高三数学平面向量的数量积

合集下载

平面向量的数量积课件-2025届高三数学一轮复习

平面向量的数量积课件-2025届高三数学一轮复习

平面向量数量积的概念及运算,与长度、夹角、平行、垂直有关的问
预测 题以及平面向量数量积的综合应用仍是考查的热点,会以选择题或填
空题的形式出现.
必备知识·逐点夯实
知识梳理·归纳
1.向量的夹角
∠AOB
已知两个非零向量a和b,作=a,=b,则________叫做a与b的夹角
定义
范围
0≤θ≤π
设θ是a与b的夹角,则θ的取值范围是_______
道夹角和模的不共线向量为基底来表示要求的向量,再结合运算律展开求解;
(2)当已知向量的坐标或可通过建立平面直角坐标系表示向量的坐标时,可利用
坐标法求解;
(3)利用向量数量积的几何意义求解.
对点训练
1.(2022·全国乙卷)已知向量a,b满足|a|=1,|b|= 3,|a-2b|=3,则a·b=(
A.-2
24 1
θ=
=
= ,
|||| 12×8 4
所以向量a在向量b上的投影向量为|a|cos

1 1 3
θ· =12× × b= b.
||
4 8 8
3
b
8
.
2.(2023·衡阳模拟)平面向量a⊥b,已知a=(6,-8), =5,且b与向量(1,0)的夹角是钝
角.则b在向量(1,0)上的投影向量为(
(4)向量a与b夹角为θ,a在b上的投影向量为(|a|cos

θ) .(
||

)
2.(必修第二册P36练习T1·
变条件)已知a=(-1,t-1),b=(3,2),且 2 + =3,则t=(
A. 2
B. 3
C.± 2
D.±
2
2

平面向量的数量积和叉积的计算步骤

平面向量的数量积和叉积的计算步骤

平面向量的数量积和叉积的计算步骤平面向量是数学中重要的概念,它在物理、几何等领域中具有广泛的应用。

其中,数量积和叉积是平面向量运算中的两个重要概念,用于描述向量之间的关系和性质。

本文将介绍平面向量数量积和叉积的计算步骤。

一、平面向量的数量积的计算步骤数量积又称为点积或内积,表示两个向量的乘积的数量。

计算平面向量的数量积可以按照以下步骤进行:1. 确定两个向量的坐标表示形式。

平面向量通常用列向量表示,例如向量a可以表示为(a₁, a₂),向量b可以表示为(b₁, b₂)。

2. 将两个向量的对应坐标相乘。

将a₁与b₁相乘得到的结果记为x₁,将a₂与b₂相乘得到的结果记为x₂。

3. 对结果进行求和。

将x₁和x₂相加得到总和s,即s = x₁ + x₂。

4. 得到最终结果。

最终结果即为平面向量的数量积,记作a·b = s。

二、平面向量的叉积的计算步骤叉积又称为向量积或外积,表示两个向量之间的乘积的向量。

计算平面向量的叉积可以按照以下步骤进行:1. 确定两个向量的坐标表示形式。

与数量积相同,平面向量可以用列向量表示,向量a可以表示为(a₁, a₂),向量b可以表示为(b₁, b₂)。

2. 计算叉积的第一分量。

将a₁与b₂相乘得到的结果记为y₁。

3. 计算叉积的第二分量。

将a₂与b₁相乘得到的结果记为y₂。

4. 得到最终结果。

最终结果即为平面向量的叉积,记作a×b = (y₁, y₂)。

三、数量积和叉积的性质和应用1. 数量积的性质:- a·b = b·a,即数量积满足交换律。

- a·(b+c) = a·b + a·c,即数量积满足分配律。

- k(a·b) = (ka)·b = a·(kb),即数量积满足数乘的结合律。

2. 叉积的性质:- a×b = -b×a,即叉积满足反交换律。

- a×(b+c) = a×b + a×c,即叉积满足分配律。

平面向量数量积的定义

平面向量数量积的定义

1
A1
c
B1
C
证明: 任取一点 O, 作 OA a , AB b , OC c . 因为 a b (即OB) 在 c 方向上的投影等于 a 、b 在 c 方向上的投影的和. 由此可证,运算律( 3 )成立 (以下见黑板) .
练一练
判断题 (1) (a b)c a(b c)
注: 两个向量的数量积是一个数量,这个数量的大 小与两个向量的长度及其夹角有关. (2)“ a b a b ”能不能写成“ 式? ”或者 ab “ ” 的形
例题分析: 例1 已知|a|=5,|b|=4,a与b的夹角 θ=120°,求a· b。
解:a· b=|a| |b|cosθ=5×4×cos120°
1、已知a
a 与b 的交角为90 o,则a b 0 2, b 3,

(1)a⊥b a · b=0 (判断两向量垂直的依据) 2、若 a
a、b共线,则 a b 3或- b 3, . 3 1,
(2)当a 与b 同向时,a · b =| a | · | b |,当a 与b 反向 时, a · b = -| a | · | b | .( a // b 特别地
B
B b
B
b
b

O a

B1
A
B1Biblioteka Oa A O( B1 ) a
A
θ为锐角时, | b | cosθ>0 a O b B 。 0时,它是 | b |
θ为钝角时, | b | cosθ<0 b A B O
θ为直角时, | b | cosθ=0 a A
θ为
。 θ为 180时,它是 -| b |
向量数量积的性质

高三数学课件:第四章 第三节 平面向量的数量积

高三数学课件:第四章 第三节 平面向量的数量积
提示:不一定相等,∵a· b,b· c均为实数,∴(a· b)c∥c,
a(b· c)∥a,所以(a· b)c与a(b· c)不一定相等.
(2)若非零向量a,b满足|a|=|b|,(2a+b)²b=0,则a与b的夹
角为_________.
【解析】设a,b的夹角为θ,
∵(2a+b)²b=0,∴2a· b+b2=0,
1 1 ∴ AD AB AC , BE AE AB AC AB, 2 2 1 1 ∴ AD BE (AB AC) ( AC AB) 2 2 1 2 1 2 1 AC AB AB AC 4 2 4 1 1 1 3 1 1 cos60 . 4 2 4 8
1 1 3 3 ( x)( x) ( y)( y) 0 2 2 2 从而有: 2 , ( 1 x) 2 ( 3 y) 2 ( 1 x) 2 ( 3 y) 2 2 2 2 2
3 3 x x 2 2 . 解得 或 y 1 y 1 2 2
(2)由题设知: OC =(-2,-1),
AB tOC =(3+2t,5+t). 由( AB tOC )⊥ OC 得( AB tOC )²OC =0,
【变式训练】在平面直角坐标系xOy中,已知点A(-1,-2)、 B(2,3)、C(-2,-1). (1)求以线段AB、AC为邻边的平行四边形两条对角线的长; (2)设实数t满足 AB tOC OC,求t的值.
【解析】(1)由题设知 AB =(3,5), AC =(-1,1),

高中数学知识点总结(第五章 平面向量 第三节 平面向量的数量积)

高中数学知识点总结(第五章 平面向量 第三节 平面向量的数量积)

第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π]. 当θ=0时,两向量a ,b 共线且同向; 当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a||b| cos θ叫做a 与b 的数量积(或内积),记作a·b ,即a·b =|a||b|cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b|cos θ叫做向量b 在向量a 的方向上的投影,|a|cos θ叫做向量a 在向量b 的方向上的投影.(2)a·b 的几何意义数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律 (1)交换律:a·b =b·a.(2)数乘结合律:(λa)·b =λ(a·b)=a·(λb). (3)分配律:(a +b)·c =a·c +b·c.向量数量积的运算不满足乘法结合律,即(a·b)·c 不一定等于a·(b·c),这是由于(a·b)·c 表示一个与c 共线的向量,a·(b·c)表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e·a =a·e =|a|cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|. 特别地,a·a =|a|2或|a|=a ·a. (4)cos θ=a ·b|a ||b |.(5)|a·b|≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a|=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式 (1)(a +b)·(a -b)=a 2-b 2; (2)(a±b)2=a 2±2a·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)(2018·新乡二模)若向量m =(2k -1,k )与向量n =(4,1)共线,则m·n =( ) A .0 B .4 C .-92D .-172(2)(2018·天津高考)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12, ∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172.(2)法一:如图,连接MN . ∵BM ―→=2MA ―→,CN ―→=2NA ―→, ∴AM AB =AN AC =13. ∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→). ∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2) =3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0. 故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[答案] (1)D (2)C[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解.[题组训练]1.(2019·济南模拟)已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1 C.6D .22解析:选B 设AB ―→=a ,AD ―→=b ,则a·b =0, ∵|a|=2,|b|=1,∴AC ―→·CB ―→=(a +b)·(-b)=-a·b -b 2=-1.2.(2019·南昌调研)已知向量a ,b 满足a·(b +a)=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55B .-55C .-255D .-355解析:选D 由a =(1,2),可得|a|=5, 由a·(b +a)=2,可得a·b +a 2=2, ∴a·b =-3,∴向量b 在a 方向上的投影为a·b |a|=-355.3.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0, ∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1, ∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14. 答案:14考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)(2019·昆明适应性检测)已知非零向量a ,b 满足a·b =0,|a|=3,且a 与a +b 的夹角为π4,则|b|=( )A .6B .32C .22D .3(2)(2019·福州四校联考)已知向量a ,b 为单位向量,且a·b =-12,向量c 与a +b 共线,则|a +c|的最小值为( )A .1 B.12C.34D.32[解析] (1)∵a ·b =0,|a|=3,∴a·(a +b)=a 2+a·b =|a||a +b|cos π4,∴|a +b|=32,将|a +b|=32两边平方可得,a 2+2a·b +b 2=18,解得|b|=3,故选D.(2)∵向量c 与a +b 共线,∴可设c =t (a +b)(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c)2=(t +1)2a 2+2t (t +1)·a·b +t 2b 2, ∵向量a ,b 为单位向量,且a·b =-12,∴(a +c)2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c|≥32,∴|a +c|的最小值为32,故选D. [答案] (1)D (2)D考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a|=1,|b|=12,则a +2b 与b 的夹角是( )A.π6 B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________.[解析] (1)因为|a +2b|2=|a|2+4|b|2+4a·b =1+1+4×1×12×cos π3=3,所以|a +2b|= 3.又(a +2b)·b =a·b +2|b|2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=a +2b ·b|a +2b||b|=343×12=32, 所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b|cos 〈a ,b 〉=-3,又|a|=12+32=2,所以a·b =|a||b|cos 〈a ,b 〉=-6,又a·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b|=32+-332=6,所以cos 〈a ,b 〉=a·b |a||b|=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3. [答案] (1)A (2)2π3考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a|=223|b|,且(a -b)⊥(3a +2b),则a 与b 的夹角为( )A.π4B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a|=223|b|,(a -b)⊥(3a +2b), 所以(a -b)·(3a +2b)=3|a|2-2|b|2-a·b =83|b|2-2|b|2-223|b|2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→ ·BC ―→=0,即AP ―→ ·BC ―→=(λAB ―→+AC ―→ )·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [答案] (1)A (2)712[解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.(2018·深圳高级中学期中)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n)⊥(m -n),则λ=( )A .-4B .-3C .-2D .-1解析:选B ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B.2.(2018·永州二模)已知非零向量a ,b 的夹角为60°,且|b|=1,|2a -b|=1,则|a|=( ) A.12 B .1 C.2D .2解析:选A ∵非零向量a ,b 的夹角为60°,且|b|=1,∴a·b =|a|×1×12=|a|2,∵|2a -b|=1,∴|2a -b|2=4a 2-4a·b +b 2=4|a|2-2|a|+1=1,∴4|a|2-2|a|=0,∴|a|=12,故选A.3.(2019·益阳、湘潭调研)已知向量a ,b 满足|a|=1,|b|=2,a +b =(1,3),记向量a ,b 的夹角为θ,则tan θ=________.解析:∵|a|=1,|b|=2,a +b =(1,3),∴(a +b)2=|a|2+|b|2+2a·b =5+2a·b =1+3,∴a·b =-12,∴cos θ=a·b |a|·|b|=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴tan θ=sin θcos θ=-15. 答案:-15[课时跟踪检测]1.已知向量a ,b 满足|a|=1,|b|=23,a 与b 的夹角的余弦值为sin 17π3,则b·(2a -b)等于( )A .2B .-1C .-6D .-18解析:选D ∵a 与b 的夹角的余弦值为sin 17π3=-32,∴a·b =-3,b·(2a -b)=2a·b -b 2=-18.2.已知平面向量a =(-2,3),b =(1,2),向量λa +b 与b 垂直,则实数λ的值为( ) A.413 B .-413C.54D .-54解析:选D ∵a =(-2,3),b =(1,2),∴λa +b =(-2λ+1,3λ+2).∵λa +b 与b 垂直,∴(λa +b)·b =0,∴(-2λ+1,3λ+2)·(1,2)=0,即-2λ+1+6λ+4=0,解得λ=-54.3.已知向量a ,b 满足|a|=1,b =(2,1),且a·b =0,则|a -b|=( ) A.6 B.5 C .2D.3解析:选A 因为|a|=1,b =(2,1),且a·b =0,所以|a -b|2=a 2+b 2-2a·b =1+5-0=6,所以|a -b|= 6.故选A.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(a +c)∥b ,c ⊥(a +b),则c =( ) A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 解析:选D 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1), 因为(a +c)∥b ,则有-3(1+m )=2(2+n ), 即3m +2n =-7,又c ⊥(a +b),则有3m -n =0,联立⎩⎪⎨⎪⎧3m +2n =-7,3m -n =0.解得⎩⎨⎧m =-79,n =-73.所以c =⎝⎛⎭⎫-79,-73. 5.(2018·襄阳调研)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A.⎝⎛⎭⎫-2,23∪⎝⎛⎭⎫23,+∞ B.⎝⎛⎭⎫12,+∞ C .(-∞,-2)∪⎝⎛⎭⎫-2,12 D.⎝⎛⎭⎫-∞,12 解析:选C 不妨令i =(1,0),j =(0,1),则a =(1,-2),b =(1,λ),因为它们的夹角为锐角,所以a·b =1-2λ>0且a ,b 不共线,所以λ<12且λ≠-2,故选C.6.(2019·石家庄质检)若两个非零向量a ,b 满足|a +b|=|a -b|=2|b|,则向量a +b 与a 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选A ∵|a +b|=|a -b|,∴|a +b|2=|a -b|2,∴a·b =0.又|a +b|=2|b |,∴|a +b|2=4|b|2,|a|2=3|b|2,∴|a|=3|b|,cos 〈a +b ,a 〉=a +b ·a |a +b||a|=a 2+a·b |a +b||a|=|a|22|b||a|=|a|2|b|=32,故a +b 与a 的夹角为π6.7.(2018·宝鸡质检)在直角三角形ABC 中,角C 为直角,且AC =BC =1,点P 是斜边上的一个三等分点,则CP ―→·CB ―→+CP ―→·CA ―→=( )A .0B .1 C.94D .-94解析:选B 以点C 为坐标原点,分别以CA ―→,CB ―→的方向为x 轴,y 轴的正方向建立平面直角坐标系(图略),则C (0,0),A (1,0),B (0,1),不妨设P ⎝⎛⎭⎫13,23,所以CP ―→·CB ―→+CP ―→·CA ―→=CP ―→·(CB ―→+CA ―→)=13+23=1.故选B.8.(2019·武汉调研)已知平面向量a ,b ,e 满足|e|=1,a·e =1,b·e =-2,|a +b|=2,则a·b 的最大值为( )A .-1B .-2C .-52D .-54解析:选D 不妨设e =(1,0),则a =(1,m ),b =(-2,n )(m ,n ∈R),则a +b =(-1,m +n ),所以|a +b|=1+m +n2=2,所以(m +n )2=3,即3=m 2+n 2+2mn ≥2mn +2mn=4mn ,当且仅当m =n 时等号成立,所以mn ≤34,所以a·b =-2+mn ≤-54,综上可得a·b 的最大值为-54.9.已知平面向量a ,b 满足a·(a +b)=3,且|a|=2,|b|=1,则向量a 与b 的夹角的正弦值为________.解析:∵a·(a +b)=a 2+a ·b =22+2×1×cos 〈a ,b 〉=4+2cos 〈a ,b 〉=3, ∴cos 〈a ,b 〉=-12,又〈a ,b 〉∈[0,π],∴sin 〈a ,b 〉=1-cos 2〈a ,b 〉=32. 答案:3210.(2018·湖北八校联考)已知平面向量a ,b 的夹角为2π3,且|a|=1,|b|=2,若(λa +b)⊥(a -2b),则λ=________.解析:∵|a|=1,|b|=2,且a ,b 的夹角为2π3,∴a ·b =1×2×⎝⎛⎭⎫-12=-1,又∵(λa +b)⊥(a -2b),∴(λa +b)·(a -2b)=0,即(λa +b)·(a -2b)=λa 2-2b 2+(1-2λ)a·b =λ-8-(1-2λ)=0,解得λ=3.答案:311.(2018·合肥一检)已知平面向量a ,b 满足|a|=1,|b|=2,|a +b|=3,则a 在b 方向上的投影等于________.解析:∵|a|=1,|b|=2,|a +b|=3, ∴(a +b)2=|a|2+|b|2+2a·b =5+2a·b =3, ∴a·b =-1,∴a 在b 方向上的投影为a·b |b|=-12.答案:-1212.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.解析:由已知得|AB ―→|=2,|AC ―→|=24,则OC ―→ ·(OB ―→-OA ―→ )=(OA ―→+AC ―→ )·AB ―→=OA ―→ ·AB ―→+AC ―→ ·AB ―→= 2 c os 3π4+24 ×2=-12. 答案:-1213.(2019·南昌质检)设向量a ,b 满足|a|=|b|=1,且|2a -b|= 5. (1)求|2a -3b|的值;(2)求向量3a -b 与a -2b 的夹角θ.解:(1)∵|2a -b|2=4a 2-4a·b +b 2=4-4a·b +1=5,∴a·b =0, ∴|2a -3b|=4a 2-12a·b +9b 2=4+9=13.(2)cos θ=3a -b ·a -2b |3a -b||a -2b|=3a 2+2b 29a 2+b 2×a 2+4b 2=510×5=22, ∵θ∈[0,π],∴θ=π4.。

