物理演示实验报告-物理演示实验自主设计方案.doc
物理演示实验报告
物理演示实验报告
经历过这次物理实验课后,我感到收获很多。
走进实验教室,我们都被天花板
上一闪一闪的灯光吸引,仿佛置身于
星空之下。
在这节物理实验课上我们
做了很多演示实验,给我留下最深刻
印象的是视觉暂留实验。
视觉暂留的
演示仪器利用人眼的视觉暂留结合频
闪灯的特殊作用,演示了电影成像的
原理。
在没有打开频闪灯之前,实验
器材中的台阶和弯杆的运动随转盘转动,看不出有什么规律。
打开频闪灯之后,调节频率使频闪灯闪亮的时间间隔与两相邻台阶经过同一位置的时间间隔相同或成整数倍,由于眼睛的视觉暂留,会让人感觉台阶已经静止,但是弯杆却在不断变换,于是便出现了弯杆爬台阶的动画场面。
另一个让我印象深刻的实验是使用透射光学显微镜的实验。
实验时,我们在透射光学显微镜下观察一根头发丝,观察到的像可以让我们清晰地看到头发的形态和表面的纹理。
这让我充分体会到了现代科技的神奇。
在演示实验的课堂上,我们还看到了许许多多美观的演示
实验仪器,领略到光电带给当今社会的
美。
当然还有很多既有趣,又包含许多
物理知识的演示实验。
比如晶体的光电
效应实验、眩光色散实验、光栅视镜实
验等等。
这些实验把课本上的物理理论
形象生动的诠释出来,让人增长了知识,
也印象深刻。
我希望以后还有更多的机会上这种物理实验课,让我学会更多的物理知识。
大学物理演示实验报告:基于电磁学验证流体力学伯努利方程实验
物理演示实验报告物理演示实验自主设计方案本物理演示实验根据流体流速与压强的关系以及电磁铁的相关性质验证流体力学中伯努利原理)(2112111为常数C C gh v p =++ρρ(1)当外界环境被选定后,常数C 可以表示为gh v p C 2222221ρρ++=(2)将(1)式与(2)式联立,可以得到gh v p gh v p 22222121112121ρρρρ++=++(3)这就是我们所说的伯努利方程,下面我们来验证这一原理。
在中学阶段,我们已经知道流体流速越大的地方压强越小这一流体学基本关系。
为了验证流速与压强的具体关系,我们不妨选择空气流作为实验流体,大气压强作为外界标准压强,由基本数据可知标准大气的密度ρ=1.29kg/m 3(温度为0℃,标准大气压p 0=101kpa),我们只需要测量出流体的某一流速v 以及在该流速下的压强p 1。
进而将p 1,v 代入伯努利方程左右两端,验证等式是否成立。
此时,由于选定的外界是标准大气,故验证的等式为02121p v p =+ρ(4)下面我们需要清楚流速与该流速下的流体压强的测量原理。
首先我们先测量流速。
由于流体是以风的形式存在的,因此我们使用鼓风机作为风的发生装置。
我们采取简易风车来测量风速。
选择该风车的前提是在无风环境下风车能够静止即处于平衡状态,并且在受到风力时可以较为灵敏地进行转动,即摩擦阻力越小越好。
设风车的转动半径为R,风车转动角速度为ω,则根据线速度与角速度的关系有ωR v =(5)其中ω可以通过风车的转速n 来测量,即n πω2=(6)联立(5)(6)两式,这样我们可以较为准确地得出流速v 的大小为Rn v π2=(7)接下来,我们来测量该流速下的压强。
该压强的测量需要运用电磁铁以及压一、演示物理原理简介(可以配图说明)力传感器。
我们将电磁铁和压力传感器进行组装成为能够测量电磁铁磁力的装置(我们将在方案实施模块进行详细介绍其使用方法),具体模型如图1所示。
大学物理课题演示实验报告5篇
大学物理课题演示实验报告5篇大学物理课题演示实验报告 (1)一、实验任务精确测定银川地区的重力加速度二、实验要求测量结果的相对不确定度不超过5%三、物理模型的建立及比较初步确定有以下六种模型方案:方法一、用打点计时器测量所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.方法二、用滴水法测重力加速度调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面重力加速度的计算公式推导如下:取液面上任一液元a,它距转轴为_,质量为m,受重力mg、弹力n.由动力学知:ncosα-mg=0(1)nsinα=mω2_(2)两式相比得tgα=ω2_/g,又tgα=dy/d_,∴dy=ω2_d_/g,∴y/_=ω2_/2g.∴g=ω2_2/2y..