2020年北京市海淀区高考数学一模试卷 (解析版)

合集下载

2020-年北京市海淀区高三数学一模试题

2020-年北京市海淀区高三数学一模试题

海淀区高三年级第二学期阶段性测试数 学 2020春本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)在复平面内,复数i(2i)-对应的点位于(A )第一象限 (B )第二象限 (C )第三象限(D )第四象限(2)已知集合{ |0 3 }A x x =<<,AB ={ 1 },则集合B 可以是 (3)已知双曲线2221(0)y x b b-=>的离心率为5,则b 的值为(A )1 (B )2 (C )3(D )4(4)已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是(A )b a c a -<+ (B )2c ab < (C )c cb a> (D )||||b c a c <(5)在61(2)x x-的展开式中,常数项为(A )120-(B )120 (C )160- (D )160(A ){ 1 2 }, (B ){ 1 3 }, (C ){ 0 1 2 },, (D ){ 1 2 3 },,(6)如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为 (A )1 (B )32(C )22(D )12(7)已知函数()||f x x m =-与函数()g x 的图象关于y 轴对称.若()g x 在区间(1,2)内单调递减,则m 的取值范围为 (A )[1,)-+∞ (B )(,1]-∞- (C )[2,)-+∞(D )(,2]-∞-(8)某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为(A )5 (B )22 (C )23 (D )13(9)若数列{}n a 满足1= 2 a ,则“p ∀,r *∈N ,p r p r a a a +=”是“{}n a 为等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(10)形如221n+(n 是非负整数)的数称为费马数,记为n F .数学家费马根据0F ,1F ,2F ,3F ,4F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那么5F 的位数是(参考数据:lg20.3010≈)1 1 22(A )9 (B )10 (C )11(D )12第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。

2020 年北京市海淀区高三数学一模试题

2020 年北京市海淀区高三数学一模试题

海淀区高三年级第二学期阶段性测试数 学 2020春本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)在复平面内,复数i(2i)-对应的点位于(A )第一象限 (B )第二象限 (C )第三象限(D )第四象限(2)已知集合{ |0 3 }A x x =<<,A B =I { 1 },则集合B 可以是(3)已知双曲线2221(0)y x b b-=>的离心率为5,则b 的值为(A )1 (B )2 (C )3(D )4(4)已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是(A )b a c a -<+ (B )2c ab < (C )c cb a> (D )||||b c a c <(5)在61(2)x x-的展开式中,常数项为(A )120-(B )120 (C )160- (D )160(A ){ 1 2 }, (B ){ 1 3 }, (C ){ 0 1 2 },, (D ){ 1 2 3 },,(6)如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动.当圆M滚动到圆M'时,圆M'与直线l相切于点B,点A运动到点A',线段AB的长度为3π2,则点M'到直线BA'的距离为(A)1 (B(C)2(D)12(7)已知函数()||f x x m=-与函数()g x的图象关于y轴对称.若()g x在区间(1,2)内单调递减,则m的取值范围为(A)[1,)-+∞(B)(,1]-∞-(C)[2,)-+∞(D)(,2]-∞-(8)某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为(A(B)(C)(D(9)若数列{}n a满足1= 2a,则“p∀,r*∈N,p r p ra a a+=”是“{}n a为等比数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(10)形如221n+(n是非负整数)的数称为费马数,记为nF.数学家费马根据F,1F,2F,3F, 4F都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F不是质数,那么5F的位数是(参考数据:lg20.3010≈)(A )9 (B )10 (C )11(D )12第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。

北京市海淀区2020届高三下学期一模考试数学试题

北京市海淀区2020届高三下学期一模考试数学试题

海淀区高三年级第二学期阶段性测试数 学本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分(选择题共40 分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)在复平面内,复数)2(i i -对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(2)已知集合{}30<<=x x A ,{}1=B A I ,则集合B 可以是 (A ){1,2} (B ){1,3} (C ){0,1,2} (D ){1,2,3}(3)已知双曲线)0(1222>=-b by x 的离心率为5 ,则b 的值为(A )1 (B )2 (C )3 (D )4 (4)已知实数c b a ,,在数轴上对应的点如图所示,则下列式子中正确的是(A )a c a b +<- (B )ab c <2(C )acb c > (D )c a c b < (5)在6)21(x x-的展开式中,常数项为(A )-120 (B )120 (C )-160 (D )160 (6)如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B .点A 运动到点A ',线段AB 的长度为23π,则点M '到直线A B '的距离为(A )1 (B )23 (C )22 (D )21 (7)已知函数m x x f -=)(与函数)(x g 的图象关于y 轴对称.若)(x g 在区间(1,2)内单调递减,则m的取值范围为(A )[-1,+∞) (B )(-∞,-1] (C )[-2,+∞) (D )(-∞,-2] (8)某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为(A)5 (B )22(C )32 (D)13(9)若数列{}n a 满足21=a ,则“r p r p a a a N r p =∈∀+*,,”是“{}n a 为等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (10)形如n22(n 是非负整数)的数称为费马数,记为n F .数学家费马根据43210F F F F F ,,,,都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F ,不是质数,那么5F 的位数是(参考数据;3010.02lg ≈ )(A )9 (B )10 (C )11 (D )12第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。

北京市海淀区2020届高三下学期一模考试数学试卷

北京市海淀区2020届高三下学期一模考试数学试卷

数学本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分(选择题共40 分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)在复平面内,复数)2(i i -对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(2)已知集合{}30<<=x x A ,{}1=B A I ,则集合B 可以是 (A ){1,2} (B ){1,3} (C ){0,1,2} (D ){1,2,3}(3)已知双曲线)0(1222>=-b by x 的离心率为5 ,则b 的值为(A )1 (B )2 (C )3 (D )4 (4)已知实数c b a ,,在数轴上对应的点如图所示,则下列式子中正确的是(A )a c a b +<- (B )ab c <2(C )acb c > (D )c a c b < (5)在6)21(x x-的展开式中,常数项为(A )-120 (B )120 (C )-160 (D )160(6)如图,半径为1的圆M 与直线相切于点,圆M 沿着直线滚动.当圆M 滚动到圆M '时,圆M '与直线相切于点B .点运动到点,线段AB 的长度为23π,则点M '到直线A B '的距离为(A )1 (B )23 (C )22 (D )21 (7)已知函数m x x f -=)(与函数)(x g 的图象关于y 轴对称.若)(x g 在区间(1,2)内单调递减,则m 的取值范围为(A )[-1,+∞) (B )(-∞,-1] (C )[-2,+∞) (D )(-∞,-2](8)某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为(A)5 (B )22 (C )32 (D)13(9)若数列{}n a 满足21=a ,则“r p r p a a a N r p =∈∀+*,,”是“{}n a 为等比数列”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 (10)形如n22(n 是非负整数)的数称为费马数,记为n F .数学家费马根据43210F F F F F ,,,,都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F ,不是质数,那么5F 的位数是 (参考数据;3010.02lg ≈ )(A )9 (B )10 (C )11 (D )12第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。

2020届北京市海淀区高三数学一模试题(含答案)

2020届北京市海淀区高三数学一模试题(含答案)

海淀区高三年级第二学期阶段性测试数学2020春第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)在复平面内,复数i(2- i)对应的点位于(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限(2) 已知集合A={x|0<x<3}, A ∩B= {1},则集合B 可以是(A) {1,2}(B) {1,3} (C) {0,1,2} (D) {1,2,3 } (3)已知双曲线2221(0)y x b b-=>的离心率为5,则b 的值为 (A) 1 (B) 2 (C) 3 (D) 4(4)已知实数a, b, c 在数轴上对应的点如图所示,则下列式子中正确的是(A) b-a<c+a (B)2c ab < ()c c C b a > (D) |b|c<|a|c(5)在61(2)x x-的展开式中,常数项为(A) -120 (B) 120 (C) -160 (D) 160 (6)如图,半径为1的圆M 与直线l 相切于点A,圆M 沿着直线l 滚动.当圆M 滚动到圆M'时,圆M'与直线1相切于点B,点A 运动到点A ',线段AB 的长度为3,2π则点M '到直线'BA 的距离为(A) 1 (3B 2(C 1()2D (7)已知函数f(x)=|x-m|与函数g(x)的图象关于y 轴对称.若g(x)在区间(1,2)内单调递减,则m 的取值范围为(A) [-1,+∞) (B) (-∞,-1] (C) [-2,+∞) (D) (-∞,-2](8)某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为()5A ()22B ()23C ()13D(9)若数列{}n a 满足12,a =则“*,,p r p r p r a a a +∀∈=N ”是“{}n a 为等比数列”的(A)充分而不必要条件(B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件 (10)形如221n +(n 是非负整数)的数称为费马数,记为.n F 数学家费马根据0123,,,,F F F F 4F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那5F 的位数是(参考数据: lg2≈0.3010 )(A) 9(B) 10 (C) 11 (D) 12第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。(11)已知点P(1,2)在抛物线C 2:2y px =上,则抛物线C 的准线方程为___.(12)在等差数列{}n a 中,1253,16a a a =+=,则数列{}n a 的前4项的和为___.(13) 已知非零向量a , b 满足|a |=|a -b |,则1()2-⋅a b b =__. (14) 在△ABC 中, 43,4AB B π=∠=,点D 在边BC 上,2,3ADC π∠=CD=2,则AD=___ ; △ACD 的面积为____.(15) 如图,在等边三角形ABC 中, AB=6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x,点P 到此三角形中心O 距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x 的方程()3f x kx =+最多有5个实数根.其中,所有正确结论的序号是____.注:本题给出的结论中,有多个符合题目要求。全部选对得5分,不选或有错选得0分,其他得3分.三、解答题共6小题,共85分。解答应写出文字说明、演算步骤或证明过程。(16) (本小题共14分)如图,在三棱柱111ABC A B C -中,AB ⊥平面1111,22,3BB C C AB BB BC BC ====,点E 为11A C 的中点.( I)求证:1C B ⊥平面ABC;(II)求二面角A BC E --的大小.(17) (本小题共14分)已知函数212()2cos sin f x x x ωω=+.(I )求f(0)的值;(II)从①121,2ωω==121,1ωω==②这两个条件中任选一个,作为题目的已知条件,求函数f(x)在[,]26ππ-上的最小值,并直接写出函数f(x)的一个周期.注:如果选择两个条件分别解答,按第一个解答计分。(18) (本小题共14分)科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障,下图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元)。 ( I )从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(II)从2010年至2019年中随机选取两个年份,设X 表示其中研发投入超过500亿元的年份的个数,求X 的分布列和数学期望;(III)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.(19) (本小题共15分)已知函数()x f x e ax =+.( I)当a=-1时,①求曲线y= f(x)在点(0, f(0))处的切线方程;②求函数f(x)的最小值;(II)求证:当()2,0a ∈-时,曲线() y f x =与1y lnx =-有且只有一个交点.(20) (本小题共14分)已知椭圆C :22221(0)x y a b a b+=>>123(,0),(,0),(0,)A a A a B b -,12A BA ∆的面积为2. (I)求椭圆C 的方程;(II)设M 是椭圆C 上一点,且不与顶点重合,若直线1A B 与直线2A M 交于点P,直线1A M 与直线2A B 交于点Q. 求证:△BPQ 为等腰三角形.(21) (本小题共14分)已知数列{}n a 是由正整数组成的无穷数列.若存在常数*k ∈N , 使得212n n n a a ka -+=任意的*n ∈N 成立,则称数列{}n a 具有性质()k ψ.(I)分别判断下列数列{}n a 是否具有性质(2)ψ; (直接写出结论)1n a =① 2,n n a =②(II)若数列{}n a 满足1(1,2,3,)n n a a n +≥=L ,求证:“数列{}n a 具有性质(2)ψ”是“数列{}n a 为常数列”的充分必要条件;(III)已知数列{}n a 中11,a =且1(1,2,3,)n n a a n +>=L .若数列{}n a 具有性质(4)ψ,求数列{}n a 的通项公式.。

2020海淀一模数学

2020海淀一模数学

2020北京海淀高三一模数学 2020春本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 在复平面内,复数i(2−i)对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 己知集合A={x|0<x<3},A∩B={1},则集合B可以是A. {1,2}B. {1,3}C. {0,1,2}D. {1,2,3}3. 已知双曲线x2−y2b2=1(b>0)的离心率为√5,则b的值为A. 1B. 2C. 3D. 44. 已知实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是A. b−a<c+aB. c2<abC. cb >caD. |b|c<|a|c5. 在(1x−2x)6的展开式中,常数项为A. −120B. 120C. −160D. 1606. 如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动,当圆M滚动到圆M’时,圆M’与直线l相切于点B,点A运动到点A’,线段AB的长度为3π2,则点M’到直线BA’的距离为A. 1B. √3C. √22D. 127. 已知函数f(x)=|x−m|与函数g(x)的图象关于y轴对称,若g(x)在区间(1,2)内单调递减,则m的取值范围为A. [−1,+∞)B. (−∞,−1]C. [−2,+∞)D. (−∞,−2]8. 某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为A. √5B. 2√2C. 2√3D. √139. 若数列{a n}满足a1=2,则“∀p,r∈N∗,a p+r=a p a r”是“{a n}为等比数列”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件10. 形如22n+1(n是非负整数)的数称为费马数,记为F n.数学家费马根据F0,F1,F2,F3,F4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F5不是质数,那么F5的位数是(参考数据:lg2≈0.3010)A. 9B. 10C. 11D. 12第二部分(非选择题共110份)二、填空题共5小题,每小题5分,共25分。

2020年北京市海淀区高考数学一模试卷 (解析版)

2020年北京市海淀区高考数学一模试卷 (解析版)