高三数学一轮复习基础过关5.3平面向量的数量积PPT课件

高三数学一轮复习基础过关5.3平面向量的数量积PPT课件

5 ,|a|cos
θ
=|a|
ab |a ||b |
2 (4) 3 7 13 65 .
(4)2 72
65 5
2.若|a|=2cos 15°,|b|=4sin 15°,a,b的夹角为
30°,则a·b等于
( B)
A. 3
B. 3
C. 2 3
D. 1
2
2
解析 a b | a || b | cos 30
§5.3 平面向量的数量积
基础知识 自主学习
要点梳理
1.平面向量的数量积 已知两个非零向量a和b,它们的夹角为θ ,则数量 |a |·|b|cos θ 叫做a与b的数量积(或内积),记 作a ·b=|a ||b|·cos θ .
规定:零向量与任一向量的数量积为 0 . 两个非零向量a与b垂直的充要条件是 a ·b=0 ,两非 零向量a与b平行的充要条件是 a ·b=±|a ||b| .
4.一般地,(a·b)c≠(b·c)a即乘法的结合律不成 立.因a·b是一个数量,所以(a·b)c表示一个与c 共线的向量,同理右边(b·c)a表示一个与a共线 的向量,而a与c不一定共线,故一般情况下(a·b)c ≠(b·c)a.
失误与防范
1. 零 向 量 :(1)0 与 实 数 0 的 区 别 , 不 可 写 错 : 0a=0≠0,a+(-a)=0≠0,a·0=0≠0;(2)0的方向是任 意的,并非没有方向,0与任何向量平行,我们只 定义了非零向量的垂直关系.
·sin(
π -θ )=sin
θ cos
2 θ -sin θ
cosθ =0.
∴a⊥b. 2
(2)解 由x⊥y得x·y=0,
即[a+(t2+3)b]·(-ka+tb)=0,

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。

数学复习:平面向量数量积的计算

数学复习:平面向量数量积的计算

数学复习:平面向量数量积的计算一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .19352.基底法计算例2-1.已知平面向量,a b 满足a =,)(21R e e b ∈+=λλ ,其中21,e e 为不共线的单位向量,若对符合上述条件的任意向量,a b ,恒有4a b +≥ ,则21,e e 夹角的最小值是()A .6πB .π4C .π3D .π2例2-2.已知菱形ABCD 的边长为2,120BAD ︒∠=,点E 在边BC 上,3BC BE =,若G 为线段DC 上的动点,则AG AE ⋅的最大值为()A .2B .83C .103D .43.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P,则PA PB PA PC ⋅+⋅的最小值为()6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC =,则()AO AB AC ⋅+= ()A .10B .9C .8D .6平面向量数量积的计算答案一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .1935【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b+=,因此,()1919cos,5735a a ba a ba a b⋅+<+>===⨯⋅+.2.基底法计算例2-1.已知平面向量,a b满足4a=,)(21Reeb∈+=λλ,其中21,ee为不共线的单位向量,若对符合上述条件的任意向量,a b,恒有4a b+≥,则21,ee夹角的最小值是()A.6πB.π4C.π3D.π2【解析】因a=221()||cos,0||cos,8a b a b b b a b b a b+⇔+≥⇔〈〉≥⇔≥〈〉,依题意,||2b≥恒成立,而21eebλ+=,21,ee为不共线的单位向量,即有2221,cos21be=++λλ,于是得21,cos221,cos21221221++⇔≥++λλλλeee恒成立,则02,cos4212≤-=∆ee,即有22,cos2221≤≤-e,又π≤≤21,0ee,解得43,421ππ≤≤ee,所以21,ee夹角的最小值是π4.例2-2.已知菱形ABCD的边长为2,120BAD︒∠=,点E在边BC上,3BC BE=,若G为线段DC上的动点,则AG AE⋅的最大值为()A.2B.83C.103D.4【答案】B【解析】由题意可知,如图所示因为菱形ABCD 的边长为2,120BAD ︒∠=,所以2AB AD == ,1cos1202222AB AD AB AD ︒⎛⎫⋅==⨯⨯-=- ⎪⎝⎭,设[],0,1DG DC λλ=∈ ,则AG AD DG AD DC AD AB λλ=+=+=+ ,因为3BC BE =,所以1133BE BC AD ==,13AE AB BE AB AD =+=+ ,()2211(1333AG AE AD AB AB AD AD AB AD ABλλλ⎛⎫⋅=+⋅+=+++⋅ ⎪⎝⎭ ()22110222123333λλλ⎛⎫=⨯+⨯++⨯-=- ⎪⎝⎭,当1λ=时,AG AE ⋅ 的最大值为83.3.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]【答案】D【解析】在ABC ∆中,3AC =,4BC =,90C ∠=︒,以C 为坐标原点,CA ,CB 所在的直线为x 轴,y 轴建立平面直角坐标系,如图:则(3,0)A ,(0,4)B ,(0,0)C ,设(,)P x y ,因为1PC =,所以221x y +=,又(3,)PA x y =-- ,(,4)PB x y =--,所以22(3)(4)34341PA PB x x y y x y x y x y ⋅=----=+--=--+,设cos x θ=,sin y θ=,所以(3cos 4sin )15sin()1PA PB θθθϕ⋅=-++=-++ ,其中3tan 4ϕ=,当sin()1θϕ+=时,PA PB ⋅有最小值为4-,当sin()1θϕ+=-时,PA PB ⋅有最大值为6,所以[4PA PB ⋅∈- ,6].变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.【答案】98-【解析】建立平面直角坐标系如下,则(2,0)B ,(0,2)C ,(1,0)M ,直线BC 的方程为122x y+=,即2x y +=,点P 在直线上,设(,2)P x x -,∴(1,2)MP x x =-- ,(,)CP x x =-,∴22399(1)(2)232()488MP CP x x x x x x x ⋅=---=-=--- ,∴MP CP ⋅ 的最小值为98-.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]【解析】由cos ,AP AB AB AP AP AB ⋅=⋅ ,可得AP AB ⋅ 为AB 与AP 在AB方向上的投影之积.正六边形ABCDEF 中,以D 为圆心的圆Q 与DE 交于M ,过M 作MM AB '⊥于M ',设以C 为圆心的圆Q 与AB 垂直的,切线与圆Q 切于点N 与AB 延长线交点为N ',则AP 在AB方向上的投影最小值为AM ',最大值为AN ',又1AM '=,cos 6014AN AB BC '=++=,则248AP AB ⋅≤⨯= ,212AP AB ⋅≥⨯= ,则AP AB ⋅ 的取值范围是[2,8].5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-【解析】(方法1.几何法)设点M 为BC 中点,可得→→→=+PM PC PB 2,再设AM 中点为N ,这样用极化恒等式可知:22212→→→→-=⋅AM PN PM P A ,在等边三角形ABC ∆中,3=AM ,故→→⋅PM P A 取最小值当且仅当2322-=⋅→→→PN PM P A 取最小,即0||=→PN ,故23)(min -=⋅→→PM P A .(方法2.坐标法)以BC 中点为坐标原点,由于(0A ,()10B -,,()10C ,.设()P x y ,,()PA x y =- ,()1PB x y =--- ,,()1PC x y =--,,故()2222PA PB PC x y ⋅+=-+ 2233224x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦,则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,32y =.例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P ,则PA PB PA PC ⋅+⋅ 的最小值为()A .14B .10C .8D .2【解析】(法1.极化恒等式)根据题干特征,共起点的数量积范围问题,我们尝试往恒等式方向走.记BC 中点为M ,AM 中点为N .由于→→→→→⋅=+⋅PM P A PC PB P A 2)(,而)41(2222→→→→-=⋅AM PN PM P A .由于ABC ∆为等边三角形,则M O A ,,三点共线,且由于O 是外心,也是重心,故32=⇒=AM OA .则→→→→⇔+⋅min min ||)]([PN PC PB P A ,显然,由P 在圆外,且N O ,共线(AM 中点为N ),则25||||||min =-=→→→ON OP PN .综上所述,8212)]([22min min =⋅-=+⋅→→→→→AM PN PC PB P A .(法2.基底法)()()()()PA PB PA PC PO OA PO OB PO OA PO OC ⋅+⋅=+++++ 22()()PO PO OA OB OA OB PO PO OA OC OA OC=+++⋅++++⋅ 22()PO PO OA OB OA OC OA OB OA OC =+++++⋅+⋅ ,因为等边ABC ∆的三个顶点均在圆224x y +=上,因此1cos 22()22OA OB OA OB AOB ⋅=⋅⋅∠=⨯⨯-=- ,3OP == ,因为等边ABC ∆的三个顶点均在圆224x y +=上,所以原点O 是等边ABC ∆的重心,因此0OA OB OC ++= ,所以有:18221414cos PA PB PA PC PO OA OP OA OP OA AOP⋅+⋅=+⋅--=-⋅=-⋅⋅∠ 146cos AOP =-∠,当0AOP ∠=时,即,OP OA 同向时,PA PB PA PC ⋅+⋅ 有最小值,最小值为1468-=.6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8【解析】如图,点O 在AB 、AC 上的射影是点D 、E ,它们分别为AB 、AC 的中点.由数量积的几何意义,可得21182BO BA BA BD AB ⋅=⋅== ,23212BC BO BC BE BC ⋅=⋅== .又2π3B =,所以1cos 68242BA BC BA BC B ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,又BO xBA yBC =+ ,所以()2362418BO BA xBA yBC BA BA C x y BA x B y =+⋅⋅=+⋅=-= ,即1286x y -=.同理()2246432BO BC xBA yBC BC C y x B BC y BA x ⋅⋅=++⋅=+==- ,即384x y -+=,解得1091112x y ⎧=⎪⎪⎨⎪=⎪⎩.所以710113434912x y +=⨯+=⨯.例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC = ,则()AO AB AC ⋅+= ()A .10B .9C .8D .6【解析】如图,O 为ABC ∆的外心,设,D E 为,AB AC 的中点,则,OD AB OE AC ⊥⊥,故()AO AB AC AO AB AO AC ⋅+=+⋅⋅ ||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅ ||||||||AD AB AE AC +=⋅⋅ 2222111||41||2222210AB AC +=+⨯⋅== .。

数学(2.4.1平面向量数量积的物理背景及其含义)

数学(2.4.1平面向量数量积的物理背景及其含义)
功率
功率等于功与作用时间的比值。平面向量数量积可以用来描述功率,即功率等于功向量与时间向量的 模的比值。
03
平面向量数量积的应用
速度与加速度的研究
速度
速度是描述物体运动快慢的物理量, 等于位移与时间的比值。在平面向量 中,速度可以表示为向量,其模即为 线段长度与时间的比值。
加速度
加速度是描述物体速度变化快慢的物 理量,等于速度的变化量与时间的比 值。在平面向量中,加速度可以表示 为速度向量的变化率,其模即为速度 变化量与时间的比值。
详细描述
根据数乘的定义,实数k与向量a的数乘记作 ka,其模长为|ka|=|k||a|。设向量a与向量b的
夹角为θ,则有k(a·b)=k(|a||b|cosθ), (ka)·b=|ka||b|cosθ=k(|a||b|cosθ),
a·(kb)=|a||kb|cosθ=k(|a||b|cosθ)。这说明数 乘律成立,即k(a·b)=(ka)·b=a·(kb)。
几何意义
总结词
平面向量数量积表示两个向量在方向上的相似性和夹角关系。
详细描述
平面向量数量积的几何意义在于表示两个向量在方向上的相似性和夹角关系。当两个向量的夹角为锐角时,数量 积大于0,表示两个向量方向相同;当夹角为钝角时,数量积小于0,表示两个向量方向相反;当夹角为0或180 度时,数量积为0,表示两个向量垂直或反向。
动量与冲量
动量
物体的动量等于物体的质量与速 度的乘积。平面向量数量积可以 用来描述动量,即物体的动量等 于质量与速度向量的模的乘积。
冲量
冲量等于力的作用时间与力的乘 积。平面向量数量积可以用来描 述冲量,即冲量等于力向量与时 间向量的模的乘积。
功与功率