将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标_、y测出,将转台转速ω代入即可求得g.方法四、光电控制计时法调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法五、用圆锥摆测量所用仪器为:米尺、秒表、单摆.使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r 由以上几式得:g=4π2n2h/t2.将所测的n、t、h代入即可求得g值.方法六、单摆法测量重力加速度在摆角很小时,摆动周期为:则通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。
物理演示实验报告
物理演示实验报告——锥体自由上滚4. 锥体自由上滚一、演示目的1 通过观察与思考双锥体沿斜面轨道上滚的现象,加深了解在重力场中物体总是以降低重心,趋于稳定的规律运动。
2 说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能之间的转换。
二、原理本实验的核心在于刚体在重力场中的平衡问题,而自由运动的物体在重力的作用下总是平衡在重力势能极小的位置。
如果物体不是处于重力场中势能极小值状态,重力的作用总是使它往势能减小的方向运动。
本实验演示锥体在斜双杠上自由滚动的现象,巧妙地利用锥体的形状,将支撑点在锥体轴线方向上的移动(横向)对锥体质心的影响同斜双杠的倾斜(纵向)对锥体质心的影响结合起来,当横向作用占主导时,甚至表现为出人意料的反常运动,即锥体会自动滚向斜双杠较高的一端,具体分析如下:首先看平衡(锥体质心保持水平)时锥体的位置,如图1。
AA1端较高,但AA1处两横杆向外测倾斜,较高的支撑有使锥体质心向上移的趋势,而支撑点较宽又使锥体因其中间粗两端细而使质心有向下移动的趋势,两种趋势互相抵消可使锥体在图4所示任何位置都处于平衡状态。
如果此时使AA1稍变宽或使BB1稍变窄,会使锥体在AA1端比在BB1端时质心位置更低,它将总往AA1 (高端)滚动,从B端向A端看,如图2所示。
AA1端处于高宽端,BB1端处于低窄端,若支撑点遇锥面相切位置如图2所示,则当锥体滚动时,质心在水平面内运动,锥体处于平衡状态。
设BB1端固定,AA1端宽度一定,只调节其高度,则AA1端下降,将会出现由平衡状态上滚的现象。
AA1端至多下降到BB1端所在水平面上,不过此时滚动虽明显,但“往上”不明显。
故本实验装置高低宽窄布局要适度,使AA1端比平衡位置略低,锥体能自动滚动即可。
三、装置双锥体,V字形斜面轨道四、现象演示把双圆锥体放在V字形轨道的低端(即闭口端),松手后锥体便会自动的滚上这个斜坡,到达高端(即开口端)后停止。
物理演示实验报告(共4篇)
物理演示实验报告(共4篇)1、锥体上滚实验目的:1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。
2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。
实验仪器:锥体上滚演示仪实验原理:能量最低原理指出:物体或系统的能量总是自然趋向最低状态。
本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。
实验现象仍然符合能量最低原理。
实验步骤:1.将双锥体置于导轨的高端,双锥体并不下滚; 2.将双锥体置于导轨的低端,松手后双锥体向高端滚去;3.重复第2步操作,仔细观察双锥体上滚的情况。
图片已关闭显示,点此查看2、声波可见实验目的:借助视觉暂留演示声波。
实验仪器:声波可见演示仪。
实验原理:不同长度,不同张力的弦振动后形成的驻波基频、协频各不相同,即合成波形各不相同。
本装置产生的是横波,可借助滚轮中黑白相间的条纹和人眼的视觉暂留作用将其显示出来。
实验步骤:1、将整个装置竖直放稳,用手转动滚轮。
2、依次拨动四根琴弦,可观察到不同长度,不同张力的弦线上出现不同基频与协频的驻波。
3、重复转动滚轮,拨动琴弦,观察弦上的波形。
注意事项:1、滚轮转速不必太高。
2、拨动琴弦切勿用力过猛。
图片已关闭显示,点此查看3、弹性碰撞演示仪实验目的:本实验用于演示正碰撞和动量守恒定律,形象地显现弹性碰撞的情形。
