[精校版]鲁教版八年级上数学期末试卷

合集下载

【鲁教版】八年级数学上期末试卷(及答案)(1)

【鲁教版】八年级数学上期末试卷(及答案)(1)

一、选择题1.下列命题,正确的是( )A .相等的角是内错角B .如果22x y =,那么x y =C .有一个角是60︒的三角形是等边三角形D .角平分线上的点到角两边的距离相等 2.满足下列条件的三角形中,不是直角三角形的是( )A .∠A -∠B =∠CB .∠A :∠B :∠C =3:4:7 C .∠A =2∠B =3∠CD .∠A =9°,∠B =81° 3.如图,已知点E ,D 分别在△ABC 边BA 和CA 的延长线上,CF 和EF 分别平分∠ACB 和∠AED .如果∠B =70°,∠D =50°,则∠F 的度数是( )A .50°B .55°C .60°D .65°4.已知关于x ,y 的二元一次方程组437mx ny x my +=⎧⎨+=⎩,下列说法中正确的有( ) ①当方程组的解是12x y =⎧⎨=⎩时,m ,n 的值满足3m n +=; ②当3m =时,不论n 取什么实数,x y +的值始终不变;③当方程组的解是43x y =⎧⎨=⎩时,方程组(2)(1)43(2)(1)7m x n y x m y -+-=⎧⎨-+-=⎩的解为22x y =⎧⎨=⎩. ④当1m =时,若方程有自然数解,则n 的值为2或34. A .①③ B .②③ C .①②D .①②④ 5.已知一次函数()20y kx k =-≠的函数值y 随x 的增大而减小,则函数()20y kx k =-≠ 的图象大致是( )A .B .C .D .6.已知平面上点O (0,0),A (3,2),B (4,0),直线y =mx ﹣3m +2将△OAB 分成面积相等的的两部分,则m 的值为( )A .1B .2C .3D .﹣17.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .8.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( ) A .31t -= . B .33t -=C .93t =D .91t = 9.下列各方程中,是二元一次方程的是( )A .253x y x y -=+B .x+y=1C .2115x y =+D .3x+1=2xy 10.若点()23,P m m --在第四象限,则m 的取值范围是( )A .302m <<B .0m >C .32m >D .0m <11.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .1412.如图,已知正方体纸盒的高为1,已知一只蚂蚁从其中一个顶点A ,沿着纸盒的外部表面爬行至另一个顶点B ,则蚂蚁爬行的最短距离是( )A .3B .2C .5D .21+二、填空题13.如图,在ABC 中,57ABC ∠=︒,71BAD ∠=︒,30DAC ∠=︒,11ACD ∠=︒,求DBC ∠的度数____________.14.如图,ABC ∆中,60B ∠=︒,55C ∠=︒,点D 为BC 边上一动点.分别作点D 关于AB ,AC 的对称点E ,F ,连接AE ,AF .则EAF ∠的度数等于_______.15.正比例函数y=kx 的图象经过点(﹣2,4),则k=__.16.如图,1l 表示某机床公司一天的销售收入y (万元)与机床销售量x (件)的关系,2l 表示该公司一天的销售成本y (万元)与机床销售量x (件)的关系.有以下四个结论:①1l 对应的函数表达式是y x =;②2l 应的函数表达式是1y x =+;③当一天的销售量为2件时,销售收入等于销售成本;④一天的利润w (万元)与销售量x (件)之间的函数表达式是0.51w x =-.其中正确的结论为_______(请把所有正确的序号填写在横线上).17.已知某汽车装满油后油箱中的剩余油量y (升)与汽车的行驶路程x (千米)之间具有一次函数关系(如图所示).为了行驶安全考虑,邮箱中剩余油量不能低于5升,那么这辆汽车装满油后至多行驶_____千米,就应该停车加油.18.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,D 、E 分别是AB 和CB 边上的点,把△ABC 沿着直线DE 折叠,若点B 落在AC 边上,则CE 的取值范围是_____.19.用“<”连接2的平方根和2的立方根_________.20.如图,在ABC 中,90C =∠,AB 的中垂线DE 交AB 于E ,交BC 于D ,若5AB =,3AC =,则ACD △的周长为__________.三、解答题21.如图所示,已知,A F ∠=∠,C D ∠=∠.(1)求证: //BD CE ;(2)已知:2:3ABD DEC ∠∠=,求DEC ∠的度数.22.四名同学两两一队,从学校集合进行徒步活动,目的地是距学校10千米的前海公园.由于乙队一名同学迟到,因此甲队两名同学先出发.24分钟后,乙队两名同学出发.甲队出发后第30分钟,一名同学受伤,处理伤口,稍作休息后,甲队由一名同学骑单车载受伤的同学继续赶往目的地.若两队距学校的距离s (千米)与时间t (小时)之间的函数关系如图所示,请结合图象,解答下列问题:(1)甲队在队员受伤前的速度是 千米/时,甲队骑上自行车后的速度为 千米/时;(2)当t = 时,甲乙两队第一次相遇;(3)当t ≥1时,什么时候甲乙两队相距1千米?23.如图表示甲、乙两车沿相同路线从A 地出发到B 地行驶过程中,路程y (千米)随时间x (时)变化的图象.(1)乙车比甲车晚出发__________小时,甲车的速度是__________千米/时; (2)当26x ≤≤时,求乙车行驶路程随时间变化的函数表达式;(3)从乙车出发到停止期间,乙车出发多长时间,两车相距20千米?24.如图,在正方形网格中,每个小正方形的边长都是1个单位长度,ABC 的三个顶点都在格点上.(1)AB =______;AC =______;BC =______.(2)画出ABC 关于EF 成轴对称的111A B C △;(3)在直线MN 上找一点P ,使PAB △的周长最小,请用画图的方法确定点P 的位置,并直接写出PAB △周长的最小值为______.25.先化简,再求值:2(2)()()a b a b a b --+-,其中12a =-,2b =. 26.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中夹,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其底面是边长是10尺的正方形,一根芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据各个选项中的说法,可以利用内错角的定义,数的开方,等边三角形的判定及角平分线的性质进行判断是否为真命题,即可得出结论.【详解】解:A 、相等的角不一定是内错角.故原命题是假命题,故此选项不符合题意;B 、如果22x y =,那么x y =.如()2222-=,但()22-≠,此命题是假命题,故此选项不符合题意;C 、有一个角为60°的三角形不一定是等边三角形,如一个三角形的三个角是60°,50°,70°,此命题是假命题,故此选项不符合题意;D 、角平分线上的点到角两边的距离相等,此命题是真命题,故此选项符合题意. 故选:D .【点睛】本题考查了命题与定理,明确题意,灵活运用所学知识判断出各个选项中的命题的真假是解答本题的关键.2.C解析:C【分析】依据三角形内角和定理,求得三角形的最大角是否大于90°,进而得出结论.【详解】解:A .∵∠A-∠B=∠C ,∴∠A=∠B+∠C=90°,∴该三角形是直角三角形;B .∵∠A :∠B :∠C=3:4:7,∴∠C=180°×714=90°,∴该三角形是直角三角形; C .∵∠A=2∠B=3∠C ,∴∠A=180°×611>90°,∴该三角形是钝角三角形; D .∵∠A=9°,∠B=81°,∴∠C=90°,∴该三角形是直角三角形;故选:C .【点睛】本题考查了三角形内角和定理.解题的关键是灵活利用三角形内角和定理进行计算. 3.C解析:C【分析】由角平分线定义得∠BCF =∠ACF ,∠DEF =∠AEF ,由三角形内角和定理得∠BCF +∠B =∠AEF +∠F ;∠BCF +∠ACF +∠B =∠DEF +∠AEF +∠D ,即2∠BCF +∠B =2∠AEF +∠D ,则∠BCF +70°=∠AEF +∠F①,2∠BCF +70°=2∠AEF +50°②,进而得出答案.【详解】解:如图,设AB 交CF 于点G ,∵CF 、EF 分别平分∠ACB 和∠AED ,∴∠BCF =∠ACF ,∠DEF =∠AEF ,∵∠BCF +∠B =∠AEF +∠F ;∠BCF +∠ACF +∠B =∠DEF +∠AEF +∠D ,即2∠BCF +∠B =2∠AEF +∠D ,又∵∠B =70°,∠D =50°,∴∠BCF +70°=∠AEF +∠F①,2∠BCF +70°=2∠AEF +50°②,①×2﹣②得,70°=2∠F ﹣50°,解得∠F =60°.故选:C .【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.同时考查了角平分线的性质. 4.C解析:C【分析】将12x y =⎧⎨=⎩代入原方程组,求出m 和n 值,可判断①;将m=3代入原方程组,可判断②;根据原方程组的解为43x y =⎧⎨=⎩,可得2413x y -=⎧⎨-=⎩,求出x 和y 值,可判断③;将m=1代入原方程组,求出x 和y ,再找到当方程组的解为自然数时n 的部分值,可判断④.【详解】解:①将12x y =⎧⎨=⎩代入437mx ny x my +=⎧⎨+=⎩中,得24327m n m +=⎧⎨+=⎩,解得:21m n =⎧⎨=⎩, 则m+n=3,故正确;②当m=3时,有337x y +=, 则73x y +=,故正确; ③当方程组437mx ny x my +=⎧⎨+=⎩的解是43x y =⎧⎨=⎩时, 则有2413x y -=⎧⎨-=⎩, 则方程组(2)(1)43(2)(1)7m x n y x m y -+-=⎧⎨-+-=⎩的解为64x y =⎧⎨=⎩,故错误; ④当m=1时,方程组为437x ny x y +=⎧⎨+=⎩,解得:7431531n x n y n -⎧=⎪⎪-⎨⎪=⎪-⎩, ∵方程有自然数解,当n=2时,21x y =⎧⎨=⎩,当n=34时,14x y =⎧⎨=⎩,当n=47时,07x y =⎧⎨=⎩,故错误; 故选:C .【点睛】此题考查了二元一次方程组的解,和解二元一次方程组,解题的关键是理解题意,掌握方程组的解即为能使方程组中两方程成立的未知数的值.5.B解析:B【分析】因为一次函数()20y kx k =-≠的函数值y 随x 的增大而减小,可以判断k <0;再根据k <0,20-<判断出2y kx =-的图象的大致位置.【详解】∵一次函数()20y kx k =-≠的函数值y 随x 的增大而减小,∴0k <,∵20-<,∴一次函数2y kx =-的图象经过二、三、四象限.故选:B .【点睛】本题考查了一次函数的图象和性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y kx b =+的图象经过第二、三象、四象限;②当k >0,b <0,函数y kx b =+的图象经过第一、三、四象限;③当k <0,b >0时,函数y kx b =+的图象经过第一、二、四象限;④当k <0,b <0时,函数y kx b =+的图象经过第二、三、四象限.6.B解析:B【分析】设点C 为线段OB 的中点,则点C 的坐标为(2,0),利用一次函数图象上点的坐标特征可得出直线y=mx-3m+2过三角形的顶点A (3,2),结合直线y=mx-3m+2将△OAB 分成面积相等的的两部分,可得出直线y=mx-3m+2过点C (2,0),再利用一次函数图象上点的坐标特征可求出m 的值.【详解】解:设点C 为线段OB 的中点,则点C 的坐标为(2,0),如图所示.∵y =mx ﹣3m +2=(x ﹣3)m +2,∴当x =3时,y =(3﹣3)m +2=2,∴直线y =mx ﹣3m +2过三角形的顶点A (3,2).∵直线y =mx ﹣3m +2将△OAB 分成面积相等的的两部分,∴直线y =mx ﹣3m +2过点C (2,0),∴0=2m ﹣3m +2,∴m =2.故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,找出关于m的一元一次方程是解题的关键.7.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.8.C解析:C【分析】运用加减消元法求解即可.【详解】解:解方程组232261s ts t+=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1),即,9t=3,故选:C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A、分母中含有未知数,是分式方程,故本选项错误;B、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C、D、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误.故选B.10.C解析:C【分析】先根据第四象限内点的坐标符号特点列出关于m的不等式组,再求解可得.【详解】解:根据题意,得:230?0?mm-⎧⎨-⎩>①<②,解不等式①,得:m>32,解不等式②,得:m>0,∴不等式组的解集为m>32,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.D解析:D【分析】根据2ndf键是功能转换键列算式,然后解答即可.【详解】14=.故选:D.【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.12.C解析:C【分析】从正方体外部可分三类走法直接走AB对角线,先走折线AD-DB,或走三条棱,求出其长度,比较大小即可【详解】方法一:走两个正方形两接的面展开成日字形的对角线在三角形ABC中,由勾股定理AB=2222AC+BC=2+1=5;方法二:走一面折线AD-BD,由勾股定理221+1=22+1;方法三折线AE-ED-DB即AE+ED+DB=3;在正方体外部表面走有这三类走法,∵5<9,∴53<,∵2>1,∴21>,∴222>,∴22+32+3>,∴()2>,2+15∴2+15>5故选择:C.【点睛】本题考查蚂蚁爬行最短路径问题是考查勾股定理的应用,掌握勾股定理的应用方法,会利用图形分析行走路径是解题关键.二、填空题13.27°【分析】根据三角形的内角和可求出∠BCD的度数然后根据角度的关系求出∠DBC的度数;【详解】∵∠ABC=57°∠BAD=71°∠DAC=30°∠ACD=11°∴∠BCD=180°-57°-71解析:27°【分析】根据三角形的内角和可求出∠BCD的度数,然后根据角度的关系求出∠DBC的度数;【详解】∵ ∠ABC=57°,∠BAD=71°,∠DAC=30°,∠ACD=11°,∴∠BCD=180°-57°-71°-30°-11°=11°,∵︒⎧⎪︒⎪⎨︒⎪⎪︒⎩∠ADB+∠BDC=221∠BDC+∠CBD=169∠CBD+∠ACD=57∠ADB+∠ACD=109 , 解得︒⎧⎪︒⎪⎨︒⎪⎪︒⎩∠ADB=79∠BDC=142∠CBD=27∠ACD=30 , ∴∠DBC=27°,故答案为:27°.【点睛】本题考查了三角形内角和的知识点以及角的关系进而求出角度的问题,需要熟练掌握. 14.130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ∠FAC =∠CAD 再求出∠BAC 的度数即可求解【详解】连接AD ∵D 点分别以ABAC 为对称轴的对称点为EF ∴∠EAB =∠BAD ∠FAC =∠CAD解析:130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ,∠FAC =∠CAD ,再求出∠BAC 的度数,即可求解.【详解】连接AD ,∵D 点分别以AB 、AC 为对称轴的对称点为E 、F ,∴∠EAB =∠BAD ,∠FAC =∠CAD ,∵60B ∠=︒,55C ∠=︒,∴∠BAC =∠BAD +∠DAC =180°−60°−55°=65°,∴∠EAF =2∠BAC =130°,故答案是:130°.【点睛】此题考查轴对称的性质,关键是利用轴对称的性质解答.15.-2【分析】将(﹣24)代入正比例函数y=kx 的的解析式求出k=-2【详解】∵正比例函数y=kx 的图象经过点(﹣24)∴-2k=4解得k=-2故答案为:-2【点睛】此题考查待定系数法求函数解析式正确解析:-2【分析】将(﹣2,4)代入正比例函数y=kx 的的解析式,求出k=-2.【详解】∵正比例函数y=kx 的图象经过点(﹣2,4),∴-2k=4,解得k=-2,故答案为:-2.【点睛】此题考查待定系数法求函数解析式,正确理解待定系数法及正确计算是解题的关键. 16.①③④【分析】用待定系数法求出解析式可判断①和②根据图象可判断③根据利润=收入-成本可得利润与销售量之间的函数关系式可判断④【详解】解:①观察图象可知直线l1经过原点设l1的解析式为y1=kx 将点( 解析:①③④【分析】用待定系数法求出解析式可判断①和②,根据图象可判断③,根据“利润=收入-成本”可得利润与销售量之间的函数关系式,可判断④.【详解】解:①观察图象可知直线l 1经过原点,设l 1的解析式为y 1=kx ,将点(2,2)代入解析式可得 2=2k ,解得k=1,所以l 1的解析式为y 1=x ,故①正确;②观察图象可知直线l 2不经过原点,设l 2的解析式为y 2=kx+b ,将点(0,1)、(2,2)代入解析式可得1=22b k b ⎧⎨=+⎩解得121k b ⎧=⎪⎨⎪=⎩, 所以l 2的解析式为2112y x =+, 故②错误;③观察图象可知,直线l 1与直线l 2交于点(2,2),所以,当销售量为2时,销售收入等于销售成本,故③正确;④利润1211(1)122wy y x x x , 故④正确; 故答案为①③④.【点睛】本题考查了一次函数的应用,考查了识别函数图象的能力,待定系数法求一次函数解析式,准确观察图象提供的信息是解题的关键.17.450【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程此题得解【详解】解:设该一次函数解析式为y =kx +b 将(4001解析:450【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.【详解】解:设该一次函数解析式为y =kx +b ,将(400,10),(500,0)代入得400105000k b k b +=⎧⎨+=⎩, 解得0.150k b =-⎧⎨=⎩, ∴该一次函数解析式为y =−0.1x +50.当y =−0.1x +50=5时,x =450.故答案为:450.【点睛】本题考查了一次函数的应用,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.18.≤CE≤4【分析】当点B 落在A 处时CE 取得最小值设CE =x 则BE =8﹣x ;根据勾股定理列出关于x 的方程解方程可求出CE ;当点B 落在C 处时CE 取得最大值4则可得出答案【详解】解:如图当点B 落在A 处时C解析:74≤CE ≤4 【分析】当点B 落在A 处时,CE 取得最小值,设CE =x ,则BE =8﹣x ;根据勾股定理列出关于x 的方程,解方程可求出CE 74=;当点B 落在C 处时,CE 取得最大值4,则可得出答案. 【详解】解:如图,当点B 落在A 处时,CE 取得最小值,设CE =x ,则BE =8﹣x ,由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x74 =,即CE的长为74,当点B落在C处时,CE取得最大值4,综上可得CE的取值范围是:74≤CE≤4.故答案为:74≤CE≤4.【点睛】本题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.19.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义解析:2-322【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案.【详解】解:2的平方根为2232∴2-322故答案为:2-322【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义.20.7【分析】先根据勾股定理求出BC的长再由线段垂直平分线的性质得出AD=BD即AD+CD=BC再由AC=6即可求出答案【详解】解:∵△ABC中∠C=90°AB=5AC=3∴BC==4∵DE是线段AB的解析:7【分析】先根据勾股定理求出BC的长,再由线段垂直平分线的性质得出AD=BD,即AD+CD=BC,再由AC=6即可求出答案.【详解】解:∵△ABC中,∠C=90°,AB=5,AC=3,∴=,∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD,即AD+CD=BC,∴△ACD的周长=AC+CD+AD=AC+BC=3+4=7.故答案为:7.【点睛】本题考查了勾股定理及线段垂直平分线的性质,能根据线段垂直平分线的性质求出AD+CD=BC是解题的关键.三、解答题21.(1)见解析;(2)∠D EC =108°【分析】(1)由AC//DE可得∠D=∠ABD,根据等量代换得到∠C=∠ABD,从而可证BD//C E;(2)设∠ABD=2x,∠D EC=3x,根据两直线平行,同旁内角互补求解即可.【详解】(1)证明∵∠A=∠F,∴AC//DE,∴∠D=∠ABD,∵∠D=∠C,∴∠C=∠ABD,∴BD//C E;(2)∵BD//C E,DF//BC,∴∠ABD =∠C,∠D EC+∠C=180°,∵∠ABD :∠DEC=2:3,∴设∠ABD=2x,∠D EC=3x,则2x+3x=180°,∴x=36°,∴∠D EC =3x=108°.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.(1)4,8;(2)0.8;(3)当t≥1时,1小时、53小时或115小时时,甲乙两队相距【分析】(1)根据题意和函数图象中的数据,可以计算出甲队在队员受伤前的速度和甲队骑上自行车后的速度;(2)根据函数图象中的数据,可以计算出当t 为多少时,甲乙两队第一次相遇;(3)根据题意,可以列出相应的方程,从而可以得到当t≥1时,什么时候甲乙两队相距1千米.【详解】解:(1)由图象可得,甲队在队员受伤前的速度是:2÷3060=4(千米/时), 甲队骑上自行车后的速度为:(10﹣2)÷(2﹣1)=8(千米/时),故答案为:4,8;(2)由图象可得,乙队的速度为:10÷(2.4﹣2460)=5(千米/时), 令5×(t ﹣4060)=2, 解得t =0.8,即当t =0.8时,甲乙两队第一次相遇,故答案为:0.8;(3)由题意可得,[5×(t ﹣2460)]﹣[2+8(t ﹣1)]=1或[2+8(t ﹣1)]﹣[5×(t ﹣2460)]=1或[5×(t ﹣2460)]=10﹣1, 解得t =1或t =53或t =115, 即当t ≥1时,1小时、53小时或115小时时,甲乙两队相距1千米. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.(1)2;20;(2)4080y x =-;(3)1小时或3小时【分析】(1)通过观察函数图象得到乙车比甲车晚出发的时间,用甲车的行驶路程除以所用时间得到它的速度;(2)利用待定系数法求出函数表达式;(3)再用待定系数法求出甲车的函数表达式,两个表达式作差,令它们的差的绝对值等于20,解出x 的值即可.解:(1)根据图象的x 轴,可以看出乙车比甲车晚出发2小时,160820/km h ÷=,故甲车的速度是20/km h故答案是:2,20;(2)当26x ≤≤时,设乙车行驶路程随时间变化的函数表达式为y kx b =+,将点()2,0,()6,160代入y kx b =+,得206160k b k b +=⎧⎨+=⎩,解得4080k b =⎧⎨=-⎩, ∴乙车行驶路程随时间变化的函数表达式是4080y x =-;(3)设甲车行驶路程随时间变化的函数表达式是y kx = ,把点()8,160 代入,得1608x = ,解得20x,∴20y x =,令()20408020x x --=,解得,13x =,25x =,∴21x -=或3,答:乙车出发1小时、3小时,两车相距20千米.【点睛】本题考查一次函数的应用,解题的关键是能够根据函数图象分析出实际问题中的数据进行求解.24.(1);(2)见解析;(3)图见解析,【分析】(1) 根据勾股定理结合每一格点都是1个单位分别计算即可;(2) 根据根据轴对称的意义找到对称轴作图即可;(3)作A 点关于直线MN 的对称点A′,连接A′B 与MN 交于点P ,此时A′B 的长即为PAB △周长的最小值.【详解】(1)根据勾股定理可得:AB ==,ACBC =故答案为:;(2)如图:(3)如图:作A 点关于直线MN 的对称点A′,连接A′B 与MN 交于点P ,△APB 的周长为AP+BP+AB ,∵A′P=AP ,∴△APB 的周长为AP+BP+AB= A′P+BP+AB=A′B+AB , 由勾股定理得:222425A B '=+=∴△APB 的周长为2225【点睛】此题考查坐标系中关于轴对称的坐标点的变化,最小值作对称图形根据关于轴对称的线段相等的性质解题即可.25.254b ab -,1022+【分析】 由平方差公式和完全平方公式进行化简,然后把12a =-,2b =案.【详解】解:原式()222222222444454a ab b a b a ab b a b b ab =-+--=-+-+=-; 当12a =-,2b =原式1524210222⎛⎫=⨯-⨯-⨯=+⎪⎝⎭.【点睛】本题考查了实数的运算法则,整式的混合运算,解题的关键是熟练掌握运算法则,正确的进行化简.26.水深12尺,芦苇长13尺【分析】依题意画出图形,设芦苇长AB=AB'=x尺,则水深AC=(x-1)尺,因为B'E=10尺,所以B'C=5尺,利用勾股定理求出x的值即可得到答案.【详解】解:依题意画出图形,如下图,设芦苇长AB=AB'=x尺,则水深AC=(x-1)尺,因为B'E=10尺,所以B'C=5尺,在Rt△ACB'中,52+(x-1)2=x2,解得:x=13,即水深12尺,芦苇长13尺.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.。