专题83平面向量的数量积(精讲精析篇)-新高考高中数学核心知识点全透视

专题83平面向量的数量积(精讲精析篇)-新高考高中数学核心知识点全透视

专题8.3 平面向量的数量积(精讲精析篇)一、核心素养1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养.6.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.二、考试要求1.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.三、主干知识梳理(一)两个向量的夹角1.定义已知两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角.2.范围向量夹角θ的范围是0°≤θ≤180°a与b同向时,夹角θ=0°;a与b反向时,夹角θ=180°.3.向量垂直如果向量a与b的夹角是90°,则a与b垂直,记作a⊥b.(二)平面向量的数量积1.已知两个非零向量a与b,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b,即a·b=|a||b|cos θ,其中θ是a 与b 的夹角.规定0·a =0.当a ⊥b 时,θ=90°,这时a ·b =0.2.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.(三)数量积的运算律1.交换律:a ·b =b ·a .2.分配律:(a +b )·c =a ·c +b ·c .3.对λ∈R ,λ(a ·b )=(λa )·b =a ·(λb ).(四)平面向量的数量积与向量垂直的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2).设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则有下表: 设A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12 1.如果e 是单位向量,则a ·e =e ·a .2.a ⊥b ⇔a ·b =0.3.a ·a =|a |2,|a 4.cos θ=||||⋅a b a b .(θ为a 与b 的夹角) 5.|a ·b |≤|a ||b |.(七)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则:1.a ·b =a 1b 1+a 2b 2.2.a ⊥b ⇔a 1b 1+a 2b 2=0.3.|a |=a 21+a 22.4.cos θ=||||⋅a b a b =112222221212a b a b a a b b +++.(θ为a 与b 的夹角) (八)平面向量的应用1.向量与平面几何综合问题的解法(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.2.向量在解析几何中的作用(解析几何专题中详讲)(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别是向量垂直、平行的坐标表示在解决解析几何中的垂直、平行问题时经常用到. 3.向量与三角的综合应用解决这类问题的关键是应用向量知识将问题准确转化为三角问题,再利用三角知识进行求解.4.平面向量在物理中的应用一、命题规律(1)数量积、夹角及模的计算问题;(2)以平面图形为载体,借助于平面向量研究平面几何平行、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.二、真题展示1.(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP =,2||(cos 1OP=,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin |2AP α===,同理2||(cos 2|sin |2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+ ()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC2.(2021·天津·高考真题)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.【答案】11120 【分析】设BE x =,由222(2)44BE DF BE BE DF DF +=+⋅+可求出;将()DE DF DA +⋅化为关于x 的关系式即可求出最值.【详解】设BE x =,10,2x ⎛⎫∈ ⎪⎝⎭,ABC 为边长为1的等边三角形,DE AB ⊥,30,2,,12BDE BD x DE DC x ∠∴====-,//DF AB ,DFC ∴为边长为12x -的等边三角形,DE DF ⊥,22222(2)4444(12)cos0(12)1BE DF BE BE DF DF x x x x ∴+=+⋅+=+-⨯+-=,|2|1BE DF +∴=, 2()()()DE DF DA DE DF DE EA DE DF EA +⋅=+⋅+=+⋅222311(3)(12)(1)53151020x x x x x x ⎛⎫=+-⨯-=-+=-+ ⎪⎝⎭, 所以当310x =时,()DE DF DA +⋅的最小值为1120. 故答案为:1;1120.考点01 平面向量数量积的运算【典例1】(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====-,当AB OC ⊥时,a b -与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b =时,0a b -=,∴()00a b c c -⋅=⋅=,∴成立,∴是a b =的必要条件, 综上,“”是“”的必要不充分条件故选:B.【典例2】(2019·全国高考真题(理))已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( )A .3B .2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,221(3)1BC t =+-=,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【典例3】(2021·北京·高考真题)已知向量,,a b c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ________;=a b ⋅________.【答案】0 3【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】以,a b 交点为坐标原点,建立直角坐标系如图所示:则(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+=,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.【典例4】(2020·全国高考真题(文))设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________.【答案】5【解析】由a b ⊥可得0a b ⋅=,又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=,即5m =,故答案为:5.【典例5】(2020·天津高考真题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】16 132 【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭, 解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭, ∵又∵16AD BC =,则5332D ⎛ ⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,22DM x ⎛=-- ⎝⎭,333,22DN x ⎛=-- ⎝⎭,()222532113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.2.总结提升:(1).公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解.(2)已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.考点02 平面向量的模、夹角【典例6】(2021·天津·南开大学附属中学高三月考)已知平面向量a ,b ,满足2a =,5b =,53a b ⋅=,则a ,b 的夹角是( )A .6πB .3πC .4πD .23π 【答案】A【分析】 直接利用向量的数量积转化求解向量的夹角即可.【详解】解:平面向量a ,b ,满足2a =,5b =,53a b ⋅=,设a ,b 的夹角是θ,可得53cos 25a b a b θ⋅===⨯[]0,θπ∈,所以a ,b 的夹角是:6π. 故选:A . 【典例7】(2020·全国高考真题(理))已知向量ab a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D【解析】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=. ()2222257a b a b a a b b +=+=+⋅+=-=, 因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+. 故选:D. 【典例8】(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【典例9】(2020·全国高考真题(理))设,ab 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【总结提升】1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法 (1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解. 3.平面向量垂直问题的类型及求解方法 (1)判断两向量垂直第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. (2)已知两向量垂直求参数根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.考点03 平面向量的综合应用【典例10】(2020·山东海南省高考真题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A 【解析】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.【典例11】(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .B .C .2D .【答案】A 【解析】 设,则由得, 由得因此的最小值为圆心到直线的距离减去半径1,为选A.【思路点拨】 先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【典例12】(2021·浙江·高考真题)已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅=.记向量d在,a b 方向上的投影分别为x ,y ,d a -在c 方向上的投影为z ,则222x y z ++的最小值为___________. 【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得252x y z +-=,再结合柯西不等式即可得解. 【详解】由题意,设(1,0),(02),(,)a b c m n ===,, 则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b 方向上的投影分别为x ,y ,所以(),d x y =, 所以d a -在c 方向上的投影()221()22||5m x ny d a c x yz c m n-+-⋅-+===±+, 即252x y z +=,所以()()()22222222221122152510105x y z x y z x yz⎡⎤++=++±++≥+=⎢⎥⎣⎦, 当且仅当215252x y z x y z ⎧==⎪⎨⎪+=⎩即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【典例13】(2020·重庆高一期末)如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .0【答案】B 【解析】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+, [0,6],716x PE PF ∈∴≤⋅≤,∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-, 22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+,06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B.【典例14】(2020·吉林长春·一模(理))长江流域内某地南北两岸平行,如图所示已知游船在静水中的航行速度1v 的大小1||10km/h v =,水流的速度2v 的大小2||4km/h v =,设1v 和2v 所成角为 (0)θθπ<<,若游船要从A 航行到正北方向上位于北岸的码头B 处,则cos θ等于( )A .215-B .25-C .35D .45-【答案】B 【解析】由题意知()2120,v v v +⋅=有2212||c ||os 0,v v v θ+=即2104cos 40,θ⨯+=所以2cos 5θ=-, 故选:B .【典例15】(2020·上海高三专题练习)用向量的方法证明:三角形ABC 中 (1)正弦定理:sin sin sin a b cA B C==; (2)余弦定理:2222cos a b c bc A =+-. 【答案】(1)证明见解析;(2)证明见解析【解析】(1)如图(a )所示,过顶点A 作对边BC 的高AH ,则0()AH BC AH AC AB =⋅=⋅-,即0AH AC AH AB ⋅-⋅=. ∴()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-. 如图(b )所示,如果B 为钝角,有()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-∴sin sin b C c B =.上述关系对直角三角形显然成立[图(c )] ∴sin sin sin a b cA B C==. (2)在ABC 中,BC AC AB =-.∴2222()()2BC AC AB AC AB AC AB =-=+-⋅. 即2222cos a b c bc A =+-.巩固提升1.(2020·全国高考真题(文))已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b + B .2a b +C .2a b -D .2a b -【答案】D 【解析】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意.故选:D.2.(2020·福建省福州格致中学期末)已知两个不相等的非零向量a b ,,满足2b =,且b 与b a -的夹角为45°,则a 的取值范围是( ) A .(02⎤⎦,B .)22⎡⎣,C .(0,2]D .)2∞⎡+⎣,【答案】D 【解析】如图所示,设AB b =,AC a =,∠CAB =45°,由图可知,当BC ⊥AC 时,a 的取值最小,此时,则2a =, 而a 没有最大值,故a 的取值范围为)2,⎡+∞⎣. 故选:D.3.(2019·全国高考真题(文))已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6【答案】B 【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B .4.(2021·全国·高考真题(文))若向量,a b 满足3,5,1a a b a b =-=⋅=,则b =_________.【答案】【分析】根据题目条件,利用a b -模的平方可以得出答案 【详解】 ∵5a b -=∴222229225a b a b a b b -=+-⋅=+-= ∴32b =.故答案为:5.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】2【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:20k a a b k →→→⨯-⋅==,解得:k =.故答案为:2. 6.(2020·浙江省高考真题)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.【答案】2829【解析】12|2|2e e -≤, 124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 7.(2019·江苏高考真题)如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【答案】3. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=8.(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>=22133a c a c ⋅==⨯⋅. 9. (2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】3 【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.10.(2019·天津高考真题(理)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-.【解析】建立如图所示的直角坐标系,则B,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE(3y x =-, 直线AE的斜率为-y x =.由3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)122BD AE =-=-.。

平面向量的数量积教案

平面向量的数量积教案

平面向量的数量积教案一、教学目标:1. 理解平面向量的数量积的定义及其几何意义。

2. 掌握平面向量的数量积的计算公式及运算性质。

3. 学会运用平面向量的数量积解决实际问题。

二、教学内容:1. 平面向量的数量积的定义向量的数量积又称点积,是指两个向量在数量上的乘积。

对于平面向量a和b,它们的数量积定义为:a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示向量a和b之间的夹角。

2. 平面向量的数量积的几何意义(1)向量a和b的夹角为θ时,它们的数量积|a||b|cosθ表示在平行四边形法则下,向量a和b共同作用于某一点产生的合力的大小。

(2)向量a和b的夹角为90°时,它们的数量积为0,表示向量a和b垂直。

3. 平面向量的数量积的计算公式及运算性质(1)计算公式:a·b = |a||b|cosθ(2)运算性质:①交换律:a·b = b·a②分配律:a·(b+c) = a·b + a·c③数乘律:λa·b = (λa)·b = λ(a·b)三、教学重点与难点:1. 教学重点:平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 教学难点:平面向量的数量积的几何意义的理解及应用。

四、教学方法:1. 采用讲授法,讲解平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 利用多媒体课件,展示平面向量的数量积的图形演示,增强学生的直观感受。

3. 结合例题,引导学生运用平面向量的数量积解决实际问题。

五、课后作业:1. 理解并掌握平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 完成课后练习题,巩固所学知识。

3. 思考如何运用平面向量的数量积解决实际问题。

六、教学案例与分析:1. 案例一:在平面直角坐标系中,有两个向量a = (3, 2)和b = (4, -1),求向量a和b的数量积。

平面向量的数量积

平面向量的数量积

平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。

2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)

2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)

