance) 由 英 国 统 计 学 家 R.A.Fisher 首 创 , 为 纪 念 Fisher,以F命名,故方差分 析又称 F 检验。
方差分析能把实验过程中实验条件改变所引起的数据波动 与实验误差引起的数据波动区分开,同时对影响实验结果 的各因素的重要程度给以精确的数量估计。
F多大时,可以说因素的水平改变对考察指标的影响是显著的 呢?小到多小,认为实验结果的误差主要是实验误差引起的, 这就需要有一个标准。这个标准由F表给出。
在F表上,横行n1代表F值中分子的自由度,竖行n2代表F值 中分母的自由度,相交后的数值即为F比的临界值。
本例中,因
F 18.940/11.33 110.290/8
试验设计与数据处理(第二版)课后习题答案
总计
SS 537.6375
35.473 75.155
648.2655
df
MS
F P-value F crit
3 179.2125 28.61486 9.44E-06 3.490295
4 8.86825 1.415994 0.287422 3.259167
12 6.262917
19
3.3
铝材材质 去离子水
5
23
21
22
比例/%
比例/%
22
18
21
23
橡胶工业
合成表面活性剂
11
润滑油(脂)
肥皂及洗涤剂
5
金属皂
其他
3.1
第三章习题答案 3.1
颜色 橘黄色 粉色 绿色 无色
方差分 析:单因 素方差分 析
SUMMARY 组
行1 行2 行3 行4
26.5 31.2 27.9 30.8
销售额/万元 28.7 25.1 28.3 30.8 25.1 28.5 29.6 32.4
方差分析
差异源 样本 列 交互 内部
SS 4.371666667
50.43 2.355 0.42
总计
57.57666667
df
MS
F P-value F crit
2 2.185833 31.22619 0.000673 5.143253
1 50.43 720.4286 1.77E-07 5.987378
4.4
试验号 T/℃ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Na2O(x1) siO2(x2) CaO(x3)/
实验设计与数据处理习题集
水平号12345678序号AB112478224857336336448715551284663663775142887521y5.86.34.95.444.533.6SUMMARY OUTPU回归统计Multiple R 0.99970596265R Square 0.99941201175Adjusted R Sq 0.99917681646标准误差0.03240370349190230180220170210137.5138138138.5139139.5140底水量(x 1)/g 2202302404.0,4.5,3.0,3.6。
已知试验指标与两因素之间成二元线性关系,试用回归分析法139.5140吸氨时间(x 2)/min 136.5137吸氨时间(x 2)/min 选用均匀表U 8*(85)安排实验,8个试验结果(吸氨量/g)依次为:5.8,6.3,4.9,5.4,出较好工艺条件,并预测该条件下相应的吸氨量。
138.5139170180190200210137240第七章 均匀设计1、在啤酒生产的某项工艺实验中,选取了底水量(A)和吸氨时间(B)两个因素都取了8个水平,进行试验设计,因素水平如下。
试验指标为吸氨量,越大越好。
137.5回归方程模型为y =a+b 1x 1+b 2x 2136.5200底水量(x 1)/g观测值8方差分析dfSS MS F Significance F 回归分析28.9235 4.461754249.285714288.38342726421残差50.005250000000.00105总计78.92875Coefficients 标准误差t Stat P-value Lower 95%Intercept 96.52583333331.4768020536165.36138888561.5871169308092.7295928008底水量(x1)/-0.69666666660.010********-66.7626010421.42755955001-0.7234906467吸氨时间(x2)0.021*********.0005217491941.84641500741.470141026900.020********RESIDUAL OUTP 观测值预测 y 残差15.797500000000.0024999999926.32250000000-0.022******** 4.88250.017499999994 5.4075-0.00750000005 3.967500000000.032499999996 4.49250.007500000007 3.0525-0.052500000083.577500000000.022********观测值预测 y15.7975000000026.322500000003 4.88254 5.40755 3.967500000006 4.49257 3.052583.57750000000R=0.99 和Significance F=8.38342726421806E-09<0.01,说明该回归方程非常显y=96.5-0.70X 1+0.02X 2个因素,越好。
实验设计与数据处理(第二版部分答案)
试验设计与数据处理学院班级学号学生指导老师第一章 4、 相故100g 中维生素C 的质量围为:。