实验原理根据动量守恒定律可知,如果正碰撞的两球,撞前速度分别为V10和V20,碰撞后的速度分别为V1和V2,质量分别为m1和m2.则由碰撞定律可知:若e=1时,则分离速度等于接近速度解式和式可得:若m1=m2=m;e=1则v1=0,v2=v10,即球1正碰球2时,球1静止,球2继续以V10的速度正碰球3,等等以此类推,实现动量的传递。
实验器材1、实验装置如实验原理图示:1一底座—支架—钢球—拉线—调节螺丝2、技术指标钢球质量:m=7×0.2kg 直径:l=7×35mm 拉线长度:图片已关闭显示,点此查看L=55Omm实验操作与现象l、将仪器置于水平桌面放好,调节螺丝,使七个钢球的球心在同一水平线上。
物理演示实验报告静电
一、实验目的1. 理解静电现象的基本原理。
2. 掌握静电实验的基本操作方法。
3. 通过实验加深对静电现象的理解。
二、实验仪器1. 静电感应起电器2. 静电演示仪3. 橡皮棒、塑料棒、玻璃棒、丝绸、羊毛等材料4. 纸张、剪刀、胶带等辅助材料三、实验原理静电现象是由于物体表面电荷的积累而产生的。
当两个物体相互接触或靠近时,由于电荷的转移,物体表面会产生静电。
静电现象在生活中非常常见,如摩擦起电、静电吸附等。
四、实验步骤1. 摩擦起电实验:将橡皮棒和丝绸摩擦,使橡皮棒带负电,丝绸带正电。
用静电感应起电器分别接触橡皮棒和丝绸,观察静电感应现象。
2. 静电演示实验:将静电演示仪中的金属球接地,使金属球不带电。
用摩擦过的塑料棒接触金属球,观察金属球表面电荷的积累和放电现象。
3. 静电吸附实验:将丝绸和塑料棒摩擦,使丝绸带正电,塑料棒带负电。
将摩擦过的丝绸和塑料棒分别靠近小纸屑,观察静电吸附现象。
4. 静电感应实验:将静电感应起电器中的金属球接地,使金属球不带电。
用摩擦过的玻璃棒接触金属球,观察金属球表面电荷的积累和放电现象。
5. 静电植绒实验:将静电植绒材料放置在静电植绒仪中,用静电植绒仪对材料进行植绒处理。
五、实验结果与分析1. 摩擦起电实验:通过摩擦,橡皮棒和丝绸分别带上了相反的电荷。
静电感应起电器能够检测到静电感应现象,说明电荷的转移确实发生了。
2. 静电演示实验:摩擦过的塑料棒接触金属球后,金属球表面电荷积累,产生静电。
放电时,金属球表面的电荷释放,产生静电放电现象。
3. 静电吸附实验:摩擦过的丝绸和塑料棒分别靠近小纸屑时,由于静电吸附现象,纸屑被吸附在丝绸和塑料棒上。
4. 静电感应实验:摩擦过的玻璃棒接触金属球后,金属球表面电荷积累,产生静电。
放电时,金属球表面的电荷释放,产生静电放电现象。
5. 静电植绒实验:静电植绒材料经过静电植绒仪处理后,绒头被粘合剂粘住,形成绒面状外观。
六、实验总结通过本次实验,我们对静电现象有了更深入的了解。
【理学】大学物理演示实验报告 共(3页)
【理学】大学物理演示实验报告共(3页)实验名称:物理演示实验
实验目的:通过演示物理实验,帮助学生加深对物理原理的理解,提高对物理知识的兴趣,培养科学探究的能力。
实验器材:振动线圈、直流电源、磁体、电子显微镜、带电粒子束管、宏观物体、光学仪器等。
实验过程及结果:
1.振动线圈演示
将直流电源连接到振动线圈的电极,可通过调节电源输出电压的大小,使线圈振动的幅度变化。
实验中可以让学生观察振动线圈在不同电压下的振动情况,同时可让学生根据振动的幅度变化来研究产生振动的原理。
2.磁体演示
将磁体通过直流电源与接触器连接起来,将磁铁放置在接触器上,当接触器断开时,磁体的磁力线方向改变,从而使磁体的磁力线相互作用,产生撞击声。
实验中可以让学生观察磁体的撞击声,并进一步研究磁体的磁效应以及磁力线的性质。
3.光学演示
通过电子显微镜观察宏观物体的结构,并使用带电粒子束管来实现“手写”字。
实验中可以帮助学生理解光的反射、折射、衍射和干涉等基本概念,以及物质的粒子性和波动性等。
物理演示实验报告
物理演示实验报告院系:信息工程学号: 04010210 姓名:成亚云在这个学期的第十周的周六中午,我们参观了物理实验演示,更加深入理解了我们所学的力学、能量、电磁学、波动学和光学。
光学幻影,眼见也不一定为实眼见也不一定为实。
看一看这些图片,发现了一个有意思的现象:这些图片好象在动。
事实上它们都是静止的。
那么欺骗了我们的眼睛的是什么呢?科学家研究发现,实际上是“视错觉”。
我们看到的这些图片与这些图片本来的样子有出入,这是因为我们眼睛里不同的细胞与感受器用不同的速度来识别图片和颜色,于是就造成了错觉。