专题22 平面向量的数量积及其应用【考点预测】一.平面向量的数量积a (1)平面向量数量积的定义已知两个非零向量与b ,我们把数量||||cos θa b 叫做a 与b 的数量积(或内积),记作⋅a b ,即⋅a b =||||cos θa b ,规定:零向量与任一向量的数量积为0. (2)平面向量数量积的几何意义①向量的投影:||cos θa 叫做向量a 在b 方向上的投影数量,当θ为锐角时,它是正数;当θ为钝角时,它是负数;当θ为直角时,它是0.②⋅a b 的几何意义:数量积⋅a b 等于a 的长度||a 与b 在a 方向上射影||cos θb 的乘积. 二.数量积的运算律已知向量a 、b 、c 和实数λ,则: ①⋅=⋅a b b a ;②()()()λλλ⋅⋅=⋅a b =a b a b ; ③()+⋅⋅+⋅a b c =a c b c . 三.数量积的性质设a 、b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 ①||cos θ⋅=⋅=e a a e a .②0⊥⇔⋅=a b a b .③当a 与b 同向时,||||⋅=a b a b ;当a 与b 反向时,||||⋅=-a b a b .特别地,2||⋅=a a a 或||=a . ④cos ||||θ⋅=a ba b (||||0)≠a b .⑤||||||⋅a b a b ≤. 四.数量积的坐标运算已知非零向量11()x y =,a ,22()x y =,b ,θ为向量a 、b 的夹角.(1)平面向量的数量积是一个实数,可正、可负、可为零,且||||||a b a b ⋅≤.(2)当0a ≠时,由0a b ⋅=不能推出b 一定是零向量,这是因为任一与a 垂直的非零向量b 都有0a b ⋅=. 当0a ≠时,且a b a c ⋅=⋅时,也不能推出一定有b c =,当b 是与a 垂直的非零向量,c 是另一与a 垂直的非零向量时,有0a b a c ⋅=⋅=,但b c ≠.(3)数量积不满足结合律,即a b c b c a ⋅≠⋅()(),这是因为a b c ⋅()是一个与c 共线的向量,而b c a ⋅()是一个与a 共线的向量,而a 与c 不一定共线,所以a b c ⋅()不一定等于b c a ⋅(),即凡有数量积的结合律形式的选项,一般都是错误选项.(4)非零向量夹角为锐角(或钝角).当且仅当0a b ⋅>且(0)a b λλ≠>(或0a b ⋅<,且(0))a b λλ≠< 【方法技巧与总结】(1)b 在a 上的投影是一个数量,它可以为正,可以为负,也可以等于0.(2)数量积的运算要注意0a =时,0a b ⋅=,但0a b ⋅=时不能得到0a =或0b =,因为a ⊥b 时,也有0a b ⋅=. (3)根据平面向量数量积的性质:||a a a =⋅,cos ||||a ba b θ⋅=,0a b a b ⊥⇔⋅=等,所以平面向量数量积可以用来解决有关长度、角度、垂直的问题.(4)若a 、b 、c 是实数,则ab ac b c =⇒=(0a ≠);但对于向量,就没有这样的性质,即若向量a 、b 、c 满足a b a c ⋅=⋅(0a ≠),则不一定有=b c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量. (5)数量积运算不适合结合律,即()()a b c a b c ⋅⋅≠⋅⋅,这是由于()a b c ⋅⋅表示一个与c 共线的向量,()a b c ⋅⋅表示一个与a 共线的向量,而a 与c 不一定共线,因此()a b c ⋅⋅与()a b c ⋅⋅不一定相等.【题型归纳目录】题型一:平面向量的数量积运算 题型二:平面向量的夹角 题型三:平面向量的模长题型四:平面向量的投影、投影向量 题型五:平面向量的垂直问题 题型六:建立坐标系解决向量问题 【典例例题】题型一:平面向量的数量积运算例1.(2022·全国·模拟预测(理))在ABC 中,π3ABC ∠=,O 为ABC 的外心,2BA BO ⋅=,4BC BO ⋅=,则BA BC ⋅=( )A .2B .C .4D .【答案】B 【解析】 【分析】设,AB BC 的中点为D,E ,将2BA BO ⋅=,变为2BD BO ⋅,根据数量积的几何意义可得||1BD =,同理求得||BC ,根据数量积的定义即可求得答案. 【详解】如图,设,AB BC 的中点为D,E ,连接OD,OE ,则,OD AB OE BC ⊥⊥ ,故2BA BO ⋅=,即22||||cos 2BD BO BD BO OBD ⋅=⋅∠= , 即2||1,||1BD BD ==,故||2BA =,4BC BO ⋅=,即22||||cos 4BE BO BE BO OBE ⋅=⋅∠= ,即2||2,||2BE BE ==,故||22BC =故1||||cos 22BA BC BA BC BAC ⋅=⋅∠=⨯=故选:B例2.(2022·河南安阳·模拟预测(理))已知AH 是Rt ABC △斜边BC 上的高,AH =,点M 在线段AH 上,满足()82+⋅=MB MC AH MB MC ⋅=( ) A .4- B .2- C .2 D .4【答案】A 【解析】 【分析】由()82+⋅=MB MC AH 2MH =,由AH 是Rt ABC △斜边BC 上的高,AH =,可得28HC HB AH ⋅==,然后对()()MB MC MH HB MH HC ⋅=+⋅+化简可求得结果因为AH 是Rt ABC △斜边BC 上的高,AH = 所以0,0AH HB AH HC ⋅=⋅=,28HC HB AH ⋅==, 因为()82+⋅=MB MC AH所以()82MH MH A HB HC H +⋅=++ 所以282MH AH HB AH HC AH ⋅+⋅+⋅= 所以42MH AH ⋅=, 所以42MH AH ⋅= 所以2MH =,所以()()MB MC MH HB MH HC ⋅=+⋅+ 2MH MH HC HB MH HC HB =+⋅+⋅+⋅2cos MH HC HB π=+⋅ 228(1)4=+⨯-=-,故选:A例3.(2022·全国·高三专题练习(理))已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅=( ) A .2- B .1- C .1 D .2【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵222|2|||44-=-⋅+a b a a b b , 又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,故选:C.例4.(2022·四川省泸县第二中学模拟预测(文))如图,正六边形ABCDEF 中,2AB =,点P 是正六边形ABCDEF 的中心,则AP AB ⋅=______.【答案】2 【解析】 【分析】找到向量的模长和夹角,带入向量的数量积公式即可. 【详解】在正六边形中,点P 是正六边形ABCDEF 的中心,60PAB ︒=∴∠,且2AP AB ==, 1cos602222AP AB AP AB ︒∴⋅=⋅⋅=⨯⨯=. 故答案为:2.例5.(2022·安徽·合肥市第八中学模拟预测(理))已知向量,,a b c 满足0,||1,||3,||4a b c a b c ++====,则a b ⋅=_________.【答案】3 【解析】 【分析】由0a b c ++=,得a b c +=-,两边平方化简可得答案 【详解】由0a b c ++=,得a b c +=-, 两边平方,得2222a a b b c +⋅+=, 因为134a b c ===,,, 所以12916a b +⋅+=,得·3a b =. 故答案为:3.例6.(2022·陕西·模拟预测(理))已知向量()1,a x =,()0,1b =,若25a b +=,则⋅=a b __________ 【答案】0或4-##4-或0. 【解析】 【分析】由向量模长坐标运算可求得x ,由向量数量积的坐标运算可求得结果. 【详解】()21,2a b x +=+,(21a b x ∴+=+0x =或4x =-;当0x =时,()1,0a =,0a b ∴⋅=;当4x =-时,()1,4a =-,044a b ∴⋅=-=-; 0a b ∴⋅=或4-.故答案为:0或4-.例7.(2022·上海徐汇·二模)在ABC 中,已知1AB =,2AC =,120A ∠=︒,若点P 是ABC 所在平面上一点,且满足AP AB AC λ=+,1BP CP ⋅=-,则实数λ的值为______________. 【答案】1或14【解析】 【分析】根据平面向量的线性运算法则,分别把BP CP ,用AB AC ,表示出来,再用1BP CP ⋅=-建立方程,解出λ的值. 【详解】由AP AB AC λ=+,得AP AB AC λ-=,即BP AC λ=, (1)CP AP AC AB AC λ=-=+-,在ABC 中,已知1AB =,2AC =,120A ∠=︒, 所以2((1))(1))BP CP AC AB AC AC AB AC λλλλλ⋅=⋅+-=⋅+-22cos1204(1)451λλλλλ=+-=-=-, 即24510λλ-+=,解得1λ=或14λ= 所以实数λ的值为1或14. 故答案为:1或14. 例8.(2022·陕西·交大附中模拟预测(理))已知在平行四边形ABCD 中,11,,2,622DE EC BF FC AE AF ====,则AC DB ⋅值为__________. 【答案】94【解析】 【分析】由向量加法的几何意义及数量积运算律有22D AC DB C CB ⋅=-,再由1313AE BC DC AF DC BC⎧=+⎪⎪⎨⎪=+⎪⎩结合数量积运算律,即可得结果. 【详解】由题设可得如下图:,AC AD DC DB DC CB =+=+,而AD CB =-,所以22D AC DB C CB ⋅=-, 又11,,2,622DE EC BF FC AE AF ====, 所以1313AE AD DE BC DC AF AB BF DC BC ⎧=+=+⎪⎪⎨⎪=+=+⎪⎩,则22222143921639BC BC DC DC DC BC DC BC ⎧+⋅+=⎪⎪⎨⎪+⋅+=⎪⎩,故228()29DC BC -=,可得2294DC BC -=,即94AC DB =⋅. 故答案为:94例9.(2022·福建省福州第一中学三模)过点M 的直线与22:(3)16C x y -+=交于A ,B 两点,当M 为线段AB中点时,CA CB ⋅=___________. 【答案】-8 【解析】 【分析】由题意可得M 在C 内,又由M 为线段AB 中点AB CM ⊥,由两点间距离公式得2CM ==12AC ,进而求得120ACB ∠=︒,再由向量的数量积公式计算即可得答案. 【详解】解:因为点M 在22:(3)16Cx y -+=内, 所以当M 为线段AB 中点时,AB CM ⊥,又因为C 的半径为4,2CM ==12AC ,所以60ACM ∠=°, 所以120ACB ∠=︒,所以,CA CB ⋅=||||cos120CA CB ︒=144()82⨯⨯-=-.故答案为:-8.例10.(2022·全国·模拟预测(理))已知向量a 与b 不共线,且()2a a b ⋅+=,1a =,若()()22a b a b -⊥+,则()b a b ⋅-=___________. 【答案】3- 【解析】 【分析】由()2a a b ⋅+=得1a b ⋅=,由()()22a b a b -⊥+得2b =,即可求解结果. 【详解】由()212a a b a a b a b ⋅+=+⋅=+⋅=得1a b ⋅=由()()22a b a b -⊥+得()()222240a b a b a b -⋅+=-=,所以2b = 则()2143b a b b a b ⋅-=⋅-=-=- 故答案为:3-例11.(2022·全国·高三专题练习(理))设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11 【解析】 【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅,最后根据数量积的运算律计算可得. 【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=.故答案为:11.例12.(2022·江苏·徐州市第七中学模拟预测)如图是第24届国际数学家大会的会标,它是根据中国古代数学家赵爽的弦图设计的,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形EFGH 组成的.若E 为线段BF 的中点,则AF BC ⋅=______.【答案】4 【解析】 【分析】利用数量积的几何意义求解. 【详解】 解:如图所示:设CF x =,由题可得2BF x =, 所以()2225x x +=, 解得1x =.过F 作BC 的垂线,垂足设为Q , 故24AF BC BQ BC BF ⋅=⋅==, 故答案为:4. 【方法技巧与总结】(1)求平面向量的数量积是较为常规的题型,最重要的方法是紧扣数量积的定义找到解题思路. (2)平面向量数量积的几何意义及坐标表示,分别突出了它的几何特征和代数特征,因而平面向量数量积是中学数学较多知识的交汇处,因此它的应用也就十分广泛.(3)平面向量的投影问题,是近几年的高考热点问题,应熟练掌握其公式:向量a 在向量b 方向上的投影为||a bb ⋅. (4)向量运算与整式运算的同与异(无坐标的向量运算)同:222()2a b a ab b ±=±+;a b ±()a b c ab ac +=+公式都可通用 异:整式:a b a b ⋅=±,a 仅仅表示数;向量:cos a b a b θ⋅=±(θ为a 与b 的夹角) 22222cos ma nb m a mn a b n b θ±=±+,使用范围广泛,通常是求模或者夹角.ma nb ma nb ma nb -≤±≤+,通常是求ma nb ±最值的时候用. 题型二:平面向量的夹角例13.(2022·甘肃·高台县第一中学模拟预测(文))已知非零向量a →,b →满足a b a →→→-=,a a b →→→⎛⎫⊥- ⎪⎝⎭,则a→与b →夹角为______. 【答案】4π##45 【解析】 【分析】根据已知求出2=a a b →→→,||b a →→,即得解. 【详解】解:因为a b a →→→-=,所以22222,2a b a b a b a b →→→→→→→→+-=∴=.因为a a b →→→⎛⎫⊥- ⎪⎝⎭,所以22=0,=aa b a a b a a b →→→→→→→→→⎛⎫--=∴ ⎪⎝⎭, 所以22=2||b a b a →→→→∴,.设a →与b →夹角为θ,所以22cos =2|||||a ba ba b a θ→→→→→→→==. 因为[0,]θπ∈,所以4πθ=.例14.(2022·安徽·合肥一六八中学模拟预测(文))已知向量||1b =,向量(1,3)a =,且|2|6a b -=,则向量,a b 的夹角为___________. 【答案】2π##90 【解析】【分析】由|2|6a b -=两边平方,结合数量积的定义和性质化简可求向量,a b 的夹角 【详解】因为(1,3)a =,所以(21+a =因为|2|6a b -=,所以2222+26a ab b -=,又||1b =,所以426b -⋅+=,所以0a b ⋅=, 向量,a b 的夹角为θ,则cos 0a b θ⋅= 所以cos 0θ=,则2πθ=.故答案为:2π. 例15.(2022·湖北武汉·模拟预测)两不共线的向量a ,b ,满足3a b =,且t R ∀∈,a tb a b -≥-,则cos ,a b =( )A .12 B C .13D 【答案】C 【解析】 【分析】由a tb a b -≥-两边平方后整理得一元二次不等式,根据一元二次函数的性质可判断0∆≤,整理后可知∆只能为0,即可解得答案. 【详解】 解:由题意得:t R ∀∈,a tb a b -≥-t R ∴∀∈,2222222a t b ta b a b a b +-⋅≥+-⋅即222226cos ,6cos ,0t b t b a b b b a b --+≥ 0b ≠t R ∴∀∈,26cos ,16cos ,0t t a b a b --+≥()221Δ36cos ,46cos ,136cos ,03a b a b a b ⎛⎫∴=--=-≤ ⎪⎝⎭1cos ,03a b ∴-=,即1cos ,3a b =故选:C例16.(2022·云南师大附中模拟预测(理))已知向量()2,2a t =,()2,5b t =---,若向量a 与向量a b +的夹角为钝角,则t 的取值范围为( ) A .()3,1- B .()()3,11,1---C .()1,3-D .111,,322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】求出a b +的坐标,求得当a 与a b +共线时12t =,根据向量a 与向量a b +的夹角为钝角,列出相应的不等式,求得答案. 【详解】因为(23)a b t +=--,,又a 与a b +的夹角为钝角, 当a 与a b +共线时,162(2)0,2t t t ---==, 所以()0a a b ⋅+<且a 与a b +的不共线,即2230t t --<且12t ≠, 所以111322t ⎛⎫⎛⎫∈-⋃ ⎪ ⎪⎝⎭⎝⎭,,, 故选:D .例17.(2022·广东深圳·高三阶段练习)已知向量()cos30,sin 210a =︒-︒,(3,1)b =-,则a 与b 夹角的余弦值为_________. 【答案】12-【解析】 【分析】化简向量a ,根据向量的模的公式,数量积公式和向量的夹角公式求解. 【详解】由()cos30,sin210a =︒-︒知31,22a ⎛⎫= ⎪ ⎪⎝⎭,故31(1122a b ⋅=⨯+⨯=-,||1a =,||2b =,记a 与b 的夹角为θ,则11cos 122||||a b a b θ⋅-===-⨯⨯.故答案为:12-.例18.(2022·全国·高三专题练习)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例19.(2022·湖南·长沙市明德中学二模)已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-=,则向量b 与向量a b -夹角的余弦值为( )A .B .0C D 【答案】A 【解析】 【分析】根据0a b ⋅=,设(1,0)a =,(0,)b t =,根据()()0a b a b +⋅-=求出21t =,再根据平面向量的夹角公式计算可得解. 【详解】因为0a b ⋅=,所以可设(1,0)a =,(0,)b t =,则(1,)a b t +=,(1,)a b t -=-, 因为()()0a b a b +⋅-=,所以210t -=,即21t =.则()cos ,||||b a bb a b b a b ⋅-<->=⋅-2==,故选:A.例20.(2022·辽宁·大连市一0三中学模拟预测)已知单位向量a ,b 满足3a b a b -=+,则a 与b 的夹角为( ) A .30° B .60°C .120°D .150°【答案】C【解析】 【分析】根据数量积的运算律及夹角公式计算可得; 【详解】解:因为a ,b 为单位向量,所以1a b ==, 又3a b a b -=+,所以()()223a b a b -=+,即()2222232a a b b a a b b -⋅+=+⋅+,所以()22240a a b b +⋅+=,即()22240a a b b+⋅+=,所以12a b ⋅=-, 所以1cos ,2a ba b a b ⋅==-⋅,因为[],0,a b π∈,所以2,3a b π=;故选:C例21.(2022·北京市大兴区兴华中学三模)已知a 为单位向量,向量()1,2b =,且2a b ⋅=,则,a b a -=( ) A .π6B .π4C .π3D .3π4【答案】B 【解析】 【分析】先根据已知条件求出()a b a ⋅-和b a -,然后利用向量的夹角公式可求出结果 【详解】因为a 为单位向量,向量()1,2b =,且2a b ⋅=, 所以()2211a b a a b a ⋅-=⋅-=-=,222()252b a b a b a b a -=-=-⋅+=-=所以()1cos ,2a b a a b a a b a⋅--===-, 因为[],0,πa b a -∈, 所以π,4a b a -=, 故选:B例22.(2022·全国·模拟预测(理))已知平面向量a b +与a b -互相垂直,模长之比为2:1,若||5a =,则a 与a b +的夹角的余弦值为( )A B C D .12【答案】A 【解析】 【分析】利用向量a b +与a b -互相垂直,模长之比为2:1,利用数量积求得向量,a b 的模长及数量积,然后利用平面向量夹角公式求得结果. 【详解】平面向量a b +与a b -互相垂直,模长之比为2:1,则()()0a b a b +⋅-=且||2||a b a b +=-,得22a b =,又||5a =,则||||5a b ==,将||2||a b a b +=-平方得22222484a a b b a a b b +⋅+=-⋅+,解得=3a b ⋅,222|=216a b a a b b +|+⋅+=,则4a b +=,设a 与a b +的夹角为θ,则()25+3cos =54a ab aa ba a ba a bθ⋅++⋅===⨯++ 故选:A.例23.(多选题)(2022·福建省福州格致中学模拟预测)已知单位向量,a b 的夹角为120︒,则以下说法正确的是( ) A .||1a b += B .(2)a b a +⊥C .3cos ,2a b b 〈-〉= D .2a b +与2a b +可以作为平面内的一组基底【答案】ABD 【解析】 【分析】根据向量的模的公式,数量积的运算,向量的夹角公式,判断向量共线的条件逐项验证即可 【详解】据题意221,1,11cos1202a b a b ︒==⋅=⨯⨯=-因为2221()211212a b a b a b ⎛⎫+=++⋅=++⨯-= ⎪⎝⎭所以||1a b +=,所以A 对因为21(2)21202a b a a a b ⎛⎫+⋅=+⋅=+⨯-= ⎪⎝⎭,所以(2)a b a +⊥,所以B 对.因为222213()1,()2322a b b a b b a b a b a b -⋅=⋅-=--=--=++⋅=所以3()2cos ,||||31a b b a b b a b b --⋅〈-〉===-⋅⨯所以C 错因为2a b +与2a b +不共线,所以可以作为平面内的一组基底,所以D 正确 故选:ABD例24.(多选题)(2022·江苏·模拟预测)已知向量(3,2)a =-,(2,1)b =,(,1)c λ=-,R λ∈,则( ) A .若(2)a b c +⊥,则4λ= B .若a tb c =+,则6t λ+=- C .a b μ+的最小值为D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(,1)-∞- 【答案】ABC 【解析】 【分析】利用向量的坐标运算及向量垂直的坐标表示判断A ,利用向量坐标的表示可判断B ,利用向量的模长的坐标公式及二次函数的性质可判断C ,利用向量数量积的坐标表示及向量共线的坐标表示可判断D. 【详解】对于A ,因为2(1,4)a b +=,(,1)c λ=-,(2)a b c +⊥,所以14(1)0λ⨯+⨯-=,解得4λ=,所以A 正确. 对于B ,由a tb c =+,得(3,2)(2,1)(,1)(2,1)t t t λλ-=+-=+-,则32,21,t t λ-=+⎧⎨=-⎩解得93t λ=-⎧⎨=⎩,故6t λ+=-,所以B 正确.对于C ,因为(3,2)(2,1)(23,2)a bμμμμ+=-+=-+,所以a b μ+==则当45μ=时,a b μ+取得最小值,为,所以C 正确. 对于D ,因为(1,3)a b +=-,2(4,1)b c λ+=+,向量a b +与向量2b c +的夹角为锐角, 所以()(2)1(4)310a b b c λ⋅+=-⨯+⨯++>,解得1λ<-;当向量a b +与向量2b c +共线时,113(4)0λ-⨯-⨯+=,解得133λ=-, 所以λ的取值范围是1313,,133⎛⎫⎛⎫-∞-⋃-- ⎪ ⎪⎝⎭⎝⎭,所以D 不正确.故选:ABC.例25.(2022·河南·通许县第一高级中学模拟预测(文))已知1e ,2e 是单位向量,122a e e =-,123b e e =+,若a b ⊥,则1e ,2e 的夹角的余弦值为( )A .35B .12C .13D .15【答案】D 【解析】 【分析】根据平面向量数量积的运算性质,结合平面向量夹角公式进行求解即可. 【详解】由题意知121e e ==,()()22121212122303250a b e e e e e e e e ⋅=-⋅+=⇒--⋅=,即1215e e ⋅=,所以121cos 5e e ⋅=. 故选:D.例26.(2022·安徽师范大学附属中学模拟预测(理))非零向量,a b 满足2a b a b a +=-=,则a b -与a 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】根据给定条件,求出a b ⋅,再利用向量夹角公式计算作答. 【详解】由a b a b +=-得:22()()a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,解得0a b ⋅=,因此,22()1cos ,2||||2||a b a a a b a b a a b a a -⋅-⋅〈-〉===-,而,[0,π]a b a 〈-〉∈,解得π,3a b a 〈-〉=, 所以a b -与a 的夹角为3π. 故选:B例27.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠,则a 与b 的夹角为( ) A .6πB .π3C .π2D .2π3【答案】C 【解析】 【分析】由题干条件平方得到()0a b λ⋅=,从而得到0a b ⋅=,得到a 与b 的夹角. 【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+,因为向量a ,b 为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅=. 因为0λ≠,所以0a b ⋅=,即a 与b 的夹角为π2. 