鲁教版八年级数学上册期末考试试题(附答案)

鲁教版八年级数学上册期末考试试题(附答案)

八年级数学上册期末考试试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A. 平均数是80B. 极差是15C. 中位数是80D. 标准差是252.已知方程组,则|x-y|的值()A. 5B. -1C. 0D. 13.在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A. 众数是90分B. 中位数是95分C. 平均数是95分D. 方差是154.下列是方程组的解的是( )A. B. C. D.5.设,a在两个相邻整数之间,则这两个整数是()A. 1和2B. 2和3C. 3和4D. 4和56.点P(﹣2,3)关于y轴的对称点的坐标是()A. (2,3 )B. (﹣2,﹣3)C. (﹣2,3)D. (﹣3,2)7.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是()A. 0.6米B. 0.7米C. 0.8米D. 0.9米8.已知一次函数y=kx+b和y=x+a的图象交于点A,则关于x,y的二元一次方程组的解为()A. B. C. D.9.如图,AB∥CD,BC平分∠ABE, ∠C=34°,则∠BED的度数等于()A. B. C. D.10.如图,由下列条件不能得到AB∥CD的是()A. ∠B+∠BCD=180°B. ∠1=∠2C. ∠3=∠4D. ∠B=∠511.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反向后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A. B. 6 C. D.12.如图,直线a∥b,直线l与直线a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠2=40°,则∠1的度数为()A. 20°B. 30°C. 40°D. 50°二、填空题(共6题;共24分)13.若一组数据的平均数为6,众数为5,则这组数据的方差为________.14.如图,l是四边形ABCD的对称轴,如果AD∥BC,有下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC,其中正确的结论是________(把你认为正确的结论的序号都填上).15.若和都是关于x、y的二元一次方程ax﹣y=b的解,则ab=________.16.如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=________.17.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的平分线交于点D1,∠ABD1与∠ACD1的平分线交于点D2,以此类推,∠ABD2与∠ACD2的平分线交于点D,则∠BDC的度数是________.(16题)(17题)18.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x小时,两车之间的距离y千米,图中的折线表示y与x之间的函数关系,则出发6小时的时候,甲、乙两车相距________千米.三、计算题(共6题;共60分)19.为了求1+2+22+23+…+22008的值,可令S=1=2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S ﹣S=22009﹣1,所以1+2+22+23+…+22008=22009﹣1仿照以上推理,计算1+5+52+53+…+52009的值.20.已知和是关于x,y的二元一次方程y = kx+b的解,求k,b的值.21.甲、乙两人分别在六次射击中的成绩如下表:(单位:环)第1次第2次第3次第4次第5次第6次甲 6 7 7 8 6 8乙 5 9 6 8 5 9分别算出两人射击的平均数和方差.这六次射击中成绩发挥比较稳定的是谁?22.长方体的长为20cm,宽为10cm,高为15cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?23.某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往 A地区,20台派往 B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地区 1800元1600元B地区 1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.24.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=________,max{0,3}=________;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.答案一、单选题1.D2. D3.A4. D5. B6. A7.B8.B9. D 10.B 11. A 12. D二、填空题13. 14.①、②、④ 15. 10 16.17. 40°18.450三、计算题19. 解:令S=1+5+52+53+ (52009)则5S=5+52+53+ (52010)5S﹣S=﹣1+52010,4S=52010﹣1,则S=.20.解:根据题意,得解得:21.解:∵甲= (6+7+7+8+6+8)=7,乙= (5+9+6+8+5+9)=7;∴S2甲= [(6﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(6﹣7)2+(8﹣7)2]= ,S2乙= [(5﹣7)2+(9﹣7)2+(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=3;∴S2甲<S2乙,∴甲在射击中成绩发挥比较稳定22. 解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:则需要爬行的最短距离是15 cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,在Rt△AB′B中,根据勾股定理得:∵∴则需要爬行的最短距离是23.(1)解:由于派往A地乙型收割机x台,则派往B地乙型收割机为(30-x)台,派往A,B地区的甲型收割机分别为(30-x)台和(x-10)台,∴y=1600x+1200(30-x)+1800(30-x)+1600(x-10)=200x+74000(10≤x≤30且x为整数)(2)解:由题意得200x+74000≥79600,解得x≥28,∵28≤x≤30,x是正整数,∴x=28,29,30,∴有3种不同分派方案:①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;③当x=30时,即30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区(3)解:∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时,y=200×30+74000=80000, 建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,最高租金为80000元24. (1)5;3(2)解:∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)解:联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.。

2023年鲁教版(五四制)数学八年级上册期末考试综合检测试卷及部分答案(共三套)

2023年鲁教版(五四制)数学八年级上册期末考试综合检测试卷及部分答案(共三套)

2023年鲁教版(五四制)数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共36分)1.某校评选先进班集体,从“学习”“卫生”“纪律”“德育”四个方面考核打分,各项满分均为100,所占比例如下表:九年级1班这四项得分依次为80,86,84,90,则该班四项综合得分为() A.81.5 B.84.5 C.85 D.842.若a+5=2b,则代数式a2-4ab+4b2-5的值是()A.0 B.-10 C.20 D.-303.下列各组图形可以通过平移得到的是()4.下列分式中是最简分式的是()A.xyx2B.63y C.xx-1D.x+1x2-15.将(a-1)2-1分解因式,结果正确的是()A.a(a-1) B.a(a-2)C.(a-2)(a-1) D.(a-2)(a+1)6.下列四个图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转90°后,能与原图形完全重合的是()7.某校为加强学生出行的安全意识,每月都要对学生进行安全知识测评,随机选取15名学生五月份的测评成绩如下表:则这组数据的中位数和众数分别为()A.95,95 B.95,96 C.96,96 D.96,978.分式x+a3x-1中,当x=-a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠-13,分式的值为零D.若a≠13,分式的值为零9.如图,E是平行四边形ABCD的边AD的延长线上一点,连接BE交CD于点F,连接CE,BD.添加以下条件,仍不能判定四边形BCED为平行四边形的是() A.∠ABD=∠DCE B.∠AEC=∠CBDC.EF=BF D.∠AEB=∠BCD(第9题) (第11题)10.下面是涂涂同学完成的一组练习题,每小题20分,他的得分是()①x2-1x-1=x+1;②3-x·23-x=2;③1÷ab·ba=1;④1x+1y=x+yxy;⑤⎝⎛⎭⎪⎫xx+1-x÷x2-xx+1=x-x2+xx+1÷x2-xx+1=x(2-x)x+1·x+1x(x-1)=2-xx-1.A.40分B.60分C.80分D.100分11.如图,在平面直角坐标系中,将△ABC绕点P顺时针旋转得到△A′B′C′,则点P的坐标为()A.(1,1) B.(1,2) C.(1,3) D.(1,4)12.已知a1=x+1(x≠0且x≠-1),a2=11-a1,a3=11-a2,…,a n=11-a n-1,则a2 024等于()A.-x+1 B.x+1 C.xx+1D.-1 x二、填空题(每题3分,共18分)13.已知x2+nx+m有因式(x-1)和(x-2),则m=______,n=________.14.分解因式:3(x2+1)-6x=______________.15.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数.下列说法:①两组样本数据的样本平均数相同;②两组样本数据的样本中位数相同;③两组样本数据的样本标准差相同;④两组样本数据的样本极差相同.正确说法的序号是________.16.中华优秀传统文化是中华民族的“根”和“魂”,为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3 600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2 400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x元,则符合题意的方程是______________.17.如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于________.18.若关于x的分式方程3xx-1=m1-x+2的解为正数,则m的取值范围是______________.三、解答题(19题6分,20,22,24题每题8分,其余每题12分,共66分) 19.已知a,b,c为△ABC的三边长,求证:(a-c)2-b2是负数.20.(1)计算:2m m 2-1-1m -1;(2)先化简,再求值:⎝ ⎛⎭⎪⎫x +x x +1÷x +2 x 2+x ,其中x =1+2.21.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (-1,0),B (-4,1),C (-2,2).(1)点B 关于原点对称的点B ′的坐标是________;(2)平移△ABC ,使平移后点A 的对应点A 1的坐标为(2,1),请画出平移后的△A 1B 1C 1; (3)画出△ABC 绕原点O 逆时针旋转90°后得到的△A 2B 2C 2.22.如图,在平行四边形ABCD 中,点O 是对角线BD 的中点,EF 过点O ,交AB于点E,交CD于点F.求证:(1)∠1=∠2;(2)△DOF≌△BOE.23.某水果公司以10元/kg的成本价新进2 000箱荔枝,每箱质量为5 kg,在出售荔枝前,需要去掉坏荔枝,现随机抽取20箱,去掉坏荔枝后称得每箱的质量(单位:kg)如下:4.7 4.8 4.6 4.5 4.8 4.9 4.8 4.7 4.8 4.74.8 4.9 4.7 4.8 4.5 4.7 4.7 4.9 4.75.0整理数据:分析数据:(1)直接写出上述表格中a,b,c的值.(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这2 000箱荔枝共坏了多少千克.(3)根据(2)中的结果,求该公司销售这批荔枝每千克最低定为多少元才不亏本.(结果保留一位小数)24.八年级(1)班开展“经典诵读,光亮人生”读书活动,小冬和小惠两同学读了同一本480页的名著,小冬每天读的页数是小惠每天读的页数的1.2倍,小惠读完这本书比小冬多用4天,求两人每天读这本名著多少页.25.在△ABC与△DEC中,∠BAC=∠EDC=90°,AB=AC=4,DE=DC,EC=2,将线段BA平移到EF.(1)如图①,当B,C,D三点共线时,求线段CF的长;(2)将△DEC绕点C逆时针旋转至如图②所示的位置,请探究AD与DF的数量关系和位置关系,并证明.答案一、1.B2.C 3.C4.C5.B6.A 7.C8.C9.D10.A11.B12.D点拨:∵a1=x+1,∴a2=11-a1=11-(x+1)=-1x,∴a3=11-a2=11-⎝⎛⎭⎪⎫-1x=xx+1,∴a4=11-a3=11-xx+1=x+1,∴a5=11-a4=-1x,a6=11-a5=xx+1,….∵2 024÷3=674……2,∴a2 024=-1x.故选D.二、13.2;-3 14.3(x-1)2 15.③④16.3 600x -2 4000.8x =417.126° 点拨:∵△ABF 是等边三角形,∴AB =BF ,∠AFB =∠ABF =60°.在正五边形ABCDE 中,AB =BC ,∠ABC =108°, ∴BF =BC ,∠FBC =∠ABC -∠ABF =48°, ∴∠BFC =12(180°-∠FBC )=66°, ∴∠AFC =∠AFB +∠BFC =126°.18.m <-2且m ≠-3 点拨:去分母,得3x =-m +2(x -1),去括号、移项、合并同类项,得 x =-m -2.∵关于x 的分式方程3x x -1=m1-x +2的解为正数,∴-m -2>0. ∴m <-2. 由题意得x -1≠0, ∴x ≠1. ∴-m -2≠1. ∴m ≠-3.∴m <-2且m ≠-3.三、19.证明:∵a ,b ,c 为△ABC 的三边长,∴a +b >c ,b +c >a , 即a -c +b >0,a -c -b <0.∴(a -c )2-b 2=(a -c +b )(a -c -b )<0, ∴(a -c )2-b 2是负数.20.解:(1)原式=2m(m +1)(m -1)-m +1(m -1)(m +1)=2m -m -1(m -1)(m +1)=m -1(m -1)(m +1)=1m +1. (2)原式=⎝ ⎛⎭⎪⎫x 2+xx +1+x x +1·x 2+x x +2=x 2+2x x +1·x 2+x x +2 =x (x +2)x +1·x (x +1)x +2=x 2.当x =1+2时, 原式=(1+2)2 =1+22+2 =3+22. 21.解:(1)(4,-1)(2)如图所示,△A 1B 1C 1即为所求.(3)如图所示,△A 2B 2C 2即为所求. 22.证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD . ∴∠1=∠2.(2)∵点O 是BD 的中点, ∴OD =OB .在△DOF 和△BOE 中,⎩⎨⎧∠1=∠2,∠DOF =∠BOE ,OD =OB ,∴△DOF ≌△BOE (AAS).23.解:(1)a =6,b =4.7,c =4.75.(2)选择众数,估算这2 000箱荔枝共坏了2 000×(5-4.7)=600(kg).(答案不唯一)(3)10×5×2 000÷(2 000×5-600)≈10.7(元).答:该公司销售这批荔枝每千克最低定为10.7元才不亏本. 24.解:设小慧每天读这本名著x 页,则小冬每天读这本名著1.2x 页,依题意得480x -4801.2x =4, 解得x =20.经检验,x =20是原方程的解,且符合题意. ∴1.2x =24,答:小慧每天读这本名著20页,小冬每天读这本名著24页. 25.解:(1)∵∠BAC =90°,AB =AC ,∴∠ABC =45°.∵DE =DC ,∠EDC =90°, ∴∠ECD =45°, ∴∠ABC =∠ECD . 又∵B ,C ,D 三点共线, ∴EC ∥AB . 又∵EF ∥AB , ∴C ,E ,F 三点共线. 由题意知EF =AB =4, ∴CF =CE +EF =2+4=6. (2)AD =DF ,且AD ⊥DF .证明:如图,延长FE 交AC 于G .由题意得EF∥AB,∴∠EGA=∠BAC=90°.∴∠FGC=90°=∠EDC.∴∠DEG+∠DCG=180°.又∵∠FED+∠DEG=180°,∴∠ACD=∠FED.又∵EF=AB=AC,DE=DC,∴△ACD≌△FED(SAS).∴AD=DF,∠ADC=∠EDF.∴∠ADF=∠EDC=90°,∴AD⊥DF.2023年鲁教版(五四制)数学八年级上册期末考试测试卷及答案(二)一、选择题(本大题共12道小题,每小题3分,满分36分)1.太原正式步入“地铁时代”,太原轨道交通近期建设的1、2、3号线在全国是第338条线路.下面是中国四个城市的地铁图标,其中是中心对称图形的是()2.若a+b=3,则a2+6b-b2的值为()A.3 B.6 C.9 D.123.把多项式3(x-y)2+2(y-x)3分解因式,结果正确的是()A.(x-y)2(3-2x-2y) B.(x-y)2(3-2x+2y)C.(x-y)2(3+2x-2y) D.(y-x)2(3+2x+2y)4.若分式|x|-2(x-2)(x+1)的值为0,则x的值为()A.±2 B.2 C.-2 D.-15.一个多边形的内角和与外角和相加之后的结果是2 520°,则这个多边形的边数为()A.12 B.13 C.14 D.156.方程23x=1x+2的解为()A.x=-2 B.x=4C.x=0 D.x=67.某班50人一周内在线学习数学的时间如图所示,则以下叙述正确的是() A.全班同学在线学习数学的平均时间为2.5 hB.全班同学在线学习数学时间的中位数为2 hC.全班同学在线学习数学时间的众数为20 hD.全班超过半数同学每周在线学习数学的时间超过3 h8.若分式方程6(x+1)(x-1)-mx-1=6有增根,则它的增根是()A.0 B.1 C.-1 D.1或-19.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A.5 B.4 C.3 D.210.如图,将线段AB平移到线段CD的位置,则a+b的值为() A.4 B.0 C.3 D.-511.如图,在▱ABCD中,对角线AC,BD相交于点O,点E是BC的中点,若AB =16,则OE的长为()A.8 B.6 C.4 D.312.如图,E ,F 分别是平行四边形ABCD 的边AD ,BC 上的点,且BE ∥DF ,AC分别交BE ,DF 于点G ,H .下列结论:①四边形BFDE 是平行四边形;②△AGE ≌△CHF ;③BG =DH ;④S △AGE ︰S △CDH =GE ︰DH .其中正确的个数是( ) A .1B .2C .3D .4二、填空题(本大题共6道小题,每小题3分,满分18分) 13.如果a 2-2a =0,则2a 2 020-4a 2 019+2 020的值为________. 14.使代数式x +3x -3÷x 2-9x +4有意义的x 的取值范围是________.15.一组数据3,2,x ,2,6,3的唯一众数是2,则这组数据的方差为________. 16.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,且AB ⊥AC ,∠DAC =45°,如果AC =2,那么BD 的长是________.17.如图,在平面直角坐标系中,点A (3,0),点B (0,2),连接AB ,将线段AB绕点A 顺时针旋转90°得到线段AC ,连接OC ,则线段OC 的长度为________.18.如图,在▱ABCD 中,AB =6,∠BAD 的平分线与BC 的延长线交于点E ,与DC交于点F,且点F为边CD的中点,DG⊥AE,垂足为G,若DG=5,则AE的长为________.三、解答题(本大题共7道小题,满分66分)19.(9分)分解因式:(1)x3-x;(2)2a2-4a+2;(3)m4-2m2+1.20.(7分)先化简,再求值:1x÷ ⎝⎛⎭⎪⎫x2+1x2-x-2x-1+1x+1,其中x的值为方程2x=5x-1的解.21.(8分)某校八年级开展英语拼写大赛,爱国班和求知班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据统计图直接写出上表中a,b,c的值;(2)已知爱国班复赛成绩的方差是70,请求出求知班复赛成绩的方差,并说明哪个班成绩比较稳定.22.(10分)如图所示,已知射线CB∥OA,∠C=∠OAB=120°,E,F在CB上,且∠1=∠2,∠3=∠4.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC是否随之变化?若变化,找出规律或求出其变化范围;若不变,求出这个比.23.(10分)2020年初,市场上防护口罩出现热销.某药店用3 000元购进甲、乙两种不同型号的口罩共1 100只进行销售,已知购进甲种口罩与乙种口罩的费用相同,购进甲种口罩单价是乙种口罩单价的1.2倍.(1)求购进的甲,乙两种口罩的单价各是多少;(2)若甲、乙两种口罩的进价不变,该药店计划用不超过7 000元的资金再次购进甲、乙两种口罩共2 600只,求甲种口罩最多能购进多少只.24.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F,AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.25.(12分)已知在△ABC中,AB=AC,点D在BC上,以AD,AE为腰作等腰三角形ADE,且∠ADE=∠ABC,连接CE,过E作EM∥BC交CA的延长线于M,连接BM.(1)求证:△BAD≌△CAE;(2)若∠ABC=30°,求∠MEC的度数;(3)求证:四边形MBDE是平行四边形.答案一、1.C 2.C 3.B 4.C 5.C 6.B7.B8.B【点拨】分式方程的最简公分母为(x+1)(x-1),去分母得6-m(x+1)=6(x+1)(x-1).由分式方程有增根,得到(x+1)(x-1)=0,即x=1或x=-1,把x=-1代入整式方程得6=0,无解,则它的增根是1.故选B.9.B【点拨】由平移的性质可知,AD=BE,∵BC=CE,BC=2,∴BE=4,∴AD=4.故选B.10.A【点拨】由题意知,线段AB向左平移3个单位长度,再向上平移4个单位长度得到线段CD,∴a=5-3=2,b=-2+4=2,∴a+b=4.故选A. 11.A【点拨】∵在▱ABCD中,对角线AC,BD相交于点O,∴点O是AC的中点.又∵点E是BC的中点,∴EO是△ABC的中位线,∴EO=12AB=8.故选A.12.D【点拨】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵BE∥DF,∴四边形BFDE是平行四边形,故①正确;∵四边形BFDE 是平行四边形, ∴BF =DE ,DF =BE ,∴AE =FC ,∵AD ∥BC ,BE ∥DF ,∴∠DAC =∠ACB ,∠ADF =∠DFC ,∠AEB =∠ADF , ∴∠AEB =∠DFC , ∴△AGE ≌△CHF (ASA ),故②正确;∵△AGE ≌△CHF ,∴GE =FH , ∵BE =DF ,∴BG =DH ,故③正确; ∵△AGE ≌△CHF ,∴S △AGE =S △CHF , ∵S △CHF ︰S △CDH =FH ︰DH ,∴S △AGE ︰S △CDH =GE ︰DH ,故④正确.故选D. 二、13.2 020 14.x ≠±3且x ≠-415.2 【点拨】∵数据3,2,x ,2,6,3的唯一众数是2,∴x =2.∴3,2,2,2,6,3的平均数为16×(3+2+2+2+6+3)=3,则这组数据的方差为16×[(2-3)2×3+(3-3)2×2+(6-3)2]=2.16.25 【点拨】∵四边形ABCD 是平行四边形,∴AD ∥BC ,OB =OD ,OA =12AC =1,∴∠ACB =45°.∵AB ⊥AC ,∴△ABC 是等腰直角三角形,∴AB =AC =2.在Rt △AOB 中,根据勾股定理,得OB =5,∴BD =2BO =2 5. 17.34 【点拨】如图,作CH ⊥x 轴于H .∵A (3,0),B (0,2),∴OA =3,OB =2,∵∠AOB =∠BAC =∠AHC =90°,∴∠BAO +∠HAC =90°,∠HAC +∠ACH =90°,∴∠BAO =∠ACH .∵AB =AC ,∴△ABO ≌△CAH (AAS ),∴AH =OB =2,CH =OA =3,∴OH =OA +AH =3+2=5,∴OC =OH 2+CH 2=52+32=34.18.8 【点拨】∵AE 为∠DAB 的平分线, ∴∠DAE =∠BAE .∵四边形ABCD 为平行四边形, ∴AD ∥BC ,DC ∥AB ,DC =AB . ∵DC ∥AB ,∴∠BAE =∠DFA ,∴∠DAE =∠DFA , ∴AD =FD . 又∵DG ⊥AE ,∴AG =FG ,即AF =2AG . ∵F 为DC 的中点,∴DF =CF , ∴AD =DF =12DC =12AB =3.在Rt △ADG 中,根据勾股定理得AG =2,则AF =2AG =4. ∵AD ∥BC ,∴∠DAF =∠E ,∠ADF =∠ECF . 在△ADF 和△ECF 中,⎩⎨⎧∠DAF =∠E ,∠ADF =∠ECF ,DF =CF ,∴△ADF ≌△ECF (AAS), ∴AF =EF ,则AE =2AF =8.三、19.解:(1)x 3-x =x (x 2-1)=x (x +1)(x -1); (2)2a 2-4a +2=2(a 2-2a +1)=2(a -1)2; (3)m 4-2m 2+1=(m 2-1)2=(m +1)2(m -1)2. 20.解:1x ÷⎝ ⎛⎭⎪⎫x 2+1x 2-x -2x -1+1x +1 =1x ÷x 2+1-2x x (x -1)+1x +1=1x ·x (x -1)(x -1)2+1x +1=1x-1+1 x+1=2x(x+1)(x-1).解方程2x=5x-1,得x=1 3.当x=13时,原式=-34.21.解:(1)a=85;b=80;c=85.(2)求知班成绩的方差为15×[(70-85)2+(75-85)2+(80-85)2+2×(100-85)2]=160.∵70<160,∴爱国班的成绩比较稳定.22.解:(1)∵CB∥OA,∴∠C+∠COA=180°.∵∠C=120°,∴∠COA=180°-∠C=180°-120°=60°.∵∠1=∠2,∠3=∠4,∴∠COA=2∠1+2∠4=2(∠1+∠4)=2∠EOB.∴∠EOB=12∠COA=12×60°=30°.(2)不变化.∵CB∥OA,∴∠OBC=∠2,∠OFC=∠FOA.又∵∠1=∠2,∴∠OBC=∠1,∴∠OFC=2∠1,∴∠OBC∠OFC=∠12∠1=1 2.23.解:(1)3 000÷2=1 500(元).设乙种口罩的单价为x元,则甲种口罩的单价为1.2x元,由题意,得1 500 1.2x+1 500x=1 100,解得x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.∴甲种口罩的单价为3元,乙种口罩的单价为2.5元.(2)设该药店购进甲种口罩a只,则购进乙种口罩(2 600-a)只,由题意,得3a+2.5(2 600-a)≤7 000,解得a≤1 000.∴甲种口罩最多能购进1 000只.24.(1)解:∵AE⊥BD,∴∠AEO=90°.∵∠AOE=50°,∴∠EAO=40°.∵AC平分∠DAE,∴∠DAC=∠EAO=40°.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ACB=∠DAC=40°.(2)证明:∵四边形ABCD是平行四边形,∴OA=OC.∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°.∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.25.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∴∠BAC=180°-2∠ABC.∵以AD,AE为腰作等腰三角形ADE,∴AD=AE,∴∠ADE=∠AED,∴∠DAE=180°-2∠ADE.∵∠ADE=∠ABC,∴∠BAC=∠DAE,∴∠BAC-∠CAD=∠DAE-∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).(2)解:∵AB=AC,∴∠ACB=∠ABC=30°.∵△BAD≌△CAE,∴∠ABD=∠ACE=30°,∴∠ECB=∠ACB+∠ACE=60°.∵EM∥BC,∴∠MEC+∠ECD=180°,∴∠MEC=180°-60°=120°.(3)证明:∵△BAD≌△CAE,∴DB=CE,∠ABD=∠ACE.∵AB=AC,∴∠ABD=∠ACB,∴∠ACB=∠ACE.∵EM∥BC,∴∠EMC=∠ACB,∴∠ACE=∠EMC,∴ME=EC,∴DB=ME.又∵EM∥BD,∴四边形MBDE是平行四边形.2023年鲁教版(五四制)数学八年级上册期末考试测试卷(三)一.选择题(本题共10个小题)每小题均给出标号为A、B.C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.下列图形中,是中心对称图形的是()A.B.C.D.2.分式﹣可变形为()A.B.C.﹣D.﹣3.下列分式,,,中,最简分式有()A.1个B.2个C.3个D.4个4.空气是混合物,为了直观介绍空气各成分的百分比,最适合用的统计图是()A.折线统计图B.条形统计图C.散点统计图D.扇形统计图5.某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)5055606570车辆数(辆)54821则上述车速的中位数和众数分别是()A.60,8B.60,60C.55,60D.55,86.早上6:20的时候,钟表的时针和分针所夹的锐角是()A.50°B.60°C.70°D.80°7.计算:101×1022﹣101×982=()A.404B.808C.40400D.808008.如图,已知四边形ABCD中,R、P分别为BC、CD上的点,E、F分别为AP、RP的中点,当点P在CD上从点C向点D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长不变C.线段EF的长逐渐减小D.线段EF的长与点P的位置有关9.如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.平均数是95分B.中位数是95分C.众数是90分D.方差是1510.如图1,平行四边形纸片ABCD的面积为120,AD=20.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片,若将甲、丙合井(AD、CB重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为()A.26B.29C.24D.25二、填空题(本题共10个小题)11.如图,△ABC是等边三角形,D为BC边上的点,△ABD经旋转后到达△ACE的位置,若∠CAE=15°,那么∠DAC=.12.若关于x的二次三项式x2+ax+16是完全平方式,则a的值是.13.若m2﹣n2=3,且m﹣n=6,则m+n=.14.若关于x的方程﹣=0产生增根,则m=.15.如图,△ABC沿边BC所在直线向右平移得到△DEF,下列结论:①△ABC≌△DEF;②∠DEF=∠B;③AC=DF;④EC=CF.正确的有(只填序号).16.一个多边形的内角和比四边形内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角的度数是.17.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是.18.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为19,OE=2.5,则四边形EFCD的周长为.19.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.20.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,若CG=2BG,S△BPG=2,则S▱AEPH=.三、解答题(本大题共9个小题)21.分解因式:(1)(x2+25)2﹣100x2.(2)3(x﹣1)2﹣18(x﹣1)+27.22.先化简(1﹣)÷,再从﹣2,﹣1,2中选一个合适的数代入并求值.23.解方程:﹣=﹣.24.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C.(2)平移△ABC,使点A的对应点A2坐标为(﹣3,﹣4),请画出平移后对应的△A2B2C2.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.25.我省某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩数据如图表所示.平均分(分)中位数(分)众数(分)方差初中部 a 85 b s 初中2 高中部85c100160(1)计算出a 、b 、c 的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好? (3)计算初中代表队决赛成绩的方差S中,并判断哪一个代表队选手成绩较为稳定.26.阅读下列材料,并解答其后的问题: 定义:两组邻边分别相等的四边形叫做筝形,如图1,四边形ABCD 中,若AD =AB ,CD =CB ,则四边形ABCD 是筝形. 类比研究我们在学完平行四边形后,知道可以从对称性、边角和对角线四个角度对平行四边形的性质进行研究,请根据示例图形,完成表格. 四边形 示例图形对称性边角 对角线 平行 四边形是中心对称图形两组对边分别平行,两组对边分别相等.两组对角分别相等. 对角线互相平分.筝形① 两组邻边分别相等有一组对角相等②(1)表格中①、②分别填写的内容是: ① ;② ;(2)证明筝形有关对角线的性质.已知:如图2,在第形ABCD 中,AD =AB ,BC =DC ,对角线AC ,BD 交于点O . 求证: ; 证明:(3)运用:如图2,已知筝形ABCD 中,AD =AB =4,CD =CB ,∠BAD ﹣120°,∠DCB=60*.求筝形ABCD的面积.27.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,同样用3600元购买排球要比购买篮球多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?28.如图,在△ABC中,CD是AB边的中线,E是CD的中点,连接AE并延长交BC于点F.求证:BF=2CF.29.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证DE+DF=AC.(2)当点D在边BC的延长线上时,如图②,线段DE,DF,AC之间的数量关系是为什么?(3)当点D在边BC的反向延长线上时,如图③,线段DE,DF,AC之间的数量关系是(不需要证明).。