眼睛只能接收有限数量的视觉色质,但我们的大脑一直在不停地处理视觉信息,于是给了我们不间断的视力这样的幻觉。
不管它是光学幻觉,生理幻觉还是认知幻觉,这些经过巧妙设计的图片确实欺骗了我们的眼睛和大脑。
多年来魔术师已有效地利用错觉科学来娱乐大众。
魔术虽涉及一些技巧,错觉却基是于科学。
无线光通信系统主要由光源、调制器、光发射机、光接收机及附加电信发送和接收设备等组成,只要相互进行瞄准即可进行通信。
无线光通信除具有不挤占频带,通信容量大,传输速率高等无线激光通信的优点外,还具有机动灵活、经济、架设快捷、使用方便,不影响市政建设等特点。
随着大气通信技术的成熟,它的应用将会越来越广泛,根据其特点,它潜在的应用场合有:(1) 民用上可用于移动基站间的互连,单位内部的数据传输及小范围内局域网建设如校园网的组建,需严格保密的场合及要害部门,技术上或经济上不宜敷设光缆的地区如军工、国防部门,核电站、边远山区、江河两岸间、高山间等,以及用于灾区、事故地点的快速抢通等。
OWC最大的成功来自于校园局域网连接市场。
这种应用包括连接编辑室和广播站,或者作为一栋大型综合大楼两个高速传输节点之间的通信手段。
在光纤主干链路被切断或网路因恶劣天气被破坏以及其它突发事件时,OWC可以作为紧急情况备用和灾难后的恢复措施。
另外,OWC还可以应付一些其它情况,如在光纤要通过河流或高速公路时,或在一些交通拥挤和地形复杂的城市,政府通常不希望挖开街道铺设光纤,OWC也可以作为一种很好的替代方式。
物理演示实验报告模板
物理演示实验(I)----实验报告
无皮鼓的工作原理及应用
实验原理:
星期二我们玩无皮鼓的时候我就很好奇,一般的鼓都有鼓皮的,这个没有鼓皮的鼓竟然能够发出平常时击鼓的声音?听老师讲解之后才明白为什么。
原来,该无皮鼓利用了光电原理。
在无皮鼓的鼓壁都装有一组红外发光二极管,它发射的红外光射向对面的鼓壁上的光敏器件上。
被照射的光敏器件将会使得光敏器件的开关电路断开,发声电路不工作,没有鼓声发出。
当用手作敲鼓动作时遮挡住光束时,光敏器接收不到光信号,光电开关就会驱动相应的录有鼓声的语音集成电路,发出鼓声。
启动这套装置的红色大按钮,在无皮鼓没有皮的那个地方敲了一下,就听见“咚”的一声。
我们试着各种击鼓的方式,确实体会到了只有当光敏器件被手挡住了才会发声。
有节奏的击鼓,可以奏响美妙的音乐呢!太有趣了!
这就是本次演示实验我了解到的“无皮鼓”!
“无皮鼓”原理的应用:
根据实验课上老师介绍的以及我们在物理课的学期过程中我也了解到光电控制器的一些应用。
1、可以采用光电控制器来实现对生产当中的监测与控制。
例如,在高速公路的监控工程中可以利用光电控制器对车辆的速度、高度和重量进行监控。
2、光电控制技术还在航空航天工程得到了广泛的应用。
我想,在太空中利用光来实现对电路的控制应该是比较可靠的,以后再多点了解这方面的应用。
3、据我了解,光电控制原理还应用到了报警器当中。
报警器应该就和无皮鼓差不多,当有人出现的时候,光敏器接受到的光信号就会减少,这时候警报电路就打开了,我想大概这样吧。
大学物理演示实验:测量热力学普适气体常量
物理演示实验报告物理演示实验自主设计方案图1图2一、演示物理原理简介(可以配图说明)本物理演示实验根据热力学理想气体物态方程以及力学基本原理测量普适气体常量R 。
本实验材料包括具有刻度线的活塞式气缸(玻璃制品),装有足量水的较大容器,刻度尺,温度计,酒精灯。
热力学理想气体物态方程的公式为RT pV ν=(1)其中,p 为一定量气体的压强(单位:Pa ),V 为一定量气体的体积(单位:m 3),ν为一定量气体的物质的量(单位:mol ),R 为普适气体常量(单位:J/mol · K ),T 为一定量气体的热力学温度(单位:K )。
将(1)式进行整理,可得TpVR ν=(2) 即我们只需测量出压强p ,体积V ,物质的量ν,热力学温度T 就可求出普适气体常量R 。
下面我们来设计实验测量上述四个参数的值。
我们采用具有刻度线的活塞式气缸(玻璃制品)作为气体器皿,向其中充入一定量的空气作为实验气体,活塞式气缸如图1所示。
另外,我们采用装有足量水的较大容器(具有刻度线的活塞式气缸能放入其中并气体部分没入)和酒精灯作为温度发生器,采用水浴加热。
这样一来,气体温度可以改变,我们用温度计测量气缸内气体的温度,整套实验装置如图2所示。
下面我们来具体测量四个参数的值。