故选:C【方法技巧与总结】 求夹角,用数量积,由||||cos a b a b 得121222221122cos||||x x y y a b a b xyx y ,进而求得向量,a b 的夹角.题型三:平面向量的模长例28.(2022·福建省厦门集美中学模拟预测)已知向量a 、b 、c 满足0a b c ++=,()()0a b a c -⋅-=,9b c -=,则a =______. 【答案】3 【解析】 【分析】由已知条件可得出a b c =--,根据平面向量的数量积可求得22b c +、b c ⋅的值,结合平面向量的数量积可求得a 的值. 【详解】由已知可得a b c =--,则()()()()()()22220a b a c b c b c b c b c -⋅-=--⋅--=+⋅+=, 即222250b c b c ++⋅=,因为9b c -=,则22281b c b c +-⋅=,所以,2245b c +=,18b c ⋅=-,因此,()2222229a a b c b c b c ==--=++⋅=,故3a =.故答案为:3.例29.(2022·辽宁沈阳·三模)已知平面向量,,a b c 满足1,1,0,1a c a b c a b ==++=⋅=-,则b =_______.【解析】【分析】由题意得c a b =--,直接平方即得结果. 【详解】由0a b c ++=可得c a b =--,两边同时平方得2222c a a b b =+⋅+,1,1,1a c a b ==⋅=-,2112b ∴=-+,解得2b =..例30.(2022·全国·高三专题练习(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+a b .故选:D例31.(2022·江苏·扬中市第二高级中学模拟预测)已知a 与b 为单位向量,且a ⊥b ,向量c 满足||2b c a --=,则|c |的可能取值有( )A .6B .5C .4D .3【答案】D 【解析】 【分析】建立平面直角坐标系,由向量的坐标计算公式可得(1,1)c a b x y --=--,进而由向量模的计算公式可得22(1)(1)4x y -+-=,分析可得C 在以(1,1)为圆心,半径为2的圆上,结合点与圆的位置关系分析可得答案. 【详解】根据题意,设OA a =,OB b =,OC c =,以O 为坐标原点,OA 的方向为x 轴正方向,OB 的方向为y 轴的正方向建立坐标系, 则(1,0)A ,(0,1)B ,设(,)C x y ,则(1,1)c a b x y --=--,若||2b c a --=,则有22(1)(1)4x y -+-=,则C 在以(1,1)为圆心,半径为2的圆上,设(1,1)为点M ,则||OM =||||||r OM OC r OM -+, 即22||22OC +,则||c 的取值范围为22⎡⎣;故选:D .例32.(2022·江苏·南京市天印高级中学模拟预测)已知平面向量a ,b 满足2a =,1b =,且a 与b 的夹角为3π,则a b +=( )AB C D .3【答案】C 【解析】 【分析】 由()2222a b a ba ab b +=+=+⋅+求解.【详解】解:因为2a =,1b =,且a 与b 的夹角为3π, 所以()2222a b a ba ab b +=+=+⋅+,==,故选:C例33.(2022·河南·开封市东信学校模拟预测(理))已知非零向量a ,b 的夹角为6π,()||3,a a a b =⊥-,则||b =___________. 【答案】2 【解析】 【分析】由平面向量的数量积的运算性质求解即可 【详解】由()a a b ⊥-得22π3()||||||||cos3||062a ab a a b a a b b ⋅-=-⋅=-⋅=-=, 解得||2b =. 故答案为:2例34.(2022·全国·高三专题练习)已知三个非零平面向量a ,b ,c 两两夹角相等,且||1a =,||2b =,||3c =,求|23|a b c -+.9 【解析】【分析】由三个非零平面向量a ,b ,c 两两夹角相等得 ,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0,再分别计算求解即可 【详解】因为三个非零平面向量a ,b ,c 两两夹角相等,所以,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0 .当,,,120a b b a c c 〈〉=〈〉=〈〉=︒时,2|23|(23)a b c a b c -+=-+222||||9||4126a b c b b c a c a =++-⋅+⋅-⋅==当,,,0a b b c c a 〈〉=〈〉=〈〉=︒,即a ,b ,c 共线时. |23|2||||3||2299a b c a b c -+=-+=-+=∣∣.9例35.(2022·全国·高三专题练习)已知2=a ,3b =,a 与b 的夹角为120,求a b +及a b -的值. 【答案】7a b +=,19a b -=. 【解析】 【分析】利用向量数量积定义可求得a b ⋅,由向量数量积的运算律可求得2a b +和2a b -,由此可得结果. 【详解】cos ,6cos1203a b a b a b ⋅=⋅<>==-,22224697a b a a b b ∴+=+⋅+=-+=,222246919a b a a b b -=-⋅+=++=,7a b ∴+=,19a b -=.例36.(2022·福建泉州·模拟预测)已知向量(0,1)=a ,(,3)b t =,若,a b 的夹角为π3,则||b =___________.【答案】【解析】 【分析】根据平面向量的夹角公式可求出结果. 【详解】 由πcos3||||a b a b ⋅=⋅,得132||b ,得||23b =.故答案为:【方法技巧与总结】 求模长,用平方,2||a a .题型四:平面向量的投影、投影向量例37.(2022·新疆克拉玛依·三模(理))设a ,b 是两个非零向量,AB a =,CD b =,过AB 的起点A 和终点B ,分别作CD 所在直线的垂线,垂足分别为1A ,1B ,得到11A B ,则11A B 叫做向量a 在向量b 上的投影向量.如下图,已知扇形AOB 的半径为1,以O 为坐标原点建立平面直角坐标系,()1,0OA =,12OB ⎛= ⎝⎭,则弧AB 的中点C 的坐标为________;向量CO 在OB 上的投影向量为________ .【答案】12⎫⎪⎪⎝⎭3()4- 【解析】 【分析】由已知,根据给到的OA ,OB 先求解OA 与OB 的夹角,然后再利用点C 是弧AB 的中点,即可求解出AOC ∠,从而求解点C 的坐标;根据前面求解出的点C 的坐标,写出OB 和CO ,先计算向量CO 在OB 上的投影,然后根据OB 即可写出向量CO 在OB 上的投影向量. 【详解】由已知,()1,0OA =,12OB ⎛= ⎝⎭,所以112cos ,112OA OB OA OB OA OB ===⨯, 所以π3AOB ∠=,因为点C 为弧AB 的中点,所以π6AOC ∠=, 扇形AOB 的半径为1,所以弧AB 满足的曲线参数方程为cos π()sin 3xy αααα=⎧≤≤⎨=⎩为参数,0, 所以中点C 的坐标为πcos 6π1sin 62x y ⎧==⎪⎪⎨⎪==⎪⎩,所以C的坐标为12⎫⎪⎪⎝⎭,12CO ⎛⎫=-- ⎪ ⎪⎝⎭,12OB ⎛=⎝⎭, 向量CO 在OB 上的投影为3441CO OB OB-== 因为12OB ⎛= ⎝⎭,所以向量CO 在OB 上的投影向量为3()4-.故答案为:12⎫⎪⎪⎝⎭;3()4- 例38.(2022·江西鹰潭·二模(文))已知向量,,(3,1),||2,(2)3a b a b a b b ==-⋅=,则b 在a 方向上的投影为_________ 【答案】54【解析】 【分析】根据向量数量积性质和向量投影定义求解即可. 【详解】因为(3,1)a =,||2b =,所以2||1(2a =+,22b =,因为(2)3a b b -⋅=,所以222223a b b b a b b a b ⋅-⋅=⋅-=⋅-=,所以52a b ⋅=, 所以b 在a 方向上的投影为5||4a b a ⋅=, 故答案为:54. 例39.(2022·江西·南昌市八一中学三模(理))已知向量()1,2a =-,()3,b t =,且a 在b 上的投影等于1-,则t =___________. 【答案】4 【解析】 【分析】根据投影定义直接计算可得,注意数量积符号. 【详解】因为a 在b 上的投影等于1-,即cos ,1a b a a b b⋅〈〉==-1=-,且320t -<,解得4t =.故答案为:4例40.(2022·江苏淮安·模拟预测)已知||2a =,b 在a 上的投影为1,则a b +在a 上的投影为( )A .-1B .2C .3D 【答案】C 【解析】 【分析】先利用b 在a 上的投影为1求出a b ⋅,然后可求a b +在a 上的投影. 【详解】因为||2a =,b 在a 上的投影为1,所以1||a ba ⋅=,即2ab ⋅=; 所以a b +在a 上的投影为()24232||||a b a aa b a a +⋅+⋅+===;故选:C.例41.(2022·四川成都·三模(理))在ABC 中,已知7π12A ∠=,π6C ∠=,AC =BA在BC 方向上的投影为( ).A .B .2CD .【答案】C 【解析】 【分析】利用三角形内角和及正弦定理求得4B π∠=、2AB =,再根据向量投影的定义求结果.【详解】由题设4B π∠=,则sin sin AB AC C B=,可得122AB ==, 所以向量BA 在BC 方向上的投影为||cos 2BA B ==故选:C例42.(2022·广西桂林·二模(文))已知向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为( ) A .1- B .2- C .1 D .2【答案】B 【解析】 【分析】利用向量的投影公式直接计算即可. 【详解】向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为2||cos ,21||a b a a b b ⋅-<>===-, 故选:B .例43.(2022·内蒙古呼和浩特·二模(理))非零向量a ,b ,c 满足()b a c ⊥-,a 与b 的夹角为6π,3a =,则c 在b 上的正射影的数量为( )A .12-B .C .12D 【答案】D 【解析】 【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答. 【详解】非零向量a ,b ,c 满足()b a c ⊥-,则()·0b a c a b c b -=⋅-⋅=,即c b a b ⋅=⋅,又a 与b 的夹角为6π,3a =, 所以c 在b 上的正射影的数量3||cos ,||cos 62||||c b a b c c b a b b π⋅⋅〈〉====故选:D例44.(2022·辽宁·渤海大学附属高级中学模拟预测)已知单位向量,a b 满足||1a b -=,则a 在b 方向上的投影向量为( )A .12bB .12b -C .12aD .12a -【答案】A 【解析】 【分析】根据投影向量公式,即可求解. 【详解】22221a b a a b b -=-⋅+=,因为1==a b ,所以12a b ⋅=, 所以a 在b 方向上的投影向量为12a b b b b b ⋅⋅=. 故选:A例45.(2022·海南华侨中学模拟预测)已知平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-,则a 在b 方向上的投影向量为( )A .12⎫⎪⎪⎝⎭B .21⎛⎫⎪ ⎪⎝⎭ C .12⎛- ⎝⎭D .12⎛ ⎝⎭【答案】C 【解析】 【分析】利用投影向量的定义求解. 【详解】解:因为平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-, 所以a 在b方向上的投影向量为22cos 13(1,3)(2a b a b b bbπ⋅⋅⋅⋅=⋅-=- ,故选:C题型五:平面向量的垂直问题例46.(2022·海南海口·二模)已知向量a ,b 的夹角为45°,2a =,且2a b ,若()a b b λ+⊥,则λ=______. 【答案】-2 【解析】 【分析】先利用数量积的运算求解b ,再利用向量垂直数量积为0即可求解. 【详解】因为cos 452a b a b ⋅=︒=得2b =, 又因为()a b b λ+⊥,所以()2240a b b a b b λλλ+⋅=⋅+=+=,所以2λ=-. 故答案为:-2.例47.(2022·广东茂名·二模)已知向量a =(t ,2t ),b =(﹣t ,1),若(a ﹣b )⊥(a +b ),则t =_____. 【答案】12±【解析】 【分析】由(a ﹣b )⊥(a +b ),由垂直向量的坐标运算可得出a b =,再由模长的公式即可求出t . 【详解】因为(a ﹣b )⊥(a +b ),所以()()0a b a b -⋅+=,所以220a b -=,则a b =,所以22241t t t +=+,所以12t =±.故答案为:12±.例48.(2022·青海玉树·高三阶段练习(理))已知向量()1,1a =-,()1,b m =,若()3a b a +⊥,则m =______.【答案】13【解析】 【分析】根据向量的坐标运算和数量积的坐标运算即可求解. 【详解】()()23,3030a b a a b a aa b +⊥∴+⋅=⇒+⋅= ,所以()123103m m +-+=⇒=故答案为:13例49.(2022·河南开封·模拟预测(理))已知两个单位向量1e 与2e 的夹角为3π,若122a e e =+,12b e me =+,且a b ⊥,则实数m =( ) A .45-B .45 C .54-D .54【答案】A 【解析】 【分析】由向量垂直及数量积的运算律可得221122(2)20e m e e m e ++⋅+=,结合已知即可求m 的值.【详解】由题意1222121122)()(220()2a b e me m e e m e e e e ⋅=⋅+=++⋅++=, 又1e 与2e 的夹角为3π且为单位向量, 所以22021m m +++=,可得45m =-.故选:A例50.(2022·河南安阳·模拟预测(文))已知向量(22,4),1,cos 2⎛⎫=-= ⎪⎝⎭a b θ,其中(0,π)θ∈,若a b ⊥,则sin θ=___________. 【答案】1 【解析】 【分析】根据平面向量垂直的性质,结合平面向量数量积的运算坐标表示公式、特殊角的三角函数值进行求解即可. 【详解】因为a b ⊥,所以0a b ⋅=,即14cos0cos22θθ-+=⇒=,因为(0,π)θ∈,所以π(0,)22θ∈,因此ππ242θθ=⇒=,所以sin 1θ=, 故答案为:1例51.(2022·全国·模拟预测(文))设向量()2,1a =,()1,b x =-,若()a b a ⊥-,则b =___________.【答案】【解析】 【分析】由平面向量数量积的坐标运算求解 【详解】()3,1b a x -=--,由题意得()0a b a ⋅-=,即610x -+-=,得7x =149b =+=.故答案为:【方法技巧与总结】121200a b a b x x y y ⊥⇔⋅=⇔+=题型六:建立坐标系解决向量问题例52.(2022·山东淄博·三模)如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .15-B .13-C .13D .15【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标法求出平面向量的数量积; 【详解】解:建立如图所示的平面直角坐标系, 则(12,0)A ,(0,0)B ,(0,8)C ,(6,0)F , 又3CE =,8CB =,12AB =,则10CF =,即310CE FC =,即710FE FC =, 则()()9286,67710100,8,55BE BF FC ⎛⎫=+=+-= ⎪⎝⎭, 则,552851EA ⎛⎫=-⎪⎝⎭,928,55EB ⎛⎫=-- ⎪⎝⎭, 则25281355951EA EB ⎛⎫⎛⎫⋅=⨯-+-= ⎪ ⎪⎝⎭⎝⎭;故选:C .例53.(2022·贵州贵阳·模拟预测(理))在边长为2的正方形ABCD 中,E 是BC 的中点,则AC DE ⋅=( ) A .2 B .2-C .4-D .4【答案】A 【解析】 【分析】建立直角坐标系,用向量法即可 【详解】在平面直角坐标系中以A 为原点,AB 所在直线为x 轴建立坐标系,则()0,0A ,()0,2D ,()2,2C ,()2,1E ,所以()()2,22,1422AC DE ⋅=⋅-=-=, 故选:A例54.(2022·江苏·模拟预测)如图,在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点,(4,1)AB =,(2,3)DC =,(2,)AC m =-,若0E A F C =⋅,则实数m 的值是( )A .3-B .2-C .2D .3【答案】D 【解析】 【分析】根据题意得分别求出AD 和BC 的坐标,再分别求出AE 和BF 的坐标,EF EA AB BF =++,再利用数量积坐标运算求解即可. 【详解】根据题意得:(4,3)AD CD CA AC DC m =-=-=--,(6,1)BC AC AB m =-=--, 因为E ,F 分别为AD ,BC 的中点,所以13(2,)22m AE AD -==-,11(3,)22m BF BC -==-, 所以()3,2EF EA AB BF =++=,又0E A F C =⋅,即()2320m -⨯+⨯=,解得3m =. 故选:D.例55.(2022·四川南充·三模(理))在Rt ABC △中,90A ∠=︒,2AB =,3AC =,2AM MC =,12AN AB =,CN 与BM 交于点P ,则cos BPN ∠的值为( )A B .C .D 【答案】D 【解析】 【分析】将三角形放到直角坐标系当中,利用坐标法求向量夹角,即可求解. 【详解】解:建立如图直角坐标系,则(0,2),(0,1),(3,0),(2,0)B N C M , 得(3,1),(2,2)CN MB =-=-,所以co 10s CN MB CN P BB N M ⋅===⋅∠ 故选:D.例56.(多选题)(2022·山东聊城·三模)在平面四边形ABCD 中,1AB BC CD DA DC ===⋅=,12⋅=BA BC ,则( ) A .1AC = B .CA CD CA CD +=-C .2AD BC = D .BD CD ⋅=【答案】ABD 【解析】 【分析】根据所给的条件,判断出四边形ABCD 内部的几何关系即可. 【详解】因为1AB BC CD ===,1cos 2BA BC BA BC B ⋅==,可得3B π=,所以ABC 为等边三角形,则1AC = ,故A 正确;因为1CD =,所以21CD =,又1DA DC ⋅=,所以2CD DA DC =⋅ ,得()20DC DA DC DC DC DA DC AC -⋅=⋅-=⋅=,所以AC CD ⊥,则CA CD CA CD +=-,故B 正确; 根据以上分析作图如下:由于BC 与AD 不平行,故C 错误; 建立如上图所示的平面直角坐标系,则1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,12D ⎫⎪⎪⎝⎭,12BD ⎫=⎪⎪⎝⎭,3122CD ⎛⎫= ⎪ ⎪⎝⎭,所以BD CD ⋅=,故D 正确; 故选:ABD.例57.(多选题)(2022·湖南·长郡中学模拟预测)已知向量a b c ,,满足2222a b a b c c =-=-==,则可能成立的结果为( ) A .34b =B .54b =C .34b c ⋅= D .54b c ⋅=【答案】BCD 【解析】 【分析】不妨设()10C ,,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,利用坐标法,即可求解. 【详解】对于选项A 、B ,由题意2=a ,1c =,1a b b c -=-=,设OA a =,OB b =,OC c =,不妨设()10C ,,如图,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,且满足1AB =, 圆C 方程是22(1)1x y -+=.当B 在圆C 上运动时,由AB OB OA +≥,得1OB ≥,当且仅当O ,A ,B 三点共线时取等号,又由图易知2OB ≤,即12b ≤≤,故选项A 不满足,选项B 满足;对于选项C 、D ,设()B x y ,,则()()10b c x y x ⋅=⋅=,,, 由22221(1)1x y x y ⎧+=⎨-+=⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩,12B x ∴≥, 又2B x ≤.即122x ≤≤. 122b c ⎡⎤∴⋅∈⎢⎥⎣⎦,,选项C ,D 满足.故选:BCD例58.(多选题)(2022·湖南·长郡中学模拟预测)如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形ABCDEFGH ,其中2OA =,则( )A .20OB OE OG ++=B .22OA OD ⋅=- C .4AH EH += D .4+=+AH GH 【答案】ABC【分析】分别以,HD BF 所在的直线为x 轴和y 轴,建立的平面直角坐标系,作AM HD ⊥,结合向量的坐标运算,逐项判定,即可求解. 【详解】由题意,分别以,HD BF 所在的直线为x 轴和y 轴,建立如图所示的平面直角坐标系, 因为正八边形ABCDEFGH ,所以AOH HOG AOB EOF FOG ∠∠∠∠∠====DOE COB COD =∠=∠=∠360458==, 作AM HD ⊥,则OM AM =,因为2OA =,所以OM AM =(A ,同理可得其余各点坐标,()0,2B -,E ,(G ,()2,0D ,()2,0H -,对于A (02(2),2222)0OE OG ++=++--++=,故A 正确;对于B 中,(2(0OA OD ⋅=-⨯+⨯=-B 正确;对于C 中,(2AH =-,(2EH =-,(4,0)AH EH +=-,所以(4AH EH +=-=,故C 正确;对于D 中,(2AH =-,(2GH =-,(4AH GH +=-+,(4AH GH =-+=-D 不正确.故选:ABC.例59.(2022·江苏南京·模拟预测)在ABC 中,0AB AC ⋅=,3AB =,4AC =,O 为ABC 的重心,D 在边BC 上,且AD BC ⊥,则AD AO ⋅______. 【答案】9625【解析】根据O 为ABC 的重心,得到()13=+AO AB AC ,再由0AB AC ⋅=和AD BC ⊥,利用等面积法求得AD ,进而得到DB ,方法一:利用基底法求解;方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,利用坐标法求解. 【详解】解:因为O 为ABC 的重心, 所以()13=+AO AB AC , 因为0AB AC ⋅=,所以AB AC ⊥,则5BC =,因为AD BC ⊥,所以1122ABC S AB AC AD BC =⋅=⋅△, 即1134522AD ⨯⨯=⨯, 所以125AD =,在Rt ADB 中,95DB =. 方法一:因为925=+=+AD AB BD AB BC , ()9916252525=+-=+AB AC AB AC AB , 所以()191632525⎛⎫⋅=+⋅+ ⎪⎝⎭AD AO AB AC AC AB ,221916963252525⎛⎫=⨯+= ⎪⎝⎭AC AB . 方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,则()4,0AC =,()0,3AB =,由方法一可知9163648,25252525AD AC AB ⎛⎫=+= ⎪⎝⎭,()14,133AO AB AC ⎛⎫=+= ⎪⎝⎭, 所以136489513252525AD AO ⋅=⨯+⨯=.例60.(2022·北京·北大附中三模)已知正方形ABCD 的边长为2,E 是BC 的中点,点P 满足2AP AE AD =-,则PD =___________;PE PD ⋅=___________.【答案】 10 【解析】 【详解】解:以A 为原点,AB 为x 轴正方向建立平面直角坐标系, 所以()()()0,0,2,0,2,1A B E ,()0,2D ,设(),P x y ,所以()()(),,2,1,2,0AP x y AE AD ===,因为2AP AE AD =-,所以()()4,0,4,2P PD =-,所以25PD = 又()2,1PE =-,所以10PE PD ⋅=.故答案为:10.例61.(2022·天津市西青区杨柳青第一中学模拟预测)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,E ,F 分别为BC ,CD 上的点,2CE EB =,2CF FD =,若线段EF 上存在一点M ,使得5162AM AB AD =+,则||AM =__________,若点N 为线段BD 上一个动点,则AN MN ⋅的取值范围为__________.【答案】73 371,363⎡⎤-⎢⎥⎣⎦【解析】 【分析】以菱形的对角线为在不在建立平面直角坐标系,通过坐标运算先求M 坐标然后可得||AM ,再用坐标表示出AN MN ⋅,由二次函数性质可得所求范围. 【详解】因为ABCD 为菱形,所以AC BD ⊥,以BD 、AC 所在直线分别为x 、y 轴建立平面直角坐标系,因为2AB =,60BAD ∠=︒,所以1,OB OD OC OA ====则(0,(1,0),(1,0)A B D -,设((,0)M m N n 43(1,3),(1,3),(,),(,3),3AB AD AM m AN n ==-==因为5162AM AB AD =+,所以51((62m =+-解得13m =,所以17||93AM =又1(,3MN n =-所以21137()1()3636AN MN n n n ⋅=--=--因为11n -≤≤,所以当16n =时,AN MN ⋅有最小值3736-, 当1n =-时,AN MN ⋅有最大值13,所以AN MN ⋅的取值范围为371,363⎡⎤-⎢⎥⎣⎦故答案为:73,371,363⎡⎤-⎢⎥⎣⎦。