【鲁教版】初二数学上期末试卷(带答案)

【鲁教版】初二数学上期末试卷(带答案)

一、选择题1.使分式21xx -有意义的x 的取值范围是( )A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数2.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12-3.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -4.2a ab b a ++-的结果是( ).A .2a-B .4aC .2b a b--D .b a- 5.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ±B .-1或4814x C .29x - D .6x ±或1-或29x -6.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .17.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++ 8.下列运算中错误的是( ). A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+19.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A .5cmB .6cmC .7cmD .8cm10.如图,AC AD =,BC BD =,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .CD 平分ACB ∠D .AB 垂直平分CD11.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 12.下列长度(单位:cm )的三条线段能组成三角形的是( )A .13,11,12B .3,2,1C .5,12,7D .5,13,5二、填空题13.符号“a b c d”称为二阶行列式,规定它的运算法则为:a b c d=ad ﹣bc ,请你根据上述规定求出下列等式中x 的值.若2111111xx =--,那么x =__.14.已知关于x 的方程321x mx -=-的解是正数,则m 的取值范围为____________. 15.已知10的整数部分是a .小数部分是b ,则2a b -=______.16.若2x y a +=,2x y b -=,则22x y -的值为____________.17.如图,在△ABC 中,直线l 垂直平分BC ,射线m 平分∠ABC ,且l 与m 相交于点P ,若∠A =60°,∠ACP =24°,则∠ABP =_____°.18.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________19.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .20.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.三、解答题21.计算.(1)因式分解:243x y xy y ++.(2)解方程:22312442x x x x-=--+-. 22.分式计算与解方程:(1)21211a a a a ----; (2)121221xx x +=-+. 23.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥(当且仅当m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.24.如图,在平面直角坐标系中有ABC :(1)已知111A B C △和ABC 关于y 轴对称,在图中画出111A B C △; (2)将111A B C △沿x 轴向右平移4个单位,在图中画出平移后的222A B C △; (3)222A B C △和ABC 关于某条直线l 对称,在图中画出对称轴l . 25.如图,AB AD =,AC AE =,CAE BAD ∠=∠.求证:B D ∠=∠.26.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围. 【详解】由题意,得x 2−1≠0, 解得:x≠±1, 故选:C . 【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.3.C解析:C 【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可. 【详解】 解:()3222()m m m -÷⋅=()468mm -÷ =()468m m -÷=28m -, 故选:C . 【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.4.C解析:C 【分析】根据分式的加减运算的法则计算即可. 【详解】222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.5.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有4种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2; 添加﹣9x 2,得9x 2+1﹣9x 2=12; 添加﹣1,得9x 2+1﹣1=(3x )2, 故选:D . 【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.6.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.7.C解析:C 【分析】利用不同的方法表示出空白部分的面积:一种是利用公式2()a b -直接计算,另一种是割补法得222a ab b -+,根据面积相等即可建立等式,得出结论. 【详解】解:空白部分的面积:2()a b -, 还可以表示为:222a ab b -+, ∴此等式是222()2a b a ab b -=-+. 故选:C . 【点睛】本题考查了完全平方公式的几何意义,注意图形的分割与拼合,会用不同的方法表示出空白部分的面积是解题的关键.8.C解析:C 【分析】根据幂的乘方法则、积的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则计算即可. 【详解】 解:A:()()4444443381n n n a b a b a b --=--=- ,故答案正确;B:()41444n nn na b a b +++=+ ,故答案正确; C:()()232262623427108n nn a a a a a +-⋅=⋅= ,故答案错误;D:()113253525n nn nx x x x x x x ++-=⋅-⋅ =211510n n x x ++- ,故答案正确.故选:C . 【点睛】此题考查了积的乘方法则、幂的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则,熟练掌握运算法则是解题的关键.9.D解析:D 【分析】要求运动后得到的等腰三角形的腰长,首先要求出动点所运动的时间.我们可以设M 、N 运动的时间为x 秒. 【详解】设M 、N 运动的时间为x 秒.当CMN △是以MN 为底的等腰三角形时,,182, 1.6CM CN CM x CN x ==-= 即182 1.6x x -=,解得5x =. ∴腰长为5 1.68cm ⨯= 故选D .【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度.10.D解析:D 【分析】根据线段垂直平分线的判定定理解答. 【详解】∵AC AD =,BC BD =, ∴AB 垂直平分CD , 故D 正确,A 、B 错误, OC 不平分∠ACB ,故C 错误, 故选:D . 【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.11.D解析:D 【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确; 【详解】∵ BD 为∠ABC 的角平分线, ∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA , ∴△ABD EBC ∆∆≌(SAS),故①正确; ∵ BD 平分∠ABC ,BD=BC ,BE=BA , ∴ ∠BCD=∠BDC=∠BAE=∠BEA , ∵△ABD ≌△EBC , ∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°, 故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE , ∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA , ∴∠DCE=∠DAE , ∴△ACE 是等腰三角形, ∴AE=EC , ∵△ABD ≌△EBC , ∴AD=EC ,∴AD=AE=EC,故③正确;作EG⊥BC,垂足为G,如图所示:∵ E是BD上的点,∴EF=EG,在△BEG和△BEF中BE BE EF EG=⎧⎨=⎩∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中EF EG AE CE=⎧⎨=⎩∴△CEG≌△AFE,∴ AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;12.A解析:A【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A、11+12>13,能组成三角形,符合题意;B、1+2=3,不能组成三角形,不符合题意;C、5+7=12,不能组成三角形,不符合题意;D、5+5<13,不能组成三角形,不符合题意;故选A.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题13.4【分析】首先根据题意由二阶行列式得到一个分式方程解分式方程即得问题答案【详解】解:∵=1∴方程两边都乘以x ﹣1得:2+1=x ﹣1解得:x =4检验:当x =4时x ﹣1≠01﹣x≠0即x =4是分式方程的解析:4【分析】首先根据题意由二阶行列式得到一个分式方程,解分式方程即得问题答案 .【详解】解:∵211111xx --=1, ∴21111x x-=--, 方程两边都乘以x ﹣1得:2+1=x ﹣1,解得:x =4,检验:当x =4时,x ﹣1≠0,1﹣x≠0,即x =4是分式方程的解,故答案为:4.【点睛】本题考查分式方程与新定义实数运算的综合运用,通过观察所给运算式子归纳出运算规律并得到分式方程再求解是解题关键.14.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.15.6-16【分析】先估算确定ab 的值进而即可求解【详解】∵<<∴3<<4又∵a 是的整数部分b 是的小数部分∴a =3b =−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a ,b 的值,进而即可求解.【详解】 ∵∴3<4,又∵a b 的小数部分,∴a =3,b−3,∴2a b -=−3)2-16.故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a 、b 的值是解决问题的关键.16.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键 解析:4ab .【分析】应用平方差把多项式22x y -因式分解,再整体代入即可.【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键. 17.32【分析】根据角平分线定义求出∠ABP =∠CBP 根据线段的垂直平分线性质得出BP =CP 根据等腰三角形的性质得到∠CBP =∠BCP 根据三角形内角和定理得出方程3∠ABP+24°+60°=180°解方解析:32【分析】根据角平分线定义求出∠ABP =∠CBP ,根据线段的垂直平分线性质得出BP =CP ,根据等腰三角形的性质得到∠CBP =∠BCP ,根据三角形内角和定理得出方程3∠ABP +24°+60°=180°,解方程得到答案.【详解】解:∵BP 平分∠ABC ,∴∠ABP =∠CBP ,∵直线l 是线段BC 的垂直平分线,∴BP =CP ,∴∠CBP =∠BCP ,∴∠ABP =∠CBP =∠BCP ,∵∠A +∠ACB +∠ABC =180°,∠A =60°,∠ACP =24°,∴3∠ABP +24°+60°=180°,解得:∠ABP =32°,故答案为:32.【点睛】本题考查角平分线的定义和垂直平分线的性质,解题的关键是掌握角平分线的定义和垂直平分线的性质.18.25°【分析】先根据AB=AD 利用三角形内角和定理求出∠B 和∠ADB 的度数再根据三角形外角的性质即可求出∠C 的大小【详解】解:∵AB=AD ∴∠B=∠ADB ∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD ,利用三角形内角和定理求出∠B 和∠ADB 的度数,再根据三角形外角的性质即可求出∠C 的大小.【详解】解:∵AB=AD ,∴∠B=∠ADB ,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.19.1或15【分析】分两种情况讨论:当△ACP ≌△BPQ 时从而可得点的运动速度;当△ACP ≌△BQP 时可得:从而可得点的运动速度从而可得答案【详解】解:当△ACP ≌△BPQ 时则AC =BPAP =BQ ∵AC解析:1或1.5【分析】分两种情况讨论:当△ACP ≌△BPQ 时,1AP BQ ==, 从而可得Q 点的运动速度;当△ACP ≌△BQP 时,可得:23AP BP BQ ===,, 从而可得Q 点的运动速度,从而可得答案.【详解】解:当△ACP ≌△BPQ 时,则AC =BP ,AP =BQ ,∵AC =3cm ,∴BP =3cm ,∵AB =4cm ,∴AP =1cm ,∴BQ =1cm ,∴点Q 的速度为:1÷(1÷1)=1(cm/s );当△ACP ≌△BQP 时,则AC =BQ ,AP =BP ,∵AB =4cm ,AC =BD =3cm ,∴AP =BP =2cm ,BQ =3cm ,∴点Q 的速度为:3÷(2÷1)=1.5(cm/s );故答案为:1或1.5.【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键.20.74°【分析】先根据三角形的内角和定理求得∠ACB 的度数再根据CE 平分∠ACB 求得∠ACE 的度数则根据三角形的外角的性质就可求得∠CED =∠A+∠ACE 再结合CD ⊥ABDF ⊥CE 就可求解【详解】解:解析:74°【分析】先根据三角形的内角和定理求得∠ACB 的度数,再根据CE 平分∠ACB 求得∠ACE 的度数,则根据三角形的外角的性质就可求得∠CED =∠A +∠ACE ,再结合CD ⊥AB ,DF ⊥CE 就可求解.【详解】解:∵∠A =40°,∠B =72°,∴∠ACB =180°﹣40°﹣72°=68°,∵CE 平分∠ACB ,∴∠ACE =∠BCE =34°,∴∠CED =∠A +∠ACE =74°,∵CD ⊥AB ,DF ⊥CE ,∴∠CDF +∠ECD =∠ECD +∠CED =90°,∴∠CDF =∠CED =74°,故答案为:74°.【点睛】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.三、解答题21.(1)(1)(3)y x x ++;(2)3x =【分析】(1)先提取公因式,再用十字相乘分解即可;(2)先去分母,把方程化为整式方程,再解整式方程,最后检验即可.【详解】解:(1)原式()243(1)(3)y x x y x x =++=++.(2)22312442x x x x-=--+- 方程两边同时乘()22x -得,2(2)3(2)x x --=--去括号,2432x x --=-+移项合并同类项,39x =系数化为1,3x =,检验:把3x =代入,(2)(2)0x x -+≠,所以,3x =是原方程的解.【点睛】本题考查了因式分解和解分式方程,要注意:因式分解要彻底,分式方程要检验. 22.(1)1a -;(2)13x =【分析】(1)先对分式变形化成同分母的分式,然后利用同分母分式的运算法则运算即可; (2)利用分式的性质,将分式方程化成整式方程,然后再求解,最后验根得出结果.【详解】 解:(1)21211a a a a ----21211a a a a -=+--2211a a a -+=-()211a a -=-1a =-;(2)121221x x x +=-+ 方程两边同乘()()221x x -+,得:()()()()2122122x x x x x ++-+=- 解得:13x =, 检验:当13x =时,()()2210x x -+≠, 所以,原方程的解为13x =. 【点睛】本题考查分式的加减运算及解分式方程,熟练掌握分式运算的法则及解分式方程的方法是解题的关键.23.(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2 (2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-44(36)20162(36)20163636x x x x =-++≥-⋅+-- 242016=+2020=当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020. 【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.24.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对称轴的位置进而得出答案.【详解】解:(1)如图所示:(2)如图所示;(3)如图所示.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键. 25.见解析【分析】先证明BAC DAE ∠=∠,再根据“SAS”证明ABC ADE △≌△即可.【详解】证明:CAE BAD ∠=∠,CAE EMB BAD EAB ∴∠+∠=∠+∠,即BAC DAE ∠=∠.在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴≌.B D ∴∠=∠.【点睛】题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.26.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t , ∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯-=360315152t t ---+=3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD ∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.。