2020年北京市海淀区高考数学一模试卷一、选择题(共10小题)1.在复平面内,复数i (2﹣i )对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合A ={x |0<x <3},A ∩B ={1},则集合B 可以是( ) A .{1,2} B .{1,3}C .{0,1,2}D .{1,2,3}3.已知双曲线x 2−y 2b2=1(b >0)的离心率为√5,则b 的值为( ) A .1B .2C .3D .44.已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .b ﹣a <c +aB .c 2<abC .cb>caD .|b |c <|a |c5.在(1x−2x )6的展开式中,常数项为( )A .﹣120B .120C .﹣160D .1606.如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为( )A .1B .√32C .√22D .127.已知函数f (x )=|x ﹣m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则m 的取值范围为( ) A .[﹣1,+∞)B .(﹣∞,﹣1]C .[﹣2,+∞)D .(﹣∞,﹣2]8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为( )A .√5B .2√2C .2√3D .√139.若数列{a n }满足a 1=2,则“∀p ,r ∈N *,a p +r =a p a r ”是“{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.形如22n+1(n 是非负整数)的数称为费马数,记为F n .数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,那么F 5的位数是( )(参考数据:lg 2≈0.3010) A .9B .10C .11D .12二、填空题共5小题,每小题5分,共25分.11.已知点P (1,2)在抛物线C :y 2=2px 上,则抛物线C 的准线方程为 . 12.在等差数列{a n }中,a 1=3,a 2+a 5=16,则数列{a n }的前4项的和为 .13.已知非零向量a →,b →满足|a →|=|a →−b →|,则(a →−12b →)•b →= .14.在△ABC 中,AB =4√3,∠B =π4,点D 在边BC 上,∠ADC =2π3,CD =2,则AD = ;△ACD 的面积为 .15.如图,在等边三角形ABC中,AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记P运动的路程为x,点P到此三角形中心O距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x的方程f(x)=kx+3最多有5个实数根.其中,所有正确结论的序号是.三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16.如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,AB=BB1=2BC=2,BC1=√3,点E为A1C1的中点.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)求二面角A﹣BC﹣E的大小.17.已知函数f(x)=2cos2ω1x+sinω2x.(Ⅰ)求f(0)的值;(Ⅱ)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f(x)在[−π2,π6]上的最小值,并直接写出函数f(x)的一个周期.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.如图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.19.已知函数f(x)=e x+ax.(Ⅰ)当a=﹣1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(﹣2,0)时,曲线y=f(x)与y=1﹣lnx有且只有一个交点.20.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,A1(﹣a,0),A2(a,0),B(0,b),△A1BA2的面积为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设M是椭圆C上一点,且不与顶点重合,若直线A1B与直线A2M交于点P,直线A1M与直线A2B交于点Q.求证:△BPQ为等腰三角形.21.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈N*,使得a2n﹣1+a2n=ka n对任意的n∈N*成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选:A.【点评】本题考查复数的代数表示法及其几何意义,本题解题的关键是写成标准形式,才能看出实部和虚部的值.2.已知集合A={x|0<x<3},A∩B={1},则集合B可以是()A.{1,2}B.{1,3}C.{0,1,2}D.{1,2,3}【分析】根据A={x|0<x<3},A∩B={1},即可得出集合B可能的情况.解:∵A={x|0<x<3},A∩B={1},∴集合B可以是{1,3}.故选:B.【点评】本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题.3.已知双曲线x 2−y 2b2=1(b >0)的离心率为√5,则b 的值为( ) A .1B .2C .3D .4【分析】利用双曲线的离心率公式,列出方程,求解b 即可. 解:双曲线x 2−y 2b2=1(b >0)的离心率为√5,可得√b 2+11=√5,解得b =2,故选:B .【点评】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题. 4.已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .b ﹣a <c +aB .c 2<abC .cb>caD .|b |c <|a |c【分析】法1:根据数轴得到c <b <a <0且|c |>|b |>|a |,结合不等式基本性质逐一进行判断即可;法2:用特值法带入验证即可.解:(法1)根据数轴可得c <b <a <0且|c |>|b |>|a |,对于A :因为c <b ,a <0,所以c +a <c ,b ﹣a >b ,则c +a <c <b ﹣a ,即c +a <b ﹣a ,故A 错误;对于B :因为c <b <a <0,|c |>|b |>|a |,所以c 2>b 2>a 2,且b 2>ab ,所以c 2>b 2>ab ,则c 2>ab ,故B 错误;对于C :因为b <a <0,所以1b>1a,则cb<ca,故C 错误;对于D :因为|b |>|a |,且c <0,所以|b |c <|a |c ,故D 正确,(法2)不妨令c =﹣5,b =﹣4,a =﹣1,则c +a =﹣6<b ﹣a =﹣3,故A 错误;c 2=25>ab =4,故B 错误;cb =54<c a=5,故C错误; 故选:D .【点评】本题考查不等式的相关应用,考查合情推理,属于中档题. 5.在(1x −2x )6的展开式中,常数项为( )A .﹣120B .120C .﹣160D .160【分析】先求出通项,然后令x 的指数为零即可.解:由题意得:T k+1=(−2)k C 6k x2k ﹣6, 令2k ﹣6=0得k =3,故常数项为T 4=(−2)3C 63=−160. 故选:C .【点评】本题考查二项式展开式通项的应用和学生的运算能力,属于基础题. 6.如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为( )A .1B .√32C .√22D .12【分析】根据条件可得圆旋转了34个圆,作图可得到△A 'M 'B 是等腰直角三角形,进而可求得M '到A 'M 的距离.解:根据条件可知圆周长=2π,因为BA =32π=34×2π,故可得A ’位置如图:∠A 'M 'B =90°,则△A 'M 'B 是等腰直角三角形,则M '到A 'M 的距离d =√22r =√22,故选:C .【点评】本题考查点到直线的距离,考查圆旋转的长度求法,数中档题.7.已知函数f (x )=|x ﹣m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则m 的取值范围为( ) A .[﹣1,+∞)B .(﹣∞,﹣1]C .[﹣2,+∞)D .(﹣∞,﹣2]【分析】根据题意,分析可得f (x )在区间(﹣2,﹣1)上递增,将f (x )写成分段函数的形式,分析可得f (x )在区间(m ,+∞)上为增函数,据此可得m 的取值范围. 解:根据题意,函数f (x )=|x ﹣m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则f (x )在区间(﹣2,﹣1)上递增,而f (x )=|x ﹣m |={x −m ,x ≥m−x +m ,x <m ,在区间(m ,+∞)上为增函数,则有m ≤﹣2,即m 的取值范围为(﹣∞,﹣2]; 故选:D .【点评】本题考查函数的单调性,涉及函数之间的对称性、不等式的解法,属于基础题. 8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为( )A.√5B.2√2C.2√3D.√13【分析】首先把三视图转换为直观图,进一步求出最大棱长.解:根据几何体的三视图可得直观图为:该几何体为四棱锥体,如图所示:所以最长的棱长AB=√22+22+22=2√3.故选:C.【点评】本题考查的知识要点:三视图和直观图形之间的转换,几何体的棱长的求法和应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.若数列{a n}满足a1=2,则“∀p,r∈N*,a p+r=a p a r”是“{a n}为等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用等比数列的定义通项公式即可判断出结论.解:“∀p,r∈N*,a p+r=a p a r”,取p=n,r=1,则a n+1=2a n,∴{a n}为等比数列.反之不成立.{a n}为等比数列,则a p+r=2×q p+r﹣1,a p a r=22•q p+r﹣2,只有q=2时才能成立.∴数列{a n}满足a1=2,则“∀p,r∈N*,a p+r=a p a r”是“{a n}为等比数列”的充分不必要条件..故选:A.【点评】本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.10.形如22n+1(n是非负整数)的数称为费马数,记为F n.数学家费马根据F0,F1,F2,F3,F4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F5不是质数,那么F5的位数是()(参考数据:lg2≈0.3010)A.9B.10C.11D.12【分析】根据所给定义表示出F5=109.632×109,进而即可判断出其位数.解:根据题意,F5=225+1=232+1≈232=10lg232=1032lg2≈1032×0.3010=109.632=100.632×109,因为1<100.632<10,所以F5的位数是10.故选:B.【点评】本题考查指对数运算,考查学生阅读理解能力,属于中档题.二、填空题共5小题,每小题5分,共25分.11.已知点P(1,2)在抛物线C:y2=2px上,则抛物线C的准线方程为x=﹣1.【分析】把点P 的坐标代入抛物线的方程可求得p ,而准线方程为x =−p2,从而得解. 解:把点P (1,2)代入抛物线方程有,4=2p ,∴p =2, ∴抛物线的准线方程为x =−p2=−1. 故答案为:x =﹣1.【点评】本题考查抛物线的方程、准线方程等,考查学生的运算能力,属于基础题. 12.在等差数列{a n }中,a 1=3,a 2+a 5=16,则数列{a n }的前4项的和为 24 . 【分析】利用等差数列的通项公式求和公式即可得出. 解:设等差数列{a n }的公差为d ,∵a 1=3,a 2+a 5=16, ∴2×3+5d =16,解得d =2.则数列{a n }的前4项的和=4×3+4×32×2=24. 故答案为:24.【点评】本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.13.已知非零向量a →,b →满足|a →|=|a →−b →|,则(a →−12b →)•b →= 0 .【分析】把所给条件平方整理得到a →•b →=12b →2;代入数量积即可求解结论.解:因为非零向量a →,b →满足|a →|=|a →−b →|,∴a →2=a →2−2a →•b →+b →2⇒a →•b →=12b →2;则(a →−12b →)•b →=a →⋅b →−12b →2=0.故答案为:0.【点评】本题考查向量的数量积以及模长的应用,考查向量的表示以及计算,考查计算能力.14.在△ABC中,AB=4√3,∠B=π4,点D在边BC上,∠ADC=2π3,CD=2,则AD=4√2;△ACD的面积为2√6.【分析】先根据正弦定理求得AD,进而求得三角形的面积.解:如图;因为在△ABC中,AB=4√3,∠B=π4,点D在边BC上,∠ADC=2π3,CD=2,所以:ADsin∠ABD =ABsin∠ADB⇒AD=4√3×sinπ4sinπ3=4√2;S△ACD=12•AD•CD•sin∠ADC=12×4√2×2×sin2π3=2√6;故答案为:4√2,2√6.【点评】本题主要考查正弦定理以及三角形的面积,属于基础题目.15.如图,在等边三角形ABC中,AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记P运动的路程为x,点P到此三角形中心O距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x的方程f(x)=kx+3最多有5个实数根.其中,所有正确结论的序号是①②.【分析】写出函数解析式并作出图象,数形结合进行逐一分析解:由题可得函数f (x )={3+(x −3)2,0≤x <63+(x −9)2,6≤x <123+(x −15)2,12≤x ≤18,作出图象如图:则当点P 与△ABC 顶点重合时,即x =0,6,12,18时,f (x )取得最大值12,故①正确;又f (x )=f (18﹣x ),所以函数f (x )的对称轴为x =9,故②正确;由图象可得,函数f (x )图象与y =kx +3的交点个数为6个,故方程有6个实根,故③错误.故答案为:①②.【点评】本题考查命题的真假性判断,涉及函数的应用、图象与性质,数形结合思想,逻辑推理能力,属于难题三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16.如图,在三棱柱ABC ﹣A 1B 1C 1中,AB ⊥平面BB 1C 1C ,AB =BB 1=2BC =2,BC 1=√3,点E 为A 1C 1的中点.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)求二面角A﹣BC﹣E的大小.【分析】(Ⅰ)证明AB⊥C1B.CB⊥C1B.利用直线与平面垂直的判断定理证明C1B⊥平面ABC.(Ⅱ)以B为原点建立空间直角坐标系B﹣xyz.求出平面BCE的法向量,平面ABC的法向量,利用空间向量的数量积求解二面角的大大小即可,【解答】(Ⅰ)证明:因为AB⊥平面BB1C1C,C1B⊂平面BB1C1C所以AB⊥C1B.在△BCC1中,BC=1,BC1=√3,CC1=2,所以BC2+BC12=CC12.所以CB⊥C1B.因为AB∩BC=B,AB,BC⊂平面ABC,所以C1B⊥平面ABC.(Ⅱ)解:由(Ⅰ)知,AB⊥C1B,BC⊥C1B,AB⊥BC,如图,以B为原点建立空间直角坐标系B﹣xyz.则B(0,0,0),E(−12,√3,1),C(1,0,0).BC→=(1,0,0),BE→=(−12,√3,1).设平面BCE的法向量为n→=(x,y,z),则{n →⋅BC →=0n →⋅BE →=0, 即{x =0,−12x +√3y +z =0. 令y =√3则x =0,z =﹣3, 所以n →=(0,√3,−3).又因为平面ABC 的法向量为m →=(0,1,0),所以cos <m →,n →>=m →⋅n →|m →||n →|=12.由题知二面角A ﹣BC ﹣E 为锐角,所以其大小为π3.【点评】本题考查二面角的平面角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题. 17.已知函数f (x )=2cos 2ω1x +sin ω2x . (Ⅰ)求f (0)的值;(Ⅱ)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x )在[−π2,π6]上的最小值,并直接写出函数f (x )的一个周期.【分析】(Ⅰ)由函数f (x )的解析式求出f (0)的值; (Ⅱ)选择条件①时f (x )的一个周期为π,利用三角恒等变换化简f(x),再求f(x)在[−π2,π6]的最小值.选择条件②时f(x)的一个周期为2π,化简f(x),利用三角函数的性质求出f(x)在[−π2,π6]的最小值.解:(Ⅰ)由函数f(x)=2cos2ω1x+sinω2x,则f(0)=2cos20+sin0=2;(Ⅱ)选择条件①,则f(x)的一个周期为π;由f(x)=2cos2x+sin2x=(cos2x+1)+sin2x=√2(√22sin2x+√22cos2x)+1=√2sin(2x+π4)+1;因为x∈[−π2,π6],所以2x+π4∈[−3π4,7π12];所以−1≤sin(2x+π4)≤1,所以1−√2≤f(x)≤1+√2;当2x+π4=−π2,即x=−3π8时,f(x)在[−π2,π6]取得最小值为1−√2.选择条件②,则f(x)的一个周期为2π;由f(x)=2cos2x+sin x=2(1﹣sin2x)+sin x=−2(sinx−14)2+178;因为x∈[−π2,π6],所以sinx∈[−1,12];所以当sin x=﹣1,即x=−π2时,f(x)在[−π2,π6]取得最小值为﹣1.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了转化与运算能力,是基础题.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.如图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.【分析】(Ⅰ)按照古典概型概率计算公式计算即可;(Ⅱ)显然这是一个超几何分布,按照超几何分布的概率计算方法,分别算出随机变量X取0,1,2时的概率,然后画出分布列,即可求期望;(Ⅲ)结合折线图从“每年的研发投入”“研发投入占营收比”的变化来分析即可.解:(Ⅰ)设事件A为“从2010年至2019年中随机选取一年,研发投入占当年总营收的百分比超过10%”,从2010年至2019年一共10年,其中研发投入占当年总营收的百分比超过10%有9年,所以P(A)=9 10.(Ⅱ)由图表信息,从2010年至2019年10年中有5年研发投入超过500亿元,所以X 的所有可能取值为0,1,2.且P(X=0)=C52C102=29;P(X=1)=C51C51C102=59;P(X=2)=C52C102=29.所以X的分布列为:X012P295929故X的期望E(X)=0×29+1×59+2×29=1.(Ⅲ)从两个方面可以看出,该公式是比较重视研发的:一、从2010年至2019年,每年的研发投入是逐年增加的(2018年除外),并且增加的幅度总体上逐渐加大;二、研发投入占营收的比例总体上也是逐渐增加的,虽然2015年往后有些波动,但是总体占比还是较高的.【点评】本题考查离散型随机变量的分布列、期望的求法,注意对题意的理解需到位、准确.同时考查学生的数学建模的素养,属于中档题.19.已知函数f(x)=e x+ax.(Ⅰ)当a=﹣1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(﹣2,0)时,曲线y=f(x)与y=1﹣lnx有且只有一个交点.【分析】(Ⅰ)①将a=﹣1带入,求导,求出切线斜率及切点,利用点斜式方程即得解;②求出函数函数f(x)的单调性情况,进而得出最值;(Ⅱ)即证函数g(x)=e x+ax+lnx﹣1仅有一个零点,利用导数可知函数g(x)在区间(0,+∞)上单调递增,结合零点存在性定理即得证.解:(Ⅰ)①当a=﹣1时,f(x)=e x﹣x,则f'(x)=e x﹣1.所以f'(0)=0.又f(0)=1,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=1;②令f'(x)=0,得x=0,此时f'(x),f(x)随x的变化如下:x(﹣∞,0)0(0,+∞)f'(x)﹣0+f(x)↘极小值↗可知f(x)min=f(0)=1,函数f(x)的最小值为1.(Ⅱ)证明:由题意可知,x∈(0,+∞),令g(x)=e x+ax+lnx﹣1,则g′(x)=e x+1x+a,由(Ⅰ)中可知e x﹣x≥1,故e x≥1+x,因为a∈(﹣2,0),则g′(x)=e x+1x+a≥(x+1)+1x+a≥2√x⋅1x+a+1=3+a>0,所以函数g(x)在区间(0,+∞)上单调递增,因为g(1e )=e1e+ae−2<e12−2<0,又因为g(e)=e e+ae>e2﹣2e>0,所以g(x)有唯一的一个零点.即函数y=f(x)与y=1﹣lnx有且只有一个交点.【点评】本题考查导数的几何意义,利用导数研究函数的最值,函数的零点等问题,考查运算求解能力及推理论证能力,属于中档题.20.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,A1(﹣a,0),A2(a,0),B(0,b),△A1BA2的面积为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设M是椭圆C上一点,且不与顶点重合,若直线A1B与直线A2M交于点P,直线A1M与直线A2B交于点Q.求证:△BPQ为等腰三角形.【分析】(Ⅰ)由题{ca=√32,ab=2,a2=b2+c2.,求出a,b,即可得到椭圆方程.(II)解法1,设直线A2M方程为y=k(x−2)(k≠0且k≠±12),直线A1B方程为y=12x+1,通过联立直线与椭圆方程组,求出M坐标,Q坐标,推出|BP|=|BQ|,即可证明△BPQ为等腰三角形.解法2,设M(x0,y0)(x0≠±2,y0≠±1)则x02+4y02=4.直线A2M方程为y=y0x0−2(x−2),直线A1B方程为y=12x+1.通过联立直线与椭圆方程组,求出P,Q坐标,转化推出|BP |=|BQ |,得到△BPQ 为等腰三角形.解:(Ⅰ)由题{ c a =√32,ab =2,a 2=b 2+c 2.解得{a =2,b =1.所以椭圆方程为x 24+y 2=1.( II )解法1证明:设直线A 2M 方程为y =k(x −2)(k ≠0且k ≠±12),直线A 1B 方程为y =12x +1 由{y =k(x −2),y =12x +1.解得点P(4k+22k−1,4k 2k−1). 由{y =k(x −2),x 24+y 2=1.得(4k +1)x 2﹣16k 2x +16k 2﹣4=0, 则2x M =16k 2−44k 2+1. 所以x M =8k 2−24k 2+1,y M =−4k 4k 2+1. 即M(8k 2−24k 2+1,−4k4k 2+1).k A 1M =−4k 4k 2+18k 2−24k 2+1+2=−14k .于是直线A 1M 的方程为y =−14k (x +2),直线A 2B 的方程为y =−12x +1. 由{y =−14k (x +2)y =−12x +1解得点Q(4k+22k−1,−22k−1). 于是x P =x Q ,所以PQ ⊥x 轴.设PQ 中点为N ,则N 点的纵坐标为4k 2k−1+−22k−12=1.故PQ 中点在定直线y =1上.从上边可以看出点B 在PQ 的垂直平分线上,所以|BP |=|BQ |,所以△BPQ 为等腰三角形.解法2证明:设M (x 0,y 0)(x 0≠±2,y 0≠±1)则x 02+4y 02=4.直线A 2M 方程为y =y 0x 0−2(x −2),直线A 1B 方程为y =12x +1. 由{y =y 0x 0−2(x −2),y =12x +1.解得点P(2x 0+4y 0−42y 0−x 0+2,4y02y 0−x 0+2). 直线A 1M 方程为y =y 0x 0+2(x +2),直线A 2B 方程为y =−12x +1. 由{y =y 0x 0+2(x +2),y =−12x +1. 解得点Q(2x 0−4y 0+42y 0+x 0+2,4y 02y 0+x 0+2).x P −x Q =2x 0+4y 0−42y 0−x 0+2−2x 0−4y 0+42y 0+x 0+2=2(x 0+2y 0−2)(2y 0+x 0+2)−2(x 0−2y 0+2)(2y 0−x 0+2)(2y 0−x 0+2)(2y 0+x 0+2)=2[(x 0+2y 0)2−4)−(4−(x 0−2y 0)2](2y 0−x 0+2)(2y 0+x 0+2)=0. 于是x P =x Q ,所以PQ ⊥x 轴.y P +y Q =4y 02y 0−x 0+2+4y02y 0+x 0+2=4y 0(4y 0+4)(2y 0−x 0+2)(2y 0+x 0+2)=4y 0(4y 0+4)(2y 0+2)2−x 02=2. 故PQ 中点在定直线y =1上.从上边可以看出点B 在PQ 的垂直平分线上,所以|BP |=|BQ |,所以△BPQ 为等腰三角形.【点评】本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查转化思想以及计算能力,是难题.21.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈一、选择题*,使得a2n﹣1+a2n =ka n对任意的n∈N*成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.【分析】(Ⅰ)①②利用已知条件及其定义解验证判断出结论.(Ⅱ)先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n﹣1+a2n=2a n,根据a n+1≥a n,可得0≤a2n﹣a n=a n﹣a2n﹣1≤0,进而有a n=a2n,结合a n+1≥a n即可证明结论.再证“必要性”:若“数列{a n}为常数列”,容易验证a2n﹣1+a2n=2a1=2a n,即可证明.(Ⅲ)首先证明:a n+1﹣a n≥2.根据{a n}具有“性质Ψ(4)”,可得a2n﹣1+a2n=4a n.当n=1时,有a2=3a1=3.由a2n−1,a2n,a n∈N∗,且a2n>a2n﹣1,可得a2n≥2a n+1,a2n≤2a n﹣1,进而有2a n+1≤a2n≤a2n+1﹣1≤2a n+1﹣2,可得2(a n+1﹣a n)≥3,可得:a n+1﹣1﹣a n≥2.然后利用反证法证明:a n+1﹣a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N*满足:a2k+1﹣a2k≥3或a2k+2﹣a2k+1≥3,进而有4(a k+1﹣a k)=(a2k+2+a2k+1)﹣(a2k+a2k)=[(a2k+2﹣a2k+1)+(a2k+1﹣a2k)]+[(a2k+1﹣a2k)+(a2k﹣a2k﹣1)]≥12.又因为a k+1−a k∈﹣1N∗,可得a k+1﹣a k≥3,依此类推可得:a2﹣a1≥3,矛盾.综上有:a n+1﹣a n=2,结合a1=1可得a n=2n﹣1,解:(Ⅰ)①数列{a n}具有“性质Ψ(2)”;②数列{a n}不具有“性质Ψ(2)”.(Ⅱ)证明:先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n﹣1+a2n=2a n,又因为a n+1≥a n,所以0≤a2n﹣a n=a n﹣a2n﹣1≤0,进而有a n=a2n结合a n+1≥a n有a n=a n+1=…=a2n,即“数列{a n}为常数列”;再证“必要性”:若“数列{a n}为常数列”,则有a2n﹣1+a2n=2a1=2a n,即“数列{a n}具有“性质Ψ(2)”.(Ⅲ)首先证明:a n+1﹣a n≥2.因为{a n}具有“性质Ψ(4)”,所以a2n﹣1+a2n=4a n.当n=1时,有a2=3a1=3.又因为a2n−1,a2n,a n∈N∗,且a2n>a2n﹣1,所以有a2n≥2a n+1,a2n﹣1≤2a n﹣1,进而有2a n+1≤a2n≤a2n+1﹣1≤2a n+1﹣2,所以2(a n+1﹣a n)≥3,结合a n+1,a n∈N∗可得:a n+1﹣a n≥2.然后利用反证法证明:a n+1﹣a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N*满足:a2k+1﹣a2k≥3或a2k+2﹣a2k+1≥3,进而有4(a k+1﹣a k)=(a2k+2+a2k+1)﹣(a2k+a2k﹣1)=(a2k+2﹣a2k)+(a2k+1﹣a2k﹣1)=[(a2k+2﹣a2k+1)+(a2k+1﹣a2k)]+[(a2k+1﹣a2k)+(a2k﹣a2k﹣1)]≥12.又因为a k+1−a k∈N∗,所以a k+1﹣a k≥3依此类推可得:a2﹣a1≥3,矛盾,所以有a n+1﹣a n≤2.综上有:a n+1﹣a n=2,结合a1=1可得a n=2n﹣1,经验证,该通项公式满足a2n﹣1+a2n=4a n,所以:a n=2n﹣1.【点评】本题考查了新定义、等差数列的通项公式、数列递推关系、反证法、转化方法、方程以不等式的性质,考查了推理能力与计算能力,属于难题.。