平面向量的数量积及其应用

平面向量的数量积及其应用

解析 解法一:∵|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|=2,且|a+b|+|a-b|≥|(a+b)(a-b)|=2|b|=4, ∴|a+b|+|a-b|≥4,当且仅当a+b与a-b反向时取等号,此时|a+b|+|a-b|取最 小值4.
| a b |2 | a b |2 | a b| | a b| ∵ ≤ = a 2 b 2 = 5 , 2 2
2 2 x12 y12 ,|b|= x2 y2 (2)|a|= .
平面向量的长度问题
( x1 x2 ) 2 ( y1 y2 ) 2 . 2.若A(x1,y1),B(x2,y2),则| AB |=

考点三
平面向量的夹角、两向量垂直及数量积的应用
x1 x2 y1 y2
已知a=(x1,y1),b=(x2,y2). (1)若a与b的夹角为θ,则cos θ= . 2 (2)a⊥b⇔x1x2+y1y2=0.
∴|a+b|+|a-b|≤2 5 . 当且仅当|a+b|=|a-b|时取等号,此时a· b=0.
故当a⊥b时,|a+b|+|a-b|有最大值2 5 .
解法二:设x=|a+b|,由||a|-|b||≤|a+b|≤|a|+|b|, 得1≤x≤3.
设y=|a-b|,同理,1≤y≤3. 而x2+y2=2a2+2b2=10, 故可设x= 10 cos θ, ≤cos θ≤ , y= 10 sin θ, ≤sin θ≤ . 设α1,α2为锐角,且sin α1= ,sin α2= ,
方法 2 求向量夹角问题的方法