【鲁教版】八年级数学上期末试题(及答案)

【鲁教版】八年级数学上期末试题(及答案)

一、选择题1.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++D .222()x y x y -+2.若a 与b 互为相反数,则22201920212020a bab+=( )A .-2020B .-2C .1D .23.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5B .6C .7D .84.下列式子的变形正确的是( )A .22b b a a=B .22+++a b a b a b=C .2422x y x yx x --=D .22m nn m-=- 5.若2x y +=,1xy =-,则()()1212x y --的值是( ) A .7-B .3-C .1D .96.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0 B .2- C .0或2-D .以上答案都不对7.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断: ①**a b b a =; ②()222**a b a b =; ③()()**a b a b -=-; ④()**a b c a b a c +=+*. 其中所有正确推断的序号是( ) A .①②③④ B .①③④ C .①② D .①③ 8.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( )A .1B .0C .1或2D .0或4 9.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75°B .90°C .105°D .120°或20°10.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.5 11.在尺规作图作一个角的平分线时的两个三角形全等的依据是( ) A .SASB .AASC .SSSD .HL12.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°二、填空题13.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 14.计算:22311x x x -=+-____________. 15.已知2m a =,5n a =,则2m n a -=___________. 16.若a - b = 1, ab = 2 ,则a + b =______.17.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上,PM PN =,若3,MN =则OM 的长是__________.18.如图,∠ABC 的平分线BF 与△ABC 中∠ACB 的相邻外角∠ACG 的平分线CF 相交于点F ,过F 作DF ∥BC ,交AB 于D ,交AC 于E ,若BD =8cm ,DE =3cm ,AE =2,求AC 的长为_____cm .19.如图,在ABC 中,AB AC =,BD CD =,点E ,F 是AD 上的任意两点、若8BC =,6AD =,则图中阴影部分的面积为__________.20.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.三、解答题21.先化简:22122441a a a a a a ⎛⎫-÷ ⎪-⎭-⎝+-+,然后从0,2,3中选择一个合适的数代入求值.22.(1)计算:0(23)43218π-+-- (2)解不等式:452(1)x x +≤+23.小王购买了一套一居室,他准备将房子的地面全部铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示地面的总面积S ;(2)已知 1.5n =,且客厅面积是卫生间面积的6倍与厨房面积的和,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?24.如图,在平面直角坐标系中,ABC 三个顶点坐标分别为()3,3A ,()1,1B ,()4,1C -.(1)画出ABC ,并求出ABC 的面积;(2)在图中作出ABC 关于y 轴对称的图形111A B C △,并写出2B 、1C 两点的坐标.25.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .26.已知22a m n =+,2b m =,c mn =,且m >n >0. (1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答. 【详解】 A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式;B 、22y x x y--=-x-y ,故该项不是最简分式;C 、2222x y x y xy ++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x yx y-+,故该项不是最简分式;故选:C . 【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.2.B解析:B 【分析】a 与b 互为相反数,由相反数的定义与性质得22=,a b a b -=,将代数式中字母统一成b,合并约分即可. 【详解】∵a 与b 互为相反数, ∴22=,a b a b -=,222222019202120192021220202020a b b b ab b ++==--,故选择:B . 【点睛】本题考查分式求值问题,掌握相反数的定义与性质,会利用相反数将代数式的字母统一为b 是解题关键.3.C解析:C 【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩,∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.4.C解析:C 【分析】根据分式的性质逐一判断即可. 【详解】解:A. 22b b a a=不一定正确;B. 22+++a b a b a b=不正确;C. 2422x y x yx x --=分子分母同时除以2,变形正确; D.22m nn m-=-不正确; 故选:C . 【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.5.A解析:A 【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值. 【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7; 故选:A . 【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.A解析:A 【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案. 【详解】 解:根据题意, ∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020, ∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==, ∴222||2||0x y x y -+-=; 故选:A . 【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-.7.D解析:D 【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可. 【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-, ∴a*b=b*a 成立; ②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a b a b a b -=-+,∵()()()422a b a b a b -≠-+∴(a*b )2=a 2*b 2不成立;③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦, ∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立; 故选:D .【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键.8.D解析:D【分析】依据绝对值的性质,即可得到m﹣3n=2020或2018,进而得出m﹣3n的值,再根据平方运算,即可得到(2020﹣m+3n)2的值.【详解】∵|m﹣3n﹣2019|=1,∴m﹣3n﹣2019=±1,即m﹣3n=2020或2018,∴2020﹣m+3n=2020﹣(m﹣3n)=0或2,∴(2020﹣m+3n)2的值为0或4,故选:D.【点睛】本题考查绝对值的性质和代数式求值,利用整体思想求出m﹣3n的值且注意去绝对值时的两种情况.9.D解析:D【分析】设两内角的度数为x、4x,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x、4x,当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30°,4x=120°;因此等腰三角形的顶角度数为20°或120°.故选:D.【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.10.C解析:C【分析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=6,BC=4,即可推出BD的长度.【详解】解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.11.C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.12.B解析:B 【分析】根据平行线和三角形外角的性质即可求出C ∠的大小. 【详解】如图,设AE 和CD 交于点F , ∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等), ∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B . 【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键.二、填空题13.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3 【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可. 【详解】 解:3122m x x -=-- 3122m x x +=-- 312m x +=- m+3=x-2 x=m+5由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】 本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 14.【分析】根据通分可化成同分母分式根据同分母分式的加减可得答案【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:323x x x-- 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】()()()()()()()3313323111111x x x x x x x x x x x x x x x x-----==+-+-+--. 故答案为:323x x x--. 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键. 15.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键 解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 16.【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键 解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴93a b +=±=±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键. 17.5【分析】作PH ⊥MN 于H 如图根据等腰三角形的性质得MH=NH=MN=15在Rt △POH 中由∠POH=60°得到∠OPH=30°则根据在直角三角形中30°角所对的直角边等于斜边的一半可得OH=OP=解析:5【分析】作PH ⊥MN 于H ,如图,根据等腰三角形的性质得MH=NH=12MN=1.5,在Rt △POH 中由∠POH=60°得到∠OPH=30°,则根据在直角三角形中,30°角所对的直角边等于斜边的一半可得OH=12OP=5,然后计算OH-MH 即可. 【详解】作PH ⊥MN 于H ,如图,∵PM=PN ,∴MH=NH=12MN=1.5, 在Rt △POH 中,∵∠POH=60°,∴∠OPH=30°,∴OH=12OP=12×10=5, ∴OM=OH-MH=5-1.5=3.5.故答案为:3.5.【点睛】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了等腰三角形的性质.18.7【分析】根据已知条件BFCF分别平分∠ABC∠ACB的外角且DE∥BC可得∠DBF=∠DFB∠ECF=∠EFC根据等角对等边得出DF=BDCE=EF根据BD-CE=DE即可求得【详解】解:∵BFC解析:7【分析】根据已知条件,BF、CF分别平分∠ABC、∠ACB的外角,且DE∥BC,可得∠DBF=∠DFB,∠ECF=∠EFC,根据等角对等边得出DF=BD,CE=EF,根据BD-CE=DE即可求得.【详解】解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴BD-CE=FD-EF=DE,∴EF=DF-DE=BD-DE=8-3=5cm,∴EC=5cm,∴AC=AE+EC=2+5=7cm,故答案为:7.【点睛】本题主要考查了等腰三角形的性质以及平行线的性质,利用边角关系并结合等量代换来推导证明是本题的特点.19.12【分析】利用SSS证明△ADC≌△ADB可得△ABD的面积=△ACD的面积通过拼接可得阴影部分的面积=△ABD的面积再利用三角形的面积公式可求解【详解】解:∵AB=ACBD=CDAD=AD∴△A解析:12【分析】利用SSS证明△ADC≌△ADB,可得△ABD的面积=△ACD的面积,通过拼接可得阴影部分的面积=△ABD的面积,再利用三角形的面积公式可求解.【详解】解:∵AB=AC,BD=CD,AD=AD,∴△ADC≌△ADB(SSS),∴S△ADC=S△ADB,∵BC=8,∴BD=4,∵AB=AC,BD=DC,∴AD⊥BC,∴EB=EC,FB=FC,∵EF=EF,∴△BEF≌△CEF(SSS)∴S△BEF=S△CEF,∵AD=6,∴S阴影=S△ADB=12BD•AD=12×4×6=12.故答案为:12.【点睛】本题考查了全等三角形的性质与判定,三角形的面积,理解S阴影=S△ADB是解题的关键.20.540°【分析】连接AGGD先根据∠H+∠K=∠HGA+∠KAG∠E+∠F=∠EDG+∠FGD最后根据多边形的面积公式解答即可【详解】解:连接AGGD∵∠H+∠K+∠HMK=180°∠HGA+∠KA解析:540°【分析】连接AG、GD,先根据∠H+∠K=∠HGA+∠KAG, ∠E+∠F=∠EDG+∠FGD,最后根据多边形的面积公式解答即可.【详解】解:连接AG、GD,∵∠H+∠K+∠HMK=180°,∠HGA+∠KAG +∠AMG=180°,∠HMK=∠AMG∴∠H+∠K=∠HGA+∠KAG;同理:∠E+∠F=∠EDG+∠FGD∴∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=∠BAK+∠B+∠C+∠CDE+∠EDG+∠FGD+∠MGN+∠HGA+∠KAG=五边形的内角和=(5-2)×180°=540°故答案为540°.【点睛】本题考查了三角形内角和定理和多边形内角和定理,根据题意正确作出辅助线成为解答本题的关键.三、解答题21.3a;1 【分析】 根据分式的减法和除法可以化简题目中的式子,然后从0,2,3中选择一个使得原分式有意义值,代入化简后的式子即可解答本题.【详解】 解:22122441a a a a a a ⎛⎫-÷ ⎪-⎭-⎝+-+ ()()2212222a a a a a a a ⎛-+-=---÷⎪⎝⎭-⎫ 22322a a a a3a= ∵当0a =或2时,原式没有意义,∴当3a =时,原式1=.【点睛】本题考查分式的化简求值,明确分式化简求值的方法和分式有意义的条件是解答本题的关键. 22.(1)3-;(2)x≤32-. 【分析】(1)原式利用零指数幂法则,绝对值的意义,以及算术平方根性质计算即可得到结果; (2)去括号,移项,合并同类项,系数化成1即可求出不等式的解集.【详解】解:(1)原式=14+-3-;(2)去括号,得4x+5≤2x+2,移项合并同类项得,2x≤-3,解得x≤32-. 【点睛】此题考查了实数的运算和解一元一次不等式,零指数幂,熟练掌握运算法则是解本题的关键.23.(1)S =6m +2n +18;(2)4500元.【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m 的值,把m ,n 的值代入计算即可.【详解】解:(1)S=2n+6m+3×4+2×3=6m+2n+18.(2)n=1.5时2n=3根据题意,得6m=8×3=24,m=4,∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.【点睛】本题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.24.(1)画图见解析;5 (2)画图见解析;()11,1B -,()14,1C --【分析】(1)先根据A 、B 、C 三点坐标描点,再顺次连接即可得到ABC ,再运用割补法即可求出ABC 的面积;(2)分别作出A 、B 、C 三点关于y 轴的对称点,再顺次连接即可,根据作图即可写出2B 、1C 两点的坐标.【详解】解:(1)ABC 如图所示: 111341422235222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△;(2)111A B C △如图所示:()11,1B -,()14,1C --.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质. 25.见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.26.(1)a >b >c ;(2)见解析【分析】(1)a 、b 、c 两两作差可得出a 、b 、c 之间的大小关系;(2)对于任意一个三角形的三边a ,b ,c ,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0∴a >b >c ;(2)由(1)a >b >c 可得,a +b >c∵a -b = m 2+n 2-m 2=n 2<mn∴a -b <c∴以a、b、c为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在.。

【鲁教版】初二数学上期末试卷(带答案)(1)

【鲁教版】初二数学上期末试卷(带答案)(1)

一、选择题1.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .42.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( )A .1524x x 3=+B .1524x x 3=- C .1524x 3x =+ D .1524x 3x =- 3.下列各式计算正确的是( ) A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a b a b b -÷=-D .()325339a b a b -=-4.下列计算正确的个数为( )①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=.A .2B .3C .4D .55.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是( )(用含有a 、b 的代数式表示).A .a-bB .a+bC .abD .2ab 6.已知: 13m m +=, 则: 331m m +的值为( ) A .15B .18C .21D .9 7.如果x+y =6,x 2-y 2=24,那么y-x 的值为( )A .﹣4B .4C .﹣6D .68.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ).A .6或20B .20 或-20C .6或-6D .-6或20 9.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A .13B .32C .40D .20 10.平面直角坐标系中,点A (3,2)与点B 关于y 轴对称,则点B 的坐标为( ) A .(3,-2) B .(-3,-2) C .(-3,2) D .(-2,3) 11.如图,下列结论中正确的是( )A .12A ∠>∠>∠B .12A ∠>∠>∠C .21A ∠>∠>∠D .21A ∠>∠>∠ 12.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF二、填空题13.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.14.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.15.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 16.下列说法:①用两个钉子就可以把木条固定在墙上依据的是“两点之间,线段最短”;②若2210m m +-=,则2425m m ++的值为7;③若a b >,则a 的倒数小于b 的倒数;④在直线上取A 、B 、C 三点,若5cm AB =,2cm BC =,则7cm AC =.其中正确的说法有________(填号即可).17.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.18.如图,在锐角△ABC 中,AB =62 ,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值是_____________.19.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.20.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.三、解答题21.先化简,再求值:(x ﹣1﹣21x x +)÷221x x x ++,其中x =3. 22.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时. (1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?23.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-; 请根据这一规律计算:(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.24.已知,如图ABC ,AE 平分BAC ∠,EF AB ⊥,垂足为F ,点F 在AB 的延长线上,EG AC ⊥,垂足为点G ,ED 垂直平分BC ,D 为垂足,连结BE ,CE . 求证:BEF CEG △≌△.25.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .26.如图,四边形ABCD 中,ABC ∠和BCD ∠的平分线交于点O .(1)如果130A ∠=︒,110D ∠=︒,求BOC ∠的度数;(2)请直接写出BOC ∠与A D ∠+∠的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.2.D解析:D【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程.【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D .【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键.3.A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.4.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确; ⑦()()23428614•a a a a a -=-⋅=-,故⑦错误; ⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则.5.C解析:C【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可.【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y a y x b +=⎧⎨-=⎩, 解得:42a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab b a ab b ab ++-+=-==ab . 故选C .【点睛】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键. 6.B解析:B【分析】 把13m m +=两边平方得出221m m +的值,再把331m m+变形代入即可得出答案 【详解】 解:∵13m m+=, ∴219⎛⎫+= ⎪⎝⎭m m , ∴221=7+m m ∴()3232111=m+m 1+=371=18m m ⎛⎫⎛⎫+-⨯- ⎪⎪⎝⎭⎝⎭m m 故选:B【点睛】本题考查了完全平方公式的应用,熟练掌握公式是解题的关键7.A解析:A【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解.【详解】解:∵x 2-y 2=(x+y )(x-y )=24,∴6(x-y )=24,∴x-y=4,∴y-x=-4,故选:A .【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.8.A解析:A【分析】先求出a b ,的值,根据条件+a b >0,确定=13a ,b=7±,分类代入-a b 求值即可.【详解】|a |=13,=13a ±,|b|=7,b=7±,∵+a b >0,∴=13a ,b=7±,当=13a ,b=7时,=1376a b --=,当=13a ,7b =-时,=13+720a b -=,则6a b -=或20.故选择:A .【点睛】本题考查条件限定求值问题,会根据限定条件求出字母的值,掌握分类思想求代数式的值是解题关键.9.A解析:A【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE ,然后根据等边对等角可得∠ECD=∠A ,再根据三角形内角和等于180°求出∠B=72°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,然后根据等角对等边的性质和勾股定理解答.【详解】解:∵D 是AC 的中点,ED AC ⊥交AB 于点E ,∴ED 垂直平分AC ,∴AE=CE ,∴∠ECD=∠A ,∵∠A=36°,∴∠ECD=36°,∵AB=AC ,∠A=36°,∴∠B=1(180°-36°)=72°,2∵∠ECD=∠A=36°,∴∠BEC=∠ECD+∠A=36°+36°=72°,∴∠B=∠BEC,∴BC=CE,∵AE=CE,ED⊥AC,∴CD=1AC=3,2在Rt△CED中,∴故选A.【点睛】本题考查了等腰三角形三线合一的性质,勾股定理,线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角以及等角对等边的性质,熟练掌握有关性质是解题的关键.10.C解析:C【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点A(3,2)关于y轴对称点的坐标为B(−3,2).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.D解析:D【分析】三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.【详解】解:∵∠2是△BCD的外角,∴∠2>∠1,∵∠1是△ABC的外角,∴∠1>∠A,∴21A ∠>∠>∠.故选D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键. 12.C解析:C【分析】由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.二、填空题13.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 15.【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.【详解】 解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯ =1120. 故答案为:1120. 【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.16.②【分析】①用两个钉子可以把木条固定的依据是两点确定一条直线;②利用整体代换的思想可以求出代数式的值;③根据倒数的定义举出反例即可;④直线上ABC 三点的位置关系要画图分情况讨论【详解】①用两个钉子可解析:②【分析】①用两个钉子可以把木条固定的依据是“两点确定一条直线”;②利用“整体代换”的思想,可以求出代数式的值;③根据倒数的定义,举出反例即可;④直线上A 、B 、C 三点的位置关系,要画图,分情况讨论.【详解】①用两个钉子可以把木条固定的依据是“两点确定一条直线”,故①错误;②∵2210m m +-=,∴()2242522172077m m m m ++=+-+=⨯+=,故②正确;③∵a >b ,取a=1,b=-1, ∴11a =,11b=-,11a b >,故③错误; ④当点C 位于线段AB 上时,AC=AB -BC=5-2=3cm ;当点C 位于线段AB 的延长线上时,AC=AB+BC=5+2=7cm ,则AC 的长为3cm 或7cm ,故④错误;综上可知,答案为:②.【点睛】本题考查了两点确定一条直线、整体代换思想、求代数式的值、倒数的有关计算及数形结合法求线段的长度,综合性较强,需要学生熟练掌握相关的知识点.17.【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵垂直平分∴∴∵∴∴∵BD 平分∴∴故答案是【点睛】本题主要考查了垂直平分线和角平分线的性质结合三角形外角性质和三角形内角和定理计算是关键解析:87︒【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵DE 垂直平分BC ,∴DB DC =,∴∠=∠DBC C ,∵31C ∠=︒,∴31DBC ∠=︒,∴62ADB C DBC ∠=∠+∠=︒,∵BD 平分ABC ∠,∴31ABD DBC ∠=∠=︒,∴180623187A ∠=︒-︒-︒=︒.故答案是87︒.本题主要考查了垂直平分线和角平分线的性质,结合三角形外角性质和三角形内角和定理计算是关键.18.6【分析】作BH⊥AC垂足为H交AD于M′点过M′点作M′N′⊥AB垂足为N′则BM′+M′N′为所求的最小值再根据AD是∠BAC的平分线可知M′H=M′N′再由锐角三角函数的定义即可得出结论【详解解析:6【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=2∠BAC=45°,∴BH=AH∴222+=AH BH AB∴BH=6.∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=6.故答案为6.【点睛】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.19.AD=BD【分析】要判定△BCD≌△ACD已知∠1=∠2CD是公共边具备了一边一角对应相等注意SAS的条件;两边及夹角对相等只能选AD=BD【详解】解:由图可知只能是AD=BD才能组成SAS故答案为解析:AD=BD【分析】要判定△BCD≌△ACD,已知∠1=∠2,CD是公共边,具备了一边一角对应相等,注意“SAS”的条件;两边及夹角对相等,只能选AD=BD.解:由图可知,只能是AD=BD,才能组成“SAS”,故答案为:AD=BD.【点睛】本题考查了全等的判定,掌握“SAS”的条件是两边及夹角对相等是解题的关键.20.10或50【分析】分点P在AB的上方点P在AB与CD的中间点P在CD的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P在AB的上方;(2)如图解析:10或50【分析】分点P在AB的上方、点P在AB与CD的中间、点P在CD的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P在AB的上方,∠=︒∠=︒,30,20BPD PBA∴∠=∠+∠=︒,150BPD PBAAB CD,//∴∠=∠=︒;CDP150(2)如图,点P在AB与CD的中间,延长BP,交CD于点E,∠=︒,AB CD PBA//,20∴∠=∠=︒,BED PBA20∠=︒,BPD30∴∠=∠-∠=︒;CDP BPD BED10(3)如图,点P在CD的下方,//,20∠=︒,AB CD PBA∴∠=∠=︒,120PBA30BPD ∠=︒,13030CDP BPD CDP ∴∠=∠+∠=∠+︒>︒与120∠=︒不符,即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.三、解答题21.14,3x x +-- 【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:原式=(x ﹣1﹣21x x +)÷221x x x ++ =22(1)(1)()111x x x x x x x ⎡⎤-++-⋅⎢⎥⎣⎦++ =2221(1)1x x x x x--+⋅+ =1x x+- 当x =3时,原式=31433+-=-. 【点睛】本题主要考查分式的化简求值,熟练掌握分式的减法和除法法则,是解题的关键. 22.(1)使用智能分拣设备后每人每小时可分拣快件2100件;(2)每天只需要安排6名工人就可以完成分拣工作【分析】(1)设用传统方式每人每小时可分拣x 件,则用智能分拣设备后每人每小时可分拣25x件,利用时间差为4小时列方程80008000452520x x=-⨯,再解方程,检验即可得到答案; (2)利用每天工作总量(10万件)除以工作效率(每人每天分拣82584⨯⨯件),结果取符合题意的正整数即可得到答案.【详解】(1)解:设用传统方式每人每小时可分拣x 件,则用智能分拣设备后每人每小时可分拣25x 件, 由题意,得80008000452520x x=-⨯. 解得84x =.经检验,84x =是原方程的解,∴252100x =,∴使用智能分拣设备后每人每小时可分拣快件2100件;(2)∵1000002058425821=⨯⨯, ∵2055621<<, ∴每天只需要安排6名工人就可以完成分拣工作.【点睛】本题考查的是分式方程的应用,掌握工作量等于工作时间乘以工作效率是解题的关键. 23.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.24.见解析【分析】利用角平分线的性质得出EF EG =,再利用线段垂直平分线的性质得出BE CE =,最后证明Rt △BEF ≌Rt △CEG 即可.【详解】证明:AE ∵平分FAC ∠,EF AF ⊥,EG AC ⊥,EF EG ∴=, DE 垂直平分BC ,BE CE ∴=,EF AF ⊥,EG AC ⊥,90BFE CGE ∴∠=∠=︒,在Rt BEF 和Rt CEG △中,BE CE EF EG =⎧⎨=⎩Rt Rt (HL)BEF CEG ∴△≌△.【点睛】本题考查了全等三角形的判定与性质, 角平分线的性质及线段垂直平分线的性质,解题的关键是灵活运用性质解决问题.25.见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.26.(1)120°;(2)1()2BOC A D ∠=∠+∠ 【分析】(1)先由四边形内角和定理求出∠ABC+∠DCB=120°,再由角平分线定义得出∠OBC+∠OCB=60°,最后根据三角形内角和定理求出∠O=120°即可;(2)方法同(1)【详解】解:(1)∵∠A+∠ABC+∠BCD+∠D=360°,且∠A+∠D=130°+110°=240°,∴∠ABC+∠BCD=360°-(∠A+∠D )=360°-240°=120°,∵OB ,OC 分别是∠ABC 和∠BCD 的平分线, ∴∠OBC+∠OCB=111(221)1206220AB ABC DC C BCD B ∠+∠=⨯+∠︒=∠=︒ , ∴∠O=180°-(∠OBC+∠OCB )=180°-60°=120°; (2)1()2BOC A D ∠=∠+∠ 证明:在四边形ABCD 中,360A B C D ∠+∠+∠+∠=︒∴360()ABC DCB A D ∠+∠=︒-∠+∠∵OB ,OC 分别是∠ABC 和∠BCD 的平分线,∴∠OBC+∠OCB=1111((222)180)2ABC BCD AB D A C D CB ∠+∠=︒-∠∠=+∠∠+ ∴180(1)()2O BOC BC OCB A D ∠+∠=︒-∠=∠+∠ 【点睛】 此题主要考查了四边形内角和定理,三角形的内角和定理以及角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°;一个角的角平分线把这个角分成两个大小相等的角.。