2020北京各区一模数学试题分类汇编--解析几何(解析版)

2020北京各区一模数学试题分类汇编--解析几何(解析版)

2020北京各区一模数学试题分类汇编一解析几何(2020海淀一模)已知双曲线x1(b 0)的离心率为则b的值为()A. 1 B. 2 C. 3 D. 4 【答案】B【解析】由题知a2e22 . 2a +b 厂厂=5,ab 2.故选:B.(2020海淀一模)已知点P(1, 2)在抛物线C:y22px上,则抛物线C的准线方程为【答案】x 1【解析】P(1,2)在抛物线C : y22px上,2p 4, p 2,准线方程为x故答案为:x1.(2020西城一模)2詁1(b 0)的一条渐近线方程为y 2,则该双曲线的离心率为2【答案】一622 【解析】—4 岭1(b 0),一条渐近线方程为:y 2x,故bb 22,° 斥,e = X2故答案为:◎2(2020西城一模) 设A 2, 1 , B 41,则以线段AB 为直径的圆的方程是(A. (x3)2B. (x 3)2 y 2C. (x 3)2D. (x 3)2 y 2【答案】 【解析】 AB 的中点坐标为: 3,0,圆半径为rAB J22 22圆方程为(x 3)2 y 22. 故选:A .(2020东城一模) 若顶点在原点的抛物线经过四个点 (1,1), (脅),⑵1), (4, 2)中的2个点,则该抛物线的标准方程可以是【答案】x 2 8y 或y 2 x 【解析】设抛物线的标准方程为:2 x my ,不难验证 ,4,2适合,故2小x 8y ;设抛物线的标准方程为: y 2 nx , 不难验证1,1,4,22适合,故y x ;故答案为:x 2 8y 或y 2 x (2020东城一模) 已知圆C 与直线y x 及x y 4 0的相切,圆心在直线 y x 上,则圆C 的方程为() 2 2A. x 1 y 12B.圆C 与直线y4 0都相切,圆心到两直线y2a 42C 的标准方程为故选:A.【答案】B若曲线C 为焦点在x 轴上的椭圆,则满足 a即a 0,b 0,满足a b ,即必要性成立,即“ a b ”是“曲线C 为焦点在x 轴上的椭圆”的必要不充分条件故选:B.2C. x 1 y 1D.【答案】A【解析】圆心在y x 上,设圆心为 a,a ,【解析】 若a b 0,则对应的曲线为双曲线,不是椭圆, 即充分性不成立,0的距离相等,圆心坐标为1,1R 22(2020东城一模) 已知曲线 2C 的方程为—a1,则b ”是 曲线C 为焦点在x 轴上的椭圆的()A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D. 既不充分也不必要条件(2020东城一模)抛物线x 2 4y 的准线与y 轴的交点的坐标为()221 12 21 12 22a ,解得故答案为:A. (0, 1 )B. (0, 1)C. (0, 2)D. (0, 4)2【答案】B【解析】 准线方程为:,•-「,与y 轴的交点为(0, 1),故选B .2已知双曲线M : x 2 - 1的渐近线是边长为1的菱形OABC 的边OA ,OC 所在直 31( a b 0)经过A ,C 两点,且点B 是椭圆N 的一个焦点,贝U a设椭圆N 的左焦点为F 1,则斤(1,0),连接AR由椭圆的定义可得 AF 1 AB 2a(2020丰台一模)2 2线.若椭圆N :二厶2 ,2a b2【解析】因为OA 为双曲线x 2工 31的渐近线,所以k OAAOB 60所以 AD AOsin60AO cos60因为OB2OD 1,所以椭圆N 的半焦距c 1【答案】(2020丰台一模)过抛物线C:y2 2px(p 0)的焦点F作倾斜角为60的直线与抛物线C交于两AF个不同的点A,B (点A在x轴上方),则_ 的值为()BF1 4 - cA. B. C. 3 D. 33 3【答案】D【解析】设A(X A,Y A),B(X B,Y B),过点A分别作准线和x轴的垂线,垂足分别为M,N,过点B作x轴的垂线,垂足于点Q,直线AB与准线交于点D,准线与x轴交于点E3Q直线AB的倾斜角为60,MDA 30,即AD 2 AM由抛物线的定义知,AM 由于AM 〃EF,贝U AM 设直线AB的方程为y并代入y2 2px中,得:AF,贝y AD 2 EF 2p ,'、3 x —,即22 2 3p Y丁Y 2 AF,即点F为AD中点AF 2p,则YA2 psi n60 3p由于BFQ : AFN,则|AF| Y A|BF| Y Bp20,即YA Y B2 rP ,则Y B_P2"P3p 33故选:Dy 1 0的距离为(A. 2 C.【答案】B【解析】圆x 1 2的圆心坐标为(1,0)则圆心(1,0)到直线x 1 0的距离d故选:B(2020朝阳区一已知抛物线C : y22px(p 0)的焦点为F,准线为l,点A是抛物线C上一点, 模)AD l 于D.若AF 4,DAF 60,则抛物线C的方程为(A. y28xB. y2 4x 2C. y2 2xD. y2x【答案】【解析】根据抛物线的定义可得AD AF 4,1又 DAF 60,所以 AD p AF ,2所以4 p 2,解得p 2,所以抛物线C 的方程为y 2 4x .故选:B则该双曲线的离心率为()【答案】C【解析】 设双曲线的实半轴长,半焦距分别为 a,c ,因为 ABC 120,所以AC BC ,因为以A , B 为焦点的双曲线经过点 C所以 AC BC 2a ,AB BC 2c ,所以2 .3c 2c 2a ,所以2—Ua 2故选:C(2020朝阳区一模)数学中有许多寓意美好的曲线,2 23 2 2曲线C :(x y ) 4x y 被称为 四叶玫瑰线”(如图(2020朝阳区一模) 在VABC 中,AB BC , ABC 120 若以 A , B 为焦点的双曲线经过点 C ,A.B."C.D. .3在三角形 ABC 中由余弦定理得cos120oAB 2 BC 2 AC 22 AB BC4c 2 4c 2 AC 28c 2解得AC 212c 2,所以 AC 2.3c ,所示)给出下列三个结论:① 曲线C 关于直线y x 对称;② 曲线C 上任意一点到原点的距离都不超过1;③存在一个以原点为中心、边长为 ,2的正方形,使得曲线 C 在此正方形区域内(含边界)其中,正确结论的序号是 _________ .【答案】①②1 2 2 2 22,从而可得四个交点,B (22),C (吕吕,D (吕吕,依题意满足条件的最小正方形是各边以A,B,C,D 为中点,边长为2的正方形,故不存在一个以原点为中心、边长为的正方形,使得曲线 C 在此正方形区域内(含边界),故③不正确.【解析】对于①,将(y,x )代入C:(x 2 y 2)3 4x 2y 2得(y 2 x 2'3 )3 4y 2x 2成立,故曲线C 关于直线y x 对 称,故①正确;2 23 2 2 2对于②,因为 蛙 d x 2y 2 a d ,所以x 24 41,所以• ,x 2 y 2 1,所以曲线C 上任意一点到原点的距离都不超过1,故②正确;y x2对于③,联立 22 32 2得x(x y ) 4x y故答案为:①②(2020石景山一模)圆x 2 y 2 2x 8y 13 0的圆心到直线ax y 1 0的距离为1,则a ()因为点M 在抛物线上,则(普)2 4 £ •则y N 8 .4 A. -3B.3 4C.农D. 2【答案】A【解析】由x 2y 2 2x 8y 130配方得(x1)2 (y 4)24 , 所以圆心为(1,4),因为圆2 2a 4 14 x y 2x 8y 130 圆心到直线ax y 10的距离为 1, 所以- ,2 21,解得av a 13,故选A.1 y N设点N 为N (°,y N ),因为M 为FN 的中点,所以点M 为(2,一亍),Y 轴于点N .因为F 是抛物线C : y 24x 的焦点,所以点F 坐标为F (1,0).4 3A. B C. 3 D. 23 4【答案】 A【解析】由x2 y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2 y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(°,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B C. 3 D. 23 4【答案】 A【解析】由x2 y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2 y2 2x 8y 13 0 圆心到直线ax y 1 0的距离为1,a 4 1所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为(?,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B C. 3 D. 23 4【答案】 A【解析】由x2 y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2 y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a 4 1所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为J ?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为J ?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为J ?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为J ?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .。