高考数学一轮复习3 第3讲 平面向量的数量积及应用举例

高考数学一轮复习3 第3讲 平面向量的数量积及应用举例

第3讲平面向量的数量积及应用举例最新考纲考向预测1.通过物理中的功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.命题趋势平面向量数量积的概念及运算,与长度、夹角、平行、垂直有关的问题,平面向量数量积的综合应用仍是高考考查的热点,题型仍是选择题与填空题.核心素养数学运算、逻辑推理1.向量的夹角(1)条件:平移两个非零向量a和b至同一起点,结论:∠AOB=θ(0°≤θ≤180°)叫做a与b的夹角.(2)范围:0°≤θ≤180°.特殊情况:当θ=0°时,a与b共线同向.当θ=180°时,a与b共线反向.当θ=90°时,a与b互相垂直.2.向量的数量积(1)条件:两个向量a与b,夹角θ,结论:数量|a||b|cos_θ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos_θ.(2)数量积的几何意义条件:a的长度|a|,b在a方向上的投影|b|cos_θ(或b的长度|b|,a在b方向上的投影|a|cos_θ),结论:数量积a·b等于|a|与|b|cos_θ的乘积(或|b|与|a|cos_θ的乘积).3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),θ=a,b.结论几何表示坐标表示向量的模|a|=a·a |a|=x21+y21夹角余弦cos θ=a·b|a||b|cos θ=x1x2+y1y2x21+y21x2+y2a⊥b充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤x21+y21x22+y2常用结论1.求平面向量的模的公式(1)a2=a·a=|a|2或|a|=a·a=a2;(2)|a±b|=(a±b)2=a2±2a·b+b2;(3)若a=(x,y),则|a|=x2+y2.2.有关向量夹角的两个结论(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立);(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).常见误区1.投影和两向量的数量积都是数量,不是向量.2.向量a在向量b方向上的投影与向量b在向量a方向上的投影不是一个概念,要加以区别.3.向量数量积的运算不满足乘法结合律,即(a·b)·c不一定等于a·(b·c),这是由于(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.1.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )·c =a ·(b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33D .3解析:选B.a ·b =|a ||b |cos 135°=-122,所以|b |=-1224×⎝ ⎛⎭⎪⎫-22=6.3.(多选)已知向量a =(1,-2),b =(-2,4),则( ) A .a ∥b B .(a +b )·a =-5 C .b ⊥(a -b )D .2|a |=|b |解析:选ABD.因为1×4=-2×(-2),所以a ∥b ,又a +b =(-1,2),所以(a +b )·a =-5.a -b =(3,-6),b ·(a -b )≠0,所以C 错误,|a |=5,|b |=25,2|a |=|b |,故选ABD.4.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ=________. 解析:cos θ=a·b |a||b|=-632×6=-32,又因为0≤θ≤π,所以θ=5π6. 答案:5π65.已知向量a 与b 的夹角为π3,|a |=|b |=1,且a ⊥(a -λb ),则实数λ=________.解析:由题意,得a ·b =|a ||b |cos π3=12,因为a ⊥(a -λb ),所以a ·(a -λb )=|a |2-λa ·b =1-λ2=0,所以λ=2.答案:2平面向量数量积的运算(1)(2021·内蒙古赤峰二中、呼市二中月考)已知向量a ,b 的夹角为π3,若c =a |a|,d =b |b|,则c ·d =( ) A.14B .12 C.32 D .34(2)(多选)已知△ABC 的外接圆的圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB→|,下列结论正确的是( ) A.CA→在CB →方向上的投影长为- 3 B.OA →·AB →=OA →·AC →C.CA→在CB →方向上的投影长为 3 D.OB →·AB →=OC →·AC→ 【解析】 (1)c ·d =a |a|·b |b|=|a||b|cos a ,b |a||b|=cos π3=12.故选B.(2)由OA→+AB →+AC →=0得OB →=-AC →=CA →,所以四边形OBAC 为平行四边形.又O 为△ABC 外接圆的圆心,所以|OB→|=|OA →|,又|OA →|=|AB →|,所以△OAB 为正三角形.因为△ABC 的外接圆半径为2,所以四边形OBAC 是边长为2的菱形,所以∠ACB =π6,所以CA →在CB →上的投影为|CA →|cos π6=2×32=3,故C 正确.因为OA →·AB→=OA →·AC →=-2,OB →·AB →=OC →·AC→=2,故B ,D 正确.【答案】 (1)B (2)BCD计算向量数量积的三个角度(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.1.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55 B .-55 C .-255D .-355解析:选D.由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2,所以a ·b =-3,所以向量b 在a 方向上的投影为a·b |a|=-355.故选D.2.(2020·重庆第一中学月考)已知非零向量a ,b ,c 满足a +b +c =0,a ,b 的夹角为120°,且|b |=2|a |,则向量a ,c 的数量积为( )A .0B .-2a 2C .2a 2D .-a 2解析:选A.由非零向量a ,b ,c 满足a +b +c =0,可得c =-(a +b ),所以a ·c =a ·[-(a +b )]=-a 2-a ·b =-a 2-|a |·|b |·cosa ,b.由于a ,b 的夹角为120°,且|b |=2|a |,所以a ·c =-a 2-|a |·|b |cos 120°=-|a |2-2|a |2×⎝ ⎛⎭⎪⎫-12=0.故选A.3.(一题多解)(2020·武昌区高三调研)在等腰直角三角形ABC 中,∠ACB =π2,AC =BC =2,点P 是斜边AB 上一点,且BP =2P A ,那么CP →·CA →+CP →·CB→=( ) A .-4 B .-2 C .2D .4解析:选D.通解:由已知得|CA →|=|CB →|=2,CA →·CB→=0,AP →=13(CB →-CA →),所以CP →·CA →+CP →·CB →=(CA →+AP →)·CA →+(CA →+AP →)·CB →=|CA →|2+AP →·CA →+CA →·CB →+AP →·CB →=|CA →|2+13(CB →-CA →)·(CB→+CA →)=|CA →|2+13|CB →|2-13|CA →|2=22+13×22-13×22=4. 优解:由已知,建立如图所示的平面直角坐标系,则C (0,0),A (2,0),B (0,2),设P (x ,y ).因为BP =2P A ,所以BP →=2P A →,所以(x ,y -2)=2(2-x ,-y ),所以⎩⎪⎨⎪⎧x =43y =23,所以CP →·CA →+CP →·CB →=(43,23)·(2,0)+(43,23)·(0,2)=4.故选D.平面向量数量积的应用角度一 求两平面向量的夹角(1)(2020·高考全国卷Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos〈a ,a +b 〉=( )A .-3135B .-1935 C.1735D .1935(2)(2021·普通高等学校招生全国统一考试模拟)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉=( )A.73 B .23 C.79D .29【解析】 (1)由题意,得a ·(a +b )=a 2+a ·b =25-6=19,|a +b |=a2+2a·b +b2=25-12+36=7,所以cosa ,a +b=a·(a +b )|a||a +b|=195×7=1935,故选D.(2)因为a ,b 是单位向量,所以|a |=|b |=1.又因为a ·b =0,c =7a +2b ,所以|c |=(7a +2b )2=3,a ·c =a ·(7a +2b )=7, 所以cos 〈a ,c 〉=a·c |a||c|=73.因为〈a ,c 〉∈[0,π],所以sin 〈a ,c 〉=23.故选B. 【答案】 (1)D (2)B求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系.(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x1x2+y1y2x21+y 21·x 2+y 2.角度二 求平面向量的模(2020·四川双流中学诊断)如图,在△ABC 中,M 为BC 的中点,若AB =1,AC =3,AB →与AC →的夹角为60°,则|MA→|=________.【解析】 因为M 为BC 的中点,所以AM→=12(AB →+AC →),所以|MA→|2=14(AB →+AC →)2 =14(|AB →|2+|AC →|2+2AB →·AC →) =14(1+9+2×1×3cos 60°)=134, 所以|MA→|=132. 【答案】 132求向量的模或其范围的方法(1)定义法:|a |=a2=a·a ,|a ±b |=(a±b )2=a2±2a·b +b2. (2)坐标法:设a =(x ,y ),则|a |=x2+y2.(3)几何法:利用向量加减法的平行四边形法则或三角形法则作出向量,再利用解三角形的相关知识求解.[提醒] (1)求形如m a +n b 的向量的模,可通过平方,转化为数量的运算. (2)用定义法和坐标法求模的范围时,一般把它表示成某个变量的函数,再利用函数的有关知识求解;用几何法求模的范围时,注意数形结合的思想,常用三角不等式进行最值的求解.角度三 两平面向量垂直问题已知向量AB →与AC →的夹角为120°,且|AB→|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为________.【解析】 因为AP →⊥BC →,所以AP →·BC →=0.又AP→=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0, 所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0.解得λ=712.【答案】 712有关平面向量垂直的两类题型根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.1.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|a +2b |=( ) A .22 B .25 C.17D .15解析:选 C.因为a -b =(3,2),所以|a -b |=5,所以|a -b |2=|a |2-2a ·b +|b |2=5-2a ·b =5,则a ·b =0,所以|a +2b |2=|a |2+4a ·b +4|b |2=17,所以|a +2b |=17.故选C.2.(多选)设a ,b 是两个非零向量,则下列命题为假命题的是( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 解析:选ABD.对于A ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |,得a ·b =-|a ||b |≠0,a 与b 不垂直,所以A 为假命题;对于B ,由A 解析可知,若a ⊥b ,则|a +b |≠|a |-|b |,所以B 为假命题; 对于C ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |, 得a ·b =-|a ||b |,则cos θ=-1,则a 与b 反向,因此存在实数λ,使得b =λa ,所以C 为真命题. 对于D ,若存在实数λ,使得b =λa ,则a ·b =λ|a |2,-|a ||b |=λ|a |2,由于λ不能等于0, 因此a ·b ≠-|a ||b |,则|a +b |≠|a |-|b |, 所以D 不正确. 故选ABD.3.(一题多解)已知正方形ABCD ,点E 在边BC 上,且满足2BE →=BC →,设向量AE→,BD →的夹角为θ,则cos θ=________. 解析:方法一:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,则|AE →|=5,|BD →|=22,AE →·BD →=⎝ ⎛⎭⎪⎫AB →+12AD →·(AD →-AB →)=12|AD →|2-|AB →|2+12AD →·AB →=12×22-22=-2,所以cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.方法二:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,建立如图所示的平面直角坐标系xAy ,则点A (0,0),B (2,0),D (0,2),E (2,1),所以AE →=(2,1),BD →=(-2,2),所以AE →·BD →=2×(-2)+1×2=-2,故cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.答案:-1010向量数量积的综合应用在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.【解】 (1)由m·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理a sin A =b sin B ,得sin B =bsin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. K在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0.(1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积.解:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0,sin A =2sin A cos C ,又sin A ≠0,所以cos C =12,而∠C ∈(0,π),所以∠C =π3. (2)由AD→=DB →知,CD →-CA →=CB →-CD →, 所以2CD→=CA →+CB →, 两边平方得4|CD→|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.①又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.②由①②得ab =8,所以S △ABC =12ab sin ∠ACB =23.核心素养系列4 逻辑推理——平面向量与三角形的“四心”三角形的“四心”:设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A . (2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔a OA→+b OB →+c OC →=0. 类型一 平面向量与三角形的“重心”问题已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC→],λ∈R ,则点P 的轨迹一定经过( )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点【解析】 取AB 的中点D ,则2OD→=OA →+OB →, 因为OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], 所以OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,所以P ,C ,D 三点共线,所以点P 的轨迹一定经过△ABC 的重心. 【答案】 C类型二 平面向量与三角形的“内心”问题在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463 C .43D .62【解析】 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 【答案】 B类型三 平面向量与三角形的“垂心”问题已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( )A .重心B .垂心C .外心D .内心【解析】 因为OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C ,所以AP →=OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C =λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.【答案】 B类型四 平面向量与三角形的“外心”问题已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO→=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝⎛⎭⎪⎫45,35 B .⎝⎛⎭⎪⎫35,45C.⎝⎛⎭⎪⎫-45,35 D .⎝⎛⎭⎪⎫-35,45【解析】 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC→, OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-x AB →-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-y AC →-xAB→. 由OM →⊥AB →,得⎝⎛⎭⎪⎫12-x AB →2-yAC →·AB→=0,①由ON →⊥AC →,得⎝ ⎛⎭⎪⎫12-y AC →2-xAC →·AB→=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB2→, 所以AC →·AB →=AC →2+AB →2-BC →22=-12,③把③代入①,②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝ ⎛⎭⎪⎫45,35.【答案】 A[A 级 基础练]1.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D .32解析:选A.c =a +k b =(1,2)+k (1,1)=(1+k ,2+k ),因为b ⊥c ,所以b ·c =0,b ·c =(1,1)·(1+k ,2+k )=1+k +2+k =3+2k =0,所以k =-32.2.若向量OF1→=(1,1),OF2→=(-3,-2)分别表示两个力F 1,F 2,则|F 1+F 2|为( )A.10 B .25 C.5D .15解析:选 C.由于F 1+F 2=(1,1)+(-3,-2)=(-2,-1),所以|F 1+F 2|=(-2)2+(-1)2=5.3.(2020·贵阳市第一学期监测考试)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.109 B .259 C.269D .89解析:选A.方法一:因为|AB→+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即∠BAC =90°.所以AE →·AF →=⎣⎢⎡⎦⎥⎤AB →+13(AC →-AB →)·⎣⎢⎡⎦⎥⎤AC →-13(AC →-AB →)=⎝ ⎛⎭⎪⎫23AB→+13AC →·(23AC →+13AB →)=29AB →2+29AC →2=109,故选A.方法二:因为|AB →+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即AB→⊥AC →,以A 为坐标原点,AB ,AC 所在的直线分别为x 轴、y 轴建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (0,1),E (23,23),F (43,13),所以AE →·AF →=(23,23)·(43,13)=89+29=109,故选A.4.(多选)在△ABC 中,下列命题正确的是( ) A.AB→-AC →=BC →B.AB→+BC →+CA →=0 C .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形D .若AC→·AB →>0,则△ABC 为锐角三角形 解析:选BC.由向量的运算法则知AB →-AC →=CB →;AB →+BC →+CA →=0,故A 错,B对;因为(AB →+AC →)·(AB →-AC →)=|AB →|2-|AC →|2=0, 所以|AB→|2=|AC →|2,即AB =AC , 所以△ABC 为等腰三角形,故C 对;因为AC →·AB →>0,所以角A 为锐角,但三角形不一定是锐角三角形.故选BC. 5.(2020·安徽示范高中名校月考)已知a ,b ,c 均为单位向量,a 与b 的夹角为60°,则(c +a )·(c -2b )的最大值为( )A.32 B .3 C .2D .3解析:选B.设c 与a -2b 的夹角为θ.因为|a -2b |2=a 2-4a ·b +4b 2=3,所以|a -2b |=3,所以(c +a )·(c -2b )=c 2+c ·(a -2b )-2a ·b =1+|c ||a -2b |cos θ-1=3cos θ,所以(c +a )·(c -2b )的最大值为3,此时cos θ=1.故选B.6.(2020·湖南、河南、江西3月联考)设非零向量a ,b 满足|a |=3|b |,cos a ,b=13,a ·(a -b )=16,则|b |=________. 解析:因为|a |=3|b |,cos a ,b=13,所以a ·(a -b )=9|b |2-|b |2=8|b |2=16,所以|b |=2.答案:27.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 解析:因为|a |=|a +2b |, 所以|a |2=|a |2+4a ·b +4|b |2, 所以a ·b =-|b |2, 令a 与b 的夹角为θ.所以cos θ=a·b |a||b|=-|b|23|b||b|=-13. 答案:-138.(2020·新高考卷改编)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB→的取值范围是________. 解析:AP →·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP →|cos ∠P AB 表示AP →在AB →方向上的投影,所以结合图形可知,当P 与C 重合时投影最大,当P 与F 重合时投影最小.又AC →·AB →=23×2×cos 30°=6,AF →·AB →=2×2×cos 120°=-2,故当点P 在正六边形ABCDEF 内部运动时,AP →·AB→∈(-2,6).答案:(-2,6)9.已知向量a =(2,-1),b =(1,x ). (1)若a ⊥(a +b ),求|b |的值;(2)若a +2b =(4,-7),求向量a 与b 夹角的大小. 解:(1)由题意得a +b =(3,-1+x ). 由a ⊥(a +b ),可得6+1-x =0, 解得x =7,即b =(1,7), 所以|b |=50=52.(2)由题意得,a +2b =(4,2x -1)=(4,-7), 故x =-3,所以b =(1,-3),所以cos 〈a ,b 〉=a·b |a||b|=(2,-1)·(1,-3)5×10=22,因为〈a ,b 〉∈[0,π], 所以a 与b 的夹角是π4.10.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC→=0,求t 的值.解:(1)由题设知,AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB→+AC →|=210,|AB →-AC →|=42. 故所求的两条对角线的长分别为42,210.(2)方法一:由题设知,OC→=(-2,-1),AB →-tOC →=(3+2t ,5+t ).由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11, 所以t =-115.方法二:AB →·OC →=tOC →2,AB →=(3,5),t =AB →·OC →|OC →|2=-115. [B 级 综合练]11.(多选)(2020·山东九校联考)已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE→+OC →=0 C .|OA→+OB →+OC →|=32 D.ED→在BC →方向上的投影为76 解析:选BCD.由题意知E 为AB 的中点,则CE ⊥AB ,以E 为原点,EA ,EC 所在直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO→=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233,因为BO →∥DO →,所以y -233=-13y , 解得y =32,即O 是CE 的中点,则OE→+OC →=0,所以选项B 正确;|OA→+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确; 因为CE ⊥AB ,所以AB →·CE →=0,所以选项A 错误;ED→=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3). 故ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.故选BCD.12.(2020·山东济宁一中月考)如图,在△ABC 中,∠BAC =π3,AD →=2DB →,P 为CD 上一点,且满足AP→=m AC →+12AB →,若△ABC 的面积为23,则|AP →|的最小值为( )A. 2 B .43 C .3D . 3解析:选 D.令CP→=k CD →(0<k <1),则AP →=AC →+CP →=AC →+k CD →=AC →+k (AD →-AC →)=AC →+k ⎝ ⎛⎭⎪⎫23AB →-AC →=2k 3AB →+(1-k )AC→=m AC →+12AB →,所以1-k =m ,2k 3=12,所以m =14,因为△ABC 的面积为23,所以12|AC →|·|AB →|·32=23,所以|AC →|·|AB→|=8,所以|AP →|=116|AC →|2+14|AB →|2+18|AC →||AB →|=1+116|AC →|2+16|AC →|2≥3,当且仅当|AC→|=4时取“=”,所以|AP →|的最小值为 3.故选D.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝ ⎛⎭⎪⎫0≤θ≤π2.(1)若AB→⊥a ,且|AB →|=5|OA →|,求向量OB →; (2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解:(1)由题设知AB→=(n -8,t ), 因为AB→⊥a ,所以8-n +2t =0. 又因为5|OA →|=|AB →|,所以5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, 所以OB→=(24,8)或OB →=(-8,-8). (2)由题设知AC→=(k sin θ-8,t ),因为AC→与a 共线,所以t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ=-2k ⎝ ⎛⎭⎪⎫sin θ-4k 2+32k . 因为k >4,所以0<4k <1,所以当sin θ=4k 时,t sin θ取得最大值32k , 由32k =4,得k =8,此时θ=π6,OC →=(4,8), 所以OA →·OC →=(8,0)·(4,8)=32.14.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC→|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC→+OD →|的最小值;(2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1), 由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC→+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝⎛⎭⎪⎫t -222+12(0≤t ≤1),所以当t =22时,|OC→+OD →|有最小值,最小值为22.(2)由题意得C (cos θ,sin θ),m =BC→=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4,因为θ∈⎣⎢⎡⎦⎥⎤0,π2,所以π4≤2θ+π4≤5π4,所以当2θ+π4=π2,即θ=π8时,sin ⎝ ⎛⎭⎪⎫2θ+π4取得最大值1. 所以当θ=π8时,m ·n 取得最小值,为1-2.[C 级 创新练]15.在Rt △ABC 中,∠C 是直角,CA =4,CB =3,△ABC 的内切圆与CA ,CB分别切于点D ,E ,点P 是图中阴影区域内的一点(不包含边界).若CP →=xCD →+yCE →,则x +y 的值可以是( )A .1B .2C .4D .8解析:选 B.设△ABC 内切圆的圆心为O ,半径为r ,连接OD ,OE ,则OD ⊥AC ,OE ⊥BC ,所以3-r +4-r =5,解得r =1,故CD =CE =1,连接DE ,则当x +y =1时,P 在线段DE 上,但线段DE 均不在阴影区域内,排除A ;在AC 上取点M ,在CB 上取点N ,使得CM =2CD ,CN =2CE ,连接MN ,所以CP→=x 2CM →+y2CN→,则当点P 在线段MN 上时,x 2+y 2=1,故x +y =2.同理,当x +y =4或x +y =8时,点P 不在△ABC 内部,排除C ,D ,故选B.16.定义两个平面向量的一种运算a ⊗b =|a |·|b |sin a ,b,则关于平面向量上述运算的以下结论中,①a ⊗b =b ⊗a ; ②λ(a ⊗b )=(λa )⊗b ; ③若a =λb ,则a ⊗b =0;④若a =λb 且λ>0,则(a +b )⊗c =(a ⊗c )+(b ⊗c ). 正确的序号是________.解析:①恒成立,②λ(a ⊗b )=λ|a |·|b |sin a ,b,(λa )⊗b =|λa |·|b |sina ,b,当λ<0时,λ(a ⊗b )=(λa )⊗b 不成立,③a =λb ,则sin a ,b=0,故a ⊗b =0恒成立,④a =λb ,且λ>0,则a+b=(1+λ)b,(a+b)⊗c=|1+λ||b|·|c|sin b,c,(a⊗c)+(b⊗c)=|λb|·|c|sin b,c+|b|·|c|sin b,c=|1+λ||b|·|c|sin b,c,故(a+b)⊗c=(a⊗c)+(b⊗c)恒成立.答案:①③④。

