2017版 新能源汽车概论5解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4页
5.1.2 纯电动汽车能量管理系统
1.纯电动汽车能量管理系统的组成 纯电动汽车能源管理系统主要由电池输入控制器、车辆运行 状态参数、车辆操纵状态、能源管理系统ECU、电池输出控 制器、电机发电机系统控制等组成。
第5页
5.1.2 纯电动汽车能量管理系统
2.电池荷(充)电状态指示器
电池荷(充)电状态指示器是能源管理系统的一个重要组成。 电动汽车蓄电池中储存有多少电能,还能行驶多少里程,是 电动汽车行驶中必须知道的重要参数。与燃油汽车的油量表 类似的仪表就是电池荷(充)电状态指示器,它是能源管理系统 的一个重要装置。因此,在电动汽车中装备满足这一需求的 仪表即电池荷(充)电状态指示器。
5.1 电动汽车能量管理系统
能量管理系统在电动汽车中非常重要,它由硬件系统和软件系统组成, 如图所示。能量管理系统具有从电动汽车各子系统采集运行数据,控制完 成电池的充电、显示蓄电池的荷电状态(SOC)、预测剩余行驶里程、监控 电池的状态、调节车内温度、调节车灯亮度以及回收再生制动能量为蓄电 池充电等功能。能量管理系统中最主要的是电池管理系统。
第2页
5.1.1 电池管理系统的功能
电池管理系统是集监测、控制与管理为一体的复杂的电气测控系统,也 是电动汽车商品化、实用化的关键。电池管理的核心问题就是SOC的预估 问题,电动汽车电池操作窗SOC的合理范围是30~70%,这对保证电池寿 命和整体的能量效率至关重要。 典型的电池管理系统应具备如下功能:
第3页
5.1.1 电池管理系统的功能
(3)故障诊断与报警。当蓄电池电量或能量过低需要充电时,及时报 警,以防止电池过放电而损害电池的使用寿命;当电池组的温度过高,非 正常工作时,及时报警,以保证蓄电池正常工作。 (4)电池组的热平衡管理。电池热管理系统是电池管理系统的有机组 成部分,其功能是通过风扇等冷却系统和热电阻加热装置使电池温度处于 正常工作温度范围内。 (5)一致性补偿。当电池之间有差异时,有一定措施进行补偿,保证 电池组表现能力更强,并有一定的手段来显示性能不良的电池位置,以便 修理替换。一般采用充电补偿功能。设计有旁路分流电路,以保证每个单 体都可以充满电,这样可以减缓电池老化的进度,延长电池的使用寿命。 (6)通过总线实现各检测模块和中央处理单元的通讯。在电动汽车上 实现电池管理的难点和关键在于如何根据采集的每块电池的电压、温度和 充放电电流的历史数据,建立确定每块电池剩余能量的较精确的数学模型, 即准确估计电动汽车蓄电池的SOC状态。
第6页
5.1.2 纯电动汽车能量管理系统
电池管理系统是能源管理系统的一个子系统。蓄电池管理系 统主要任务是保持电动汽车蓄电池性能良好,并优化各蓄电 池的电性能和保存、显示测试数据等。 目前,主要是根据实际情况,确定具体纯电动汽车的电池管 理系统的功能和形式。电池管理系统包括硬件系统的设计和 软件系统的设计。 硬件的设计取决于管理系统实现的功能。基本要实现对动力 电池组的合理管理,即保证采集数据的准确性、可靠稳定的 系统通信、抗干扰性。在具体实现过程中,根据设计要求确 定需要采集动力电池组的数据类型;根据采集量以及精度要 求确定前向通道的设计;根据通信数据量以及整车的要求选 用合理的总线。
VCC 3 中 央 处 理 器
VCC
DQ 2 GND 1
DS18B20
第 11 页
5.1.2 纯电动汽车能量管理系统
(4)抗干扰措施的设计。由于电池管理系统用在情况比较 复杂的电动汽车上,所以干扰可以沿各种线路侵入单片机系 统。其主要的渠道有三条:即空间干扰、供电系统干扰、过 程通道干扰。干扰对单片机系统的作用可以分为三个部位: 第一个部位是输入系统,干扰叠加在信号上,使数据采集误 差增大,特别在前向通道的传感器接口是小电压信号输入时, 此现象会更加严重;第二个部位是输出系统,使各输出信号 混乱,不能正常反映单片机系统的真实输出量,导致一系列 严重后果;第三个部位是单片机系统的内核,使总线上的数 字信号错乱,程序运行失常,内部程序指针错乱,控制状态 失灵,单片机中数据被修改,更严重的会导致死机,使系统 完全崩溃。
第9页
5.1.2 纯电动汽车能量管理系统
(2)电流采样的实现。电流的采样是估计电池SOC的主要 依据。这里采用电流传感器 LT308(LEM) 其测量电路如图所 示。
2.5V
R1 LEM输入
R2
+
+
AD输入
第 10 页
5.1.2 纯电动汽车能量管理系统
(3)温度采样的实现。温度传感器采用美国DALLAS公司 继DS1820之后推出的增强型单总线数字温度传感器 DS18B20。温度采集电路如图所示。
(1)实时采集电池系统运行状态参数。实时采集电动汽车蓄电池组中 的每块电池的端电压和温度、充放电电流以及电池组总电压等。由于电池 组中的每块电池在使用中的性能和状态不一致,因而对每块电池的电压、 电流和温度数据都要进行监测。 (2)确定电池的SOC。准确估测动力电池组的SOC,从而随时预报电 动汽车储能电池还剩余多少能量或储能电池的SOC,使电池的SOC值控 制在30%~70%的工作范围。
第7页
5.1.2 纯电动汽车能量管理系统wenku.baidu.com
图是某电池管理系统的结构框图。
模块电压 液晶显示模块
电池总电压
电池电流
中 央 处 理 器
SOC估计
控制充放电电流
电池温度
故障报警
第8页
5.1.2 纯电动汽车能量管理系统
本硬件系统是在基于ATMEGA8L单片机进行设计的。 (1) 电压采样的实现。电压采样是对电动汽车电池组的电 压进行采样,每个电池组由10个单体电池构成。本系统中一 共有14个电池组组成电动汽车的动力电池。原理如图所示, 每个电池为一个电池组。
第5章 电动汽车的能量管理与回收系统
5.1 电动汽车能量管理系统
5.1.1 电池管理系统的功能 5.1.2 纯电动汽车能量管理系统
5.1.3 混合动力电动汽车能量管理系统
5.2 电动汽车再生制动能量回收系统 5.2.1制动能量回收的方法和类型 5.2.2电动汽车的制动能量回收系统
第1页
相关文档
最新文档