测量压强p 的方法如下。
由于气缸具有活塞,活塞可以在某一方向进行平动。
这样就导致气缸内的气体压强与与外界大气压相等,均为标准大气压强1.013×105Pa 。
图3图4 图5 二、方案实施详细技术路线(要求有配图或者照片)实验步骤1.检查装置气密性并充入空气首先检查装置气密性。
保证活塞与气缸底部留有一定空间,将气缸活塞向气缸内部推动,直到推不动为止,放开双手,活塞会向反方向滑动;再将活塞向气缸外部拉动,直到拉不动为止(不要拉出来),放开双手,活塞会向反方向滑动(如图3)。
上述两种现象同时发生,则证明气密性良好,同时活塞滑动停止的位置即为平衡位置。
最新大学物理演示实验实验报告
最新大学物理演示实验实验报告实验目的:本次实验旨在通过一系列物理演示,加深学生对基本物理概念和原理的理解。
通过观察和分析实验现象,培养学生的科学探究能力和实验操作技能。
实验一:牛顿第三定律演示实验设备:两个气球、细绳、力计实验步骤:1. 将两个气球充气并系紧。
2. 使用细绳将两个气球相连,并在其中一个气球上挂钩子。
3. 使用力计拉另一个气球,使其与挂钩子的气球相撞。
4. 记录两个气球相撞时的力计读数。
实验结果:通过实验观察到,当两个气球相撞时,它们都会以相等的力反向弹开。
力计的读数证明了作用力和反作用力的相等性,与牛顿第三定律相符。
实验二:光的折射和全反射演示实验设备:半圆形玻璃棱镜、激光指针、白纸实验步骤:1. 将半圆形玻璃棱镜放置在白纸上。
2. 使用激光指针从棱镜的一侧照射光线。
3. 调整激光指针的角度,使光线进入棱镜,并在白纸上观察光线的折射和反射路径。
4. 继续改变入射角,直到观察到全反射现象。
实验结果:实验中观察到,随着入射角的增大,折射角也相应增大。
当入射角达到临界角时,光线完全在棱镜内部反射,不再折射出棱镜,证明了光的全反射现象。
实验三:电磁感应现象演示实验设备:线圈、磁铁、电流表实验步骤:1. 将线圈水平固定,并确保其一端与电流表相连。
2. 快速将磁铁插入线圈中,观察电流表的变化。
3. 改变磁铁的插入方向,重复实验。
实验结果:实验中发现,当磁铁插入线圈时,电流表显示出电流的短暂变化。
这表明变化的磁场在闭合线圈中产生了电动势,即电磁感应现象。
改变磁铁的插入方向,电流表指针的偏转方向也随之改变,证实了法拉第电磁感应定律。
结论:通过上述三个实验,我们直观地验证了牛顿第三定律、光的折射和全反射以及电磁感应现象。
这些实验不仅加深了学生对物理原理的理解,而且提高了他们的实验操作和数据分析能力。
物理演示实验报告
物理演示实验报告摘要:本实验通过进行物理演示实验,观察了几个物理现象,并进行了相关的实验记录和数据分析。
实验内容包括静电场的演示、力学的演示和波动的演示。
通过这些实验,我们对物理知识有了更深入的了解和认识。
引言:物理演示实验是一种通过实际操作来展示物理现象和规律的实验方法。
通过观察实验现象和实验数据,可以帮助学生更好地理解和掌握物理知识。
本实验旨在通过模拟和演示不同物理现象,加深对物理规律的理解。
实验一:静电场的演示实验目的:通过静电球和金属小球的演示,观察静电场的影响和作用。
实验步骤:1. 准备静电球和金属小球,确保表面干净无尘。
2. 将静电球连接到电源,使其带有静电荷。
3. 将金属小球放在静电球附近,观察金属小球是否被吸引。
实验结果:通过实验观察,我们发现金属小球会被静电球吸引,并且静电球和金属小球之间产生了静电力的作用。
当静电球带有负电荷时,金属小球会被吸引到静电球附近;当静电球带有正电荷时,金属小球则会被排斥。
实验二:力学的演示实验目的:通过斜面、滑轮和重物的组合,演示力学中的重力和摩擦力的作用。
实验步骤:1. 准备斜面板、滑轮和重物,确保实验装置的稳定。
2. 放置斜面板和滑轮,将重物绑定在滑轮上。
3. 释放重物,观察重物下滑的过程。
实验结果:通过实验观察,我们发现重物在斜面上下滑动的过程中,受到了重力和摩擦力的作用。
重力使得物体下滑,而摩擦力则会减缓物体的速度。
实验三:波动的演示实验目的:通过演示波浪、声音和光的实验,观察波动现象和反射现象。
实验步骤:1. 准备水槽、声音发生器和光源等实验器材。
2. 在水槽中制造波浪,观察波浪的传播和反射现象。
3. 使用声音发生器产生声音波,观察声音波的传播和反射现象。
4. 使用光源照射物体,观察光的反射现象。
实验结果:通过实验观察,我们发现波浪、声音和光在传播过程中会发生反射现象。