5、1)、压力表的精度为1.5级,量程为0.2MPa ,则2)、1mm 的汞柱代表的大气压为0.133KPa , 所以3)、1mm 则:6.样本测定值3.48 算数平均值 3.421666667 3.37 几何平均值 3.421406894 3.47 调和平均值 3.421147559 3.38 标准差s 0.046224092 3.4 标准差σ 0.04219663 3.43 样本方差S 20.002136667总体方差σ20.001780556|||69.947|7.747 6.06d x =-=>算术平均误差△0.038333333极差R 0.117、S₁²=3.733,S₂²=2.303F=S₁²/S₂²=3.733/2.303=1.62123而F 0.975(9.9)=0.248386,F0.025(9.9)=4.025994所以F 0.975(9.9)< F <F0.025(9.9)两个人测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。
分析人员A 分析人员B8 7.5 样本方差1 3.7333338 7.5 样本方差2 2.30277810 4.5 Fa值0.248386 4.02599410 4 F值 1.621236 5.56 84 7056 7.56 5.58 88.旧工艺新工艺2.69% 2.62%2.28% 2.25%2.57% 2.06%2.30% 2.35%2.23% 2.43%2.42% 2.19%2.61% 2.06%2.64% 2.32%2.72% 2.34%3.02%2.45%2.95%2.51%t-检验: 双样本异方差假设变量1 变量2平均0.025684615 2.291111111 方差0.000005861 0.031611111 观测值13 9 假设平均差0df 8t Stat -38.22288611P(T<=t) 单尾0t 单尾临界 1.859548033P(T<=t) 双尾0t 双尾临界 2.306004133F-检验双样本方差分析变量1 变量2平均0.025684615 2.291111111方差0.000005861 0.031611111观测值13 9df 12 8F 0.000185422P(F<=f) 单尾0F 单尾临界0.3510539349.检验新方法是否可行,即检验新方法是否有系统误差,这里采用秩和检验。
实验设计与数据处理L2-有限数据统计处理
(5)格鲁布斯(Grubbs)检验法
步骤:
① 将一组数据由小到大排列,x1,x2……xn-1, xn,求出平均 值 x 与标准偏差s;
② 计算统计量T, (x1为可疑值时);
(xn为可疑值时)或
③ 比较T和Ta,n的大小,若T > Ta,n ,则对应的可疑值舍去, 否则保留。
2.4 异常样本值的判断和处理 Experiment Design and
Data Processing
(4)迪克逊检验法(Dixon) 步骤: ① 将一组数据由小到大排列,x1,x2……xn-1, xn,设xn或x1
为可疑值; ② 用不同的公式计算r值(表3-2),并查表得到相应的临界
值; ③ 比较r和r表的大小,若r >r表,则对应的疑值舍去,否则保
留。
2.4 异常样本值的判断和处理 Experiment Design and
这一区间称为置信区间,一般为95%的置信度。
置信区间是一个随机区间 ( , ), 它覆盖未知参
数具有预先给定的概率(置信水平), 即对于任
意的 , 有 P{ } 1 .
Experiment Design and Data Processing
2.2 测量结果的区间估计 Experiment Design and
Data Processing
注意事项
计算平均值及标准偏差s 时,应包括可疑值在内 可疑数据应逐一检验,不能同时检验多个数据
首先检验偏差最大的数 剔除一个数后,如果还要检验下一个数 ,应重新计算平均
值及标准偏差 能适用于试验数据较少时
例3-4
2.4 异常样本值的判断和处理 Experiment Design and
D、对于舍去的数据,在试验报告中应注明舍去的原因或所选用的统计 方法。
实验设计与数据处理(第二版部分答案)教学内容
实验设计与数据处理(第二版部分答案)试验设计与数据处理学院班级学号学生姓名指导老师第一章4、相对误差18.20.1%0.0182x mg mg ∆=⨯=故100g 中维生素C 的质量范围为:18.2±0.0182mg 。
5、1)、压力表的精度为1.5级,量程为0.2MPa ,则 max 0.2 1.5%0.003330.3758R x MPa KPax E x ∆=⨯==∆=== 2)、1mm 的汞柱代表的大气压为0.133KPa , 所以max 20.1330.1331.6625108R x KPax E x -∆=∆===⨯ 3)、1mm 水柱代表的大气压为gh ρ,其中29.8/g m s = 则:3max 339.8109.810 1.225108R x KPax E x ---∆=⨯∆⨯===⨯ 6.样本测定值3.48 算数平均值 3.421666667 3.37 几何平均值 3.421406894 3.47 调和平均值 3.421147559 3.38 标准差s 0.046224092 3.4 标准差σ 0.04219663 3.43 样本方差S 2 0.002136667总体方差σ20.001780556算术平均误差△ 0.038333333 极差R 0.117、S ₁²=3.733,S ₂²=2.303F =S ₁²/ S ₂²=3.733/2.303=1.62123而F 0.975 (9.9)=0.248386,F 0.025(9.9)=4.025994 所以F 0.975 (9.9)< F <F 0.025(9.9)两个人测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。