【鲁教版】八年级数学上期末试题含答案

【鲁教版】八年级数学上期末试题含答案

一、选择题1.下列说法正确的有( )①每个定理都有逆定理;②每个命题都有逆命题;③假命题没有逆命题;④真命题的逆命题是真命题A .1个B .2个C .3个D .4个2.在下列条件中:①A C B ∠=∠-∠,②::2:3:5A B C ∠∠∠=,③90A B ∠=︒-∠,④90B C ∠-∠=︒中,能确定ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个3.下列命题中的假命题是( )A .三角形的一个外角大于内角B .同旁内角互补,两直线平行C .21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解 D .方差是刻画数据离散程度的量4.已知关于x ,y 的方程组22331x y k x y k +=⎧⎨+=-⎩,以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③不论k 取什么实数,3x y +的值始终不变;④当1y x ->-时,1k >.其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 5.已知关于x ,y 的两个方程组 48312ax by x y -=-⎧⎨+=⎩ 和 35180516ax by x y +=⎧⎨+=⎩具有相同的解,则a ,b 的值是( ) A .=202a b -⎧⎨=⎩ B .=202a b ⎧⎨=-⎩C .=202a b ⎧⎨=⎩D .=202a b -⎧⎨=-⎩ 6.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 7.一辆货车从A 地开往B 地,一辆小汽车从B 地开往A 地,同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s (千米),货车行驶的时间为t (小时),s 与t 之间的函数关系如图所示,下列说法:①A 、B 两地相距60千米:②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米;⑤出发2小时,小货车离终点还有80千米,其中正确的有A .5个B .4个C .3个D .2个 8.如图,宽为25cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm 9.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( )A .y=x+2B .22y x =+C .y=4x-12D .33y x =- 10.如图,在平面直角坐标系中,有点A (1,0) ,点A 第一次跳动至()11,1A -,第二次点1A 跳动至()22,1A ,第三次点2A 跳动至()32,2A -,第四次点3A 跳动至()43,2A …,依次规律跳动下去,则点2019A 与点2020A 之间的距离是( )A.2019 B.2020 C.2021 D.202211.估算65的值,它的整数部分是()A.2 B.3 C.4 D.512.如图,在△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.29 B.32 C.36 D.45二、填空题13.如图,已知CD⊥DA,DA⊥AB,∠1=∠4.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.证明:∵_________(___________)∴∠CDA=90°,∠DAB=90°(_________).∴∠4+∠3=90°,∠2+∠1=90°.又∵∠1=∠4,∴_____(_____),∴DF∥AE(______).14.如图所示,D是ABC的边BC上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC=_________.15.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,−3),B(4,−1).(1)若P(p,0)是x 轴上的一个动点,则△PAB 的最小周长为___________(2)若C(a,0),D(a+3,0)是x 轴上的两个动点,则当a=___________时,四边形ABDC 的周长最短;16.已知24x y -=,用含x 的代数式表示y 为:y =____________.17.一次函数y=kx+2(k≠0)的图象与x 轴交于点A (n ,0),当n >0时,k 的取值范围是_____.18.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4),点B (a ,0)是x 轴正半轴上的点,若△AOB 内部(不包括边界)的整点个数为6,则 a 的取值范围是_____.19.若最简二次根式41a -和135a b -+可以合并,则b a -=______.20.如图,l 1∥l 2∥l 3,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3.若点A ,B ,C 分别在直线l 1,l 2,l 3上,且AC ⊥BC ,AC =BC ,则AB 的长是_____.三、解答题21.如图,点B ,F ,C ,E 在一条直线上,AB =DE ,FB =CE ,AB ∥ED .求证:AC ∥FD .22.已知0k ≠,将关于x 的方程0kx b +=记作方程☆.(1)当3k =,2b =-时,方程☆的解为______.(2)若方程☆的解为5x =-,写出一组满足条件的k ,b 值:k =______,b =______; (3)若方程☆的解为3x =,求关于y 的方程()250k y b --=的解.23.如图1,对于平面内的点A 、P ,如果将线段PA 绕点P 逆时针旋转90°能得到线段PB ,就称点B 是点A 关于点P 的“旋垂点”.(1)在平面直角坐标系xOy 中,点()3,1S -关于原点O 的“旋垂点”是 ;(2)如图2,90AOB ∠=︒,OC 平分AOB ∠,将直角三角板的直角顶点P 放在OC 上,两直角边分别交OA 、OB 于点M 、N ,试说明:点N 是点M 关于点P 的“旋垂点”;(3)如图3,直线3y kx =+与x 轴交于点P ,与y 轴交于点Q ,点Q 关于点P 的“旋垂点”记为点(),T m n ,若点P 在x 轴上,且03OP <<,点T 的横坐标m 满足21m -<≤-,求k 的取值范围.24.如图,在平面直角坐标系中,(2,4)A ,(3,1)B ,(2,1)C --.(1)在图中作出ABC 关于x 轴的对称图形111A B C △,并直接写出点1C 的坐标:________;(2)求ABC 的面积:(3)点(),2P a a -与点Q 关于x 轴对称,若6PQ =,则点P 的坐标为________. 25.已知23a =+,23b =-,求a 2+b 2﹣3ab 的值.26.如图,△ABC 中,AB =AC ,BC =4cm ,作AD ⊥BC ,垂足为D ,若AD =4cm ,求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据逆定理的定义,某一定理的条件和结论互换所得命题是真命题是这个定理的逆定理可以判断①,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,可判断②,利用命题分类分为真命题与假命题都是命题,都有逆命题,可判断③,真命题是正确的命题,真命题的逆命题有真假命题之分,可判断④即可.【详解】解:①每个定理都有逆命题,看根据逆命题的条件能否推出正确的结论,能推出,由逆定理,不能推出,没有逆定理,故①不正确;②每个命题都有逆命题;故②正确;③假命题也是命题,命题都有逆命题,故③不正确;④真命题的逆命题可能是假命题,也可能是真命题,根据条件能否推出正确的结论有关,能推出,由是真命题,不能推出,是假命题,故④不正确.正确的说法只有一个②.故选择:A.【点睛】本题考查命题,真命题,假命题,逆命题,定理,逆定理,掌握命题,真命题,假命题,逆命题,定理,逆定理的定义,以及它们的区别是解题关键.2.C解析:C【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.【详解】①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=2:3:5,设∠A=2x,则2x+3x+5x=180,x=18°,∠C=18°×5=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠B﹣∠C=90°,则∠B=90°+∠C,所以三角形为钝角三角形.所以能确定△ABC是直角三角形的有①②③.故选:C.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°;理解三角形内若有一个内角为90°,则△ABC是直角三角形.3.A解析:A【分析】根据三角形的外角、平行线的判断、二元一次方程的解以及方差即可判断出结果.【详解】解:在三角形内角中大于90°角的外角是一个锐角,故A 选项符合题目要求;同旁内角互补,两直线平行,故B 选项不符合题目要求;21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解,故C 选项不符合题目要求; 方差是刻画数据离散程度的量,故D 选项不符合题目要求.故选:A【点睛】本题主要考查的是命题与定理的知识,正确的掌握这些知识点是解题的关键.4.A解析:A【分析】直接利用二元一次一次方程组的解法表示出方程组的解进而分别分析得出答案.【详解】解:①当0k =时,原方程组可整理得:20231x y x y +=⎧⎨+=-⎩, 解得:21x y =-⎧⎨=⎩, 把21x y =-⎧⎨=⎩代入2x y -得: 2224x y -=--=-,即①正确,②解方程组22331x y k x y k +=⎧⎨+=-⎩得: 321x k y k =-⎧⎨=-⎩, 若0x y +=,则(32)(1)0k k -+-=, 解得:12k =, 即存在实数k ,使得0x y +=,即②正确,③解方程组22331x y k x y k +=⎧⎨+=-⎩得: 321x k y k=-⎧⎨=-⎩, 3323(1)1x y k k ∴+=-+-=,∴不论取什么实数,3x y +的值始终不变,故③正确;④解方程组22331x y k x y k +=⎧⎨+=-⎩得: 321x k y k =-⎧⎨=-⎩, 当1y x ->-时,1321k k --+>-,1k ∴<,故④错误,故选:A .【点睛】本题主要考查解二元一次方程组的能力,熟练掌握解二元一次方程组的技能和二元一次方程的解得定义.5.C解析:C【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,代入剩下的方程计算即可求出a 与b 的值.【详解】联立得:312516x y x y +=⎧⎨+=⎩, 解得:26x y =⎧⎨=⎩, 将26x y =⎧⎨=⎩代入得:124530a b a b -=-⎧⎨+=⎩, 解得:202a b =⎧⎨=⎩, 故选:C .【点睛】本题考查了同解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键. 6.B解析:B【分析】根据横坐标分别求出A,B,C 的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A 点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y 轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B 点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.【点睛】本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.7.C解析:C【分析】根据图象中t=0时,s=120可得A、B两地相距的距离,进而可判断①;根据图象中t=1时,s=0的实际意义可判断②;由图象t=1.5和t=3的实际意义,得到货车和小汽车的速度,从而可判断③;根据路程=速度×时间分别计算出货车与小汽车出发1.5小时后的路程,进而可判断④;先求出出发2小时货车行驶的路程,进而可计算出小货车离终点的距离,于是可判断⑤,于是可得答案.【详解】解:由图象可知,当t=0时,货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①错误;当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故小汽车的速度为:120÷1.5=80(千米/小时),货车的速度为:120÷3=40(千米/小时),∴小汽车的速度是货车速度的2倍,故③正确;出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A 地,即小汽车1.5小时行驶路程为120千米,所以出发1.5小时,小汽车比货车多行驶了60千米,故④正确;出发2小时,货车行驶了40×2=80(千米),离终点还有120-80=40(千米),故⑤错误.∴正确的说法有②③④三个.故选:C.【点睛】此题主要考查了一次函数的应用,属于常考题型,正确理解题意、读懂图象信息、熟练掌握路程、速度与时间的关系是解题的关键,8.C解析:C【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.【详解】设一个小长方形的长为xcm ,宽为ycm ,由图形可知,2524x y x x y+=⎧⎨=+⎩, 解得:205x y =⎧⎨=⎩, 所以一个小长方形的面积为205100⨯=(cm 2) .故选:C .【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.9.D解析:D【分析】先确定A ,B 的坐标,从而确定交点横坐标的取值范围,后逐一计算选项直线与x 轴的交点,判断横坐标是否在求得的范围内,在范围内,满足条件,否则,不满足.【详解】∵直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,∴A (-1,0),B (2,0),∴-1≤x≤2,∵y=x+2交x 轴于点A (-2,0),且x= -2不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵2y =+交x 轴于点A (0),且x= -1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵y=4x-12交x 轴于点A (3,0),且x= 3不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵3y =-交x 轴于点A 0),且-1≤x≤2的解,∴与x 轴的交点在线段AB 上,故选D .【点睛】本题考查了一次函数与x 轴的交点问题,利用交点的横坐标建立不等式解集,验证新直线与x 轴交点的横坐标是否是解集的解是解题的关键.10.C解析:C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点2019A 与点2020A 的坐标,进而可求出点2019A 与点2020A 之间的距离;【详解】观察发现,第2次跳动至点的坐标是()2,1,第4次跳动至点的坐标是()3,2,第6次跳动至点的坐标是()4,3,第8次跳动至点的坐标是()5,4,⋯第2n 次跳动至点的坐标是()1,+n n ,则第2020次跳动至点的坐标是()1011,1010,第2019次跳动至点的坐标是()1010,1010-,∵点2019A 与点2020A 的纵坐标相等,∴点2019A 与点2020A 之间的距离()101110102021=--=;故选C .【点睛】本题主要考查了规律型点的坐标应用,准确理解是解题的关键. 11.B解析:B【分析】-1,最后两边都加上6,即可求出它的整数部分.【详解】 解:253<<,32∴-<-,364∴<<, ∴63和4之间,它的整数部分是3,故选:B .【点睛】本题考查了估算无理数的大小,主要考查学生的计算能力,属于基础题,能够确定带根号无理数的范围是解题的关键.12.D解析:D【分析】在Rt △ABD 及Rt △ADC 中可分别表示出BD 2及CD 2,在Rt △BDM 及Rt △CDM 中分别将BD 2及CD 2的表示形式代入表示出BM 2和MC 2,然后作差即可得出结果.【详解】解:在Rt △ABD 和Rt △ADC 中,BD 2=AB 2−AD 2,CD 2=AC 2−AD 2,在Rt △BDM 和Rt △CDM 中,BM 2=BD 2+MD 2=AB 2−AD 2+MD 2,MC 2=CD 2+MD 2=AC 2−AD 2+MD 2,∴MC 2−MB 2=(AC 2−AD 2+MD 2)−(AB 2−AD 2+MD 2)=AC 2−AB 2=45.故选:D .【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC 2和MB 2是本题的难点,重点还是在于勾股定理的熟练掌握.二、填空题13.CD ⊥DADA ⊥AB ;已知;垂直定义;∠2=∠3;等角的余角相等;内错角相等两直线平行【分析】先根据垂直的定义得到再根据等角的余角相等得出最后根据内错角相等两直线平行进行判定即可【详解】证明:∵CD解析:CD ⊥DA ,DA ⊥AB ;已知;垂直定义;∠2=∠3;等角的余角相等;内错角相等,两直线平行【分析】先根据垂直的定义,得到1290∠+∠=︒,3490∠+∠=°,再根据等角的余角相等,得出23∠∠=,最后根据内错角相等,两直线平行进行判定即可.【详解】证明:∵ CD ⊥DA ,DA ⊥AB (已知)∴∠CDA=90°,∠DAB=90° ( 垂直定义 ).∴∠4+∠3=90°,∠2+∠1=90°.又∵∠1=∠4,∴∠2=∠3 ( 等角的余角相等 ),∴DF ∥AE ( 内错角相等,两直线平行 ).故答案为:.CD ⊥DA ,DA ⊥AB , 已知;垂直定义;∠2=∠3 ,等角的余角相等;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定以及垂直的定义,解题时注意:内错角相等,两直线平行. 14.【分析】先根据三角形的外角性质可得再根据三角形的内角和定理可得然后根据角的和差即可得的度数由此即可得【详解】又解得故答案为:【点睛】本题考查了三角形的外角性质三角形的内角和定理等知识点熟练掌握三角形 解析:24︒【分析】先根据三角形的外角性质可得4321∠=∠=∠,再根据三角形的内角和定理可得18041DAC ∠=︒-∠,然后根据角的和差即可得1∠的度数,由此即可得.【详解】12∠=∠,31221∴∠=∠+∠=∠,34∠∠=,421∴∠=∠,1804318041DAC ∴∠=︒-∠-∠=︒-∠,118031BAC DAC ∴∠=∠+∠=︒-∠,又63BAC ∠=︒,1803163∴︒-∠=︒,解得139∠=︒,1804118043924DAC ∴∠=︒-∠=︒-⨯︒=︒,故答案为:24︒.【点睛】本题考查了三角形的外角性质、三角形的内角和定理等知识点,熟练掌握三角形的角的性质是解题关键.15.【分析】(1)根据题意设出并找到B (4-1)关于x 轴的对称点是B 其坐标为(41)算出AB′+AB 进而可得答案;(2)过A 点作AE ⊥x 轴于点E 且延长AE 取AE=AE 做点F (1-1)连接AF 利用两点间的解析:54 【分析】(1)根据题意,设出并找到B (4,-1)关于x 轴的对称点是B',其坐标为(4,1),算出AB′+AB 进而可得答案;(2)过A 点作AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .做点F (1,-1),连接A'F .利用两点间的线段最短,可知四边形ABDC 的周长最短等于A'F+CD+AB ,从而确定C 点的坐标值.【详解】解:(1)设点B (4,-1)关于x 轴的对称点是B',可得坐标为(4,1),连接AB′, 则此时△PAB 的周长最小,∵∴△PAB 的周长为故答案为:2522+;(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.作点F(1,-1),连接A'F.那么A'(2,3).设直线A'F的解析式为y=kx+b,则132k bk b-=+⎧⎨=+⎩,解得:45kb=⎧⎨=-⎩,∴直线A'F的解析式为y=4x-5,∵C点的坐标为(a,0),且在直线A'F上,∴a=54,故答案为:54.【点睛】本题考查最短路径问题,同时考查了根据两点坐标求直线解析式,运用解析式求直线与坐标轴的交点等知识.16.2x-4【分析】【详解】由2x-y=4得:-y=4-2x∴y=2x-4故答案为:2x-4解析:2x-4【分析】【详解】由2x-y=4得:-y=4-2x,∴ y=2x-4,故答案为:2x-417.k<0【解析】分析:根据题意可以用含k的式子表示n从而可以得出k的取值范围详解:∵一次函数y=kx+2(k≠0)的图象与x轴交于点A(n0)∴n=﹣∴当n>0时﹣>0解得k<0故答案为k<0点睛:本解析:k<0【解析】分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.详解:∵一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),∴n=﹣2k,∴当n>0时,﹣2k>0,解得,k<0,故答案为k<0.点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.18.4<a<【分析】通过实验法当a=4时得到直线y=-x+4此时三角形内部有3个格点当直线经过(41)时三角形内部有6个格点此时是a的临界值求出这个值即可【详解】画图如下当直线y=-x+4时三角形内部有解析:4<a<16 3.【分析】通过实验法,当a=4时,得到直线y= -x+4,此时三角形内部有3个格点,当直线经过(4,1)时,三角形内部有6个格点,此时是a的临界值,求出这个值即可.【详解】画图如下,当直线y=-x+4时,三角形内部有3个格点,直线有3个格点,令y=0,得x=4,因此当a>4时,满足了形内有6个格点;当直线经过(4,1)时,三角形内部有6个格点,此时直线为y=34x +4,令y=0,得x=163,因此当a<163时,满足了形内有6个格点;所以a满足的条件是4< a<16 3.故应填4< a<16 3.【点睛】本题考查了坐标系中的格点问题,学会利用数形结合思想,通过画图的方式,判断满足条件的直线的界点位置是解题的关键.19.【分析】由最简二次根式的定义以及同类二次根式的定义先求出ab 的值然后进行计算即可得到答案【详解】解:∵最简二次根式和可以合并∴和是同类二次根式∴∴∴;故答案为:【点睛】本题考查了最简二次根式的定义以 解析:19【分析】由最简二次根式的定义,以及同类二次根式的定义,先求出a 、b 的值,然后进行计算,即可得到答案.【详解】解:∵41a -和135b -+ ∴41a -和135b -+∴124135a a b -=⎧⎨-=+⎩, ∴32a b =⎧⎨=⎩, ∴2139b a --==; 故答案为:19. 【点睛】 本题考查了最简二次根式的定义,以及同类二次根式的定义,解题的关键是熟记所学的定义,正确求出a 、b 的值.20.【分析】过点A 作AD ⊥l3于D 过点B 作BE ⊥l3于E 易证明∠BCE =∠CAD 再由题意可证明△ACD ≌△CBE (AAS )得出结论BE =CD 由l1l2之间的距离为2l2l3之间的距离为3即得出CD 和AD解析:17 【分析】 过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,易证明∠BCE =∠CAD ,再由题意可证明△ACD ≌△CBE (AAS ),得出结论BE =CD ,由l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,即得出CD 和AD 的长,利用勾股定理即可求出AC 的长,从而得到AB 的长.【详解】如图,过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,则∠CAD+∠ACD =90°,∵AC ⊥BC ,∴∠BCE+∠ACD =180°﹣90°=90°,∴∠BCE =∠CAD ,∵在△ACD 和△CBE 中,BCE CAD ADC CEB 90AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴BE =CD ,∵l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,∴CD =3,AD =2+3=5,在Rt △ACD 中,AC 2222AD CD 5334=+=+=,∵AC ⊥BC ,AC =BC ,∴△ABC 是等腰直角三角形,∴AB 2=AC 234=⨯=217.故答案为:17【点睛】本题考查三角形全等的判定和性质、平行线的性质、直角三角形的性质以及勾股定理.作出辅助线并证明BE =CD 是解答本题的关键.三、解答题21.见解析【分析】由“SAS ”可证△ABC ≌△DEF ,可得∠ACB =∠DFE ,可得结论.【详解】证明:∵AB ∥DE ,∴∠B =∠E ,∵BF =CE ,∴BC =EF ,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴∠ACB =∠DFE ,∴AC ∥FD .【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是本题的关键.22.(1)x=23;(2)1,5(答案不唯一);(3)y=1 【分析】(1)将k 和b 代入后解方程即可;(2)将x=-5代入方程,得到k 和b 的关系,取一组特殊值即可;(3)将x=3代入方程☆:得3b k =-,从而得到关于y 的方程()220k y -=,结合k≠0求出y 值即可.【详解】解:(1)当k=3,b=-2时,方程☆为:3x-2=0,解得:x=23. 故答案为:x=23; (2)∵方程☆的解为x=-5,∴-5k+b=0,∴k=1,b=5,故答案为:1,5(答案不唯一);(3)∵方程的解为x=3,代入方程☆,则30k b +=,∴3b k =-,解关于y 的方程:()250k y b --=,即()2530k y k -+=,得:()220k y -=,∵k≠0,∴2y-2=0.解得:y=1.【点睛】本题考查了一元一次方程的解,二元一次方程的解,熟练掌握解一元一次方程是关键.23.(1)()1,3--;(2)见解析;(3)332k -<≤-. 【分析】(1)由“旋垂点”的定义可直接进行求解;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,根据题意易得PD=PE ,∠PMD=∠PNE ,进而可证△PDM ≌△PEN ,然后可得PM=PN ,则问题可求解;(3)过点T 作TA ⊥x 轴,根据题意易证△APT ≌△OQP ,则有AP=OQ ,进而可得AP=OQ=3,3OP k =-,然后可得33m k=--,最后问题可求解. 【详解】解:(1)如图,过点S 作SA ⊥x 轴,过点P 作PB ⊥x 轴,由“旋垂点”可得:△SAO ≌△PBO ,∴OB=OA ,PB=SA ,∵点()3,1S -,∴PB=1,OB=3,∴点()1,3P --,故答案为()1,3--;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,如图所示:∵OC 平分∠AOB ,∴PD=PE ,∵∠AOB=∠MPN=90°,∴由四边形内角和定理得:∠PMO+∠PNO=180°,∵∠PMO+∠PMD=180°,∴∠PMD=∠PNE ,∵∠PDM=∠PEN=90°,∴△PDM ≌△PEN (AAS ),∴PM=PN ,∴点N 是点M 关于点P 的“旋垂点”;(3)过点T 作TA ⊥x 轴,如图所示:∴PQ=PT ,∵∠APT+∠APQ=90°,∠APQ+∠PQO=90°,∴∠APT=∠OQP ,∴△APT ≌△OQP (AAS ),∴AP=OQ ,令y=0时,则03kx =+,解得:3x k =-, 当x=0时,则3y =,∴AP=OQ=3,3OP k =-, ∴OA=AP-OP=33k +, ∴33m k=--, ∵21m -<≤-,0k <, ∴3231k -<--≤-, 解得:332k -<≤-. 【点睛】本题主要考查一次函数与几何综合及一元一次不等式组的解法,熟练掌握一次函数与几何综合及一元一次不等式组的解法是解题的关键.24.(1)作图见详解,(−2,1);(2)8.5;(3)(5,3)或(−1,−3)【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)利用分割法求解即可.(3)先根据P ,Q 关于x 轴对称,得到Q 的坐标,再构建方程求解即可.【详解】(1)如图,△A 1B 1C 1即为所求.点C 1的坐标(−2,1).故答案为:(−2,1);(2)S △ABC =5×5−12×1×3−12×4×5−12×2×5=8.5. (3)∵点(),2P a a -与点Q 关于x 轴对称,∴Q (),2a a -,∵6PQ =,∴|(a-2)-(2-a)|=6,解得:a=5或a=-1,∴P (5,3)或(−1,−3).故答案为:(5,3)或(−1,−3).【点睛】本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.25.11【分析】利用二次根式的运算法则首先计算出a+b ,ab 的值,然后利用配方法对多项式进行变形整理,再代入,进行计算即可.【详解】解:∵23a =23b =∴a +b =4,(23)(23)431ab ==-=,∴a 2+b 2﹣3ab =(a +b )2﹣5ab =42﹣5×1=11.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则并能灵活应用完全平方公式进行计算是解题关键.26.5【分析】根据等腰三角形的性质和勾股定理即可得到结论.【详解】解:∵AB =AC ,BC =4cm ,AD ⊥BC ,∴BD=1BC=2,2∵AD=4cm,∴在直角三角形ABD中AB.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.。