2020年北京市海淀区高考数学一模试卷(文科)含答案解析

2020年北京市海淀区高考数学一模试卷(文科)含答案解析

2020年北京市海淀区高考数学一模试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x∈z|﹣2≤x<3},B={x|﹣2≤x<1},则A∩B=()A.{﹣2,﹣1,0}B.{﹣2,﹣1,0,1} C.{x|﹣2<x<1}D.{x|﹣2≤x<1} 2.已知向量,若,则t=()A.1 B.3 C.±3 D.﹣33.某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S 值为()A.﹣1 B.1 C.﹣i D.i4.若x,y 满足,则z=x+y的最大值为()A.B.3 C.D.45.某三棱锥的三视图如图所示,则其体积为()A.B.C.D.6.已知点P(x0,y0)在抛物线W:y2=4x上,且点P到W的准线的距离与点P到x轴的距离相等,则x0的值为()A.B.1 C.D.27.已知函数f(x)=,则“α=”是“函数f(x)是偶函数“的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是()工作效益一二三四五机器甲15 17 14 17 15乙22 23 21 20 20丙9 13 14 12 10丁7 9 11 9 11戊13 15 14 15 11A.甲只能承担第四项工作 B.乙不能承担第二项工作C.丙可以不承担第三项工作D.获得的效益值总和为78二、填空题共6小题,每小题5分,共30分.9.函数f(x)=的定义域为______.10.已知数列{a n}的前n项和为S n,且,则a2﹣a1=______.11.已知l为双曲线C:﹣=1的一条渐近线,其倾斜角为,且C的右焦点为(2,0),则C的右顶点为______,C的方程为______.12.在2这三个数中,最小的数是______.13.已知函数f(x)=sin(2x+φ),若,则函数f(x)的单调增区间为______.14.给定正整数k≥2,若从正方体ABCD﹣A1B1C1D1的8个顶点中任取k个顶点,组成一个集合M={X1,X2,…,X k},均满足∀X i,X j∈M,∃X l,X t∈M,使得直线X i X j⊥X l X t,则k的所有可能取值是______.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.在△ABC 中,∠C=,a=6.(Ⅰ)若c=14,求sinA的值;(Ⅱ)若△ABC的面积为3,求c的值.16.已知数列{a n}是等比数列,其前n项和为S n,满足S2+a1=0,a3=12.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数n,使得S n>2020?若存在,求出符合条件的n的最小值;若不存在,说明理由.17.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N 分别为线段PB,PC 上的点,MN⊥PB.(Ⅰ)求证:平面PBC⊥平面PAB;(Ⅱ)求证:当点M 不与点P,B 重合时,MN∥平面ABCD;(Ⅲ)当AB=3,PA=4时,求点A到直线MN距离的最小值.18.一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(Ⅰ)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(Ⅱ)这10名同学中男生和女生的国学素养测试成绩的方差分别为,,试比较与的大小(只需直接写出结果);(Ⅲ)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)19.已知椭圆C: +=1(a>b>0)的离心率为,椭圆C与y轴交于A、B两点,|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点P是椭圆C上的动点,且直线PA,PB与直线x=4分别交于M、N两点,是否存在点P,使得以MN为直径的圆经过点(2,0)?若存在,求出点P的横坐标;若不存在,说明理由.20.已知函数f(x)=.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的零点和极值;(3)若对任意x1,x2∈[a,+∞),都有f(x1)﹣f(x2)≥﹣成立,求实数a的最小值.2020年北京市海淀区高考数学一模试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x∈z|﹣2≤x<3},B={x|﹣2≤x<1},则A∩B=()A.{﹣2,﹣1,0}B.{﹣2,﹣1,0,1} C.{x|﹣2<x<1}D.{x|﹣2≤x<1}【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={x∈Z|﹣2≤x<3}={﹣2,﹣1,0,1,2},B={x|﹣2≤x<1},∴A∩B={﹣2,﹣1,0},故选:A.2.已知向量,若,则t=()A.1 B.3 C.±3 D.﹣3【考点】平面向量共线(平行)的坐标表示.【分析】由向量共线可得t的方程,解方程可得.【解答】解:∵向量,且,∴1×9﹣t2=0,解得t=±3故选:C3.某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S 值为()A.﹣1 B.1 C.﹣i D.i【考点】程序框图.【分析】由已知中的程序框图及已知中输入z=i,可得:进入循环的条件为n≤5,即n=1,2,…,5,模拟程序的运行结果,即可得到输出的S值.【解答】解:模拟执行程序,可得z=i,n=1不满足条件n>5,S=i1,n=2不满足条件n>5,S=i2,n=3不满足条件n>5,S=i3,n=4不满足条件n>5,S=i4,n=5不满足条件n>5,S=i5,n=6满足条件n>5,退出循环,输出S=i5=i.故选:D.4.若x,y 满足,则z=x+y的最大值为()A.B.3 C.D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域如图:由z=x+y得y=﹣x+y,平移y=﹣x+y,由图象知当直线y=﹣x+y经过点A直线的截距最大,此时z最大,由得,即A(1,3),则z=+3=,故选:C.5.某三棱锥的三视图如图所示,则其体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个三棱锥,由三视图之间的关系求出几何元素的长度,由锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是一个三棱锥,底面是一个三角形:即俯视图:底是2、高是侧视图的底边,三棱锥的高是侧视图和正视图的高1,∴几何体的体积V==,故选:A.6.已知点P(x0,y0)在抛物线W:y2=4x上,且点P到W的准线的距离与点P到x轴的距离相等,则x0的值为()A.B.1 C.D.2【考点】抛物线的简单性质.【分析】求得抛物线的焦点和准线方程,运用抛物线的定义可得点P到W的准线的距离即为P到W的焦点F的距离,由题意可得|PF|=|y0|,即可得到x0=1.【解答】解:抛物线W:y2=4x的焦点为(1,0),准线方程为x=﹣1,由抛物线的定义可得点P到W的准线的距离即为P到W的焦点F的距离,由题意可得|PF|=|y0|,则PF⊥x轴,可得x0=1,故选:B.7.已知函数f(x)=,则“α=”是“函数f(x)是偶函数“的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】函数f(x)是偶函数,则sin(x+α)=cos(﹣x+α),可得sin(x+α)=,化简解出即可判断出结论.【解答】解:函数f(x)是偶函数,则sin(x+α)=cos(﹣x+α),可得sin(x+α)=,∴x+α+2kπ=+x﹣α,或π﹣(x+α)+2kπ=+x﹣α,解得,(k∈Z).∴α=”是“函数f(x)是偶函数”的充分不必要条件.故选:A.8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是()工作一二三四五效益机器甲15 17 14 17 15乙22 23 21 20 20丙9 13 14 12 10丁7 9 11 9 11戊13 15 14 15 11A.甲只能承担第四项工作 B.乙不能承担第二项工作C.丙可以不承担第三项工作D.获得的效益值总和为78【考点】进行简单的合情推理.【分析】由表知道,五项工作后获得的效益值总和最大为17+23+14+11+15=80,但不能同时取得,再分类讨论,得出乙若不承担第二项工作,承担第一项,甲承担第二项工作,则戊承担第四项工作,即可得出结论.【解答】解:由表知道,五项工作后获得的效益值总和最大为17+23+14+11+15=80,但不能同时取得.要使总和最大,甲可以承担第一或四项工作,丙只能承担第三项工作,丁则不可以承担第三项工作,所以丁承担第五项工作;乙若承担第四项工作;戊承担第一项工作,此时效益值总和为17+23+14+11+13=78;乙若不承担第二项工作,承担第一项,甲承担第二项工作,则戊承担第四项工作,此时效益值总和为17+22+14+11+15=79,所以乙不承担第二项工作,故选:B.二、填空题共6小题,每小题5分,共30分.9.函数f(x)=的定义域为[1,+∞).【考点】函数的定义域及其求法.【分析】根据函数f(x)的解析式,列出使解析式有意义的不等式,求出解集即可.【解答】解:∵函数f(x)=,∴2x﹣2≥0,即2x≥2;解得x≥1,∴f(x)的定义域为[1,+∞).故答案为:[1,+∞).10.已知数列{a n}的前n项和为S n,且,则a2﹣a1=2.【考点】数列递推式.【分析】通过,利用a2﹣a1=S2﹣2S1计算即得结论.【解答】解:∵,∴a2﹣a1=(a1+a2)﹣2a1=S2﹣2S1=(4﹣8)﹣2(1﹣4)=2,故答案为:2.11.已知l为双曲线C:﹣=1的一条渐近线,其倾斜角为,且C的右焦点为(2,0),则C的右顶点为(,0),C的方程为﹣=1.【考点】双曲线的简单性质.【分析】由题意可得c=2,求出渐近线方程,解方程可得a,b,即可得到右顶点和双曲线的方程.【解答】解:由题意可得c=2,即a2+b2=4,一条渐近线的斜率为k==tan=1,解得a=b=,则双曲线的右顶点为(,0),C的方程为﹣=1.故答案为:(,0),﹣=1.12.在2这三个数中,最小的数是.【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵=>1,log32>=,∴在2这三个数中,最小的数是.故答案为:.13.已知函数f(x)=sin(2x+φ),若,则函数f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.【考点】正弦函数的图象.【分析】由条件可得+φ=2kπ+,且﹣+φ=2kπ﹣,k∈Z,求得φ的值,可得f (x)的解析式,再利用正弦函数的单调性得出结论.【解答】解:∵函数f(x)=sin(2x+φ),若,则函数的周期为π,f()=sin(+φ)=1,f(﹣)=sin(﹣+φ)=﹣1,故+φ=2kπ+,且﹣+φ=2kπ﹣,k∈Z,即φ=2kπ+,k∈Z.故取φ=,f(x)=sin(2x+).令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,故答案为:[kπ﹣,kπ+],k∈Z.14.给定正整数k≥2,若从正方体ABCD﹣A1B1C1D1的8个顶点中任取k个顶点,组成一个集合M={X1,X2,…,X k},均满足∀X i,X j∈M,∃X l,X t∈M,使得直线X i X j⊥X l X t,则k的所有可能取值是6,7,8.【考点】棱柱的结构特征.【分析】由题意,∀X i,X j∈M,∃X l,X t∈M,使得直线X i X j⊥X l X t,则k至少要取6,可以保证由四点共面,即可得出结论.【解答】解:由题意,∀X i,X j∈M,∃X l,X t∈M,使得直线X i X j⊥X l X t,则k至少要取6,即可保证有四点共面,由正方形的性质,四点共面时,∃X l,X t∈M,使得直线X i X j⊥X l X t,∴k的所有可能取值是6,7,8.故答案为:6,7,8.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.在△ABC 中,∠C=,a=6.(Ⅰ)若c=14,求sinA的值;(Ⅱ)若△ABC的面积为3,求c的值.【考点】正弦定理;余弦定理.【分析】(I)利用正弦定理解出;(II)根据面积计算b,再利用余弦定理解出c.【解答】解:(Ⅰ)在△ABC中,由正弦定理得:,即,∴.(Ⅱ)∵=.∴b=2.由余弦定理得:c2=a2+b2﹣2a•b•cosC=4+36﹣2×=52.∴.16.已知数列{a n}是等比数列,其前n项和为S n,满足S2+a1=0,a3=12.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数n,使得S n>2020?若存在,求出符合条件的n的最小值;若不存在,说明理由.【考点】数列的求和;等比数列的通项公式.【分析】(Ⅰ)通过设数列{a n}的公比为q,利用2a1+a1q=0及a1≠0可知q=﹣2,进而通过a3=12可知首项a1=3,计算即得结论;(Ⅱ)通过(I)、利用等比数列的求和公式计算可知S n>2020等价于(﹣2)n<﹣2020,分n为奇数、偶数两种情况讨论即可.【解答】解:(Ⅰ)设数列{a n}的公比为q,因为S2+a1=0,所以2a1+a1q=0,因为a1≠0,所以q=﹣2,又因为,所以a1=3,所以;(Ⅱ)结论:符合条件的n的最小值为11.理由如下:由(I)可知,令S n>2020,即1﹣(﹣2)n>2020,整理得(﹣2)n<﹣2020,当n为偶数时,原不等式无解;当n为奇数时,原不等式等价于2n>2020,解得n≥11;综上所述,所以满足S n>2020的正整数n的最小值为11.17.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N 分别为线段PB,PC 上的点,MN⊥PB.(Ⅰ)求证:平面PBC⊥平面PAB;(Ⅱ)求证:当点M 不与点P,B 重合时,MN∥平面ABCD;(Ⅲ)当AB=3,PA=4时,求点A到直线MN距离的最小值.【考点】点、线、面间的距离计算;直线与平面平行的判定;平面与平面垂直的判定.【分析】(Ⅰ)通过证明BC⊥平面PAB,即可证明平面PBC⊥平面PAB;(Ⅱ)在△PBC中,BC⊥PB,MN⊥PB,所以MN∥BC,利用线面平行的判定定理,证明MN∥平面ABCD;(Ⅲ)AM的长就是点A到MN的距离,A到直线MN距离的最小值就是A到线段PB的距离.【解答】证明:(Ⅰ)在正方形ABCD中,AB⊥BC.….因为PA⊥平面ABCD,BC⊂平面ABCD,所以PA⊥BC.….又AB∩PA=A,AB,PA⊂平面PAB,….所以BC⊥平面PAB.….因为BC⊂平面PBC,所以平面PBC⊥平面PAB.….(Ⅱ)由(Ⅰ)知,BC⊥平面PAB,PB⊂平面PAB,所以BC⊥PB.….在△PBC中,BC⊥PB,MN⊥PB,所以MN∥BC,….又BC⊂平面ABCD,MN⊄平面ABCD,….所以MN∥平面ABCD.….解:(Ⅲ)因为MN∥BC,所以MN⊥平面PAB,….而AM⊂平面PAB,所以MN⊥AM,….所以AM的长就是点A到MN的距离,….而点M在线段PB上所以A到直线MN距离的最小值就是A到线段PB的距离,在Rt△PAB中,AB=3,PA=4,所以A到直线MN的最小值为.….18.一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(Ⅰ)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(Ⅱ)这10名同学中男生和女生的国学素养测试成绩的方差分别为,,试比较与的大小(只需直接写出结果);(Ⅲ)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)【考点】列举法计算基本事件数及事件发生的概率;极差、方差与标准差.【分析】(Ⅰ)设这10名同学中男女生的平均成绩分别为.利用茎叶图能求出该班男、女生国学素养测试的平均成绩.(Ⅱ)女生国学素养测试成绩的方差大于男生国学素养成绩的方差.(Ⅲ)设“两名同学的成绩均为优良”为事件A,男生按成绩由低到高依次编号为a1,a2,a3,a4,女生按成绩由低到高依次编号为b1,b2,b3,b4,b5,b6,由此利用列举法能求出这两名同学的国学素养测试成绩均为优良的概率.【解答】解:(Ⅰ)设这10名同学中男女生的平均成绩分别为.则….….∴该班男、女生国学素养测试的平均成绩分别为73.75,76.(Ⅱ)女生国学素养测试成绩的方差大于男生国学素养成绩的方差.….(Ⅲ)设“两名同学的成绩均为优良”为事件A,….男生按成绩由低到高依次编号为a1,a2,a3,a4,女生按成绩由低到高依次编号为b1,b2,b3,b4,b5,b6,则从10名学生中随机选取一男一女两名同学共有24种取法….(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a1,b5),(a1,b6),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(a2,b5),(a2,b6),(a3,b1),(a3,b2),(a3,b3),(a3,b4),(a3,b5),(a3,b6),(a4,b1),(a4,b2),(a4,b3),(a4,b4),(a4,b5),(a4,b6),其中两名同学均为优良的取法有12种取法….(a2,b3),(a2,b4),(a2,b5),(a2,b6),(a3,b3),(a3,b4),(a3,b5),(a3,b6),(a4,b2),(a4,b3),(a4,b4),(a4,b5),(a4,b6),所以,即两名同学成绩均为优良的概率为.….19.已知椭圆C: +=1(a>b>0)的离心率为,椭圆C与y轴交于A、B两点,|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点P是椭圆C上的动点,且直线PA,PB与直线x=4分别交于M、N两点,是否存在点P,使得以MN为直径的圆经过点(2,0)?若存在,求出点P的横坐标;若不存在,说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)运用椭圆的离心率公式,以及a,b,c的关系,计算即可得到所求椭圆方程;(Ⅱ)设P(m,n),可得+n2=1,可得A(0,1),B(0,﹣1),设M(4,s),N(4,t),运用三点共线的条件:斜率相等,求得M,N的坐标,再由直径所对的圆周角为直角,运用垂直的条件:斜率之积为﹣1,计算即可求得m,检验即可判断是否存在.【解答】解:(Ⅰ)由题意可得e==,2b=2,即b=1,又a2﹣c2=1,解得a=2,c=,即有椭圆的方程为+y2=1;(Ⅱ)设P(m,n),可得+n2=1,即有n2=1﹣,由题意可得A(0,1),B(0,﹣1),设M(4,s),N(4,t),由P,A,M共线可得,k PA=k MA,即为=,可得s=1+,由P,B,N共线可得,k PB=k NB,即为=,可得s=﹣1.假设存在点P,使得以MN为直径的圆经过点Q(2,0).可得QM⊥QN,即有•=﹣1,即st=﹣4.即有[1+][﹣1]=﹣4,化为﹣4m2=16n2﹣(4﹣m)2=16﹣4m2﹣(4﹣m)2,解得m=0或8,由P,A,B不重合,以及|m|<2,可得P不存在.20.已知函数f(x)=.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的零点和极值;(3)若对任意x1,x2∈[a,+∞),都有f(x1)﹣f(x2)≥﹣成立,求实数a的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出f(x)的导数,求得切线的斜率和切点,即可得到所求切线的方程;(2)令f(x)=0,可得零点;由导数大于0,可得增区间;导数小于0,可得减区间,进而得到极小值,无极大值;(3)结合单调性,当a≥2时,f(x)在[a,+∞)递增,即有f(x)≥f(a)≥f(2)=﹣,运用不等式的性质,即可得到a的最小值为2.【解答】解:(1)函数f(x)=的导数为f′(x)=,可得在点(0,f(0))处的切线斜率为﹣2,切点为(0,1),即有切线的方程为y=﹣2x+1;(2)由f(x)=0,可得x=1,即零点为1;由x>2时,f′(x)>0,f(x)递增;当x<2时,f′(x)<0,f(x)递减.可得x=2处,f(x)取得极小值,且为﹣,无极大值;(3)由(2)可得f(2)取得极小值﹣,当a≥2时,f(x)在[a,+∞)递增,即有f(x)≥f(a)≥f(2)=﹣,由﹣≤f(x1)<0,0<﹣f(x2)<,可得>f(x1)﹣f(x2)≥﹣恒成立.即有a的最小值为2.2020年9月10日。

北京市海淀区2020届高考数学一模试卷 (含答案解析)

北京市海淀区2020届高考数学一模试卷 (含答案解析)

北京市海淀区2020届高考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.已知复数z=−1+i,z是z的共轭复数,在复平面内,z所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知集合A={x|x2−4x<0},B={−1,3,7},则A∩B=()A. {−1}B. {3}C. {3,7}D. {−1,7}3.若a>1,则双曲线x2a2−y2=1的离心率的取值范围是()A. (√2,+∞)B. (√2,2)C. (1,√2)D. (1,2)4.下列叙述正确的是()A. 若|a|=a,则a>0B. 若a≠b,则|a|≠|b|C. 若|a|=|b|,则a=bD. 若a=−b,则|a|=|b|5.在(x2−1√x3)n的展开式中,只有第5项的二项式系数最大,则展开式的常数项为().A. 7B. −7C. −28D. 286.已知直线l:y=k(x+4)与圆(x+2)2+y2=4相交于A,B两点,M是线段AB的中点,则点M到直线3x−4y−6=0的距离的最大值为()A. 2B. 3C. 4D. 57.若函数f(x)=log2(x2−2ax+3)在区间(−∞,1]内单调递减,则a的取值范围是()A. [1,+∞)B. (1,+∞)C. [1,2)D. [1,2]8.如图所示,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则此几何体的最长的棱长为()A. 2√2B. 3√2C. √5D. 39.在等比数列{a n}中,已知a1+a2=−32,a4+a5=12,则数列是()A. 递增数列B. 递减数列C. 摆动数列D. 常数列10.已知a n=log n+1(n+2)(n∈N∗),观察下列算式:a1⋅a2=log23⋅log34=lg3lg2⋅lg4lg3=2;a1⋅a2⋅a3⋅a4⋅a5⋅a6=log23⋅log34⋯⋯log78=lg3lg2⋅lg4lg3⋯lg8lg7=3;若a1⋅a2⋅a3⋯a m=2016(m∈N∗),则m的值为()A. 22016+2B. 22016C. 22016−2D. 22016−4二、填空题(本大题共5小题,共25.0分)11.抛物线y2=4x的准线方程为__________.12.在等差数列{a n}中,a3+a5+2a10=4,则此数列的前13项的和等于______ .13.已知|b⃗ |=1,a⃗⋅b⃗ =2,则向量(2a⃗−b⃗ )⋅b⃗ =______.14.已知,在△ABC中B=π3,b=2,S▵ABC的最大值为________.15.已知函数y=f(x)的周期为2,当x∈[0,2]时,f(x)=(x−1)2,如果g(x)=f(x)−log5|x−1|,则方程g(x)=0的所有根之和为__________.三、解答题(本大题共6小题,共85.0分)16.如图,四棱锥P−ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E为PD中点.(1)求证:PA⊥平面ABCD;(2)求二面角A−BE−C的正弦值.17.已知函数f(x)=2cos2ωx−1+2√3cosωxsinωx(0<ω<1),x=π3是f(x)图象的一条对称轴.(1)试求ω的值;(2)已知函数y=g(x)的图象是由y=f(x)图象上的各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到,若g(2α+π3)=65,α∈(0,π2),求sinα的值.18.某市移动公司为了提高服务质量,决定对使用A,B两种套餐的集团用户进行调查,准备从本市n(n∈N∗)个人数超过1000人的大集团和8个人数低于200人的小集团中随机抽取若干个集团进行调查,若一次抽取2个集团,全是小集团的概率为415.(1)求n值;(2)若取出的2个集团是同一类集团,求全为大集团的概率;(3)若一次抽取4个集团,假设取出小集团的个数为X,求X的分布列.19.已知函数f(x)=x−sinx.(Ⅰ)求曲线y=f(x)在点(π2,f(π2))处的切线方程;(Ⅱ)求证:当x∈(0,π2)时,0<f(x)<16x3.20.已知椭圆C:x2a2+y2b2=1(a>b>0)过点A(2,0),且离心率为√32.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线y=kx+√3与椭圆C交于M,N两点,若直线x=3上存在点P,使得四边形PAMN 是平行四边形,求k的值.21.已知数列{a n}满足:na1+(n−1)a2+⋯+2a n−1+a n=2n.(1)求{a n}的通项公式;(2)是否存在正整数p,q,r(p<q<r),使a p,a q,a r成等差数列,若存在,求出p,q,r的值;若不存在,说明理由.-------- 答案与解析 --------1.答案:C解析:本题考查了共轭复数的定义、几何意义,属于基础题.利用共轭复数的定义、几何意义即可得出.解:复数z=−1+i,z=−1−i,∴z所对应的点(−1,−1)位于第三象限.故选:C.2.答案:B解析:本题考查交集的运算,属于基础题.可求出集合A,然后进行交集的运算即可.解:A={x|x2−4x<0}={x|0<x<4},B={−1,3,7},∴A∩B={3}.故选:B.3.答案:C解析:本题考查双曲线的简单性质,利用双曲线方程,求出c,然后求解双曲线的离心率的取值范围即可.解:若a>1,则双曲线x2a2−y2=1的离心率为:ca=√1+a2a=√1+1a2∈(1,√2).故选C.4.答案:D解析:解:若|a|=a,则a≥0,故A错误;若a=−b≠0时,a≠b,但|a|=|b|,故B错误;若|a|=|b|,则a=b或a=−b,故C错误;若a=−b,则|a|=|b|,故D正确;故选:D根据绝对值的定义和性质,逐一分析四个答案的正误,可得答案.本题以命题的真假判断为载体考查了绝对值的定义和性质,难度不大,属于基础题.5.答案:A解析:本题考查二项式系数的性质、利用二项展开式的通项公式解决二项展开式的特定项问题. 利用二项展开式的中间项的二项式系数最大,列出方程求出n ;利用二项展开式的通项公式求出通项,令x 的指数为0求出常数项. 解:依题意,n2+1=5, ∴n =8.二项式为(x2−1√x 3)8,其展开式的通项T k+1=(−1)k (12)8−k C 8k x 8−4k3 令8−4k 3=0解得k =6故常数项为C 86(x2)2(−1√x3)6=7.故选A .6.答案:C解析:解:直线l :y =k(x +4)过定点(−4,0),不妨记A(−4,0), 设M(x 0,y 0),B(x 1,y 1),则{x 1=2x 0+4y 1=2y 0,代入(x +2)2+y 2=4, 可得(x 0+3)2+y 02=1.∴M 的轨迹是以(−3,0)为圆心,1为半径的圆,则M 到直线3x −4y −6=0的距离的最大值为|−3×3−6|5+1=4.故选:C .本题主要考查了与圆有关的轨迹问题,点到直线的距离公式,是中档题.由题意画出图形,利用待定系数法求出M 的轨迹,结合点到直线的距离公式得答案.7.答案:C解析:解:设t =g(t)=x 2−2ax +3,则函数y =log 2t 为增函数, 若函数f(x)=log 2(x 2−2ax +3)在区间(−∞,1]内单调递减, 则等价为g(t)=x 2−2ax +3在区间(−∞,1]内单调递减且g(1)>0, 即{−−2a2=a ≥1g(1)=1−2a +3>0, 即{a ≥1a <2,解得1≤a <2, 故a 的取值范围是[1,2), 故选:C利用换元法,结合复合函数单调性之间的关系即可得到结论.本题主要考查复合函数单调性的应用,利用换元法结合复合函数单调性之间的关系是解决本题的关键.8.答案:D解析:本题考查了由几何体的三视图求几何体的体积,判断直观图是解题的关键,属于中档题. 首先由三视图还原几何体,利用三视图的数据求解几何体的最长棱长即可. 解:三视图表示的几何体为三棱锥D −ABC ,是正方体的一部分,易知正方体的棱长为:2,则此几何体的最长的棱长为:BD =√CD 2+BC 2=√4+4+1=3. 故选D .9.答案:C解析:解:由已知得公比q 满足:q 3=a 4+a5a 1+a 2=−8,所以q =−2,而a 1+a 2=−a 1=−32,所以a 1=32, 故数列{a n }是摆动数列, 故选:C .由已知得公比q满足:q3=a4+a5a1+a2=−8,解得q,即可得出结论.本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.10.答案:C解析:本题考查归纳推理的问题,解题时要注意对数性质的合理运用,是中档题.由已知得lg(m+2)=lg22016,由此能求出m.解:∵a n=log n+1(n+2)(n∈N∗),∴a1⋅a2⋅…⋅a m=log23⋅log34⋅log45·…⋅log(m+1)(m+2)=lg3lg2⋅lg4lg3⋅lg5lg4·…⋅lg(m+2)lg(m+1)=lg(m+2)lg2,即lg(m+2)lg2=2 016,lg(m+2)=lg22016,解得m=22016−2.故选C.11.答案:x=−1解析:本题考查了抛物线的性质及几何意义.利用抛物线的准线方程得结论.解:由抛物线y2=4x,得p=2,所以准线方程为x=−1.故答案为x=−1.12.答案:13解析:解:设等差数列{a n}的公差为d,∵a3+a5+2a10=4,∴a3+(a3+2d)+2(a3+7d)=4,∴4(a3+4d)=4,即a7=a3+4d=1,∴数列的前13项的和S13=13(a1+a13)2=13×2a72=13a7=13故答案为:13.由已知数据和通项公式可得a7=1,再由求和公式和性质可得S13=13a7,代值计算可得.本题考查等差数列的性质和求和公式,求出a7=1是解决问题的关键,属基础题.13.答案:3。