分析人员A分析人员B8 7.5 样本方差1 3.733333 8 7.5 样本方差2 2.302778 10 4.5 Fa 值 0.248386 4.025994104F 值1.62123|||69.947|7.747 6.06p pd x =-=>6 5.56 84 7056 7.56 5.58 88.旧工艺新工艺2.69% 2.62%2.28% 2.25%2.57% 2.06%2.30% 2.35%2.23% 2.43%2.42% 2.19%2.61% 2.06%2.64% 2.32%2.72% 2.34%3.02%2.45%2.95%2.51%t-检验: 双样本异方差假设变量 1 变量 2平均0.025684615 2.291111111 方差0.000005861 0.031611111 观测值13 9 假设平均差0df 8t Stat -38.22288611P(T<=t) 单尾0t 单尾临界 1.859548033P(T<=t) 双尾0t 双尾临界 2.306004133F-检验双样本方差分析变量 1 变量 2平均0.025684615 2.291111111 方差0.000005861 0.031611111 观测值13 9 df 12 8 F 0.000185422P(F<=f) 单尾0F 单尾临界0.3510539349. 检验新方法是否可行,即检验新方法是否有系统误差,这里采用秩和检验。
试验设计与数据处理(第二版)-李云雁(全书pt)
2
n
2 x ( x ) i /n i 1 2 i i 1
n
n
2 x ( x ) i /n i 1 2 i i 1 n n
s
( xi x)
i 1
n
2
n 1
n 1
标准差↓,精密度↑
③方差(variance) 标准差的平方:
样本方差( s2 ) 总体方差(σ2 ) 方差↓,精密度↑
①目的:检验服从正态分布数据的算术平均值是否与给定值 有显著差异
②检验步骤:
计算统计量:
x 0 t s
n
服从自由度 df n 1 的t分布(t-distribution)
0 ——给定值(可以是真值、期望值或标准值)
双侧检验 : 若 t t
2
则可判断该平均值与给定值无显著差异,否则就有显著差异
试验设计与数据处理
(第二版)
Experiment Design and Data Processing
引
言
0.1 试验设计与数据处理的发展概况
20世纪20年代,英国生物统计学家及数学家费歇 (R.A.Fisher)提出了方差分析
20世纪50年代,日本统计学家田口玄一将试验设计中应用 最广的正交设计表格化 数学家华罗庚教授也在国内积极倡导和普及的“优选法” 我国数学家王元和方开泰于1978年首先提出了均匀设计
绝对误差估算方法:
最小刻度的一半为绝对误差; 最小刻度为最大绝对误差; 根据仪表精度等级计算: 绝对误差=量程×精度等级%
1.2.2 相对误差(relative error)
(1)定义:
实验设计与数据处理习题答案完整版
部分习题答案习题三1、62621086.6S 104.1ˆ002.74ˆ--⨯=⨯=σ=μ2、λ的极大似然估计和矩估计量均为x =λˆ 3、5、 6、(1)(5.608, 6.392) (2)(5.558, 6.442) 7、(1)(6.675, 6.681), (6.8×10-6, 6.8×10-5) (2)(6.61, 6.667), (3.8×10-6, 5.06×10-5) 8、σ已知6.239;σ未知6.356 9、4.052610、接受H O 11、认为不合格 12、认为显著大于10 13、拒绝H O 19、接受H O习题四1、差异显著;2、只有浓度的影响是显著的.习题五1、 填料A 用量范围可能选低了.2、培烧温度与三氧化铝两个因素用量范围可能偏低.习题六1、(2)xy5503.129584.13ˆ+= (4)(11.82,13.28)(5)(19.66,20.18) 2、xy05886.06287.24ˆ+= 3、(2))17.14,29.13)(3(,988.0104.0ˆx y+-=4、x0867318.0e 4556.32y ˆ-=5、2020381.00086.10333.19ˆx x y-+= 6、(1)31321x15.1x 575.09.9yˆ)2(x 15.1x 55.0x 575.09.9yˆ++=+++=习题七1、218.079.1419.300ˆz z y+-= 2、)1(21-=n c 212211,n n n b n n n a +=+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-+-⎪⎭⎫⎝⎛-+⨯+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-++=-625.1589625.1102879.11025.105613.0625.160073.0263.2ˆ332z z z z y3、 4、 5、 6、 最优工艺条件 7、 最优凝固条件 即 8、.078.1=γ习题八习题九(1) E(5, , 0) (2)(i)扩大反射)1(>α;(ii)内收缩)0(<α;(iii )反射收缩)10(<α<;(3)B(2,4,3),A '(1.5,3,3.5),D '(2.5,2.5,2.5),C '(3,3.5,2)习题十1、 A 3B 3C 32、A 2B 3CD3、最优工艺条件x 1=-0.076,x 2=-0.118,即z 1=3. 848,z 2=0. 753,9.37ˆ=y4、 最优适宜条件 x 1=-0.0135, x 2=0.2557,x 3=-0.3364, 即z 1=6.4865, z 2=112.7865,z 3=0.3318.习题十一1、3.3962、3.54, 3.463、 5、6、 7、有系统误差2221212122212121z 9.21z 676.0z z 469.4z 465.50z 566.8572.2x504.3x 704.2xx 575.3x 1.1x 833.0838.37yˆ---++=-----=323121232221321x x 3.5x x 35.2x x 78.2x 38.3x 8.2x 1.3x 95.0x 388.0x 163.04.37y ˆ---------=.nσ.T2l g⎪⎭⎫⎝⎛σ+⎪⎭⎫⎝⎛σ≈σ.VMVV,VW W M σ+σ+σ≈σ-=.z 0019.0z 0148.0z 1388.0z 1269.06250.47yˆ4321--++=.z z 2.2z 15.058.125y ˆ321+++-=.z 0201.0z 00225.0z 00184.0z 000885.0114.0y ˆ4321-+--=,x 041.0x 023.0.x x 002.0x 052.0x 017.0351.0yˆ22212121--+++=.371.0yˆ,576.8z ,9.119z ,644.0x ,398.0x 2121=====即xx 02.0xx 025.0x025.0x475.0x 400.0218.89yˆ-+-++=,x 896.0x947.0x 399.0x x 375.023222132---+,0735.0x ,261.0x,483.0x 321===.38.89yˆ,02.6z ,13.4z ,42.17z 321====3108、无系统误差 9、是异常数据.