【鲁教版】八年级数学上期末试卷含答案

【鲁教版】八年级数学上期末试卷含答案

一、选择题1.关于分式2634m n m n --,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变2.若分式293x x -+的值为0,则x 的值为( ) A .4 B .4- C .3或-3 D .33.22()-n b a(n 为正整数)的值是( ) A .222+nn b aB .42n n b aC .212+-n n b aD .42-n n b a 4.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+ C .1a 2- D .a 2- 5.下列运算正确的是( )A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷=D .326326x x x ⋅= 6.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n - B .6323m n - C .383m n - D .6169m n -7.长和宽分别为a ,b 的长方形的周长为16,面积为12,则22 a b ab +的值为( ) A .24 B .48 C .96D .192 8.a ,b ,c 在数轴上的位置如下图所示,则下列代数式中值为正的是( )A .()()1a c b --B .()11c a b c ⎛⎫-- ⎪⎝⎭C .()1a a c b ⎛⎫+- ⎪⎝⎭D .()1ac bc - 9.如图,在ABC 与A B C ''△中,,90AB AC A B A C B B ==''='∠+∠'=︒,ABC ,A B C '''的面积分别为1S 、2S ,则( )A .12S S >B .12S SC .12S S <D .无法比较1S 、2S 的大小关系 10.如图,在ABC 中,DE 是AC 的垂直平分线,交AC 边于E ,交BC 边于D ,连接AD ,若3AE =,ABD △的周长为13,则ABC 的周长( )A .16B .19C .20D .2411.下列说法不正确的是( )A .三边分别相等的两个三角形全等B .有两边及一角对应相等的两个三角形全等C .有两角及一边对应相等的两个三角形全等D .斜边和一条直角边分别相等的两个直角三角形全等12.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( )A .15B .20C .30D .40二、填空题13.已知234a b c ==(0abc ≠,a b c +≠),则=+a b c a b c -+-_____. 14.计算:()30120202-⎛⎫---= ⎪⎝⎭______. 15.若294x kx ++是一个完全平方式,则k 的值为_____. 16.因式分解:33327xy x y -=______.17.如图,在平面直角坐标系xOy 中,点B 的坐标为(2,0),若点A 在第一象限内,且AB =OB ,∠A =60°,则点A 到y 轴的距离为______.18.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.19.△ABC 中,∠A =50°,当∠B =____________时,△ABC 是等腰三角形.20.如图,在ABC 中,E 、D 、F 分别是AD 、BF 、CE 的中点,若DEF 的面积是1,则ABC S =______.三、解答题21.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a a a a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.22.先化简,再求值:2222224414y x x xy y x x x y ⎛⎫+-++-÷ ⎪-⎝⎭,其中x ,y 满足()2230x y ++-=.23.下面是小华同学分解因式229()4()a x y b y x -+-的过程,请认真阅读,并回答下列问题.解:原式229()4()a x y b x y =-+-① 22()(94)x y a b =-+②2()(32)x y a b =-+③任务一:以上解答过程从第 步开始出现错误.任务二:请你写出正确的解答过程.24.如图,在ABC ∆中,,AB AC =过点A 作//AD BC 交ABC ∠的平分线BD 于点D ,求证:AC AD =.25.如图,一条河流MN 旁边有两个村庄A ,B ,AD ⊥MN 于D .由于有山峰阻挡,村庄B 到河边MN 的距离不能直接测量,河边恰好有一个地点C 能到达A ,B 两个村庄,与A ,B 的连接夹角为90°,且与A ,B 的距离也相等,测量C ,D 的距离为150m ,请求出村庄B 到河边的距离.26.如图,BM 是ABC 的中线,AB =5cm ,BC =3cm ,那么ABM 与BCM 的周长的差是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m n m n m n⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m n m n m n-⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意; D 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 2.D解析:D【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得.【详解】 由题意得:2903x x -=+, 则290x ,即29x =,由平方根解方程得:3x =±,分式的分母不能为0,30x ∴+≠,解得3x ≠-,则x 的值为3,故选:D .【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.3.B解析:B【分析】根据分式的乘方计算法则解答.【详解】2422()-=nn n b b a a. 故选:B .【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.4.A解析:A【分析】根据分式的减法可以解答本题.【详解】 解:()()214a 241a 2a 4a 2a 2a 2+--==--+-+, 故选:A .【点睛】本题考查异分母分式的减法运算,解答本题的关键是明确公分母.5.B解析:B【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可.【详解】解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意;C .844x x x ÷=,故本选项不合题意;D .325326x x x ⋅=,故本选项不合题意.故选:B .【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.6.B解析:B【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可.【详解】解:由题意可得:2328a b a b b-=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n ,∴它们的积为:3163166323?3m n m n m n -=-,故选:B .【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键. 7.C解析:C【分析】根据已知条件长方形的长与宽之和为8,长与宽之积为12,然后分解因式代入即可.【详解】∵长方形的周长为16,∴8a b +=,∵面积为12,∴12ab =,∴()2212896a b ab ab a b +=+=⨯=, 故选:C .【点睛】本题考查的是因式分解的应用,以及长方形周长和面积的计算,熟练掌握长方形的周长和面积的计算公式是解答本题的关键.8.C解析:C【分析】现根据各数在数轴上的位置确定其取值范围,然后可确定答案.【详解】解:由图知:0<a <1,b >1,c <0, ∴()100a a c b ⎛⎫+>-> ⎪⎝⎭,, ()1a a c b ⎛⎫+- ⎪⎝⎭值为正,C 正确; 而()110c a b c ⎛⎫--< ⎪⎝⎭,()()10a c b --<,()10ac bc -<;A 、B 、D 错误. 故选:C.【点睛】此题主要考查由取值范围确定代数式正负问题,解题的关键是根据点在数轴上的位置判断其正负.9.B解析:B【分析】分别做出两三角形的高AD ,A′E ,利用题干的条件证明△ABD ≅△A′B′E 即可得到两三角形的面积相等;【详解】分别做出两三角形的高AD ,A′E ,如图:90B B '+=∵∠∠,90B A E B '''+=∠∠,90BAD B ∠+∠=,∴∠B=∠B′A′E ,∠B′=∠BAD ,又AB=A′B′,∴△ABD ≅△A ′B′E ,同理△ACD ≅△A′C′E ;∴ABD A B E SS ''=,ACD A C E S S ''=, 故ABD ACD A B E A C E S S S S ''''+=+,又ABC ,A B C '''的面积分别为1S 、2S ,∴12S S故选:B .【点睛】此题考查了等腰三角形的性质及三角形全等的判定及性质:两三角形全等,则对应边对应角相等,面积也相等.10.B解析:B【分析】根据线段垂直平分线性质得出 AD = DC ,求出和 AB + BC 的长,即可求出答案.【详解】DE 是 AC 的垂直平分线,AE=3cm,.∴ AC=2AE=6cm ,AD = DC ,△ ABD 的周长为13cm ,∴ AB + BD +AD=13cm ,∴AB + BD + DC = AB +BC=13cm∴ △ ABC 的周长为 AB + BC +AC=13cm+6cm=19cm ,故选 B .【点睛】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.11.B解析:B【分析】直接利用三角形全等的判定条件进行判定,即可求得答案;注意而SSA 是不能判定三角形全等的.解:A ,三边分别相等的两个三角形全等,故本选项正确;B ,两边和一个角对应相等的两个三角形不一定全等,故本选项错误;C ,两个角和一个边对应相等的两个三角形,可利用ASA 或AAS 判定全等,故本选项正确;D ,斜边和一条直角边分别相等的两个直角三角形全等,故本选项正确.故选:B【点睛】此题考查了全等三角形的判定.注意普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等.12.A解析:A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C 的外角=∠A+∠B ,∴x+40=2x+10+x ,解得x=15.故选:A .【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.二、填空题13.3【分析】设=k 用k 表示出abc 的值代入代数式计算化简即可【详解】设=k 则a=2kb=3kc=4k ∴故答案为:3【点睛】此题考查分式的化简求值设设=k 用k 表示出abc 的值是解题的关键解析:3【分析】 设234a b c ===k ,用k 表示出a 、b 、c 的值,代入代数式计算化简即可. 【详解】 设234a b c ===k ,则a=2k ,b=3k ,c=4k , ∴2343=3+234a b c k k k k a b c k k k k-+-+==-+-, 故答案为:3.此题考查分式的化简求值,设设234a b c ===k ,用k 表示出a 、b 、c 的值是解题的关键. 14.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】 本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.15.【分析】根据完全平方公式分和的完全平方公式和差的完全平方公式两种情形求解即可【详解】∵=∴kx=∴k=故应该填【点睛】本题考查了完全平方公式的应用熟记完全平方公式并能进行灵活公式变形是解题的关键解析:3±.【分析】根据完全平方公式,分和的完全平方公式和差的完全平方公式两种情形求解即可.【详解】 ∵294x kx ++=223()2x kx ++, ∴kx=322x ±⨯⨯,∴k=3±,故应该填3±.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式并能进行灵活公式变形是解题的关键. 16.【分析】根据因式分解的提公因式法找出公因式为然后再根据平方差公式求解即可;【详解】原式=故答案为:【点睛】本题考查了因式分解的提公因式法平方差公式找出公因式是是解题的关键解析:()()333xy y x y x +-【分析】根据因式分解的提公因式法,找出公因式为3xy ,然后再根据平方差公式求解即可;【详解】原式=()()()2239333xy y x xy y x y x -=+-,故答案为:()()333xy y x y x +-.【点睛】本题考查了因式分解的提公因式法、平方差公式,找出公因式是3xy 是解题的关键. 17.1【分析】过A 作AC ⊥OB 首先证明△AOB 是等边三角形再求出OC 的长即可【详解】解过A 作AC ⊥OB 于点C ∵AB=OB ∠A=60°∴∠AOB=60°且△AOB 是等边三角形∵点B 的坐标为(20)∴OB=解析:1【分析】过A 作AC ⊥OB ,首先证明△AOB 是等边三角形,再求出OC 的长即可.【详解】解,过A 作AC ⊥OB 于点C ,∵AB=OB ,∠A=60°∴∠AOB=60°且△AOB 是等边三角形,∵点B 的坐标为(2,0)∴OB=2∵AC ⊥OB ∴112122OC OB ==⨯= 故答案为:1.【点睛】 此题主要考查了坐标与图形的性质,掌握等边三角形的性质是解答此题的关键. 18.100°【分析】根据全等三角形对应角相等可得然后根据周角等于求出再根据三角形的内角和定理求出从而得解【详解】解:(对顶角相等)故答案为:【点睛】本题考查了全等三角形对应角相等的性质三角形的内角和定理 解析:100°【分析】根据全等三角形对应角相等可得1BAE ∠=∠,ACB E ∠=∠,然后根据周角等于360︒求出2∠,再根据三角形的内角和定理求出2α∠=∠,从而得解.【详解】解:ABE ADC ABC ∆≅∆≅∆,1130BAE ∴∠=∠=︒,ACB E ∠=∠,23601360130130100BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,180DFE E α∴∠=︒-∠-∠,1802AFC ACD ∠=︒-∠-∠,DFE AFC ∠=∠(对顶角相等),1801802E ACD α∴︒-∠-∠=︒-∠-∠,2100α∴∠=∠=︒.故答案为:100︒.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,对顶角相等的性质,准确识图,找出对应角是解题的关键.19.50°或80°或65°【分析】由已知条件根据题意分三种情况讨论:①∠A 是顶角;②∠A 是底角∠B =∠A 时③∠A 是底角∠B =∠A 时利用三角形的内角和进行求解【详解】①∠A 是顶角∠B =(180°−∠A )÷解析:50°或80°或65°【分析】由已知条件,根据题意,分三种情况讨论:①∠A 是顶角;②∠A 是底角,∠B =∠A 时,③∠A 是底角,∠B =∠A 时,利用三角形的内角和进行求解.【详解】①∠A 是顶角,∠B =(180°−∠A )÷2=65°;②∠A 是底角,∠B =∠A =50°.③∠A 是底角,∠A =∠C =50°,则∠B =180°−50°×2=80°,∴当∠B 的度数为50°或65°或80°时,△ABC 是等腰三角形.故答案为:50°或65°或80°.【点睛】本题考查了等腰三角形的判定及三角形的内角和定理;分情况讨论是正确解答本题的关键.20.7【分析】连接CDBEAF 由三角形中线等分三角形的面积求得S △AEC=2S △DEFS △ABD=2S △DEFS △BFC=2S △DEF 由S △ABC=S △AEC+S △ABD+S △BFC+S △DEF 即可得出解析:7【分析】连接CD,BE,AF,由三角形中线等分三角形的面积,求得S△AEC=2S△DEF,S△ABD=2S△DEF,S△BFC=2S△DEF,由S△ABC=S△AEC+S△ABD+S△BFC+S△DEF即可得出结果.【详解】解:连接CD,BE,AF,如图所示:∵AE=ED,由三角形中线等分三角形的面积,可得S△AEF=S△DEF,同理S△AEF=S△AFC,∴S△AEC=2S△DEF;同理可得:S△ABD=2S△DEF,S△BFC=2S△DEF,∴△ABC=S△AEC+S△ABD+S△BFC+S△DEF=2S△DEF+2S△DEF+2S△DEF+S△DEF=7S△DEF=7cm2,故答案为:7.【点睛】本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,解答关键是通过作辅助线,运用三角形中线等分三角形的面积得出结果.三、解答题21.(1)3x;±1;(2)1aa+,2a=,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=2 12(2)2(2) x x xx x x+-+-⎛⎫⨯⎪--⎝⎭=2 3(2)2(2)xx x x-⨯--=3x,∵x是9的平方根,∴3x=±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义,∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键. 22.2x y x+,-2 【分析】 先算括号里的加减法运算,再把除法化为乘法,约分化简,最后代入求值,即可求解.【详解】原式=2222(2)(2)(2)x x y x x y x x y x y +---÷-+ =222x y x y x x y--÷+ =222x y x y x x y-+⋅- =2x y x+, ∵()2230x y ++-=,∴()22030x y +=-=,, ∴x=-2,y=3,∴原式=2x y x +=22322-+⨯-=-. 【点睛】 本题主要考查分式的化简求值,掌握分式的混合运算法则,通分和约分,是解题的关键. 23.①;见解析【分析】根据提公因式法和平方差公式进行因式分解.【详解】解:在小华同学的解答中,对原式进行变形,从第①步开始出现错误,故答案为:①正确过程如下:229()4()a x y b y x -+-229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握提公因式技巧和平方差公式的公式结构正确计算是解题关键.24.见解析【分析】由已知可得∠ABD=∠D ,从而得到AB=AD ,进而得到AC=AD .【详解】证明:∵BD 是∠ABC 的平分线,∴∠ABD=∠CBD ,又AD//BC ,∴∠CBD=∠D ,∴∠ABD=∠D ,∴AB=AD ,∵AB=AC ,∴AC=AD .【点睛】本题考查等腰三角形的性质与判定,熟练掌握平行线的性质、角平分线的定义、等腰三角形的判定与性质是解题关键 .25.150米【分析】根据题意,判断出△ADC ≌△CEB 即可求解.【详解】解:如图,过点B 作BE ⊥MN 于点E ,∵∠ADC =∠ACB =90°,∴∠A =∠BCE (同角的余角相等).在△ADC 与△CEB 中,90ADC CEB A BCEAC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).∴BE =CD =150m .即村庄B 到河边的距离是150米.【点睛】本题主要考查的是全等三角形的实际应用,熟练掌握全等三角形的判定及性质是解答本题的关键.26.2cm.【分析】先根据中线的定义得出MA=MC,再求出两三角形的周长差即可.【详解】解:∵BM是△ABC的中线,∴MA=MC,∴△ABM的周长﹣△BCM的周长=AB+BM+MA﹣BC﹣CM﹣BM=AB﹣BC=5﹣3=2(cm).答:△ABM与△BCM的周长是差是2cm.【点睛】本题考查的是三角形的中线,熟知三角形中线的定义是解答此题的关键.。