2020年北京市海淀区高三数学一模试题

2020年北京市海淀区高三数学一模试题

(B) c 2 ab(D ) |b|c |a|c海淀区高三年级第二学期阶段性测试数 学2020春本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作 答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目 要求的一项。

(1) 在复平面内,复数i (2 i )对应的点位于(A )第一象限 (B )第二象限(C )第三象限 (D )第四象限 (2) 已知集合 A { x|0 x 3 },AI B { 1 },则集合B 可以是 (A ) { 1 ,2 } (B ) { 1,3 }(C ) { 0 ,1 ,2 }(D ) { 1,2,3 }(3)已知双曲线 x 2 2■y 21(b 0)的离心率为 5,则b 的值为b(A ) 1 (B ) (C ) 3 (D )(4)已知实数a ,c 在数轴上对应的点如图所示,则下列式子中正确的是11(5 )在 1 (- x(A ) 1202x )6的展开式中,常数项为(B ) 120(A ) (C )(C )充分必要条件(D )既不充分也不必要条件(C ) 160(6)如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动•当圆M 滚动到圆M 时,减,贝U m 的取值范围为(A ) [ 1, ) (B ) ( , 1] (C ) [ 2, )(D ) (, 2](8 )某四棱锥的三视图如图所示, 该四棱锥中最长棱的棱长为(D ) 160圆M 与直线I 相切于点B ,点A 运动到点A ,线段 AB的长度为3n ,则点M 到直线BA 的距离为2(A ) 1 (B )2(C )二2 (D ) 12(7)已知函数f(x) |xm|与函数g(x)的图象关于 y 轴对称•若g(x)在区间(1,2)内单调递(A ) .5 (B ) 2 2(C ) 2,3(D ) 13(9) 若数列a n 满足a 1= 2 ,则“ p , rN , a p r a p a r ”是“ a .为等比数列”的 (A )充分而不必要条件(B )必要而不充分条件(10) 形如22" 1( n是非负整数)的数称为费马数,记为F n.数学家费马根据F o,F l,F2,F3,F4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F5不是质数,那么F5的位数是(参考数据:lg2 0.3010)(A) 9(B) 10(C) 11(D) 12第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。

2020年北京市海淀区高考数学一模试卷(附答案详解)

2020年北京市海淀区高考数学一模试卷(附答案详解)

2020年北京市海淀区高考数学一模试卷1.在复平面内,复数i(2−i)对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知集合A={x|0<x<3},A∩B={1},则集合B可以是()A. {1,2}B. {1,3}C. {0,1,2}D. {1,2,3}3.已知双曲线x2−y2b2=1(b>0)的离心率为√5,则b的值为()A. 1B. 2C. 3D. 44.已知实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A. b−a<c+aB. c2<abC. cb >caD. |b|c<|a|c5.在(1x−2x)6的展开式中,常数项为()A. −120B. 120C. −160D. 1606.如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动.当圆M滚动到圆M′时,圆M′与直线l相切于点B,点A运动到点A′,线段AB的长度为3π2,则点M′到直线BA′的距离为()A. 1B. √32C. √22D. 127.已知函数f(x)=|x−m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则m的取值范围为()A. [−1,+∞)B. (−∞,−1]C. [−2,+∞)D. (−∞,−2]8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为()A. √5B. 2√2C. 2√3D. √139.若数列{a n}满足a1=2,则“∀p,r∈N∗,a p+r=a p a r”是“{a n}为等比数列”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件10.形如22n+1(n是非负整数)的数称为费马数,记为F n.数学家费马根据F0,F1,F2,F3,F4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F5不是质数,那么F5的位数是()(参考数据:lg2≈0.3010)A. 9B. 10C. 11D. 1211.已知点P(1,2)在抛物线C:y2=2px上,则抛物线C的准线方程为______.12.在等差数列{a n}中,a1=3,a2+a5=16,则数列{a n}的前4项的和为______.13.已知非零向量a⃗,b⃗ 满足|a⃗|=|a⃗−b⃗ |,则(a⃗−12b⃗ )⋅b⃗ =______.14.在△ABC中,AB=4√3,∠B=π4,点D在边BC上,∠ADC=2π3,CD=2,则AD=;△ACD的面积为.15.如图,在等边三角形ABC中,AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记P运动的路程为x,点P 到此三角形中心O距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x的方程f(x)=kx+3最多有5个实数根.其中,所有正确结论的序号是______.16.如图,在三棱柱ABC−A1B1C1中,AB⊥平面BB1C1C,AB=BB1=2BC=2,BC1=√3,点E为A1C1的中点.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)求二面角A−BC−E的大小.17.已知函数f(x)=2cos2ω1x+sinω2x.(Ⅰ)求f(0)的值;(Ⅱ)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f(x)在[−π2,π6]上的最小值,并直接写出函数f(x)的一个周期.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.如图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.19.已知函数f(x)=e x+ax.(Ⅰ)当a=−1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(−2,0)时,曲线y=f(x)与y=1−lnx有且只有一个交点.20.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,A1(−a,0),A2(a,0),B(0,b),△A1BA2的面积为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设M是椭圆C上一点,且不与顶点重合,若直线A1B与直线A2M交于点P,直线A1M与直线A2B交于点Q.求证:△BPQ为等腰三角形.21.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈N∗,使得a2n−1+a2n=ka n对任意的n∈N∗成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.答案和解析1.【答案】A【解析】【分析】本题考查复数的代数表示法及其几何意义,属于基础题.首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2−i)=−i2+2i=1+2i,∴复数对应的点的坐标是(1,2),这个点在第一象限,故选A.2.【答案】B【解析】解:∵A={x|0<x<3},A∩B={1},∴集合B可以是{1,3}.故选:B.根据A={x|0<x<3},A∩B={1},即可得出集合B可能的情况.本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题.3.【答案】B=1(b>0)的离心率为√5,【解析】解:双曲线x2−y2b2可得√b2+1=√5,解得b=2,1故选:B.利用双曲线的离心率公式,列出方程,求解b即可.本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.4.【答案】D【解析】解:(法1)根据数轴可得c<b<a<0且|c|>|b|>|a|,对于A:因为c<b,a<0,所以c+a<c,b−a>b,则c+a<c<b−a,即c+a< b−a,故A错误;对于B:因为c<b<a<0,|c|>|b|>|a|,所以c2>b2>a2,且b2>ab,所以c2> b2>ab,则c2>ab,故B错误;对于C:因为b<a<0,所以1b >1a,则cb<ca,故C错误;对于D:因为|b|>|a|,且c<0,所以|b|c<|a|c,故D正确,(法2)不妨令c=−5,b=−4,a=−1,则c+a=−6<b−a=−3,故A错误;c2=25>ab=4,故B错误;cb =54<ca=5,故C错误;故选:D.法1:根据数轴得到c<b<a<0且|c|>|b|>|a|,结合不等式基本性质逐一进行判断即可;法2:用特值法带入验证即可.本题考查不等式的相关应用,考查合情推理,属于中档题.5.【答案】C【解析】解:由题意得:T k+1=(−2)k C6k x2k−6,令2k−6=0得k=3,故常数项为T4=(−2)3C63=−160.故选:C.先求出通项,然后令x的指数为零即可.本题考查二项式展开式通项的应用和学生的运算能力,属于基础题.6.【答案】C【解析】解:根据条件可知圆周长=2π,因为BA =32π=34×2π,故可得A’位置如图:∠A′M′B =90°,则△A′M′B 是等腰直角三角形, 则M′到A′M 的距离d =√22r =√22,故选:C .根据条件可得圆旋转了34个圆,作图可得到△A′M′B 是等腰直角三角形,进而可求得M′到A′M 的距离.本题考查点到直线的距离,考查圆旋转的长度求法,数中档题.7.【答案】D【解析】解:根据题意,函数f(x)=|x −m|与函数g(x)的图象关于y 轴对称.若g(x)在区间(1,2)内单调递减, 则f(x)在区间(−2,−1)上递增,而f(x)=|x −m|={x −m,x ≥m −x +m,x <m ,在区间(m,+∞)上为增函数,则有m ≤−2,即m 的取值范围为(−∞,−2]; 故选:D .根据题意,分析可得f(x)在区间(−2,−1)上递增,将f(x)写成分段函数的形式,分析可得f(x)在区间(m,+∞)上为增函数,据此可得m 的取值范围.本题考查函数的单调性,涉及函数之间的对称性、不等式的解法,属于基础题.8.【答案】C【解析】解:根据几何体的三视图可得直观图为:该几何体为四棱锥体, 如图所示:所以最长的棱长AB =√22+22+22=2√3. 故选:C .首先把三视图转换为直观图,进一步求出最大棱长.本题考查的知识要点:三视图和直观图形之间的转换,几何体的棱长的求法和应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.【答案】A【解析】解:“∀p,r∈N∗,a p+r=a p a r”,取p=n,r=1,则a n+1=2a n,∴{a n}为等比数列,充分性成立.若{a n}为等比数列,则a p+r=2×q p+r−1,a p a r=22⋅q p+r−2,只有q=2时才能成立,必要性不成立.∴数列{a n}满足a1=2,则“∀p,r∈N∗,a p+r=a p a r”是“{a n}为等比数列”的充分不必要条件.故选:A.利用等比数列的定义、通项公式即可判断出结论.本题考查了等差数列的通项公式,充分必要条件的判断,考查了推理能力与计算能力,属于基础题.10.【答案】B【解析】【分析】本题考查指对数运算,考查学生阅读理解能力.根据所给定义表示出F5≈109.632×109,进而即可判断出其位数.【解答】解:根据题意,F5=225+1=232+1≈232=10lg232=1032lg2≈1032×0.3010= 109.632=100.632×109,因为1<100.632<10,所以F5的位数是10.故选:B.11.【答案】x=−1【解析】解:把点P(1,2)代入抛物线方程有,4=2p,∴p=2,=−1.∴抛物线的准线方程为x=−p2故答案为:x=−1.把点P的坐标代入抛物线的方程可求得p,而准线方程为x=−p2,从而得解.本题考查抛物线的方程、准线方程等,考查学生的运算能力,属于基础题.12.【答案】24【解析】解:设等差数列{a n}的公差为d,∵a1=3,a2+a5=16,∴2×3+5d=16,解得d=2.则数列{a n}的前4项的和=4×3+4×32×2=24.故答案为:24.利用等差数列的通项公式求和公式即可得出.本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.13.【答案】0【解析】解:因为非零向量a⃗,b⃗ 满足|a⃗|=|a⃗−b⃗ |,∴a⃗2=a⃗2−2a⃗⋅b⃗ +b⃗ 2⇒a⃗⋅b⃗ =12b⃗ 2;则(a⃗−12b⃗ )⋅b⃗ =a⃗⋅b⃗ −12b⃗ 2=0.故答案为:0.把所给条件平方整理得到a⃗⋅b⃗ =12b⃗ 2;代入数量积即可求解结论.本题考查向量的数量积以及模长的应用,考查向量的表示以及计算,考查计算能力.14.【答案】4√22√6【解析】【分析】本题主要考查正弦定理以及三角形的面积,属于基础题目.先根据正弦定理求得AD,进而求得三角形的面积.【解答】 解:如图:因为在△ABC 中,AB =4√3,∠B =π4,点D 在边BC 上,∠ADC =2π3,CD =2,所以:ADsin∠ABD =ABsin∠ADB ⇒AD =4√3×sinπ4sin π3=4√2;S △ACD =12⋅AD ⋅CD ⋅sin∠ADC =12×4√2×2×sin 2π3=2√6;故答案为:4√2,2√6.15.【答案】①②【解析】解:由题可得函数f(x)={3+(x −3)2,0≤x <63+(x −9)2,6≤x <123+(x −15)2,12≤x ≤18,作出图象如图:则当点P 与△ABC 顶点重合时,即x =0,6,12,18时,f(x)取得最大值12,故①正确; 又f(x)=f(18−x),所以函数f(x)的对称轴为x =9,故②正确;由图象可得,函数f(x)图象与y =kx +3的交点个数最多为6个,故方程最多有6个实根,故③错误. 故答案为:①②.写出函数解析式并作出图象,数形结合进行逐一分析.本题考查命题的真假性判断,涉及函数的应用、图象与性质,数形结合思想,逻辑推理能力,属于难题.16.【答案】(Ⅰ)证明:因为AB ⊥平面BB 1C 1C ,C 1B ⊂平面BB 1C 1C 所以AB ⊥C 1B .在△BCC 1中,BC =1,BC 1=√3,CC 1=2,所以BC 2+BC 12=CC 12. 所以CB ⊥C 1B .因为AB ∩BC =B ,AB ,BC ⊂平面ABC , 所以C 1B ⊥平面ABC .(Ⅱ)解:由(Ⅰ)知,AB ⊥C 1B ,BC ⊥C 1B ,AB ⊥BC , 如图,以B 为原点建立空间直角坐标系B −xyz .则B(0,0,0),E(−12,√3,1),C(1,0,0).BC ⃗⃗⃗⃗⃗ =(1,0,0),BE ⃗⃗⃗⃗⃗ =(−12,√3,1). 设平面BCE 的法向量为n ⃗ =(x,y,z), 则{n⃗ ⋅BC ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BE ⃗⃗⃗⃗⃗ =0, 即{x =0,−12x +√3y +z =0. 令y =√3则x =0,z =−3, 所以n ⃗ =(0,√3,−3).又因为平面ABC 的法向量为m ⃗⃗⃗ =(0,1,0), 所以cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ ||n ⃗⃗ |=12. 由题知二面角A −BC −E 为锐角,所以其大小为π3.【解析】(Ⅰ)证明AB ⊥C 1B .CB ⊥C 1B .利用直线与平面垂直的判断定理证明C 1B ⊥平面ABC .(Ⅱ)以B 为原点建立空间直角坐标系B −xyz.求出平面BCE 的法向量,平面ABC 的法向量,利用空间向量的数量积求解二面角的大大小即可,本题考查二面角的平面角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题.17.【答案】解:(Ⅰ)由函数f(x)=2cos 2ω1x +sinω2x ,则f(0)=2cos 20+sin0=2;(Ⅱ)选择条件①,则f(x)的一个周期为π;由f(x)=2cos 2x +sin2x=(cos2x +1)+sin2x =√2(√22sin2x +√22cos2x)+1 =√2sin(2x +π4)+1;因为x ∈[−π2,π6],所以2x +π4∈[−3π4,7π12];所以−1≤sin(2x +π4)≤1, 所以1−√2≤f(x)≤1+√2; 当2x +π4=−π2,即x =−3π8时,f(x)在[−π2,π6]取得最小值为1−√2. 选择条件②,则f(x)的一个周期为2π; 由f(x)=2cos 2x +sinx=2(1−sin 2x)+sinx=−2(sinx −14)2+178;因为x ∈[−π2,π6],所以sinx ∈[−1,12];所以当sinx =−1,即x =−π2时,f(x)在[−π2,π6]取得最小值为−1.【解析】(Ⅰ)由函数f(x)的解析式求出f(0)的值; (Ⅱ)选择条件①时f(x)的一个周期为π,利用三角恒等变换化简f(x),再求f(x)在[−π2,π6]的最小值. 选择条件②时f(x)的一个周期为2π,化简f(x),利用三角函数的性质求出f(x)在[−π2,π6]的最小值.本题考查了三角函数的图象与性质的应用问题,也考查了转化与运算能力,是基础题.18.【答案】解:(Ⅰ)设事件A 为“从2010年至2019年中随机选取一年,研发投入占当年总营收的百分比超过10%”,从2010年至2019年一共10年,其中研发投入占当年总营收的百分比超过10%有9年, 所以P(A)=910.(Ⅱ)由图表信息,从2010年至2019年10年中有5年研发投入超过500亿元,所以X 的所有可能取值为0,1,2.且P(X =0)=C 52C 102=29;P(X =1)=C 51C 51C 102=59;P(X =2)=C 52C 102=29.所以X 的分布列为:故X 的期望E(X)=0×29+1×59+2×29=1.(Ⅲ)从两个方面可以看出,该公式是比较重视研发的:一、从2010年至2019年,每年的研发投入是逐年增加的(2018年除外),并且增加的幅度总体上逐渐加大;二、研发投入占营收的比例总体上也是逐渐增加的,虽然2015年往后有些波动,但是总体占比还是较高的.【解析】(Ⅰ)按照古典概型概率计算公式计算即可;(Ⅱ)显然这是一个超几何分布,按照超几何分布的概率计算方法,分别算出随机变量X 取0,1,2时的概率,然后画出分布列,即可求期望;(Ⅲ)结合折线图从“每年的研发投入”“研发投入占营收比”的变化来分析即可. 本题考查离散型随机变量的分布列、期望的求法,注意对题意的理解需到位、准确.同时考查学生的数学建模的素养,属于中档题.19.【答案】解:(Ⅰ)①当a =−1时,f(x)=e x −x ,则 f′(x)=e x −1.所以f′(0)=0. 又f(0)=1,所以曲线y =f(x)在点(0,f(0))处的切线方程为y =1; ②令f′(x)=0,得x =0,此时f′(x),f(x)随x 的变化如下:可知f(x)min =f(0)=1,函数f(x)的最小值为1. (Ⅱ)证明:由题意可知,x ∈(0,+∞),令g(x)=e x +ax +lnx −1,则g′(x)=e x +1x +a , 由(Ⅰ)中可知e x −x ≥1,故 e x ≥1+x ,因为a ∈(−2,0),则g′(x)=e x +1x+a ≥(x +1)+1x+a ≥2√x ⋅1x+a +1=3+a >0,所以函数g(x)在区间(0,+∞)上单调递增, 因为g(1e)=e 1e +ae−2<e 12−2<0,又因为g(e)=e e +ae >e 2−2e >0, 所以g(x)有唯一的一个零点.即函数y =f(x)与y =1−lnx 有且只有一个交点.【解析】本题考查导数的几何意义,利用导数研究函数的最值,函数的零点等问题,考查运算求解能力及推理论证能力,属于中档题.(Ⅰ)①将a =−1代入,求导,求出切线斜率及切点,利用点斜式方程即得解; ②求出函数函数f(x)的单调性情况,进而得出最值;(Ⅱ)即证函数g(x)=e x +ax +lnx −1仅有一个零点,利用导数可知函数g(x)在区间(0,+∞)上单调递增,结合零点存在性定理即得证.20.【答案】解:(Ⅰ)由题{ca=√32,ab =2,a 2=b 2+c 2.解得{a =2,b =1.所以椭圆方程为x 24+y 2=1.( II)解法1证明:设直线A 2M 方程为y =k(x −2)(k ≠0且k ≠±12),直线A 1B 方程为y =12x +1 由{y =k(x −2),y =12x +1.解得点P(4k+22k−1,4k 2k−1). 由{y =k(x −2),x 24+y 2=1.得(4k +1)x 2−16k 2x +16k 2−4=0, 则2x M =16k 2−44k 2+1.所以x M =8k 2−24k 2+1,y M =−4k4k 2+1.即M(8k 2−24k 2+1,−4k4k 2+1).k A 1M =−4k 4k 2+18k 2−24k 2+1+2=−14k .于是直线A 1M 的方程为y =−14k (x +2),直线A 2B 的方程为y =−12x +1.由{y =−14k (x +2)y =−12x +1解得点Q(4k+22k−1,−22k−1). 于是x P =x Q ,所以PQ ⊥x 轴. 设PQ 中点为N ,则N 点的纵坐标为4k 2k−1+−22k−12=1.故PQ 中点在定直线y =1上.从上边可以看出点B 在PQ 的垂直平分线上,所以|BP|=|BQ|, 所以△BPQ 为等腰三角形. 解法2证明:设M(x 0,y 0)(x 0≠±2,y 0≠±1)则x 02+4y 02=4. 直线A 2M 方程为y =yx 0−2(x −2),直线A 1B 方程为y =12x +1.由{y =y0x 0−2(x −2),y =12x +1.解得点P(2x 0+4y 0−42y 0−x 0+2,4y 02y0−x 0+2).直线A 1M 方程为y =yx 0+2(x +2),直线A 2B 方程为y =−12x +1.由{y =yx 0+2(x +2),y =−12x +1.解得点Q(2x 0−4y 0+42y 0+x 0+2,4y 02y0+x 0+2).x P −x Q =2x 0+4y 0−42y 0−x 0+2−2x 0−4y 0+42y 0+x 0+2=2(x 0+2y 0−2)(2y 0+x 0+2)−2(x 0−2y 0+2)(2y 0−x 0+2)(2y 0−x 0+2)(2y 0+x 0+2)=2[(x 0+2y 0)2−4)−(4−(x 0−2y 0)2](2y 0−x 0+2)(2y 0+x 0+2)=0.于是x P =x Q ,所以PQ ⊥x 轴.y P +y Q =4y 02y0−x 0+2+4y 02y 0+x 0+2=4y 0(4y 0+4)(2y 0−x 0+2)(2y 0+x 0+2)=4y 0(4y 0+4)(2y 0+2)2−x 02=2.故PQ 中点在定直线y =1上.从上边可以看出点B 在PQ 的垂直平分线上,所以|BP|=|BQ|, 所以△BPQ 为等腰三角形.【解析】(Ⅰ)由题{ca=√32,ab =2,a 2=b 2+c 2.,求出a ,b ,即可得到椭圆方程.(II)解法1,设直线A 2M 方程为y =k(x −2)(k ≠0且k ≠±12),直线A 1B 方程为y =12x +1,通过联立直线与椭圆方程组,求出M 坐标,Q 坐标,推出|BP|=|BQ|,即可证明△BPQ 为等腰三角形.(x−2),解法2,设M(x0,y0)(x0≠±2,y0≠±1)则x02+4y02=4.直线A2M方程为y=y0x0−2x+1.通过联立直线与椭圆方程组,求出P,Q坐标,转化推出|BP|=直线A1B方程为y=12|BQ|,得到△BPQ为等腰三角形.本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查转化思想以及计算能力,是难题.21.【答案】解:(Ⅰ)①数列{a n}具有“性质Ψ(2)”;②数列{a n}不具有“性质Ψ(2)”.(Ⅱ)证明:先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n−1+a2n=2a n,又因为a n+1≥a n,所以0≤a2n−a n=a n−a2n−1≤0,进而有a n=a2n结合a n+1≥a n有a n=a n+1=⋯=a2n,即“数列{a n}为常数列”;再证“必要性”:若“数列{a n}为常数列”,则有a2n−1+a2n=2a1=2a n,即“数列{a n}具有“性质Ψ(2)”.(Ⅲ)首先证明:a n+1−a n≥2.因为{a n}具有“性质Ψ(4)”,所以a2n−1+a2n=4a n.当n=1时,有a2=3a1=3.又因为a2n−1,a2n,a n∈N∗,且a2n>a2n−1,所以有a2n≥2a n+1,a2n−1≤2a n−1,进而有2a n+1≤a2n≤a2n+1−1≤2a n+1−2,所以2(a n+1−a n)≥3,结合a n+1,a n∈N∗可得:a n+1−a n≥2.然后利用反证法证明:a n+1−a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N∗满足:a2k+1−a2k≥3或a2k+2−a2k+1≥3,进而有4(a k+1−a k)=(a2k+2+a2k+1)−(a2k+a2k−1)=(a2k+2−a2k)+(a2k+1−a2k−1)=[(a2k+2−a2k+1)+(a2k+1−a2k)]+[(a2k+1−a2k)+(a2k−a2k−1)]≥12.又因为a k+1−a k∈N∗,所以a k+1−a k≥3依此类推可得:a2−a1≥3,矛盾,所以有a n+1−a n≤2.综上有:a n+1−a n=2,结合a1=1可得a n=2n−1,经验证,该通项公式满足a2n−1+a2n=4a n,所以:a n=2n−1.【解析】(Ⅰ)①②利用已知条件及其定义解验证判断出结论.(Ⅱ)先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n−1+a2n=2a n,根据a n+1≥a n,可得0≤a2n−a n=a n−a2n−1≤0,进而有a n=a2n,结合a n+1≥a n即可证明结论.再证“必要性”:若“数列{a n}为常数列”,容易验证a2n−1+a2n=2a1= 2a n,即可证明.(Ⅲ)首先证明:a n+1−a n≥2.根据{a n}具有“性质Ψ(4)”,可得a2n−1+a2n=4a n.当n=1时,有a2=3a1=3.由a2n−1,a2n,a n∈N∗,且a2n>a2n−1,可得a2n≥2a n+1,a2n−1≤2a n−1,进而有2a n+1≤a2n≤a2n+1−1≤2a n+1−2,可得2(a n+1−a n)≥3,可得:a n+1−a n≥2.然后利用反证法证明:a n+1−a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N∗满足:a2k+1−a2k≥3或a2k+2−a2k+1≥3,进而有4(a k+1−a k)=(a2k+2+ a2k+1)−(a2k+a2k−1)=[(a2k+2−a2k+1)+(a2k+1−a2k)]+[(a2k+1−a2k)+(a2k−a2k−1)]≥12.又因为a k+1−a k∈N∗,可得a k+1−a k≥3,依此类推可得:a2−a1≥3,矛盾.综上有:a n+1−a n=2,结合a1=1可得a n=2n−1,本题考查了新定义、等差数列的通项公式、数列递推关系、反证法、转化方法、方程以不等式的性质,考查了推理能力与计算能力,属于难题.。