习题十二1、543.02、(1)0.695 (2) (3)0.4253、(1)(2)2.98; (3) 0.898;4、(-1.28, -0.255, 0.675, 1.645)习题十四(1)一般; 2.5888(介于良与一般之间);(2)68.2245分.习题十五1、{}{}6,5,4,3,2,12、{}{}6,5,4,3,2,1习题十六2、ρ︒复相关系数上的投影在是其中与;),,,(L ˆ,)ˆ(*p *2*1***o*x x x y y y y⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=16.0431.06.0165.0431.065.01R )10.1,10.1,27.0,55.0,37.1,55.0(x)28.1,91.0,18.0,18.0,91.0,28.1(x ---=---=参考文献[1] Andenson T W. An Introduction to Multivariate StatisticalAnalysis. znd ed . New york: Wiley, 1984[2] 费荣昌试验设计与数据处理,4(1997)[3] 方开泰实用多元统计分析,上海:华东师范大学出版社,1989[4] 盛骤等概率论与数理统计,北京:高等教育出版社,1989[5] 朱道元等多元统计分析与软件SAS,南京:东南大学出版社,1999[6] 彭昭英SAS系统应用开发指南,北京:北京希望电子出版社,2000[7] 邓勃分析测试数据的统计处理方法,北京:清华大学出版社,1995[8] 中国现场统计会三次设计组,正交法和三次设计,北京:科学出版社,1985[9] 张尧庭、方开泰多元统计分析引论,北京:科学出版社,1983[10] 上海师范大学数学系回归分析及其试验设计,上海:上海教育出版社,1978[11] 韦博成、鲁国斌统计诊断引论,南京:东南大学出版社,1991[12] 张明淳工程矩阵理论,南京:东南大学出版社,1995[13] 赵德齐模糊数学,北京:中央民族大学出版社,1995[14] 胡永宏、贺思辉综合评价方法,北京:科学出版社,2000[15] 张崇甫等统计分析方法及其应用,重庆:重庆大学出版社,1995[16] 蒋尔雄等线性代数,北京:人民教育出版社,1978[17]王松桂线性模型的理论及其应用,合肥:安徽教育出版社,1987。
试验设计与数据处理(第二版)李云雁(全书ppt)-图文
能对试验结果进行预测和优化; 试验因素对试验结果的影响规律,为控制试验提供思路
; 确定最优试验方案或配方。
第1章 试验数据的误差分析
误差分析(error analysis) :对原始数据的可靠性进 行客观的评定
误差(error) :试验中获得的试验值与它的客观真实 值在数值上的不一致
或
(2)说明 真值未知,绝对误差也未知 可以估计出绝对误差的范围:
或
绝对误差限或绝对误差上界
绝对误差估算方法: ➢ 最小刻度的一半为绝对误差; ➢ 最小刻度为最大绝对误差; ➢ 根据仪表精度等级计算:
绝对误差=量程×精度等级%
1.2.2 相对误差(relative error)
(1)定义:
1.5.1.2 F检验(F-test)
(1)目的: 对两组具有正态分布的试验数据之间的精密度进行比较
(2)检验步骤 ①计算统计量
设有两组试验数据:
和
都服从正态分布,样本方差分别为 和 ,则
服从F分布,第一自由度为 第二自由度为
②查临界值 给定的显著水平α
查F分布表 临界值
③检验 双侧(尾)检验(two-sided/tailed test) :
1.1.2 平均值(mean)
(1)算术平均值(arithmetic mean)
适合: 等精度试验值 试验值服从正态分布
(2)加权平均值(weighted mean)
加权和
wi——权重 适合不同试验值的精度或可靠性不一致时
(3)对数平均值(logarithmic mean) 设两个数:x1>0,x2 >0 ,则
1.2.4 标准误差 (standard error)
实验设计与数据处理第一章例题及课后习题(附答案)
1、 根据三组数据的绝对误差计算权重:12322211110000,25,400000.010.20.005w w w ====== 因为123::400:1:1600w w w = 所以1.54400 1.71 1.53716001.53840011600pH ⨯+⨯+⨯==++2、 因为量程较大的分度值也较大,用量程大的测量数值较小的物理量会造成很大的系统误差。
3.、含量的相对误差为0.2g ,所以相对误差为:0.20.99790525.3Rx E x ∆===。
4、 相对误差18.20.1%0.0182x mg mg ∆=⨯= 故100g 中维生素C 的质量范围为:18.2±0.0182。
5、1)、压力表的精度为1.5级,量程为0.2,则max 0.2 1.5%0.003330.3758R x MPa KPa x E x ∆=⨯==∆===2)、1的汞柱代表的大气压为0.133,所以max 20.1330.133 1.6625108R x KPax E x -∆=∆===⨯ 3)、1水柱代表的大气压为gh ρ,其中29.8/g m s =则:3max 339.8109.810 1.225108R x KPax E x ---∆=⨯∆⨯===⨯6、样本测定值算术平均值 3.421666667 3.48 几何平均值 3.421406894 3.37 调和平均值 3.421147559 3.47 标准差s 0.046224092 3.38 标准差 0.04219663 3.4 样本方差 0.002136667 3.43 总体方差0.001780556 算住平均误差 0.038333333极差 0.117、依题意,检测两个分析人员测定铁的精密度是否有显著性差异,用F双侧检验。