高三数学一轮复习平面向量的数量积及应用教案

高三数学一轮复习平面向量的数量积及应用教案
命题走向
本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。
平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。
预测2017年高考:
(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。
法二: · = ·( + )
= ·( + + )
=2 · + ·
=2| |·| |·cos ,
=2×| |·| |·
=2×| |2=2×32=18.
(1)C (2) 18
由题悟法
平面向量数量积问题的类型及求法
(1)已知向量a,b的模及夹角θ,利用公式a·b=|a||b|·cosθ求解;
(2)已知向量a,b的坐标,利用数量积的坐标形式求解.
以题试法
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)的一个充分不必要条件是( )
A.x=0或2 B.x=2
C.x=1 D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),向量d如图所示,则( )
A.存在λ>0,使得向量c与向量d垂直
B.存在λ>0,使得向量c与向量d夹角为60°
2.向量的应用
(1)向量在几何中的应用;
(2)向量在物理中的应用。
二.典例分析
(1)若向量a=(1, 1),b=(2,5),c=(3,x)满足条件(8a-b)·c=30,则x=( )
A.6B.5
C.4D.3
(2) (2012·湖南高考)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则 · =________.

有关高三数学平面向量的数量积教学设计大全

有关高三数学平面向量的数量积教学设计大全

有关高三数学平面向量的数量积教学设计大全教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

接下来是小编为大家整理的有关高三数学平面向量的数量积教学设计大全,希望大家喜欢!有关高三数学平面向量的数量积教学设计大全一教学目标:(i)知识目标:(1)掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示.(2) 平面向量数量积的应用.(ii)能力目标:(1) 培养学生应用平面向量积解决相关问题的能力.(2) 正确运用向量运算律进行推理、运算.教学重点: 1. 掌握平面向量的数量积及其几何意义.2. 用数量积求夹角、距离及平面向量数量积的坐标运算.教学难点:平面向量数量积的综合应用.教学过程:一、知识梳理1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,则数量| || |cos(叫与的数量积,记作 ( ,即 ( = | || |cos(,并规定与任何向量的数量积为02.平面向量的数量积的几何意义:数量积 ( 等于的长度与在方向上投影| |cos(的乘积.3.两个向量的数量积的性质设、为两个非零向量,是与同向的单位向量1( ( = ( =| |cos(; 2( ( ( ( = 03(当与同向时, ( = | || |;当与反向时, ( = (| || | ,特别地 ( = ||24(cos( = ; 5(| ( | ≤ | || |4.平面向量数量积的运算律① 交换律:( = ( ② 数乘结合律:( )( = ( ( ) = (( )③ 分配律:( + )( = ( + (5.平面向量数量积的坐标表示①已知两个向量,,则 .②设,则 .③平面内两点间的距离公式如果表示向量的有向线段的起点和终点的坐标分别为、,那么 .④向量垂直的判定两个非零向量,,则 .⑤两向量夹角的余弦 cos( = ( ).二、典型例题1. 平面向量数量积的运算例题1 已知下列命题:① ; ② ; ③ ; ④其中正确命题序号是②、④ .点评:掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.例题2 已知 ; (2) ;(3) 的夹角为,分别求 .解(1)当时, = 或 = .(2)当时, = .(3)当的夹角为时, = .变式训练:已知,求解: =点评:熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整.2.夹角问题例题3 若,且,则向量与向量的夹角为 ( )A. B. C. D.解:依题意故选C变式训练1:① 已知,求向量与向量的夹角.② 已知,夹角为,则 .解:① ,故夹角为 .②依题意得 .变式训练2:已知是两个非零向量,同时满足,求的夹角.法一解:将两边平方得,则,故的夹角.为 .法二:数形结合点评:注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法.3.向量模的问题例题4 已知向量满足,且的夹角为,求 .解:,且的夹角为;变式训练:①(2005年湖北)已知向量,若不超过5,则的取值范围 ( )A. B. C. D.②(2006年福建) 已知的夹角为,,,则等于( )A 5 B. 4 C. 3 D. 1解:① ,故选C② ,,解得,故选B点评:涉及向量模的问题一般利用,注意两边平方是常用的方法.4.平面向量数量积的综合应用例题5 已知向量 .若 ; (2)求的最大值 .解:(1)若,则, .(2) = =,的最大值为 .例题6已知向量,且满足,求证 ; (2)将与的数量积表示为关于的函数 ;(3)求函数的最小值及取得最小值时向量与向量的夹角 .解:(1),故(2) ,故 .有关高三数学平面向量的数量积教学设计大全二2.3.1向量数量积的物理背景与定义教材说明平面向量数量积具有代数与几何的双重性质,因此所涉及的内容较为广泛,如方程、不等式等代数问题;夹角、距离、面积、平行、垂直等几何问题。

平面向量的数量积知识点及归纳总结

平面向量的数量积知识点及归纳总结

平面向量的数量积知识点及归纳总结知识点精讲一、平面向量的数量积(1) 已知两个非零向量a 和b ,作OA →=a ,OB →=b ,∠AOB =θ(0≤θ≤π)叫作向量a 与b 的夹角.记作,a b ,并规定,a b []0,π∈.如果a 与b 的夹角是2π,就称a 与b 垂直,记为a b ⊥.(2) |a || b |cos ,a b 叫作a 与b 的数量积(或内积),记作a b ⋅,即a b ⋅=| a || b |cos ,a b . 规定:零向量与任一向量的数量积为0.两个非零向量a 与b 垂直的充要条件是a b ⋅=0. 两个非零向量a 与b 平行的充要条件是a b ⋅=±| a || b |. 二、平面向量数量积的几何意义数量积a b ⋅等于a 的长度| a |与b 在a 方向上的射影| b |cos θ的乘积.即a b ⋅=| a || b |cos θ.( b 在a 方向上的射影| b |cos θa b a⋅=;a 在b 方向上的射影| a |cos θa b b⋅=).三.平面向量数量积的重要性质 性质1 ||cos e a a e a θ⋅=⋅=. 性质2 .a b a b 0⊥⇔⋅=性质3 当a 与b 同向时||||a b a b ⋅=;当当a 与b 反向时-||||a b a b ⋅=.22||a a a a ⋅==或||a 性质4 cos ().||||a ba 0b 0a b 且θ⋅=≠≠性质5 ||||||.a b a b ⋅≤注利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题. 四、平面向量数量积满足的运算律 (1)a b=b a ⋅⋅(交换律);(2)()=()(a b a b a b λλλλ⋅⋅=⋅为实数); (3)(+)=a b c a c b c ⋅⋅+⋅(分配律)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东莞注册公司https:///
细菌代谢产物与致病性有关的A.毒素B.热原质C.色素D.细菌素E.侵袭性酶 以下试剂能作为基准物质的是。A.100~110℃干燥的Na2CO3B.优级纯的KOHC.100~110℃干燥的K2Cr2O7D.优级纯的Na2B4O7&#8729;5H2O [多选,A4型题,A3/A4型题]患者,女,36岁。4年来上腹部隐痛伴嗳气、反酸,进食后加重。时有恶心、呕吐。服用制酸剂后症状缓解。查体:上腹部压痛。提问:Hp感染的传染途径是A.口-口途径B.粪-口途径C.医源性传播D.血液传播E.母婴传播F.呼吸道传播 参苓白术散的功效是A.益气健脾B.益气健脾,渗湿止泻C.补中益气,升阳举陷D.益气固表止汗E.益气生津,敛阴止汗 关于抗癫痫药物联合用药,下面哪项是不正确的A.单一药物治疗是应该遵守的基本原则B.联合用药能明显提高疗效C.联合用药可能会增加药物的不良反应D.联合用药会增加患者的经济负担E.一旦出现不良反应,影响医生对不良反应来源的判断 膀胱粘膜白斑的细胞学涂片常见的特征细胞为()A.移行上皮细胞B.角化前鳞状上皮C.不全角化鳞状上皮D.完全角化鳞状上皮细胞E.黏液柱状上皮细胞 利凡诺羊膜腔内穿刺时如刺入胎盘,可能会出现以下何种并发症A.凝血功能障碍B.胎盘前置C.胎盘早剥D.脐带断裂E.胎盘粘连 医疗卫生机构应当建立医疗废物的暂时贮存设施、设备,不得露天存放医疗废物;医疗废物暂时贮存的时间不得超过天。 我国建国初期属于A.新民主主义社会B.社会主义社会C.资本主义社会D.半殖民地半封建社会 工程的总工期是指。A.主体工程施工期B.主体工程施工期和工程完建期之和C.工程准备期、主体工程施工期和工程完建期之和D.工程筹建期、工程准备期、主体工程施工期和工完建期之和 胸部触诊 阿米巴性肝脓肿的首选治疗是A.穿刺抽液B.经皮肝穿刺脓肿置管闭式引流术C.应用抗阿米巴药物D.切开引流E.首先反复穿刺吸脓 患者男性,62岁,阵发性胸闷、气短1个月。常规心电图示窦性心动过缓。动态心电图发现夜间有显著的窦性心动过缓伴交界性逸搏心律。有关房室结的描述,正确的是。A.位于房间隔上方、左心房面Koch三角内的心内膜下,其自主神经支配主要来源于右侧B.位于房间隔上方、右心房面Koch三角 [单选,共用题干题]女性,48岁。肝硬化腹水患者,近来自觉腹胀加重,腹围增大,腹痛,发热,查体:腹肌略紧张,全腹压痛,反跳痛,双下肢水肿。给予利尿剂治疗时,下列哪项比例在临床上认为是效果最佳的。A.螺内酯60mg,呋塞米20mgB.螺内酯200mg,呋塞米80mgC.螺内酯200mg,呋塞米 星状神经节阻滞不会引起A.同侧霍纳综合征B.膈神经麻痹C.对侧面部潮红D.同侧手指温度升高E.椎管内误注 根据交易的品种,期货交易的两大类别是。A.农产品期货和工业品期货B.商品期货和金融期货C.股指期货和商品期货D.利率期货和股指期货 忙时试呼次数—BHCA是衡量的重要参数。 第二类精神药品零售企业违反《麻醉药品和精神药品管理条例》的规定储存、销售或者销毁第二类精神药品的,逾期不改正的A.责令停业,并处2万元以上5万元以下的罚款B.责令停业、,并处5万元以上10万元以下的罚款C.责令停业,并处500元以上1万元以下的罚款D.责令停业,并处500元以上2 下列关于医疗机构配制制剂管理的叙述,错误的是。A.凭医师处方在本医疗机构使用B.经所在地省级药品监督管理部门批准后方可配制C.可在市场上销售D.无《医疗机构制剂许可证》不得配制E.特殊情况下,可在指定医疗机构之间调剂使用 “内科护理常规”属于()A.临时备用医嘱B.临时医嘱C.长期备用医嘱D.长期医嘱E.即刻执行医嘱 在上海证券交易所大宗交易的意向申报中,申报方数量不明确的,将视为至少愿以大宗交易单笔买卖成交。A.最低申报数量B.最高申报数量C.平均申报数量D.最初申报数量 可承担单跨100m及以下桥梁工程的施工的企业包括()。A.公路工程施工总承包特级企业B.桥梁工程专业承包一级企业C.桥梁工程专业承包二级企业D.桥梁工程专业承包三级企业E.公路丁程施工总承包一级企业 根据《邮政法》,因国家安全或者追查刑事犯罪的需要,邮政企业、快递企业有义务配合公安机关、国家安全机关或者检察机关,对有关邮件、快件依法。A.销毁B.退回C.公开D.检查、扣留 下列关于LayeredShader的描述中,正确的是。A、层材质之间不可作叠加处理B、Transparency属性控制当前选择层的透明度C、层之间位置不可互换D、Anisotropic材质不可用于层材质 LGD的含义是A、债项预期损失率,根据债项等级与违约损失率的映射关系取得B、违约风险暴露,即贷款风险敞口,就是贷款违约时的余额C、客户违约概率,通过历史数据统计的客户信用等级对应的平均违约概率D、客户贡献率,根据客户的存款、贷款(含票据贴现)和中间业务收入计算 危险化学品零售业务范围不包括。A.爆炸品B.易燃液体C.氧化剂D.腐蚀品 无法区分混在一起的钥匙和钢笔提示患者存在A.颜色失认B.物品失认C.形状失认D.视空间失认E.单侧忽略 诊断心律失常最常规的无创检查是A.心电图B.心电向量图C.心音图D.运动试验E.超声心动图 战斗机是如何分代的?各代战斗机的的典型技术特征是什么? 积极的股票风格管理,若股票前景不妙则应该,若前景良好则。A.增加权重,增加权重B.降低权重,降低权重C.增加权重,降低权重D.降低权重,增加权重 "精血同源"是指下述哪两脏的关系A.心与肾B.肺与肾C.肝与肾D.脾与肝E.肾与脾 农历以下哪一天被称为中秋节? 胸片可见环形透亮区,肺门上提,肺纹理呈垂柳状改变的多为A.I型肺结核B.Ⅱ型肺结核C.Ⅲ型肺结核D.Ⅳ型肺结核E.V型肺结核 信息安全经理了三个发展阶段,包括.A.通信保密阶段B.加密机阶段C.安全审计阶段D.安全保障阶段 窗口指导 根据2004年新修订的《传染病防治法》,我国法定传染病应分为A.甲类2种,乙类22种B.甲类2种,乙类11种,丙类22种C.甲类2种,乙类22种,丙类11种D.甲类3种,乙类22种,丙类10种E.甲类2种,乙类25种,丙类10种 高层建筑室内消火栓的布置应符合的规定。A.除无可燃物的设备层外,其各层均应设置消火栓B.消防电梯前室内应设置消火栓C.室内消火栓应设置在位置明显且易于操作的部位D.室内消火栓的间距应经计算确定E.室内消火栓的布置应保证每一个防火分区同层有两支水枪的充实水柱同时达到任何部 又称唛头,通常有一个简单的几何图形和一些字母、数字及简单的文字组成。A、运输标志B、指示性标志C、警告性标志D、包装检疫 是移动国际用户识别码。A.ESNB.IMSIC.MCCD.MNC 下述红细胞的变化中,由缺铁引起的是。A.红细胞游离原卟啉升高B.红细胞转酮醇酶活力系数升高C.血细胞比容升高D.红细胞转酮醇酶活力系数降低E.红细胞游离原卟啉降低
相关文档
最新文档