2020年北京市海淀区高考数学一模试卷(二)(有答案解析)

2020年北京市海淀区高考数学一模试卷(二)(有答案解析)

2020年北京市海淀区高考数学一模试卷(二)一、选择题(本大题共8小题,共40.0分)1.已知集合P={x|0<x<4},且M⊆P,则M可以是()A. {1,2}B. {2,4}C. {-1,2}D. {0,5}2.若角α的终边在第二象限,则下列三角函数值中大于零的是()A. B. C. sin(π+α) D. cos(π+α)3.已知等差数列{a n}满足4a3=3a2,则{a n}中一定为零的项是()A. a6B. a8C. a10D. a124.已知x>y,则下列各式中一定成立的是()A. B. C. D.5.执行如图所示的程序框图,输出的m值为()A.B.C.D.6.已知复数z=a+i(a∈R),则下面结论正确的是()A.B. |z|≥1C. z一定不是纯虚数D. 在复平面上,z对应的点可能在第三象限7.椭圆与双曲线的离心率之积为1,则双曲线C2的两条渐近线的倾斜角分别为()A. ,B. ,C. ,D. ,8.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级,该校周一上午课程安排如表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有()第一节第二节第三节第四节地理B层2班化学A层3班地理A层1班化学A层4班生物A层1班化学B层2班生物B层2班历史B层1班物理A层1班生物A层3班物理A层2班生物A层4班物理B层2班生物B层1班物理B层1班物理A层4班政治1班物理A层3班政治2班政治3班8种10种12种14种二、填空题(本大题共6小题,共30.0分)9.已知a,4,c成等比数列,且a>0,则log2a+log2c=______.10.在△ABC中,,则c=______,S△ABC=______.11.已知向量=(1,-2),同时满足条件①∥,②的一个向量的坐标为______.12.在极坐标系中,若圆ρ=2a cosθ关于直线对称,则a=______13.设关于x,y的不等式组表示的平面区域为Ω.记区域Ω上的点与点A(0,-1)距离的最小值为d(k),则(Ⅰ)当k=1时,d(1)=______;(Ⅱ)若,则k的取值范围是______.14.已知函数,,其中若,,使得成立,则______.三、解答题(本大题共6小题,共80.0分)15.已知函数的最大值为.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调递增区间.16.据《人民网》报道,“美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了.卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的42%来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)造林方式地区造林总面积人工造林飞播造林新封山育林退化林修复人工更新内蒙61848431105274094136006903826950河北58336134562533333135107656533643河南14900297647134292241715376133重庆2263331006006240063333陕西297642184108336026386516067甘肃325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629宁夏91531589602293882981335北京1906410012400039991053(Ⅰ)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(Ⅱ)在这十个地区中,任选一个地区,求该地区人工造林面积占造林总面积的比值超过50%的概率是多少?(Ⅲ)在这十个地区中,从新封山育林面积超过五万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.17.如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,点D,E,F分别为棱A1C1,B1C1,BB1的中点.(Ⅰ)求证:AC1∥平面DEF(Ⅱ)求证:平面ACB1⊥平面DEF;(Ⅲ)在线段AA1上是否存在一点P,使得直线DP与平面ACB1所成的角为300?如果存在,求出线段AP的长;如果不存在,说明理由.18.已知函数f(x)=x ln(x+1)-ax2.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)当a<0时,求证:函数f(x)存在极小值;(Ⅲ)请直接写出函数f(x)的零点个数.19.已知抛物线G:y2=2px,其中p>0.点M(2,0)在G的焦点F的右侧,且M到G的准线的距离是M与F距离的3倍.经过点M的直线与抛物线G交于不同的A,B两点,直线OA与直线x=-2交于点P,经过点B且与直线OA垂直的直线l交x 轴于点Q.(Ⅰ)求抛物线的方程和F的坐标;(Ⅱ)判断直线PQ与直线AB的位置关系,并说明理由.20.首项为0的无穷数列{a n}同时满足下面两个条件:①|a n+1-a n|=n;②.(Ⅰ)请直接写出a4的所有可能值;(Ⅱ)记b n=a2n,若b n<b n+1对任意n∈N*成立,求{b n}的通项公式;(Ⅲ)对于给定的正整数k,求a1+a2+…+a k的最大值.-------- 答案与解析 --------1.答案:A解析:解:集合P={x|0<x<4},且M⊆P,可知M是P的子集,所以M可以是{1,2}.故选:A.利用集合的关系,判断选项即可.本题考查集合的子集关系的应用,是基本知识的考查.2.答案:D解析:解:角α的终边在第二象限,则sinα>0,cosα<0,对于A,=cosα<0,错误;对于B,cos()=-sinα<0,错误;对于C,sin(π+α)=--sinα<0,错误;对于D,cos(π+α)=-cosα>0,正确;故选:D.由角α的终边在第二象限,则sinα>0,cosα<0,利用诱导公式化简各个选项即可得解.本题主要考查了诱导公式的简单应用,属于基础题.3.答案:A解析:【分析】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.利用通项公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵4a3=3a2,∴4(a1+2d)=3(a1+d),可得:a1+5d=0,∴a6=0,则{a n}中一定为零的项是a6.故选A.4.答案:D解析:解:A.取x=2,y=-1,不成立;B.取x=y=-1不成立;C.由指数函数f(x)=在R上单调递减,可得不成立;D.2x+2-y>2x+2-x≥2,因此成立.故选:D.本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.5.答案:B解析:解:S=1×2=2,x=2+2=4,m==2,m否,S=4×2=8,x=4+2=6,m==,m否,S=6×8=48,x=6+2=8,m==,m是,输出m=,故选:B.根据程序框图进行模拟运算即可.本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.6.答案:B解析:解:∵z=a+i(a∈R),∴,故A错误;|z|=,故B正确;当a=0时,z为纯虚数,故C错误;∵虚部为1大于0,∴在复平面上,z对应的点不可能在第三象限,故D错误.故选:B.利用复数基本概念逐一核对四个选项得答案.本题考查复数的基本概念,是基础题.7.答案:C解析:解:椭圆的离心率为:=,椭圆与双曲线的离心率之积为1,可得双曲线的离心率为:=,可得,可得,则双曲线C2的两条渐近线的斜率为:,所以双曲线C2的两条渐近线的倾斜角分别为:;.故选:C.求出椭圆的离心率,然后求解双曲线的离心率,转化求出渐近线的倾斜角即可.本题考查椭圆以及双曲线的简单性质的应用,是基本知识的考查.8.答案:B解析:解:由于生物在B层,只有第2,3节有,故分2两类,若生物安排第2节,其他任意排即可,故有A33=6种,若生物安排第3节,则政治有2种方法,其他任意排,故有C21A22=4根据分类计数原理可得6+4=10种,故选:B.根据分类计数原理即可求出本题考查了分类计数原理,关键是分类,属于基础题9.答案:4解析:解:∵a,4,c成等比数列,且a>0,∴ac=16,c>0,∴log2a+log2c=log2ac=log216=4.故答案为:4.推导出ac=16,c>0,由此能求出log2a+log2c.本题考查对数值的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.10.答案:6解析:解:∵,∴由余弦定理可得:c2=a2+b2-2ab cos C=42+52-2×4×5×=36,解得:c=6,∴sin C==,∴S△ABC=ab sin C==.故答案为:.由已知利用余弦定理可求c的值,根据同角三角函数基本关系式可求sin C的值,利用三角形的面积公式即可计算得解.本题主要考查了余弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了转化思想,属于基础题.11.答案:(-1,2)(答案不唯一)解析:解:设=(x,y),由可得:y=-2x,=(1+x,-2+y),由,可得<,把y=-2x代入,可得(x+1)2+(-2x-2)2<5,化简可得x2+2x<5,解得:-2<x<0,取得x=-1,可得y=2,所以=(-1,2).故答案为:(-1,2).利用向量共线列出方程,利用向量的模转化求解x的值,推出结果.本题考查向量共线以及向量的坐标运算,是基本知识的考查.12.答案:-1解析:解:圆ρ=2a cosθ的普通方程为:x2+y2-2ax=0,直线,化为x+y+1=0,圆关于直线对称,则直线经过圆的圆心(a,0),所以a++1=0,解得,a=-1.故答案为:-1.化简圆的极坐标方程为普通方程,直线的极坐标方程化为普通方程,然后利用圆的圆心在直线上,求解a即可.本题考查极坐标与普通方程的互化,直线与圆的位置关系的应用,是基本知识的考查.13.答案:2 [-1,+∞)解析:解:(Ⅰ)x,y的不等式组表示的平面区域为Ω.是如图的灰色的角形区域,区域Ω上的点与点A(0,-1)距离的最小值为d(k),d(1)=2.(Ⅱ)若,可知区域Ω上的点与点A(0,-1)距离的最小值为d(k),直线y=kx+1恒过(0,1),由图形,可知直线经过B(1,0)时,区域Ω上的点与点A(0,-1)距离的最小值为,此时直线的斜率为:-1,所以k≥-1.故答案为:(Ⅰ):2;(Ⅱ):[-1,+∞).(Ⅰ)当k=1时,画出约束条件的可行域,然后利用新定义,求解d(1)即可.(Ⅱ)利用直线系经过的定点,结合,判断直线的斜率的范围即可.本题考查线性规划的简单应用,画出可行域,判断目标函数的几何意义的解题的关键.14.答案:解析:【分析】由f(x1)f(x2)=g(x1)g(x2)成立,可得成立;设h(x)=,u(x)=,求解h(x)的值域是u(x)值域的子集求解a的值即可.本题主要考查了函数恒成立问题的求解,分类讨论以及转化思想的应用,二次函数闭区间是的最值以及单调性的应用.【解答】解:由题意,f(x)≠0,由f(x1)f(x2)=g(x1)g(x2)成立,得g(x1)≠0,g(x2)≠0,可得成立;设h(x)=,u(x)=,那么h(x)=,∵x1∈[1,2],当a>1或a<时,可得h(x)的值域为[,]u(x)=ax-1∵x2[1,2],∴可得u(x)的值域为[a-1,2a-1];∵∀x1∈[1,2],∃x2∈[1,2],∴h(x)的值域是u(x)值域的子集;在a>1的情况下,可得:,解得:1<a;,解得:a;∴a=.在a<的情况下,可得:,解得:a≤0(结合条件知a无解);当,h(x)的值域为,不可能是u(x)值域的子集;当a=时,代入验证即可排除.综上可得:a=故答案为:.15.答案:解:(Ⅰ)因为=(2sin x+2cos x)cos x+a=2sin x cosx+2cos2x+a=sin2x+cos2x+1+a=所以函数f(x)的最大值为.∵最大值为,所以1+a=0,所以a=-1(Ⅱ)因为y=sin x的单调递增区间为,k∈Z,令,所以,函数f(x)的单调递增区间为,k∈Z.解析:(Ⅰ)利用三角函数的恒等变换,化简函数的解析式,再利用正弦函数的最值求得a的值.(Ⅱ)由题意利用正弦函数的单调性,求出函数f(x)的单调递增区间.本题主要考查三角函数的恒等变换,正弦函数的最值、单调性,属于中档题.16.答案:解:(Ⅰ)人工造林面积与总面积比最大的地区为甘肃省人工造林面积与总面积比最小的地区为青海省(Ⅱ)设在这十个地区中,任选一个地区,该地区人工造林面积占总面积的比值超过50%为事件A.在十个地区中,有7个地区(内蒙、河北、河南、陕西、甘肃、宁夏、北京)人工造林面积占总面积比超过50%,则(Ⅲ)新封山育林面积超过五万公顷有7个地区:内蒙、河北、河南、重庆、陕西、甘肃、新疆、青海,其中退化林修复面积超过六万公顷有3个地区:内蒙、河北、重庆,所以X的取值为0,1,2所以,随机变量X的分布列为X012P解析:(Ⅰ)根据表格计算即可得出.(Ⅱ)设在这十个地区中,任选一个地区,该地区人工造林面积占总面积的比值超过为事件A.在十个地区中,有7个地区(内蒙、河北、河南、陕西、甘肃、宁夏、北京)人工造林面积占总面积比超过50%,即可得出P(A).(Ⅲ)新封山育林面积超过五万公顷有7个地区:内蒙、河北、河南、重庆、陕西、甘肃、新疆、青海,其中退化林修复面积超过六万公顷有3个地区:内蒙、河北、重庆,可得X的取值为0,1,2.利用超几何分布列即可得出.本题考查了超几何分布列及其数学期望、古典概率计算公式,考查了推理能力与计算能力,属于中档题.17.答案:解:(Ⅰ)连结BC1∵D,E分别为A1C1,B1C1中点,∴DE∥A1B1,又AB∥A1B1,∴DE∥AB,∵E,F分别为B1C1,B1B中点,∴EF∥BC1,又DE∩EF=E,DE⊂平面DEF,EF⊂平面DEF,AB⊂平面ABC1,BC1⊂平面ABC1,∴平面ABC1∥平面DEF,又AC1⊂平面ABC1,∴AC1∥平面DEF.(Ⅱ)∵CC1⊥平面ABC,AC⊂ABC,∴CC1⊥AC,又AC⊥BC,且CC1∩BC=C,∴AC⊥平面BB1C1C,又EF⊂平面BB1C1C,∴AC⊥EF,又BC=CC1,四边形BB1C1C为正方形,∴BC1⊥B1C,又BC1∥EF,∴B1C⊥EF又AC⊥EF,AC∩B1C=C,∴EF⊥平面ACB1,又EF⊂平面DEF,∴平面ACB1⊥平面DEF.(Ⅲ)以C为原点,以CA,CB,CC1为坐标轴建立空间坐标系如图所示,则A(2,0,0),B(0,2,0),C(0,0,0),D(1,0,2),B1(0,2,2),∴=(2,0,0),=(0,2,2),设平面AB1C的法向量为=(x,y,z),则,∴,令y=1可得=(0,1,-1),设P(2,0,h)(0≤h≤2),则=(1,0,h-2),∴cos<>==,∵直线DP与平面ACB1所成的角为30°,∴=,解得h=1.即P为AA1的中点.所以点P存在,AP=1.解析:(I)构造平面ABC1,证明平面ABC1∥平面DEF即可得出AC1∥平面DEF;(II)证明EF⊥平面AB1C,进而得出平面ACB1⊥平面DEF;(III)建立空间坐标系,根据向量夹角列方程得出P点坐标.本题考查了线面平行的判定,面面垂直的判定,平面向量与线面角的计算,属于中档题.18.答案:解:(Ⅰ)f(x)=x ln(x+1)-ax2的定义域为{x|x>-1},因为f(0)=0ln(0+1)-a•02=0,所以切点的坐标为(0,0),因为,所以切线的斜率k=0,所以切线的方程为y=0.证明(Ⅱ)方法一:令,所以,因为x>-1且a<0,所以,,-2a>0,从而得到g'(x)>0在(-1,+∞)上恒成立,所以f'(x)>0在(-1,+∞)上单调递增且f'(0)=0,所以x,f'(x),f(x)在区间(-1,+∞)的变化情况如下表:x(-1,0)0(0,+∞)f'(x)-0+f(x)↘极小值↗所以x=0时,f(x)取得极小值,问题得证.方法二:因为,当a<0时,当x<0时,,所以f'(x)<0,当x>0时,,所以f'(x)>0,x f'x f x-1+∞x(-1,0)0(0,+∞)f'(x)-0+f(x)↘极小值↗所以时,函数()取得极小值,问题得证.(Ⅲ)当a≤0或a=1时,函数f(x)有一个零点,当a>0且a≠1时,函数f(x)有两个零点.解析:(Ⅰ)先求出函数的定义域,再求出f(0),再求导,求出切线的斜率,即可求出切线方程.(Ⅱ)方法一:构造函数,根据导数和函数的单调性的关系即可求出,方法二,求导,分类讨论,根据导数和函数的单调性的关系即可求出;(Ⅲ)当a≤0或a=1时,函数f(x)有一个零点,当a>0且a≠1时,函数f(x)有两个零点.本题考查了利用导数研究函数的单调性极值、方程与不等式的解法、分类讨论方法、函数的零点,考查了推理能力与计算能力,属于难题.19.答案:(共13分)解:(Ⅰ)抛物线y2=2px的准线方程为,焦点坐标为,所以有,解得p=1,所以抛物线方程为y2=4x,焦点坐标为F(1,0),(Ⅱ)直线PQ∥AB,方法一:设A(x1,y1),B(x2,y2),设直线AB的方程为x=my+2,联立方程消元得,y2-4my-8=0,所以y1+y2=4m,y1y2=-8,由题意得x1x2y1y2≠0,直线OA的方程为令x=-2,则,则,因为OA⊥BQ,所以,直线BQ的方程为,令y=0,则,则,①当m=0时,直线AB的斜率不存在,x1=2,可知,直线PQ的斜率不存在,则PQ∥AB,②当m≠0时,,,则PQ∥AB,综上所述,PQ∥AB.