根据试验值计算出两个人的方差及F值:221221223.733, 2.3033.7331.621232.303s s s F s ===== 而0.9750.025(9,9)0.248386,(9,9) 4.025994F F ==, 所以0.9750.025(9,9)(9,9)F F F <<两个人的测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。
试验设计与数据处理课后习题
试验设计与数据处理课后习题机械工程6120805019 李东辉第三章3-7分别使用金球和铂球测定引力常数(单位:)1. 用金球测定观察值为 6.683,6.681, 6.676, 6.678, 6.679, 6.6722. 用铂球测定观察值为 6.661, 6.661,6.667, 6.667, 6.664设测定值总体为N(u,)试就1,2两种情况求u的置信度为0.9的置信区间,并求的置信度为0.9的置信区间。
用sas分析结果如下:第一组:第二组:3-13下表分别给出两个文学家马克吐温的8篇小品文以及斯诺特格拉斯的10篇小品文中由3个字母组成的词的比例:马克吐温:0.225 0.262 0.217 0.240 0.230 0.229 0.235 0.217斯诺特格拉斯:0.209 0.205 0.196 0.210 0.202 0.207 0.224 0.223 0.220 0.201设两组数据分别来自正态总体,且两个总体方差相等,两个样本相互独立,问两个作家所写的小品文中包含由3个字母组成的词的比例是否有显著差异(a=0.05)取假设H0:u1-u2≤0和假设H1:u1-u2>0用sas分析结果如下:Sample StatisticsGroup N Mean Std. Dev. Std. Error----------------------------------------------------x 8 0.231875 0.0146 0.0051y 10 0.2097 0.0097 0.0031Hypothesis TestNull hypothesis: Mean 1 - Mean 2 = 0Alternative: Mean 1 - Mean 2 ^= 0If Variances Are t statistic Df Pr > t----------------------------------------------------Equal 3.878 16 0.0013Not Equal 3.704 11.67 0.0032由此可见p值远小于0.05,可认为拒绝原假设,即认为2个作家所写的小品文中由3个字母组成的词的比例均值差异显著。
实验设计与数据处理课后答案
实验设计与数据处理课后答案《试验设计与数据处理》专业:机械⼯程班级:机械11级专硕学号:S110805035 姓名:赵龙第三章:统计推断3-13 解:取假设H0:u1-u2≤0和假设H1:u1-u2>0⽤sas分析结果如下:Sample StatisticsGroup N Mean Std. Dev. Std. Error----------------------------------------------------x 8 0.231875 0.0146 0.0051y 10 0.2097 0.0097 0.0031Hypothesis TestNull hypothesis: Mean 1 - Mean 2 = 0Alternative: Mean 1 - Mean 2 ^= 0If Variances Are t statistic Df Pr > t----------------------------------------------------Equal 3.878 16 0.0013Not Equal 3.704 11.67 0.0032由此可见p值远⼩于0.05,可认为拒绝原假设,即认为2个作家所写的⼩品⽂中由3个字母组成的词的⽐例均值差异显著。
3-14 解:⽤sas分析如下:Hypothesis TestNull hypothesis: Variance 1 / Variance 2 = 1Alternative: Variance 1 / Variance 2 ^= 1- Degrees of Freedom -F Numer. Denom. Pr > F----------------------------------------------2.27 7 9 0.2501由p值为0.2501>0.05(显著性⽔平),所以接受原假设,两⽅差⽆显著差异第四章:⽅差分析和协⽅差分析4-1 解:Sas分析结果如下:Dependent Variable: ySum ofSource DF Squares Mean Square F Value Pr > FModel 4 1480.823000 370.205750 40.88 <.0001Error 15 135.822500 9.054833Corrected Total 19 1616.645500R-Square Coeff Var Root MSE y Mean0.915985 13.12023 3.009125 22.93500Source DF Anova SS Mean Square F Value Pr > Fc 4 1480.823000 370.205750 40.88 <.0001由结果可知,p值⼩于0.001,故可认为在⽔平a=0.05下,这些百分⽐的均值有显著差异。