八年级数学上册 期末考试卷(鲁教版)(一)

八年级数学上册 期末考试卷(鲁教版)(一)

八年级数学上册期末考试卷(鲁教版)(一)满分:120分时间:120分钟一、选择题(每题3分,共36分)1.【2022·徐州】下列图案是轴对称图形但不是中心对称图形的是()2.将6ab2-3ab进行因式分解,公因式是()A.3ab B.ab C.3ab2D.6ab3.【2023·淄博张店区期中】若分式x2-9x2-4x+3的值为零,那么() A.x=3或x=-3 B.x=3且x=-3C.x=3 D.x=-34.【2022·无锡】分式方程2x-3=1x的解是()A.x=1 B.x=-1 C.x=3 D.x=-35.【母题:教材P71复习题T4】某学校规定学生的数学成绩由三部分组成,期末考试成绩占70%,期中考试成绩占20%,平时作业成绩占10%,某人上述三项成绩分别为85分、90分、80分,则他的数学成绩是() A.85分B.85.5分C.90分D.80分6.【2023·济南槐荫区期末】如图,△ABC沿直线m向右平移2 cm,得到△DEF,下列说法错误的是()A.AC∥DF B.AB=DEC.CF=2 cm D.DE=2 cm7.【2022·锦州】某校开展安全知识竞赛,进入决赛的学生有20名,他们的决赛成绩如表所示:决赛成绩/分100 99 98 97人数 3 7 6 4 则这20名学生决赛成绩的中位数和众数分别是()A.98,98 B.98,99 C.98.5,98 D.98.5,998.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC +BD =24 cm ,△OAB 的周长是18 cm ,则EF 的长为( )A .12 cmB .9 cmC .6 cmD .3 cm9.【2022·南充】如图,在正五边形ABCDE 中,以AB 为边向内作正三角形ABF ,则下列结论错误的是( ) A .AE =AF B .∠EAF =∠CBF C .∠F =∠EAF D .∠C =∠E10. 观察下列分解因式的过程:x 2-2xy +y 2-16=(x -y )2-16=(x -y +4)()x -y -4,这种分解因式的方法叫分组分解法.利用这种分组的思想方法,已知a ,b ,c 满足a 2-b 2-ac +bc =0,则以a ,b ,c 为三条线段首尾顺次连接围成一个三角形,下列描述正确的是( ) A .围成一个等腰三角形 B .围成一个直角三角形 C .围成一个锐角三角形 D .以上都不正确11.如图,将▱ABCD 沿对角线AC 翻折,点B 落在点E 处,CE 交AD 于点F ,若∠B =80°,∠ACE =2∠ECD ,FC =a ,FD =b ,则▱ABCD 的周长为( )A .2a +bB .4a +bC .4a +2bD .2a +2b12.若关于x 的一元一次不等式组⎩⎨⎧3x -2≥2(x +2),a -2x <-5的解集为x ≥6,且关于y的分式方程y+2ay-1+3y-81-y=2的解是正整数,则所有满足条件的整数a的值之和是()A.5 B.8 C.12 D.15 二、填空题(每题3分,共18分)13.【母题:教材P45复习题T6】若分式x+2x2-1有意义,则x应满足的条件是________.14.【2023·烟台龙口市期中】若多项式x2-(m-1)x+16能用完全平方公式进行因式分解,则m=________.15.【2022·山西】生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种的大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol·m-2·s-1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲32 30 25 18 20 25乙28 25 26 24 22 25 则两个品种的大豆中光合作用速率更稳定的是________(填“甲”或“乙”).16.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=________.17.如图,在平面直角坐标系中,点A(3,0),点B(0,2),连接AB,将线段AB绕点A顺时针旋转90°得到线段AC,连接OC,则线段OC的长度为________.18.如图,在▱ABCD 中,AB =6,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边CD 的中点,DG ⊥AE ,垂足为G ,若 DG =5,则AE 的长为________.三、解答题(19,21题每题9分,24,25题每题12分,其余每题8分,共66分) 19.分解因式:(1)x 3-x ; (2)2a 2-4a +2; (3)m 4-2m 2+1.20.(1)化简:⎝ ⎛⎭⎪⎫m +2n m -n +m n -m ÷n m -n;(2)先化简,再求值:⎝ ⎛⎭⎪⎫1-1a 2-2a +1÷a -2a -1,其中a =3.21.【2022·无锡】如图,在▱ABCD 中,点O 为对角线BD 的中点,EF 过点O 且分别交AB ,DC 于点E ,F ,连接DE ,BF .求证: (1)△DOF ≌△BOE ; (2)DE =BF .22.【2023·烟台莱阳市期中】近年来,网约车给人们的出行带来了便利,为了解网约车司机的收入情况,小飞和数学兴趣小组同学从甲、乙两家网约车公司分别随机抽取10名司机的月收入进行统计,情况如下:根据以上信息,整理分析数据如表:平均数/千元中位数/千元众数/千元方差甲公司a 6 b 1.2乙公司 6 c 4 d(1)表中a=______,b=______,c=______,d=______;(2)小飞的叔叔决定从两家公司中选择一家做网约车司机,如果你是小飞,你建议他选哪家公司?简述理由.23.【2022·赤峰】某学校建立了劳动基地,计划在基地上种植A,B两种苗木共6 000株,其中A种苗木的数量比B种苗木的数量的一半多600株.(1)请问A,B两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种苗木30株,应分别安排多少人种植A种苗木和B 种苗木,才能确保同时..完成任务?24.如图,在▱ABCD中,点E在边AD上,连接EB并延长至F,使BF=BE;连接EC并延长至G,使CG=CE,连接FG,点H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形.25.(1)如图①,O是等边△ABC内一点,连接OA,OB,OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.①旋转角的度数为________;②线段OD的长为________;③求∠BDC的度数.(2)如图②,O是等腰Rt△ABC(∠ABC=90°)内一点,连接OA,OB,OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD,当OA,OB,OC 满足什么条件时,∠ODC=90°?请给出证明.答案一、1.C 2.A3.D【点拨】分式x2-9x2-4x+3=(x+3)(x-3)(x-1)(x-3),由这个分式的值为0,可得(x+3)(x-3)=0且(x-1)(x-3)≠0.解得x=-3.4.D 5.B6.D【点拨】∵△ABC沿直线m向右平移2cm得到△DEF,∴AC∥DF,AB =DE,CF=AD=BE=2cm.7.D8.D【点拨】∵四边形ABCD为平行四边形,∴AO=12AC,BO=12BD,∴AO+BO=12(AC+BD)=12cm.又∵△AOB的周长为18cm,∴AB=18-(AO+BO)=18-12=6(cm).∵E,F分别是线段AO,BO的中点,∴EF为△AOB的中位线,∴EF=12AB=12×6=3(cm).9.C【点拨】∵多边形ABCDE是正五边形,∴该多边形内角和为(5-2)×180°=540°,AB=AE,∴∠C=∠E=∠EAB=∠ABC=540°5=108°,故D正确;∵△ABF是正三角形,∴∠FAB=∠FBA=∠F=60°,AB=AF=FB,∴∠EAF=∠EAB-∠FAB=108°-60°=48°,∠CBF=∠ABC-∠FBA=108°-60°=48°,∴∠EAF=∠CBF,故B正确;∵AB=AE,AB=AF,∴AE=AF,故A正确;∵∠F=60°,∠EAF=48°,∴∠F≠∠EAF,故C错误.10.A【点拨】a2-b2+bc-ac=0,(a+b)(a-b)+c(b-a)=0,(a-b)(a+b-c)=0,∴a=b或a+b=c,当a=b时,围成一个等腰三角形;当a+b=c时,不能围成三角形.11.C【点拨】∵∠B=80°,四边形ABCD为平行四边形,∴∠D=80°,AD∥BC.∴∠DAC=∠ACB.由折叠可知∠ACB=∠ACE,∴∠ACE=∠DAC.∴△AFC为等腰三角形.∴AF=FC=a.∴AD=AF+FD=a+b.设∠ECD=x°,则∠ACE=∠DAC=2x°.在△ADC中,由三角形内角和定理可知2x°+2x°+x°+80°=180°,解得x=20.∴∠DFC=4x°=80°,∴∠DFC=∠D.∴△DFC为等腰三角形.∴DC=FC=a.∴▱ABCD的周长为2(DC+AD)=2(a+a+b)=4a+2b.12.B x-2≥2(x+2),①-2x<-5,②解不等式①得x≥6.解不等式②得x>a+5 2.∵不等式组的解集为x≥6,∴a+52<6,∴a<7.分式方程两边都乘(y -1),得y +2a -3y +8=2(y -1),解得y =a +52.∵方程的解是正整数,∴a +52>0,∴a >-5.由题意得y -1≠0,∴a +52≠1,∴a ≠-3,∴-5<a <7且a ≠-3,∴能使a +52是正整数的a 的值是-1,1,3,5,∴-1+1+3+5=8.二、13.x ≠±114.9或-715.乙16.4【点拨】如图,延长EP ,FP 分别交AB ,BC 于G ,H ,∵△ABC 为等边三角形,∴∠B =∠C =60°.∵PD ∥AB ,PE ∥BC ,PF ∥AC ,∴四边形PGBD 、四边形EPHC 是平行四边形,∠FGP =∠B =60°,∠PDH =∠B =60°,∠FPG =∠PHD =∠C =60°.∴PG =BD ,PE =HC ,△PFG ,△PDH 是等边三角形.∴PF =PG =BD ,PD =DH .∵△ABC 的周长为12,∴BC =4.∴PD +PE +PF =DH +HC +BD =BC =4.17.34【点拨】如图,作CH ⊥x 轴于H .∵A(3,0),B(0,2),∴OA=3,OB=2.∵∠BAC=∠AHC=90°,∴∠BAO+∠HAC=90°,∠HAC+∠ACH=90°,∴∠BAO=∠ACH.∵AB=AC,∠AOB=∠CHA=90°.∴△ABO≌△CAH(AAS),∴AH=OB=2,CH=OA=3,∴OH=OA+AH=3+2=5,∴OC=OH2+CH2=52+32=34. 18.8【点拨】∵AE为∠DAB的平分线,∴∠DAE=∠BAE.∵四边形ABCD为平行四边形,∴AD∥BC,DC∥AB,DC=AB.∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD.又∵DG⊥AE,∴AG=FG,即AF=2AG.∵F为DC的中点,∴DF=CF,∴AD=DF=12DC=12AB=3.在Rt△ADG中,根据勾股定理得AG=2,则AF=2AG=4.∵AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF.在△ADF和△ECF ∠DAF=∠E,∠ADF=∠ECF,DF=CF,∴△ADF ≌△ECF (AAS),∴AF =EF ,则AE =2AF =8.三、19.解:(1)x 3-x =x (x 2-1)=x (x +1)(x -1).(2)2a 2-4a +2=2(a 2-2a +1)=2(a -1)2.(3)m 4-2m 2+1=(m 2-1)2=(m +1)2(m -1)2.20.解:(1)原式=m +2n -m m -n ·m -n n=2n m -n ·m -n n=2.(2)÷a -2a -1=a (a -2)(a -1)2·a -1a -2=a a -1,当a =3时,原式=33-1=32.21.证明:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴AB ∥DC ,OB =OD ,∴∠OBE =∠ODF .在△BOE 和△DOF OBE =∠ODF ,=OD ,BOE =∠DOF ,∴△BOE ≌△DOF (ASA).(2)∵△BOE ≌△DOF ,∴EO =FO .∵OB =OD ,∴四边形BEDF 是平行四边形.∴DE =BF .22.解:(1)6;6;4.5;7.6(2)选甲公司,理由如下:虽然两家公司的司机月收入的平均数一样,但是甲公司的司机月收入的中位数、众数大于乙公司,且甲公司的司机月收入的方差小,更稳定.23.解:(1)设A 苗木的数量是x 株,B 苗木的数量是y 株,根据题意,得+y =6000,=12y +600,=2400,=3600.答:A 种苗木2400株,B 种苗木3600株.(2)设安排a 人种植A 苗木,则安排(350-a )人种植B 苗木,根据题意,得240050a =360030(350-a ),解得a =100,经检验a =100是原方程的解,∴350-a =250.答:安排100人种植A 苗木,250人种植B 苗木,才能确保同时完成任务.24.(1)解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠BAE =∠BCD =70°.∴∠DEC =∠BCE =∠BCD -∠DCE =70°-20°-50°.(2)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∵BF =BE ,CG =CE ,∴BC 是△EFG 的中位线,∴BC ∥FG ,BC =12FG ,∴AD ∥FH .∵H 为FG 的中点,∴FH =12FG ,∴BC =FH ,∴AD =FH ,∴四边形AFHD 是平行四边形.25.解:(1)①60°②4③由题易证△BOD为等边三角形,∴∠BDO=60°.∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3.在△OCD中,CD=3,OD=4,OC=5.∵32+42=52,∴CD2+OD2=OC2.∴△OCD为直角三角形,∠ODC=90°.∴∠BDC=∠BDO+∠ODC=60°+90°=150°.(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO.∴△OBD为等腰直角三角形.∴OD=2OB.∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2.∴当OA,OB,OC满足OA2+2OB2=OC2时,∠ODC=90°.。

鲁教版八年级数学上册期末测试题(附参考答案)

鲁教版八年级数学上册期末测试题(附参考答案)

鲁教版八年级数学上册期末测试题(附参考答案)满分150分 考试时间120分钟一、选择题:本题共12个小题,每小题4分,共48分。

每小题只有一个选项符合题目要求。

1.下列因式分解正确的是( ) A .2a 2-4a +2=2(a -1)2 B .a 2+ab +a =a (a +b ) C .4a 2-b 2=(4a +b )(4a -b ) D .a 3b -ab 3=ab (a -b )22.若k 为任意整数,则(2k +3)2-4k 2的值总能( ) A .被2整除 B .被3整除 C .被5整除D .被7整除3.分式x 2−xx−1的值为0,则x 的值是( ) A .0 B .-1 C .1D .0或14.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x 吨,则所列方程正确的是( ) A .75x−5=50x B .75x =50x−5 C .75x+5=50x D .75x =50x+55.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁6.如图,一束太阳光平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为( )A.41°B.51°C.42°D.49°7.如图,在四边形ABCD中,AB∥CD,若添加一个条件,使四边形ABCD为平行四边形,则下列正确的是( )A.AD=BC B.∠ABD=∠BDCC.AB=AD D.∠A=∠C8.如图,□ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD的中点.若AD=4,CD=6,则EO的长为( )A.1 B.2C.3 D.49.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )10.在正数范围内定义一种运算“※”,其规则为a※b=1a +1b,如2※4=12+14,根据这个规则,方程3※(x-1)=1的解为( ) A.x=52B.x=-1C.x=12D.x=-311.如图,在平面直角坐标系中,△ABC各点坐标分别为A(-2,1),B(-1,3),C(-4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A 2B2C2.若B2(2,1),则点A2的坐标为( )A.(1,5) B.(1,3)C.(5,3) D.(5,5)12.如图,在△ABC中,AB=AC,若M是边BC上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC二、填空题:本题共6个小题,每小题4分,共24分。

鲁教版八年级数学上册期末考试试卷(附答案)

鲁教版八年级数学上册期末考试试卷(附答案)

八年级数学上册期末考试试卷(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.一组数据9.5,9,8.5,8,7.5的极差是()A. 0.5B. 8.5C. 2.5D. 22.二元一次方程组的解是()A. B. C. D.3.如图,直线a∥b,直线l与直线a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠2=40°,则∠1的度数为()A. 20°B. 30°C. 40°D. 50°4.在一次中学生汉字听写大赛中,某中学代表队6名同学的笔试成绩分别为:75,85,91,85,95,85.关于这6名学生成绩,下列说法正确的是()A. 平均数是87B. 中位数是88C. 众数是85D. 方差是2305.用加减法解方程组时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:① ②③④,其中变形正确的是()A. ①②B. ③④C. ①③D. ②④6.下列运算正确的是()A. B. C. D.7.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()A. 12米B. 13米C. 14米D. 15米8.如果函数y=x﹣b与y=﹣2x+4的图象的交点坐标是(2,0),那么二元一次方程组的解是()A. (2,0)B.C.D. 以上答案都不对9.如图,直线a∥b,∠1的度数比∠2的度数大56°,若设∠1=x°,∠2=y°,则可得到的方程组为( )A. B. C. D.10.如图,不能判定AB∥DF的是()A. ∠1=∠2B. ∠A=∠4C. ∠1=∠AD. ∠A+∠3=180°11.甲、乙两名自行车运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时乙在甲前10千米;④3小时时甲追上乙.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(共6题;共24分)12.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.9,乙队队员身高的方差是S 2=1.2,那么两队中队员身高更整齐的是________队.(填“甲”或“乙”)乙13.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是________ cm2.14.已知关于x,y的二元一次方程组的解互为相反数,则k的值是________.15.如图,⊙O中,BD为⊙O直径,弦AD长为3,AB长为5,AC平分∠DAB,则弦AC的长为________.16.在Rt△ABC中,∠C=90°,∠A=50°,则∠B=________.17.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A n的坐标为________三、计算题(共6题;共60分)18.a,b互为相反数,c,d互为倒数,m的绝对值等于3,求m2+(cd+a+b)+(cd)2018的值.19.解方程或方程组:(1)(2)20.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,8,8,9乙:5,9,7,10,9(1)填写下表(2)教练根据5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1此,命中8环,那么乙的射击成绩的方差有什么变化?21.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD= AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.22.如图1,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形DOABC的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.(1)求A、B两点的坐标;(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.23.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.答案一、单选题1. D2. B3. D4. C5. B6.C7. A8.B9. B 10. C 11. C二、填空题12.乙13.6 14. -1 15.16.40°17.(2n﹣1,0)三、计算题18. 解:∵a,b互为相反数,c,d互为倒数,m的绝对值等于3,∴a+b=0,cd=1,|m|=3,∴m2+(cd+a+b)+(cd)2018=9+1+1=1119.(1)解:4或x=0(2)解:解得20.解:(1)甲的众数为8;乙的平均数==8,乙的中位数==8;(2)因为甲乙的平均数相等,而甲的方差小,成绩比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小.故答案为8,8,8;变小.21. 应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD= DB= AB,与已知PD= AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD= AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC= = =4,①若PB=PC,设PA=x,则x2+32=(4﹣x)2,∴x= ,即PA= ,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或.22.(1)解:连接AD,设点A的坐标为(a,0),由图2知,DO+OA=6cm,则DO=6﹣AO=6﹣a,由图2知S△AOD=4,∴DO•AO= a(6﹣a)=4,整理得:a2﹣6a+8=0,解得a=2或a=4,由图2知,DO>3,∴AO<3,∴a=2,∴A的坐标为(2,0),D点坐标为(0,4),在图1中,延长CB交x轴于M,由图2,知AB=5cm,CB=1cm,∴MB=3,∴AM==4.∴OM=6,∴B点坐标为(6,3)(2)解:因为P在OA、BC、CD上时,直线PD都不能将五边形OABCD分成面积相等的两部分,所以只有点P一定在AB上时,才能将五边形OABCD分成面积相等的两部分,设点P(x,y),连PC、PO,则S四边形DPBC=S△DPC+S△PBC= S五边形OABCD= (S矩形OMCD﹣S△ABM)=9,∴×6×(4﹣y)+ ×1×(6﹣x)=9,即x+6y=12,同理,由S四边形DPAO=9可得2x+y=9,由,解得x= ,y= .∴P(,),设直线PD的函数关系式为y=kx+4(k≠0),则= k+4,∴k=﹣,∴直线PD的函数关系式为y=﹣x+4.23. (1)解:将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代入,得:,解得:;(2)解:当0≤x<600时,W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,∴当x=500时,W取得最大值为32500元;当600≤x≤1000时,W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增大而减小,∴当x=600时,W取最大值为32400,∵32400<32500,∴W取最大值为32500元;(3)解:由题意得:1000﹣x≥100,解得:x≤900,由x≥700,则700≤x≤900,∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取得最小值27900元.。