波浪会在水面上反射,声音会在墙壁上反射,光线也会在镜面上发生反射。
结论:通过本次物理演示实验,我们加深了对静电场、力学和波动等物理现象的理解。
物理实验演示报告
物理演示实验原理一、电磁炮在参观的演示实验中,电磁炮给我的印象最深,将小圆柱放入填弹口,按下开关,小圆柱就会以很高的速度射出,砸在墙壁上并发出“啪”的声音以反映速度。
参观的电磁炮真正的运用是在军事上,它是利用电磁发射技术制成的一种动能杀伤武器.它利用电磁系统中电磁场的作用力,大大地提高弹丸的速度和射程.电磁炮主要由能源、加速器、开关三部分组成。
能源通常采用可蓄存10~100兆焦耳能量的装置。
目前实验用的能源有蓄电池组、磁通压缩装置、单极发电机,其中单极发电机是近期内最有前途的能源。
加速器是把电磁能量转换成炮弹动能,使炮弹达到高速的装置,主要有:使用低压直流单极发电机供电的轨道炮加速器和离散或连续线圈结构的同轴同步加速器两大类。
开关是接通能源和加速器的装置,能在几毫秒之内把兆安级电流引进加速器中。
演示用的电磁炮的加速器应该就是环绕弹道的磁线圈。
二、电磁炮实验原理:电磁炮的原理非常简单,19世纪,英国科学家法拉第发现了法拉第电磁感应定律。
根据这一定律人们发明了发电机和电动机,它也是电磁炮的基本原理,电磁炮不过是一种比较特殊的电动机,因为它的转子不是旋转的,而是作直线加速运动的炮弹。
一个最简单的电磁炮设计如下:用两根导体制成轨道,中间放置炮弹,使电流可以通过三者建立回路。
把这个装置放在磁场中,并给炮弹通电,炮弹就会加速向前飞出。
电磁炮分类为线圈炮(交流同轴线圈炮)、轨道炮、电热炮、重接炮四种。
其中线圈炮是电磁炮的最早形式,由加速线圈和弹丸线圈构成.根据通电线圈之间磁场的相互作用原理而工作的.加速线圈固定在炮管中,当它通入交变电流时,产生的交变磁场就会在弹丸线圈中产生感应电流.感应电流的磁场与加速线圈电流的磁场互相作用,产生磁场力,使弹丸加速运动并发射出去.轨道炮是利用轨道电流间相互作用的安培力把弹丸发射出去.它由两条平行的长直导轨组成,导轨间放置一质量较小的滑块作为弹丸.当两轨接入电源时,强大的电流从一导轨流入,经滑块从另一导轨流回时,在两导轨平面间产生强磁场,通电流的滑块在安培力的作用下,弹丸会以很大的速度射出.演示实验用的电磁炮是线圈炮,也就是交流同轴线圈炮。
初中物理演示实验报告
初中物理演示实验报告篇一:学物理演示实验报告学物理演示实验报告--避雷针一、演示目的气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观看火花放电的发生进程及条件。
二、原理第一让尖端电极和球型电极与平板电极的距离相等。
尖端电极放电,而球型电极未放电。
这是由于电荷在导体上的散布与导体的曲率半径有关。
导体上曲率半径越小的地址电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。
反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。
当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。
而现在球型电极与平板电极之间的距离最近,放电只能在此处发生。
三、装置一个尖端电极和一个球型电极及平板电极。
四、现象演示让尖端电极和球型电极与平板电极的距离相等。
尖端电极放电,而球型电极未放电。
接着让尖端电极与平板电极之间的实验六十五跳环式楞次定律【实验目的】利用通电线圈及线圈内的铁芯所产生的转变磁场与铝环的彼此作用,演示楞次定律。
【实验器材】楞次定律演示仪,铝环(3个)。
如图65-1所示。
开口环闭合环底座带孔环图 65-1【实验原理】当线圈通有电流时,在铁芯中产生交变磁场,穿过闭合的铝环中的磁通量发生转变。
依照楞次定律,套在铁芯中的铝环将产生感生电流,感生电流的方向与线圈中的电流方向相反。
因此与原线圈相斥,相斥的电磁力使得铝环上跳。
【实验操作与现象】1.闭合铝环的演示打开演示仪电源开关,将闭合铝环套入铁棒内按动操作开关。
当操作开关接通时,那么闭合铝环高高跳起,维持操作开关接通状态不变,闭合铝环那么维持必然高度,悬在铁棒中央。
断开操作开关时,闭合铝环落下。
2.带孔铝环的演示把闭合铝环取下,将带孔的铝环套入铁棒内按动操作开关。