最新实验设计与数据处理(第二版部分答案)
试验设计与数据处理学院班级学号学生姓名指导老师第一章4、 相对误差18.20.1%0.0182x mg mg ∆=⨯=故100g 中维生素C 的质量范围为:18.2±0.0182mg 。
5、1)、压力表的精度为1.5级,量程为0.2MPa ,则max 0.2 1.5%0.003330.3758R x MPa KPa x E x ∆=⨯==∆===2)、1mm 的汞柱代表的大气压为0.133KPa ,所以max 20.1330.133 1.6625108R x KPax E x -∆=∆===⨯ 3)、1mm 水柱代表的大气压为gh ρ,其中29.8/g m s = 则:3max 339.8109.810 1.225108R x KPax E x ---∆=⨯∆⨯===⨯ 6.样本测定值3.48 算数平均值 3.421666667 3.37 几何平均值 3.421406894 3.47 调和平均值 3.421147559 3.38 标准差s 0.046224092 3.4 标准差σ 0.04219663 3.43 样本方差S 2 0.002136667总体方差σ2 0.001780556算术平均误差△ 0.038333333 极差R 0.117、S ₁²=3.733,S ₂²=2.303F =S ₁²/ S ₂²=3.733/2.303=1.62123而F 0.975 (9.9)=0.248386,F 0.025(9.9)=4.025994 所以F 0.975 (9.9)< F <F 0.025(9.9)两个人测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。
|||69.947|7.747 6.06p p d x =-=>分析人员A 分析人员B8 7.5 样本方差1 3.7333338 7.5 样本方差2 2.30277810 4.5 Fa值0.248386 4.02599410 4 F值 1.621236 5.56 84 7056 7.56 5.58 88.旧工艺新工艺2.69% 2.62%2.28% 2.25%2.57% 2.06%2.30% 2.35%2.23% 2.43%2.42% 2.19%2.61% 2.06%2.64% 2.32%2.72% 2.34%3.02%2.45%2.95%2.51%t-检验: 双样本异方差假设变量 1 变量 2平均0.025684615 2.291111111方差0.000005861 0.031611111观测值13 9假设平均差0df 8t Stat -38.22288611P(T<=t) 单尾0t 单尾临界 1.859548033P(T<=t) 双尾0t 双尾临界 2.306004133F-检验双样本方差分析变量 1 变量 2平均 0.025684615 2.291111111 方差 0.0000058610.031611111观测值 13 9 df 128F0.000185422P(F<=f) 单尾 0F 单尾临界0.3510539349. 检验新方法是否可行,即检验新方法是否有系统误差,这里采用秩和检验。
实验设计与大数据处理(第二版部分问题详解)
试验设计与数据处理学院班级学号学生姓名指导老师第一章4、 相对误差18.20.1%0.0182x mg mg ∆=⨯=故100g 中维生素C 的质量范围为:18.2±0.0182mg 。
5、1)、压力表的精度为1.5级,量程为0.2MPa ,则max 0.2 1.5%0.003330.3758R x MPa KPa x E x ∆=⨯==∆===2)、1mm 的汞柱代表的大气压为0.133KPa ,所以max 20.1330.133 1.6625108R x KPax E x -∆=∆===⨯ 3)、1mm 水柱代表的大气压为gh ρ,其中29.8/g m s = 则:3max 339.8109.810 1.225108R x KPax E x ---∆=⨯∆⨯===⨯ 6.样本测定值3.48 算数平均值 3.421666667 3.37 几何平均值 3.421406894 3.47 调和平均值 3.421147559 3.38 标准差s 0.046224092 3.4 标准差σ 0.04219663 3.43 样本方差S 2 0.002136667 总体方差σ2 0.001780556 算术平均误差△ 0.038333333 极差R 0.117、S ₁²=3.733,S ₂²=2.303F =S ₁²/ S ₂²=3.733/2.303=1.62123而F 0.975 (9.9)=0.248386,F 0.025(9.9)=4.025994 所以F 0.975 (9.9)< F <F 0.025(9.9)两个人测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。
|||69.947|7.747 6.06p p d x =-=>分析人员A 分析人员B8 7.5 样本方差1 3.7333338 7.5 样本方差2 2.30277810 4.5 Fa值0.248386 4.02599410 4 F值 1.621236 5.56 84 7056 7.56 5.58 88.旧工艺新工艺2.69% 2.62%2.28% 2.25%2.57% 2.06%2.30% 2.35%2.23% 2.43%2.42% 2.19%2.61% 2.06%2.64% 2.32%2.72% 2.34%3.02%2.45%2.95%2.51%t-检验: 双样本异方差假设变量 1 变量 2平均0.025684615 2.291111111方差0.000005861 0.031611111观测值13 9假设平均差0df 8t Stat -38.22288611P(T<=t) 单尾0t 单尾临界 1.859548033P(T<=t) 双尾0t 双尾临界 2.306004133F-检验双样本方差分析变量 1 变量 2平均 0.025684615 2.291111111 方差 0.000005861 0.031611111 观测值 13 9 df 12 8 F 0.000185422 P(F<=f) 单尾 0 F 单尾临界 0.3510539349. 检验新方法是否可行,即检验新方法是否有系统误差,这里采用秩和检验。