方法二:直线PQ∥AB.(1)若直线AB的斜率不存在,根据对称性,不妨设,,直线AO的方程为,则,直线BQ的方程为,即,令y=0,则Q(-2,0),则直线PQ的斜率不存在,因此PQ∥AB,(2)设A(x1,y1),B(x2,y2),当直线AB的斜率存在,设直线AB的方程为y=k(x-2),k≠0,联立方程,,消元得,k2x2-4k2x+4k2-4x=0,整理得,k2x2-(4k2+4)x+4k2=0,由韦达定理,可得,x1x2=4,因为y1y2<0,可得y1y2=-8.显然x1x2y1y2≠0,直线OA的方程为令x=-2,则,则,因为OA⊥BQ,所以,直线BQ的方程为,令y=0,则,则,则PQ∥AB,综上所述,PQ∥AB.(Ⅰ)抛物线y2=2px的准线方程为,焦点坐标为,从而,解析:解得p=1,由此能求出抛物线方程为和焦点坐标.(Ⅱ)法一:设A(x1,y1),B(x2,y2),直线AB的方程为x=my+2联立方程得,y2-4my-8=0,由此利用韦达定理、直线方程,结合已知条件能推导出PQ∥AB.方法二:直线AB的斜率不存在,根据对称性,设,,推导出PQ∥AB;设A(x1,y1),B(x2,y2),当直线AB的斜率存在,设直线AB的方程为y=k(x-2),k≠0联立方程,,得,k2x2-4k2x+4k2-4x=0,k2x2-(4k2+4)x+4k2=0由韦达定理,可得,x1x2=4,,从而y1y2=-8.直线OA的方程为,令x=-2,则,则,从而,由此能推导出PQ∥AB.本题考查抛物线方程、焦点坐标的求法,考查直线与直线平行的判断与证明,考查直椭圆、直线方程、韦达定理等基础知识,考查运算求解能力,是中档题.20.答案:解:(Ⅰ)a4的值可以取-2,0,-6(Ⅱ)因为b n=a2n,因为b n<b n+1对任意n∈N*成立,所以{b n}为单调递增数列,即数列{a n}的偶数项a2,a4,a6,…,a2n…是单调递增数列根据条件a2=-1,a4=0所以当a2n≥0对n≥2成立下面我们证明“数列{a n}中相邻两项不可能同时为非负数”假设数列{a n}中存在a i,a i+1同时为非负数因为|a i+1-a i|=i,若a i+1-a i=i,则有,与条件矛盾若a i+1-a i=-i,则有,与条件矛盾所以假设错误,即数列{a n}中相邻两项不可能同时为非负数此时a2n≥0对n≥2成立,所以当n≥2时,a2n-1≤0,a2n+1≤0,即a2n-1<a2n,a2n+1<a2n所以a2n-a2n-1=2n-1,a2n-1-a2n-2=-(2n-2)所以(a2n-a2n-1)+(a2n-1-a2n-2)=1即a2n-a2n-2=1,其中n≥2即b n-b n-1=1,其中n≥2又b1=a2=-1,b2=a4=0所以{b n}是以b1=-1,公差为1的等差数列,所以b n=-1+(n-1)=n-2(Ⅲ)记S k=a1+a2+a3+…+a k-1+a k由(Ⅱ)的证明知,a n,a n+1不能都为非负数当a n≥0,则a n+1<0,根据|a n+1-a n|=n,得到a n+1=a n-n,所以当a n+1≥0,则a n<0根据|a n+1-a n|=n,得到a n=a n+1-n,所以所以,总有a n+a n+1≤0成立当n为奇数时,|a n-a n+1|=n,故a n-1,a n的奇偶性不同,则a n+a n+1≤-1当n为偶数时,a n+1+a n≤0当k为奇数时,S k=a1+(a2+a3)+…+(a k-1+a k)≤0考虑数列:0,-1,1,-2,2,…,,可以验证,所给的数列满足条件,且S k=0所以S k的最大值为0当k为偶数时,考虑数列:0,-1,1,-2,2,…,-,,可以验证,所给的数列满足条件,且所以S k的最大值为.解析:(Ⅰ)直接利用赋值法求出结果.(Ⅱ)利用假设法和分析法求出数列的通项公式.(Ⅲ)利用上步的结论和分类讨论思想求出结果.本题考查的知识要点:数列的通项公式的求法及应用,分类讨论思想在求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年北京市海淀区高考数学一模试卷一、选择题(共10小题)1.在复平面内,复数i (2﹣i )对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合A ={x |0<x <3},A ∩B ={1},则集合B 可以是( ) A .{1,2} B .{1,3} C .{0,1,2} D .{1,2,3}3.已知双曲线x 2−y 2b2=1(b >0)的离心率为√5,则b 的值为( ) A .1B .2C .3D .44.已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .b ﹣a <c +aB .c 2<abC .c b>caD .|b |c <|a |c5.在(1x−2x )6的展开式中,常数项为( )A .﹣120B .120C .﹣160D .1606.如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为( )A .1B .√32C .√22D .127.已知函数f (x )=|x ﹣m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则m 的取值范围为( ) A .[﹣1,+∞)B .(﹣∞,﹣1]C .[﹣2,+∞)D .(﹣∞,﹣2]8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为( )A .√5B .2√2C .2√3D .√139.若数列{a n }满足a 1=2,则“∀p ,r ∈N *,a p +r =a p a r ”是“{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.形如22n+1(n 是非负整数)的数称为费马数,记为F n .数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,那么F 5的位数是( )(参考数据:lg 2≈0.3010) A .9B .10C .11D .12二、填空题共5小题,每小题5分,共25分.11.已知点P (1,2)在抛物线C :y 2=2px 上,则抛物线C 的准线方程为 . 12.在等差数列{a n }中,a 1=3,a 2+a 5=16,则数列{a n }的前4项的和为 .13.已知非零向量a →,b →满足|a →|=|a →−b →|,则(a →−12b →)•b →= .14.在△ABC 中,AB =4√3,∠B =π4,点D 在边BC 上,∠ADC =2π3,CD =2,则AD = ;△ACD 的面积为 .15.如图,在等边三角形ABC 中,AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程f (x )=kx +3最多有5个实数根. 其中,所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16.如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,AB=BB1=2BC=2,BC1=√3,点E为A1C1的中点.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)求二面角A﹣BC﹣E的大小.17.已知函数f(x)=2cos2ω1x+sinω2x.(Ⅰ)求f(0)的值;(Ⅱ)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f(x)在[−π2,π6]上的最小值,并直接写出函数f(x)的一个周期.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.如图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.19.已知函数f(x)=e x+ax.(Ⅰ)当a=﹣1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(﹣2,0)时,曲线y=f(x)与y=1﹣lnx有且只有一个交点.20.已知椭圆C:x2a+y2b=1(a>b>0)的离心率为√32,A1(﹣a,0),A2(a,0),B(0,b),△A1BA2的面积为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设M是椭圆C上一点,且不与顶点重合,若直线A1B与直线A2M交于点P,直线A1M与直线A2B交于点Q.求证:△BPQ为等腰三角形.21.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈N*,使得a2n﹣1+a2n=ka n对任意的n∈N*成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数i (2﹣i )对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限. 解:∵复数z =i (2﹣i )=﹣i 2+2i =1+2i ∴复数对应的点的坐标是(1,2) 这个点在第一象限, 故选:A .【点评】本题考查复数的代数表示法及其几何意义,本题解题的关键是写成标准形式,才能看出实部和虚部的值.2.已知集合A ={x |0<x <3},A ∩B ={1},则集合B 可以是( ) A .{1,2}B .{1,3}C .{0,1,2}D .{1,2,3}【分析】根据A ={x |0<x <3},A ∩B ={1},即可得出集合B 可能的情况. 解:∵A ={x |0<x <3},A ∩B ={1}, ∴集合B 可以是{1,3}. 故选:B .【点评】本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题. 3.已知双曲线x 2−y 2b2=1(b >0)的离心率为√5,则b 的值为( ) A .1B .2C .3D .4【分析】利用双曲线的离心率公式,列出方程,求解b 即可. 解:双曲线x 2−y 2b2=1(b >0)的离心率为√5,可得√b 2+11=√5,解得b =2,故选:B .【点评】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.4.已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .b ﹣a <c +aB .c 2<abC .cb>caD .|b |c <|a |c【分析】法1:根据数轴得到c <b <a <0且|c |>|b |>|a |,结合不等式基本性质逐一进行判断即可;法2:用特值法带入验证即可.解:(法1)根据数轴可得c <b <a <0且|c |>|b |>|a |,对于A :因为c <b ,a <0,所以c +a <c ,b ﹣a >b ,则c +a <c <b ﹣a ,即c +a <b ﹣a ,故A 错误;对于B :因为c <b <a <0,|c |>|b |>|a |,所以c 2>b 2>a 2,且b 2>ab ,所以c 2>b 2>ab ,则c 2>ab ,故B 错误;对于C :因为b <a <0,所以1b>1a,则cb<ca,故C 错误;对于D :因为|b |>|a |,且c <0,所以|b |c <|a |c ,故D 正确, (法2)不妨令c =﹣5,b =﹣4,a =﹣1,则c +a =﹣6<b ﹣a =﹣3,故A 错误;c 2=25>ab =4,故B 错误;cb =54<c a=5,故C错误; 故选:D .【点评】本题考查不等式的相关应用,考查合情推理,属于中档题. 5.在(1x −2x )6的展开式中,常数项为( )A .﹣120B .120C .﹣160D .160【分析】先求出通项,然后令x 的指数为零即可.解:由题意得:T k+1=(−2)k C 6k x2k ﹣6, 令2k ﹣6=0得k =3,故常数项为T 4=(−2)3C 63=−160. 故选:C .【点评】本题考查二项式展开式通项的应用和学生的运算能力,属于基础题. 6.如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为( )A .1B .√32C .√22D .12【分析】根据条件可得圆旋转了34个圆,作图可得到△A 'M 'B 是等腰直角三角形,进而可求得M '到A 'M 的距离.解:根据条件可知圆周长=2π,因为BA =32π=34×2π,故可得A ’位置如图:∠A 'M 'B =90°,则△A 'M 'B 是等腰直角三角形,则M '到A 'M 的距离d =√22r =√22,故选:C .【点评】本题考查点到直线的距离,考查圆旋转的长度求法,数中档题.7.已知函数f (x )=|x ﹣m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则m 的取值范围为( ) A .[﹣1,+∞)B .(﹣∞,﹣1]C .[﹣2,+∞)D .(﹣∞,﹣2]【分析】根据题意,分析可得f (x )在区间(﹣2,﹣1)上递增,将f (x )写成分段函数的形式,分析可得f (x )在区间(m ,+∞)上为增函数,据此可得m 的取值范围. 解:根据题意,函数f (x )=|x ﹣m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则f (x )在区间(﹣2,﹣1)上递增,而f (x )=|x ﹣m |={x −m ,x ≥m−x +m ,x <m ,在区间(m ,+∞)上为增函数,则有m ≤﹣2,即m 的取值范围为(﹣∞,﹣2]; 故选:D .【点评】本题考查函数的单调性,涉及函数之间的对称性、不等式的解法,属于基础题.8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为()A.√5B.2√2C.2√3D.√13【分析】首先把三视图转换为直观图,进一步求出最大棱长.解:根据几何体的三视图可得直观图为:该几何体为四棱锥体,如图所示:所以最长的棱长AB=√22+22+22=2√3.故选:C.【点评】本题考查的知识要点:三视图和直观图形之间的转换,几何体的棱长的求法和应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.若数列{a n}满足a1=2,则“∀p,r∈N*,a p+r=a p a r”是“{a n}为等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用等比数列的定义通项公式即可判断出结论.解:“∀p,r∈N*,a p+r=a p a r”,取p=n,r=1,则a n+1=2a n,∴{a n}为等比数列.反之不成立.{a n}为等比数列,则a p+r=2×q p+r﹣1,a p a r=22•q p+r﹣2,只有q=2时才能成立.∴数列{a n}满足a1=2,则“∀p,r∈N*,a p+r=a p a r”是“{a n}为等比数列”的充分不必要条件..故选:A.【点评】本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.10.形如22n+1(n是非负整数)的数称为费马数,记为F n.数学家费马根据F0,F1,F2,F3,F4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F5不是质数,那么F5的位数是()(参考数据:lg2≈0.3010)A.9B.10C.11D.12【分析】根据所给定义表示出F5=109.632×109,进而即可判断出其位数.解:根据题意,F5=225+1=232+1≈232=10lg232=1032lg2≈1032×0.3010=109.632=100.632×109,因为1<100.632<10,所以F5的位数是10.故选:B.【点评】本题考查指对数运算,考查学生阅读理解能力,属于中档题.二、填空题共5小题,每小题5分,共25分.11.已知点P(1,2)在抛物线C:y2=2px上,则抛物线C的准线方程为x=﹣1.【分析】把点P的坐标代入抛物线的方程可求得p,而准线方程为x=−p2,从而得解.解:把点P(1,2)代入抛物线方程有,4=2p,∴p=2,∴抛物线的准线方程为x=−p2=−1.故答案为:x=﹣1.【点评】本题考查抛物线的方程、准线方程等,考查学生的运算能力,属于基础题.12.在等差数列{a n}中,a1=3,a2+a5=16,则数列{a n}的前4项的和为24.【分析】利用等差数列的通项公式求和公式即可得出.解:设等差数列{a n}的公差为d,∵a1=3,a2+a5=16,∴2×3+5d=16,解得d=2.则数列{a n}的前4项的和=4×3+4×32×2=24.故答案为:24.【点评】本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.13.已知非零向量a →,b →满足|a →|=|a →−b →|,则(a →−12b →)•b →= 0 .【分析】把所给条件平方整理得到a →•b →=12b →2;代入数量积即可求解结论.