当操作开关接通时,那么带孔的铝环也向上跳起,但跳起的高度没有闭合铝环高。
维持操作开关接通状态不变,带孔的铝环也维持必然高度,悬在铁棒中央某一名置,但仍是没有闭合铝环悬的高。
物理演示实验报告
物理演示实验报告
一、雅各布天梯
1、实验目的:了解气体弧光放电原理。
2、实验原理:雅各布天梯中的两电极构成一梯形,下段间距
小,场强大。
二根呈羊角形的管状电极,一极接高压电,另一个接地。
在2-5万伏高压下,两电极最近处的空气首先被击穿,形成大量的正负等离子体,即产生电弧放电。
空气对流加上电动力的驱使,使电弧如一簇簇圣火似地向上爬升,随着电弧被拉长,电弧通过的电阻加大,当电流送给电弧的能量小于由弧道向周围空气散出的热量时,电弧就会自行熄灭。
在高压下,电极间距最小处的空气还会再次被击穿,发生第二次电弧放电,如此周而复始。
3、实验步骤:打开电源,观察湖光的产生移动及消失。
二、辉光球演示实验
1、实验原理:玻璃球中充有某种气体,通常情况下不由于各
种因素影响,气体中总有一些离子和电子,球内电极接高频高压电源时,在电场作用下,离子运动加速,碰撞空气分子产生新电离,同时出现正负离子重合,而发生辉光,玻璃球内气体不同,球内压强不同,球内压强不同,所产生的辉光颜色不同,当用手触摸玻璃球表面时,手的感应使球内电场改变,辉光形式也随之改变。
2、试验操作及现象:通电后打开开关,用手触碰球体,光向
手处移动。
我的感想:在这次物理演示实验中,我收获颇丰。
亲自观测使我对物理现象的认识不再只停留在理论知识上,而是通过实际的观测,了解物理知识,加深印象。
而各种有趣的实验也提升了我对于物理的兴趣,让我在课下了解物理知识,增加物理素养。
大学物理演示实验报告
弦线驻波演示实验::实验内容::实验目的了解:1、一固定端的弦线在周期性横向外力的作用下所形成的驻波;2、环形驻波;3、弹簧片的固有频率与强迫外力的频率相同时产生的共振现象。
操作与现象1、固定端反射的线形驻波的演示将松紧带的两端分别固定在振荡器和喇叭振源上面的竖直铜棒上。
把振荡器(或其它一处)的输出端与喇叭振源的输入端接通,调节功率旋钮使它位于中间位置,打开电源,把频率调节旋钮从低处往高处逐步转动,这样在松紧带上会显现出线形驻波。
2、环形驻波的演示把钢丝变成一个圆环后,将两端固定在喇叭振源的铜棒上,接通电路,调节频率旋钮和功率旋钮,从钢丝左端和右端传来的振动在钢丝内叠加,当调节到圆周长等于半波长的整数倍时,则在圆环上形成环形驻波。
3、弹簧片共振现象的演示将弹簧片固定在喇叭振源的铜棒上,接通电路,调节频率旋钮,当振源的强迫外力的振动频率与弹簧片的其中一边固有频率相同时,这一边产生共振,弹簧片振动得很强,另一端则几乎不振。
调节振动频率,当振源的振动频率与弹簧片的另一边的固有频率相同时,则另一边产生共振现象。
水波盘【实验目的】利用水波的投影显示波的形成、传播、反射、干涉和衍射等的形象。
【实验器材】水波盘演示仪,如图20-1所示。
有水槽、振动源、光源、各种振子(包括单振子、双振子、平面波振子)及挡板2块水槽及壳体水槽是用底部装有密封、透明玻璃的不锈钢盆制成。
壳体用金属材料制成,上面放有水槽,正面竖直安装毛玻璃,作为水波投影的屏幕。
框架内部倾斜45°装有平面镜,用来反射水面的影象到屏幕上,底部装有变压电源,后面装有一立杆。
立杆上端安装光源盒,中部安装振动源盒,在立杆的中部开有长槽孔,用来调节振动源盒的高度。
振动源振动源采用电磁、激励式。
它是由电磁铁、电位器、振杆、振子、主板等组成。
振频调节是一个与电磁铁线圈串联的可调电阻,控制其电流以改变振动的频率。
调节振幅螺丝,可使投影波形的清晰度达到最佳。
振动源盒后面有一插孔,使用时与光源盒插头相接。
物理演示实验报告 光学
物理演示实验报告光学光学实验报告引言:光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉等现象。
在学习光学的过程中,实验是不可或缺的一部分。
本次实验旨在通过一系列光学实验,深入了解光的性质和行为。
下面将逐一介绍实验的过程和结果。
实验一:光的反射在这个实验中,我们使用了一块平面镜和一束光线。
首先,我们将光线照射到平面镜上,观察到光线发生了反射。
通过改变光线的入射角度,我们发现入射角和反射角之间的关系符合反射定律。
实验结果验证了光的反射是根据一定规律进行的。
实验二:光的折射在这个实验中,我们使用了一个玻璃棱镜和一束光线。