实验设计与数据处理大作业及解答
《实验设计与数据处理》大作业班级:姓名:学号:1、用Excel(或Origin)做出下表数据带数据点的折线散点图(1)分别做出加药量和剩余浊度、总氮TN、总磷TP、COD Cr的变化关系图(共四张图,要求它们的格式大小一致,并以两张图并列的形式排版到Word 中,注意调整图形的大小);(2)在一张图中做出加药量和浊度去除率、总氮TN去除率、总磷TP去除率、COD Cr去除率的变化关系折线散点图。
2、对离心泵性能进行测试的实验中,得到流量Q v、压头H和效率η的数据如表所示,绘制离心泵特性曲线。
将扬程曲线和效率曲线均拟合成多项式(要求作双Y轴图)。
流量Qv、压头H和效率η的关系数据序号123456Q v(m3/h) H/m0.015.000.414.840.814.561.214.331.613.962.013.65η0.00.0850.1560.2240.2770.333序号789101112Q v(m3/h) H/mη2.413.280.3852.812.810.4163.212.450.4463.611.980.4684.011.300.4694.410.530.4313、用分光光度法测定水中染料活性艳红(X-3B)浓度,测得的工作曲线和样品溶液的数据如下表:(1)列出一元线性回归方程,求出相关系数,并绘制出工作曲线图。
(2)求出未知液(样品)的活性艳红(X-3B)浓度。
4、对某矿中的13个相邻矿点的某种伴生金属含量进行测定,得到如下一组数据:试找出某伴生金属c与含量距离x之间的关系(要求有分析过程、计算表格以及回归图形)。
提示:⑴作实验点的散点图,分析c~x之间可能的函数关系,如对数函数y=a+blgx、双曲函数(1/y)=a+(b/x)或幂函数y=dx b等;⑵对各函数关系分别建立数学模型逐步讨论,即分别将非线性关系转化成线性模型进行回归分析,分析相关系数:如果R≦0.553,则建立的回归方程无意义,否则选取标准差SD最小(或R最大)的一种模型作为某伴生金属c与含量距离x之间经验公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试验设计与数据处理
学院
班级
学号
学生
指导老师
第一章
4、
故100g 中维生素C 的质量围为:。
5、1)、压力表的精度为1.5级,量程为0.2MPa ,
则
2)、1mm 的汞柱代表的大气压为0.133KPa ,
所以
3)、
1mm
则:
6.
样本测定值
3.48 算数平均值 3.421666667 3.37 几何平均值 3.421406894 3.47 调和平均值 3.421147559 3.38 标准差s 0.046224092 3.4 标准差σ 0.04219663 3.43 样本方差S 2 0.002136667
总体方差σ2 0.001780556
算术平均误差△ 0.038333333 极差R 0.11
7、S ₁²=3.733,S ₂²=2.303
F =S ₁²/ S ₂²=3.733/2.303=1.62123
而F 0.975 (9.9)=0.248386,F 0.025(9.9)=4.025994 所以F 0.975 (9.9)< F <F 0.025(9.9)
两个人测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。
|||69.947|7.747 6.06
d x =-=>
分析人员A 分析人员B
8 7.5 样本方差1 3.733333
8 7.5 样本方差2 2.302778
10 4.5 Fa值0.248386 4.025994
10 4 F值 1.62123
6 5.5
6 8
4 705
6 7.5
6 5.5
8 8
8.旧工艺新工艺
2.69% 2.62%
2.28% 2.25%
2.57% 2.06%
2.30% 2.35%
2.23% 2.43%
2.42% 2.19%
2.61% 2.06%
2.64% 2.32%
2.72% 2.34%
3.02%
2.45%
2.95%
2.51%
t-检验: 双样本异方差假设
变量 1 变量 2
平均0.025684615 2.291111111
方差0.000005861 0.031611111
观测值13 9
假设平均差0
df 8
t Stat -38.22288611
P(T<=t) 单尾0
t 单尾临界 1.859548033
P(T<=t) 双尾0
t 双尾临界 2.306004133
F-检验双样本方差分析
变量 1 变量 2
平均 0.025684615 2.291111111 方差 0.000005861
0.031611111
观测值 13 9 df 12
8
F
0.000185422
P(F<=f) 单尾 0
F 单尾临界
0.351053934
9. 检验新方法是否可行,即检验新方法是否有系统误差,这里采用秩和检验。
求出各数据的秩,如下表所示:
1
2 3 4 5 6 7 8 0.73 0.77 0.79 0.74 0.75 0.76 0.79 0.8 10 11 12 13 14 15 16 17 0.84 0.85 0.87 0.91 0.83 0.86 0.92 0.96
此时
对于 α =0.05,查临界值表得:T1=66,T2=102。
则 T 1,<R 1<T 2 ,故新方法与旧方法的数据无显著性差异, 即新方法与旧方法的数据无显著差异,即新方法无系统误差。
10.格拉布斯检验法: (1)、检验62.2 计算包括62.2在的平均值为69.947,即标准差2.7853,查表得
所以
则 ,故62.2这个值应被剔除。
(2)、检验69.49 用同样的方法检验得,应被剔除。
(3)、检验70.3 70.3不应被剔除。
第二章 1.