解:因为非零向量a →,b →满足|a →|=|a →−b →|,∴a →2=a →2−2a →•b →+b →2⇒a →•b →=12b →2;则(a →−12b →)•b →=a →⋅b →−12b →2=0. 故答案为:0.【点评】本题考查向量的数量积以及模长的应用,考查向量的表示以及计算,考查计算能力.14.在△ABC 中,AB =4√3,∠B =π4,点D 在边BC 上,∠ADC =2π3,CD =2,则AD = 4√2 ;△ACD 的面积为 2√6 .【分析】先根据正弦定理求得AD ,进而求得三角形的面积. 解:如图;因为在△ABC 中,AB =4√3,∠B =π4,点D 在边BC 上,∠ADC =2π3,CD =2, 所以:ADsin∠ABD =ABsin∠ADB⇒AD =4√3×sin π4sin π3=4√2; S △ACD =12•AD •CD •sin ∠ADC =12×4√2×2×sin 2π3=2√6; 故答案为:4√2,2√6.【点评】本题主要考查正弦定理以及三角形的面积,属于基础题目.15.如图,在等边三角形ABC 中,AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程f (x )=kx +3最多有5个实数根. 其中,所有正确结论的序号是 ①② .【分析】写出函数解析式并作出图象,数形结合进行逐一分析解:由题可得函数f (x )={3+(x −3)2,0≤x <63+(x −9)2,6≤x <123+(x −15)2,12≤x ≤18,作出图象如图:则当点P 与△ABC 顶点重合时,即x =0,6,12,18时,f (x )取得最大值12,故①正确;又f (x )=f (18﹣x ),所以函数f (x )的对称轴为x =9,故②正确;由图象可得,函数f (x )图象与y =kx +3的交点个数为6个,故方程有6个实根,故③错误.故答案为:①②.【点评】本题考查命题的真假性判断,涉及函数的应用、图象与性质,数形结合思想,逻辑推理能力,属于难题三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16.如图,在三棱柱ABC ﹣A 1B 1C 1中,AB ⊥平面BB 1C 1C ,AB =BB 1=2BC =2,BC 1=√3,点E 为A 1C 1的中点.(Ⅰ)求证:C 1B ⊥平面ABC ;(Ⅱ)求二面角A ﹣BC ﹣E 的大小.【分析】(Ⅰ)证明AB ⊥C 1B .CB ⊥C 1B .利用直线与平面垂直的判断定理证明C 1B ⊥平面ABC .(Ⅱ)以B 为原点建立空间直角坐标系B ﹣xyz .求出平面BCE 的法向量,平面ABC 的法向量,利用空间向量的数量积求解二面角的大大小即可, 【解答】(Ⅰ)证明:因为AB ⊥平面BB 1C 1C ,C 1B ⊂平面BB 1C 1C 所以AB ⊥C 1B .在△BCC 1中,BC =1,BC 1=√3,CC 1=2,所以BC 2+BC 12=CC 12.所以CB ⊥C 1B .因为AB ∩BC =B ,AB ,BC ⊂平面ABC , 所以C 1B ⊥平面ABC .(Ⅱ)解:由(Ⅰ)知,AB ⊥C 1B ,BC ⊥C 1B ,AB ⊥BC , 如图,以B 为原点建立空间直角坐标系B ﹣xyz .则B (0,0,0),E(−12,√3,1),C (1,0,0).BC →=(1,0,0),BE →=(−12,√3,1). 设平面BCE 的法向量为n →=(x ,y ,z ), 则{n →⋅BC →=0n →⋅BE →=0, 即{x =0,−12x +√3y +z =0. 令y =√3则x =0,z =﹣3, 所以n →=(0,√3,−3).又因为平面ABC 的法向量为m →=(0,1,0),所以cos <m →,n →>=m →⋅n →|m →||n →|=12.由题知二面角A ﹣BC ﹣E 为锐角,所以其大小为π3.【点评】本题考查二面角的平面角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题. 17.已知函数f (x )=2cos 2ω1x +sin ω2x . (Ⅰ)求f (0)的值;(Ⅱ)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x )在[−π2,π6]上的最小值,并直接写出函数f (x )的一个周期.【分析】(Ⅰ)由函数f (x )的解析式求出f (0)的值; (Ⅱ)选择条件①时f (x )的一个周期为π,利用三角恒等变换化简f (x ),再求f (x )在[−π2,π6]的最小值. 选择条件②时f (x )的一个周期为2π,化简f (x ),利用三角函数的性质求出f (x )在[−π2,π6]的最小值. 解:(Ⅰ)由函数f (x )=2cos 2ω1x +sin ω2x , 则f (0)=2cos 20+sin0=2;(Ⅱ)选择条件①,则f (x )的一个周期为π; 由f (x )=2cos 2x +sin2x =(cos2x +1)+sin2x=√2(√22sin2x +√22cos2x)+1=√2sin(2x +π4)+1;因为x ∈[−π2,π6],所以2x +π4∈[−3π4,7π12];所以−1≤sin(2x+π4)≤1,所以1−√2≤f(x)≤1+√2;当2x+π4=−π2,即x=−3π8时,f(x)在[−π2,π6]取得最小值为1−√2.选择条件②,则f(x)的一个周期为2π;由f(x)=2cos2x+sin x=2(1﹣sin2x)+sin x=−2(sinx−14)2+178;因为x∈[−π2,π6],所以sinx∈[−1,12];所以当sin x=﹣1,即x=−π2时,f(x)在[−π2,π6]取得最小值为﹣1.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了转化与运算能力,是基础题.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.如图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.【分析】(Ⅰ)按照古典概型概率计算公式计算即可;(Ⅱ)显然这是一个超几何分布,按照超几何分布的概率计算方法,分别算出随机变量X取0,1,2时的概率,然后画出分布列,即可求期望;(Ⅲ)结合折线图从“每年的研发投入”“研发投入占营收比”的变化来分析即可.解:(Ⅰ)设事件A为“从2010年至2019年中随机选取一年,研发投入占当年总营收的百分比超过10%”,从2010年至2019年一共10年,其中研发投入占当年总营收的百分比超过10%有9年,所以P(A)=9 10.(Ⅱ)由图表信息,从2010年至2019年10年中有5年研发投入超过500亿元,所以X 的所有可能取值为0,1,2.且P(X=0)=C52C102=29;P(X=1)=C51C51C102=59;P(X=2)=C52C102=29.所以X的分布列为:X012P295929故X的期望E(X)=0×29+1×59+2×29=1.(Ⅲ)从两个方面可以看出,该公式是比较重视研发的:一、从2010年至2019年,每年的研发投入是逐年增加的(2018年除外),并且增加的幅度总体上逐渐加大;二、研发投入占营收的比例总体上也是逐渐增加的,虽然2015年往后有些波动,但是总体占比还是较高的.【点评】本题考查离散型随机变量的分布列、期望的求法,注意对题意的理解需到位、准确.同时考查学生的数学建模的素养,属于中档题.19.已知函数f(x)=e x+ax.(Ⅰ)当a=﹣1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(﹣2,0)时,曲线y=f(x)与y=1﹣lnx有且只有一个交点.【分析】(Ⅰ)①将a=﹣1带入,求导,求出切线斜率及切点,利用点斜式方程即得解;②求出函数函数f(x)的单调性情况,进而得出最值;(Ⅱ)即证函数g(x)=e x+ax+lnx﹣1仅有一个零点,利用导数可知函数g(x)在区间(0,+∞)上单调递增,结合零点存在性定理即得证.解:(Ⅰ)①当a=﹣1时,f(x)=e x﹣x,则f'(x)=e x﹣1.所以f'(0)=0.又f(0)=1,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=1;②令f'(x)=0,得x=0,此时f'(x),f(x)随x的变化如下:x(﹣∞,0)0(0,+∞)f'(x)﹣0+f(x)↘极小值↗可知f(x)min=f(0)=1,函数f(x)的最小值为1.(Ⅱ)证明:由题意可知,x∈(0,+∞),令g(x)=e x+ax+lnx﹣1,则g′(x)=e x+1x+a,由(Ⅰ)中可知e x﹣x≥1,故e x≥1+x,因为a∈(﹣2,0),则g′(x)=e x+1x+a≥(x+1)+1x+a≥2√x⋅1x+a+1=3+a>0,所以函数g(x)在区间(0,+∞)上单调递增,因为g(1e )=e1e+ae−2<e12−2<0,又因为g(e)=e e+ae>e2﹣2e>0,所以g(x)有唯一的一个零点.即函数y=f(x)与y=1﹣lnx有且只有一个交点.【点评】本题考查导数的几何意义,利用导数研究函数的最值,函数的零点等问题,考查运算求解能力及推理论证能力,属于中档题. 20.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,A 1(﹣a ,0),A 2(a ,0),B(0,b ),△A 1BA 2的面积为2. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M 是椭圆C 上一点,且不与顶点重合,若直线A 1B 与直线A 2M 交于点P ,直线A 1M 与直线A 2B 交于点Q .求证:△BPQ 为等腰三角形. 【分析】(Ⅰ)由题{ ca =√32,ab =2,a 2=b 2+c 2.,求出a ,b ,即可得到椭圆方程.( II )解法1,设直线A 2M 方程为y =k(x −2)(k ≠0且k ≠±12),直线A 1B 方程为y =12x +1,通过联立直线与椭圆方程组,求出M 坐标,Q 坐标,推出|BP |=|BQ |,即可证明△BPQ 为等腰三角形.解法2,设M (x 0,y 0)(x 0≠±2,y 0≠±1)则x 02+4y 02=4.直线A 2M 方程为y =y0x 0−2(x −2),直线A 1B 方程为y =12x +1.通过联立直线与椭圆方程组,求出P ,Q 坐标,转化推出|BP |=|BQ |,得到△BPQ 为等腰三角形. 解:(Ⅰ)由题{ ca =√32,ab =2,a 2=b 2+c 2. 解得{a =2,b =1.所以椭圆方程为x 24+y 2=1.( II )解法1证明:设直线A 2M 方程为y =k(x −2)(k ≠0且k ≠±12),直线A 1B 方程为y =12x +1 由{y =k(x −2),y =12x +1.解得点P(4k+22k−1,4k 2k−1). 由{y =k(x −2),x 24+y 2=1.得(4k +1)x 2﹣16k 2x +16k 2﹣4=0,则2x M =16k 2−44k 2+1.所以x M =8k 2−24k 2+1,y M =−4k4k 2+1.即M(8k 2−24k 2+1,−4k 4k 2+1).k A 1M =−4k 4k 2+18k 2−24k 2+1+2=−14k .于是直线A 1M 的方程为y =−14k (x +2),直线A 2B 的方程为y =−12x +1. 由{y =−14k (x +2)y =−12x +1解得点Q(4k+22k−1,−22k−1). 于是x P =x Q ,所以PQ ⊥x 轴. 设PQ 中点为N ,则N点的纵坐标为4k 2k−1+−22k−12=1.故PQ 中点在定直线y =1上.从上边可以看出点B 在PQ 的垂直平分线上,所以|BP |=|BQ |, 所以△BPQ 为等腰三角形. 解法2证明:设M (x 0,y 0)(x 0≠±2,y 0≠±1)则x 02+4y 02=4.直线A 2M 方程为y =yx 0−2(x −2),直线A 1B 方程为y =12x +1.由{y =y0x 0−2(x −2),y =12x +1.解得点P(2x 0+4y 0−42y 0−x 0+2,4y2y 0−x 0+2). 直线A 1M 方程为y =yx 0+2(x +2),直线A 2B 方程为y =−12x +1. 由{y =yx 0+2(x +2),y =−12x +1.解得点Q(2x 0−4y 0+42y 0+x 0+2,4y02y 0+x 0+2).x P −x Q =2x 0+4y 0−42y 0−x 0+2−2x 0−4y 0+42y 0+x 0+2=2(x 0+2y 0−2)(2y 0+x 0+2)−2(x 0−2y 0+2)(2y 0−x 0+2)(2y 0−x 0+2)(2y 0+x 0+2)=2[(x 0+2y 0)2−4)−(4−(x 0−2y 0)2](2y 0−x 0+2)(2y 0+x 0+2)=0.于是x P =x Q ,所以PQ ⊥x轴.y P +y Q =4y 02y 0−x 0+2+4y2y 0+x 0+2=4y0(4y0+4)(2y0−x0+2)(2y0+x0+2)=4y0(4y0+4)(2y0+2)2−x02=2.故PQ中点在定直线y=1上.从上边可以看出点B在PQ的垂直平分线上,所以|BP|=|BQ|,所以△BPQ为等腰三角形.【点评】本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查转化思想以及计算能力,是难题.21.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈一、选择题*,使得a2n﹣1+a2n =ka n对任意的n∈N*成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.【分析】(Ⅰ)①②利用已知条件及其定义解验证判断出结论.(Ⅱ)先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n﹣1+a2n=2a n,根据a n+1≥a n,可得0≤a2n﹣a n=a n﹣a2n﹣1≤0,进而有a n=a2n,结合a n+1≥a n即可证明结论.再证“必要性”:若“数列{a n}为常数列”,容易验证a2n﹣1+a2n=2a1=2a n,即可证明.(Ⅲ)首先证明:a n+1﹣a n≥2.根据{a n}具有“性质Ψ(4)”,可得a2n﹣1+a2n=4a n.当n=1时,有a2=3a1=3.由a2n−1,a2n,a n∈N∗,且a2n>a2n﹣1,可得a2n≥2a n+1,a2n ﹣1≤2a n﹣1,进而有2a n+1≤a2n≤a2n+1﹣1≤2a n+1﹣2,可得2(a n+1﹣a n)≥3,可得:a n+1﹣a n≥2.然后利用反证法证明:a n+1﹣a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N*满足:a2k+1﹣a2k≥3或a2k+2﹣a2k+1≥3,进而有4(a k+1﹣a k)=(a2k+2+a2k+1)﹣(a2k+a2k ﹣1)=[(a2k+2﹣a2k+1)+(a2k+1﹣a2k)]+[(a2k+1﹣a2k)+(a2k﹣a2k﹣1)]≥12.又因为a k+1−a k∈N∗,可得a k+1﹣a k≥3,依此类推可得:a2﹣a1≥3,矛盾.综上有:a n+1﹣a n=2,结合a1=1可得a n=2n﹣1,解:(Ⅰ)①数列{a n}具有“性质Ψ(2)”;②数列{a n}不具有“性质Ψ(2)”.(Ⅱ)证明:先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n﹣1+a2n=2a n,又因为a n+1≥a n,所以0≤a2n﹣a n=a n﹣a2n﹣1≤0,进而有a n=a2n结合a n+1≥a n有a n=a n+1=…=a2n,即“数列{a n}为常数列”;再证“必要性”:若“数列{a n}为常数列”,则有a2n﹣1+a2n=2a1=2a n,即“数列{a n}具有“性质Ψ(2)”.(Ⅲ)首先证明:a n+1﹣a n≥2.因为{a n}具有“性质Ψ(4)”,所以a2n﹣1+a2n=4a n.当n=1时,有a2=3a1=3.又因为a2n−1,a2n,a n∈N∗,且a2n>a2n﹣1,所以有a2n≥2a n+1,a2n﹣1≤2a n﹣1,进而有2a n+1≤a2n≤a2n+1﹣1≤2a n+1﹣2,所以2(a n+1﹣a n)≥3,结合a n+1,a n∈N∗可得:a n+1﹣a n≥2.然后利用反证法证明:a n+1﹣a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N*满足:a2k+1﹣a2k≥3或a2k+2﹣a2k+1≥3,进而有4(a k+1﹣a k)=(a2k+2+a2k+1)﹣(a2k+a2k﹣1)=(a2k+2﹣a2k)+(a2k+1﹣a2k﹣1)=[(a2k+2﹣a2k+1)+(a2k+1﹣a2k)]+[(a2k+1﹣a2k)+(a2k﹣a2k﹣1)]≥12.又因为a k+1−a k∈N∗,所以a k+1﹣a k≥3依此类推可得:a2﹣a1≥3,矛盾,所以有a n+1﹣a n≤2.综上有:a n+1﹣a n=2,结合a1=1可得a n=2n﹣1,经验证,该通项公式满足a2n﹣1+a2n=4a n,所以:a n=2n﹣1.【点评】本题考查了新定义、等差数列的通项公式、数列递推关系、反证法、转化方法、方程以不等式的性质,考查了推理能力与计算能力,属于难题.。

相关文档
最新文档