当光线从空气射入玻璃棱镜时,光线发生了折射。
我们通过改变入射角度和使用不同材质的棱镜,观察到光线的折射角度发生了变化。
实验结果表明光的折射也遵循一定的规律,即斯涅尔定律。
实验三:光的干涉在这个实验中,我们使用了一对狭缝和一束光线。
将光线通过狭缝后,我们观察到光线发生了干涉现象。
通过调整狭缝的宽度和间距,我们发现干涉条纹的间距和狭缝的大小有关。
实验结果表明光的干涉是由光波的波动性质引起的。
实验四:光的衍射在这个实验中,我们使用了一个狭缝和一个光源。
将光线通过狭缝后,我们观察到光线发生了衍射现象。
通过改变光源的波长和狭缝的宽度,我们发现衍射现象的程度也发生了变化。
实验结果表明光的衍射是光波传播过程中的一种现象。
实验五:光的偏振在这个实验中,我们使用了一束偏振光和一个偏振片。
将偏振光通过偏振片后,我们观察到光线的振动方向发生了改变。
通过旋转偏振片的方向,我们发现只有与偏振片方向一致的光线能够通过。
实验结果表明光的偏振是光波振动方向的一种特性。
结论:通过以上一系列光学实验,我们深入了解了光的性质和行为。
光的反射、折射、干涉、衍射和偏振都是光学研究中重要的现象。
实验结果验证了光学理论的正确性,并为我们进一步探索光学的奥秘提供了基础。
在未来的学习中,我们将继续进行更多的光学实验,以加深对光学的理解和应用。
大学物理演示实验报告
大学物理演示实验报告实验目的,通过一系列的物理演示实验,加深学生对物理原理的理解,培养学生的实验操作能力和科学思维能力。
实验一,牛顿摆。
实验原理,牛顿摆是由一根细线和一个重物组成,当重物摆动时,它会在一定范围内来回摆动。
实验过程,将牛顿摆吊在支架上,使摆球摆动,观察摆球的运动规律。
实验结果,摆球来回摆动,摆动的幅度和周期与摆长有关。
实验二,光的折射。
实验原理,光在从一种介质进入另一种介质时,会发生折射现象,即光线会发生弯曲。
实验过程,将一根铅笔放入水中,观察铅笔在水中的形状。
实验结果,铅笔在水中看起来弯曲了,这是由于光线在进入水中发生了折射。
实验三,电磁感应。
实验原理,当导体在磁场中运动或磁场发生变化时,会产生感应电流。
实验过程,将一个螺线管放入磁场中,观察螺线管两端的灯泡是否会发光。
实验结果,当螺线管在磁场中运动时,灯泡会发光,这是由于磁场的变化引起了感应电流。
实验四,声音的传播。
实验原理,声音是通过介质传播的机械波,它需要介质来传播,不能在真空中传播。
实验过程,在水中放置一个钟,敲击钟,观察声音在水中的传播情况。
实验结果,声音在水中的传播速度比在空气中慢,声音会在水中发生折射。
实验五,热传导。
实验原理,热传导是热量在物体内部传播的过程,它是由分子间的碰撞传递能量而实现的。
实验过程,在一根金属棒的一端加热,观察热量在金属棒内部的传播情况。
实验结果,热量会从加热的一端向另一端传播,传播的速度与金属的热导率有关。
实验总结,通过以上一系列的物理演示实验,我们加深了对牛顿力学、光学、电磁学、声学和热学等物理学原理的理解,同时也培养了实验操作能力和科学思维能力。
这些实验不仅让我们在课堂上学到了知识,也让我们在实验中感受到了物理规律的神奇和美妙。
希望同学们在今后的学习中能够继续保持对物理学的热爱,不断探索物理世界的奥秘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HARBIN ENGINEERING UNIVERSITY
物理演示实验报告物理演示实验自主设计方案
学生姓名
学生学号
选课时间 4月 26日 15时- 17时
联系电话
方案得分
物理实验教学中心
填写说明及注意事项
一、自行设计能够演示某种物理原理或者现象的仪器或者方法。
二、须逐项认真填写,填写内容必须实事求是,表达明确、严谨。
三、设计方案要能很好地展示物理原理,所设计方案要求合理、可行,要具有一定的创新性和新颖性。
四、A4双面打印。
五、课后2周内把报告交到11号楼2楼2008室外面王大伟老师的报告箱中。
注:6月份上课的,课后1周内交报告。
一、演示物理原理简介(可以配图说明)
由于波源或观测者的运动,造成观测频率和波源频率不同的现象,称为多普勒效应.
多普勒效应指出,波在波源移向观察者接近时接收频率变高,而在波源远离观察者时接收频率变低。
如图所示,设声源为S,观察者L分别以速度
、
在静止介质中沿同一直线同向运动,声源发出声波在介质中的传播速度为v,且。