(0.05,10) 2.176G =(0.05,10) 6.06G s =|||69.947|7.747 6.06p p d x =-=>12129,9,1815 6.59111214151891.579.5
n n n R R ====++++++++==
2.
3.
4.
6.
8.
-14
-14
-13-12-12-11-10-9.5-8.8-1.0
-0.8-0.6-0.4-0.20.00.20.40.60.8 1.0
-1.0
-0.8-0.6-0.4-0.20.00.20.4
0.60.81.0Y A x i s T i t l e
X Axis Title
第三章 1.颜色 销售额/万元
橘黄色 26.5 28.7 25.1 29.1 27.2
粉色 31.2 28.3 30.8 27.9 29.6
绿色 27.9 25.1 28.5 24.2 26.5
无色 30.8
29.6 32.4
31.7
32.8
方差分析:单因素方差分析
SUMMARY
组观测数求和平均方差
26.5 3 89.9 29.96667 3.243333
28.7 3 83 27.66667 5.363333
25.1 3 91.7 30.56667 3.843333
29.1 3 83.8 27.93333 14.06333
27.2 3 88.9 29.63333 9.923333
方差分析
差异源SS df MS F P-value F crit 组间19.764 4 4.941 0.678026 0.622585 3.47805 组72.87333 10 7.287333
总计92.63733 14
2.乙炔流量/(L/min)
空气流量/(L/min)
8 9 10 11 12
1 81.1 81.5 80.3 80 77
1.5 81.4 81.8 79.4 79.1 75.9
2 75 76.1 75.4 75.4 70.8 2.5 60.4 67.9 68.7 69.8 68.7
方差分析:无重复双因素分析
SUMMARY
观测
数
求和平均方差
5 50 10 2.5
1 5 399.9 79.98 3.137
1.5 5 397.6 79.52 5.507
2 5 372.7 74.54 4.528 2.5 5 335.5 67.1 14.485
空气流量/(L/min) 5 305.9 61.18 956.342
5 316.3 63.2
6 951.743
5 313.8 62.7
6 890.803
5 315.3 63.0
6 863.048
5 304.4 60.88 758.567
方差分析
差异源SS df MS F P-value F crit
行17586.16 4 4396.541 733.9066 6.68E-18 3.006917 列24.7784 4 6.1946 1.034053 0.420032 3.006917 误差95.8496 16 5.9906
总计17706.79 24
3.铝材材质去离子水自来水
1 2.3 5.6
1 1.8 5.3
2 1.5 5.3
2 1.5 4.8
3 1.8 7.4
3 2.3 7.4
方差分析:可重复双因素分析
SUMMARY 去离子水自来水总计
1
观测数 2 2 4
求和 4.1 10.9 15
平均 2.05 5.45 3.75
方差0.125 0.045 3.91
2
观测数 2 2 4
求和 3 10.1 13.1
平均 1.5 5.05 3.275
方差0 0.125 4.2425
3
观测数 2 2 4
求和 4.1 14.8 18.9
平均 2.05 7.4 4.725
方差0.125 0 9.5825
总计
观测数 6 6
求和11.2 35.8
平均 1.866667 5.966666667
方差0.130667 1.298666667
方差分析
差异源SS df MS F P-value F crit 样本 4.371667 2 2.185833 31.22619 0.000673 5.143253 列50.43 1 50.43 720.4286 1.77E-07 5.987378 交互 2.355 2 1.1775 16.82143 0.003467 5.143253 部0.42 6 0.07
总计57.57667 11。