鲁教版八年级(上)期末数学试卷

鲁教版八年级(上)期末数学试卷

八年级数学上册期末试题1.若分式值为0,则a的取值是()A.a=0B.a=1C.a=﹣1D.a≠02.下列图形中,对称轴条数最少的图形是()A.等边三角形B.正方形C.圆D.角3.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数B.中位数C.平均数D.极差4(4分)已知,在平行四边形ABCD中,∠A的平分线分BC成4cm和3cm两条线段,则平行四边形ABCD的周长为()cm.A.11B.22C.20D.20或225(4分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()B.C.D.A.6(3分)若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°7(3分)下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.8(3分)图为在某居民小区中随机调查的10户家庭一年的月均用水量(单位:t)的条形统计图,则这10户家庭月均用水量的众数和中位数分别是()A.6.5,6.5B.6.5,7C.7,7D.7,6.59(3分)下列四个多项式,能因式分解的是()A.a﹣1B.a2+1C.x2﹣4y D.x2﹣6x+910(3分)如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF 11(3分)如果分式的值为0,那么x的值为()A.﹣1B.1C.﹣1或1D.1或012.(3分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=6,EF=2,则BC长为()A.8 B.10C.12D.1413(3分)下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是()A.B.C.D.14(3分)下列多项式中,能用完全平方公式分解因式的是()A.a2+4B.x2+6x+9C.x2﹣2x﹣1D.a2+ab+b2 15.(3分)已知一组数据:2,6,4,6,7,则这组数据的中位数和众数分别是()A.4,4B.4,6C.6,6D.6,16(3分)一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是()A.360°B.900°C.1440°D.1800°17在坐标系中,点A的坐标为(3,﹣4),它关于y轴的对称点B的坐标是,18八年级一班的教室卫生为85分,环境卫生成绩为90分,个人卫生为95分.若这三项成绩分别按30%、40%和30%计入总成绩,则该班这次卫生检查的总成绩是分.20.(3分)已知一组数据1,7,10,8,x,6,0,3,若=5,则x应等于.21.(3分)分解因式:3m2﹣6mn+3n2=.22.(3分)若式子有意义,则实数x的取值范围是.23.学校图书馆购进A,B两种图书.每套图书A比每套图书B的价格多5元,用3500元购买图书A与用2700元购买的图书B的套数相等,设购买的图书A每套的价格为x元,则可列分式方程为.24如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.25先化简,再求值:,其中a=5.26在平面直角坐标系中,△ABC的三个顶点分别是A(﹣3,5),B(﹣4,1),C(﹣1,2).(1)△A1B1C1是由△ABC平移得到的,若C点对应的点C1(3,2),请画出△A1B1C1;(2)画出△ABC关于点O的中心对称图形△A2B2C2;(3)分别连接点B与点B1,点C与点C1,判断四边形BCC1B1的形状为.(直接写出答案,无需说明理由)27(1)化简:(2)解方程:28.先化简,再求值:(﹣)÷,其中a=3.29.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数30.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.31(5分)如图,▱ABCD中,E为BC边的中点,连AE并与DC的延长线交于点F,求证:DC=CF.32(8分)如图,点D是ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点.(1)求证:四边形EFGH是平行四边形;(2)如果∠BDC=90°,∠DBC=30°,AD=6,CD=3,求四边形EFGH的周长.。

【鲁教版】初二数学上期末试卷(含答案)(1)

【鲁教版】初二数学上期末试卷(含答案)(1)

一、选择题1.若关于x的方程10 44m xx x--= --无解,则m的值是()A.2-B.2 C.3-D.32.下列变形不正确的是()A.1122x xx x+-=---B.b a a bc c--+=-C.a b a bm m-+-=-D.22112323x xx x--=---3.若数a关于x的不等式组()()11223321xxx a x⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y的分式方程13y2a2y11y--=---的解为正数,则所有满足条件的整数a的值之和是()A.2 B.3 C.4 D.54.下列计算正确的个数为()①555•2a a a=;②5510b b b+=;③1644n n÷=;④247••y y y y=;⑤()()23•x x x--=-;⑥()7214a a--=;⑦()()234214•a a a-=;⑧()242a a a÷-=-;⑨()03.141π-=.A.2 B.3 C.4 D.55.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是()(用含有a、b的代数式表示).A.a-b B.a+b C.ab D.2ab6.在下列的计算中正确的是()A.23a ab a b⋅=;B.()()2224a a a+-=+;C.235x y xy+=;D.()22369x x x-=++7.下列运算正确的是().A.()2326ab a b=B.()325a a=C.236a a a⋅=D.347a a a+=8.已知代数式2a-b=7,则-4a+2b+10的值是()A.7 B.4 C.-4 D.-79.如图,AD 是ABC 的角平分线,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠,2AE BF =.下列四个结论中:①DE DF =;②DB DC =;③AD BC ⊥;④3AB BF =.其中正确的结论共有( )A .4个B .3个C .2个D .1个10.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .811.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°12.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠ D .C D ∠=∠二、填空题13.已知关于x 的方程321x m x -=-的解是正数,则m 的取值范围为____________. 14.计算:()30120202-⎛⎫---= ⎪⎝⎭______. 15.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy的值为____. 16.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.17.如图,在四边形ABCD 中,130DAB ∠=︒,90D B ∠=∠=︒,点M ,N 分别是CD ,BC 上两个动点,当AMN 的周长最小时,AMN ANM ∠+∠的度数为_________.18.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________. 19.如图,AB =8cm ,AC =5cm ,∠A =∠B ,点P 在线段AB 上以2cm/s 的速度由点A 向B 运动,同时,点Q 以x cm/s 的速度从点B 出发在射线BD 上运动,则△ACP 与△BPQ 全等时,x 的值为_____________20.如图,点D ,E ,F 分别是边BC ,AD ,AC 上的中点,若图中阴影部分的面积为3,则ABC 的面积是________.三、解答题21.计算:(1)|﹣3|﹣1162+×38-+(﹣2)2; (2)xy 2•(﹣2x 3x 2)3÷4x 5. 22.水果店在批发市场购买某种水果销售,第一次用2000元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用2496元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)第一次水果的进价是每千克多少元?(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元? 23.(1)23235ab a b ab (2)23233x x x x 24.如图,已知:射线AM 是△ABC 的外角∠NAC 的平分线.(1)作BC 的垂直平分线PF ,交射线AM 于点P ,交边BC 于点F ;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)过点P 作PD ⊥BA ,PE ⊥AC ,垂足分别为点D ,E ,请补全图形并证明BD =CE .25.如图,点D ,E 分别在AB 和AC 上,DE//BC ,点F 是AD 上一点,FE 的延长线交BC 延长线BH 于点G .(1)若∠DBE =40°,∠EBC =35°,求∠BDE 的度数;(2)求证:∠EGH >∠ADE ;(3)若点E 是AC 和FG 的中点,△AFE 与△CEG 全等吗?请说明理由.26.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 2.A解析:A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A 、1122x x x x +--=---,故A 不正确; B 、b a a b c c--+=-,故B 正确;C 、a b a b m m-+-=-,故C 正确; D 、22112323x x x x--=---,故D 正确. 故答案为:A .【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.3.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.4.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确; ⑦()()23428614•a a a a a -=-⋅=-,故⑦错误; ⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则. 5.C解析:C【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可.【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y a y x b +=⎧⎨-=⎩, 解得:42a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab b a ab b ab ++-+=-==ab . 故选C .【点睛】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键.解析:A【分析】根据单项式的乘法,平方差公式,完全平方公式,对各选项计算后利用排除法求解.【详解】A 、a 2•ab =a 3b ,正确;B 、应为(a +2)(a−2)=a 2−4,故本选项错误;C 、2x 与3y 不是同类项不能合并;D 、应为(x−3)2=x 2−6x +9,故本选项错误.故选:A .【点睛】本题主要考查平方差公式,单项式的乘法法则,完全平方公式,熟练掌握运算法则和公式是解题的关键,合并同类项时,不是同类项的不能合并.7.A解析:A【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方的法则进行逐一计算即可.【详解】A 选项:()2326ab a b =,正确,符合题意;B 选项:()326a a =,错误,不符合题意; C 选项:235a a a ⋅=,错误,不符合题意;D 选项:347a a a +≠,错误,不符合题意.故选:A .【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方,熟练掌握性质和法则是解题的关键.8.C解析:C【分析】直接将原式变形,进而把已知代入求出答案.【详解】解:∵-4a +2b +10=10-2(2a-b ),把2a-b=7代入上式得:原式=10-2×7=10-14=-4.故选:C .【点睛】此题主要考查了代数式求值,正确将原式变形是解题关键.解析:A【分析】根据角平分线的定义、平行线的性质得到∠ABC=∠C ,得到AC=AB ,根据等腰三角形的性质得到DB=DC ,AD ⊥BC ,证明△CDE ≌△BDF ,根据全等三角形的性质证明得到答案.【详解】解:∵BC 平分∠ABF ,∴∠ABC=∠FBC ,∵BF ∥AC ,∴∠C=∠FBC ,∴∠ABC=∠C ,∴AC=AB ,∵AC=AB ,AD 是△ABC 的角平分线,∴DB=DC ,AD ⊥BC ,故②、③说法正确;在△CDE 和△BDF 中,C DBF CD DBCDE BDF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDE ≌△BDF (ASA ),∴DE=DF ,故①说法正确;∵△CDE ≌△BDF ,∴BF=CE ,∵AE=2BF ,∴AB=AC=3BF ,故④说法正确;故选:A .【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.10.C解析:C【分析】根据∠ACB=90°,∠A=30°,CD 是斜边AB 上的高,利用互余关系求∠BCD=30°,DB=2,可求BC ,在Rt △ABC 中,再利用含30°的直角三角形的性质求AB ,再用线段的差求AD .【详解】解:Rt △ABC 中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD 是斜边AB 上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD=4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C.【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.11.A解析:A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB,然后求出∠OBC+∠OCB,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵O到三边AB、BC、CA的距离OF=OD=OE,∴点O是三角形三条角平分线的交点,∵∠BAC=70°,∴∠ABC+∠ACB=180°-70°=110°,∴∠OBC+∠OCB= 12(∠ABC+∠ACB)=12×110°=55°,在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-55°=125°.故选:A.【点睛】本题考查了角平分线判定定理,三角形的内角和定理,要注意整体思想的利用.12.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C,∠1=∠A+∠D,∠2=∠B+∠C,∴∠B=∠D,∴选项A、B正确;∵∠2=∠A+∠D,∴2D∠>∠,∴选项C正确;没有条件说明C D∠=∠故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.二、填空题13.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.14.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】 本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.15.﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2y=2代入求值即可【详解】∵且∴x+2=0y-2=0∴x=-2y=2∴=-1故答案为:-1【点睛】此题考查代数式的求值计算正确掌握绝对值的非解析:﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2,y=2,代入求值即可.∵22(2)0x y ++-=,且220,(2)0x y +≥-≥,∴x+2=0,y-2=0,∴x=-2,y=2, ∴2021()xy=-1, 故答案为:-1.【点睛】此题考查代数式的求值计算,正确掌握绝对值的非负性及偶次方的非负性求出x=-2,y=2是解题的关键.16.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.17.100°【分析】作点A 关于BC 的对称点A′关于CD 的对称点A″根据轴对称确定最短路线问题连接A′A″与BCCD 的交点即为所求的点MN 利用三角形的内角和定理列式求出∠A′+∠A″再根据轴对称的性质和三【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【详解】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°-∠130°=50°,由轴对称的性质得:A′N= AN,A″M=AM∴∠A′=∠A′AN,∠A″=∠A″AM,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.18.7【分析】根据关于x轴对称的点横坐标相同纵坐标互为相反数列方程求解即可【详解】解:∵点A(a-13)与点B(2-2b-1)关于x轴对称∴a-1=2-2b-1=-3解得a=3b=1∴=2×3+1=7故解析:7【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程求解即可.【详解】解:∵点A(a-1,3)与点B(2,-2b-1)关于x轴对称,∴a-1=2,-2b-1=-3,解得a=3,b=1,∴2a b =2×3+1=7.故答案为:7.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.19.2或【分析】由∠A=∠B可知△ACP与△BPQ全等时CP和PQ是对应边则分AP=BQ和AP=PB两种情况进行讨论即可【详解】设动点的运动时间为t秒则AP=2tBP=AB-AP=8-2tBQ=xt∵∠解析:2或5 2【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8-2t,BQ=xt,∵∠A=∠B,∴CP和PQ是对应边,当△ACP与△BPQ全等时,①AP=BQ,即:2t= xt,解得:x=2,②AP=PB,即:2t=8-2t,解得:t=2,此时,BQ=AC,xt=5,即:2x=5,解得:x=5 2故填:2或52.【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.20.8【分析】利用三角形的中线将三角形分成面积相等的两部分S△ABD=S△ACD=S△ABCS△BDE=S△ABDS△ADF=S△ADC再得到S△BDE=S△ABCS△DEF=S△ABC所以S△ABC=解析:8【分析】利用三角形的中线将三角形分成面积相等的两部分,S△ABD=S△ACD=12S△ABC,S△BDE=12S△ABD,S△ADF=12S△ADC,再得到S△BDE=14S△ABC,S△DEF=18S△ABC,所以S△ABC=83S阴影部分.【详解】解:∵D 为BC 的中点,∴12ABD ACD ABC S S S ==△△△, ∵E ,F 分别是边,AD AC 上的中点, ∴111,,222BDE ABD ADF ADC DEF ADF SS S S S S ===, ∴111,448BDE ABC DEF ADC ABC S S S S S ===,∵113488BDE DEF ABC ABC ABC S SS S S S =+=+=阴影部分, ∴888333ABC S S ⨯===阴影部分, 故答案为:8.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S △=12×底×高.三角形的中线将三角形分成面积相等的两部分. 三、解答题21.(1)2;(2)﹣2x 11y 2【分析】(1)先根据绝对值、算术平方根、立方根、乘方的意义化简,再根据实数运算法则计算即可;(2)先算乘方,再算乘除即可.【详解】解:(1)21|3|(2)2-- =134(2)42-+⨯-+ =3﹣4﹣1+4=2; (2)xy 2•(﹣2x 3x 2)3÷4x 5=xy 2•(﹣2x 5)3÷4x 5=xy 2•(﹣8x 15)÷4x 5=(﹣8÷4)x 1+15﹣5y 2=﹣2x 11y 2.【点睛】考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.同时考查了实数的运算.22.(1)第一次水果进价是每千克4元;(2)该水果店在这两次销售中,总体上是盈利,且盈利3104元【分析】(1)设第一次水果的进价是每千克x 元,则第二次水果的进价是每千克1.2x 元,根据数量=总价÷单价结合第二次比第一次多购进20千克,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.【详解】解:(1)设第一次水果进价为每千克x 元,则第二次水果进价为每千克1.2x 元. 依题意列方程得,2000249620 1.2x x+= 解得,4x =经检验,4x =是方程的根,且符合题意. ∴第一次水果进价是每千克4元.(2)第一次售完水果盈利为:()20009425004-⨯=(元) 第二次售完水果盈利为:()()200010 4.81005 4.8(20100)6044-⨯+-⨯+-=(元) 25006043104+=(元)∴该水果店在这两次销售中,总体上是盈利,且盈利3104元.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.23.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x x x x2222369x x x x2222129x x x 23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.24.(1)见解析;(2)见解析【分析】(1)利用基本作图作BC 的垂直平分线即可;(2)先根据几何语言画出对应几何图形,再连接PB 、PC ,根据线段垂直平分线的性质得到PB =PC ,根据角平分线的性质得PD =PE ,则可判断Rt △BDP ≌Rt △CEP ,从而得到BD =CE .【详解】解:(1)如图,PF 为所作;(2)证明:如图,连接PB 、PC ,如图,∵PF 垂直平分BC ,∴PB =PC ,∵AM 是△ABC 的外角∠NAC 的平分线,PD ⊥BA ,PE ⊥AC ,∴PD =PE ,在Rt △BDP 和Rt △CEP 中,PB PC PD PE =⎧⎨=⎩,∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE .【点睛】本题考查了线段垂直平分线和角平分线的性质以及全等三角形的判定和性质,掌握相关性质定理正确推理论证是解题关键.25.(1)∠BDE =105°;(2)见解析;(3)全等,理由见解析.【分析】(1)根据平行线的性质得出∠DEB=∠EBC=35°,再根据三角形的内角和定理即可得到结论;(2)根据三角形的外角性质得出∠EGH >∠ABC ,又根据平行线的性质得出∠ABC=∠ADE ,即可得出答案;(3)根据全等三角形判定的“SAS”定理即可得到结论.【详解】(1)解:∵DE//BC ,∠EBC =35°,∴∠DEB =∠EBC =35°,又∵∠BDE+∠DEB+∠DBE =180°,∠DBE =40°,∴∠BDE =105°;(2)证明:∵∠EGH 是△FBG 的外角,∴∠EGH >∠ABC ,又∵DE//BC ,∴∠ABC =∠ADE ,∴∠EGH >∠ADE ;(3)全等.证明:E 是AC 和FG 的中点,∴AE =CE ,FE =GE ,在△AFE 和△CEG 中,AE CE AEF CEG FE GE =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△CGE (SAS ).【点睛】本题考查了三角形的外角性质,平行线的性质的应用,全等三角形的判定,三角形内角和定理,能运用三角形外角性质进行推理是解此题的关键.26.周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.。

[精编]鲁教版八年级上册数学期末试卷

[精编]鲁教版八年级上册数学期末试卷

鲁教版八年级上册数学期末试卷一.选择题1.下列式子中是分式的是()A. B.C.D.2.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x3.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A.m﹣1 B.m+1 C.m2﹣1 D.(m﹣1)24.当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣15.下列多项式中,能用完全平方公式分解因式的是()A.﹣x2﹢1 B.﹣x2+2x﹣1 C.x2﹣2x﹣2 D.x2﹣2x6.因式分解3y2﹣6y+3,结果正确的是()A.3(y﹣1)2B.3(y2﹣2y+1)C.(3y﹣3)2D.7.下列方程是分式方程的是()A.(a,b为常数)B.x=c(c为常数)C.x=5(b为常数)D.8.计算﹣的结果是()A.B.C.D.9.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元 C.29元D.34.5元10.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A.28 B.29 C.30 D.3111.数据21,12,18,16,20,21的众数和中位数分别是()A.21和19 B.21和17 C.20和19 D.20和1812.若数据10,9,a,12,9的平均数是10,则这组数据的方差是()A.1 B.1.2 C.0.9 D.1.4二.填空题13.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为.14.如图,点B,C,D在同一条直线上,△ABC和△ECD都是等边三角形,△EBC可以看作是由△DAC绕点C逆时针旋转°得到的.15.给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是.(填写序号)16.如图,点E,F分别在平行四边形ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是.17.如图所示,DE是△ABC的中位线,若BC=8,则DE= .三.解答题18.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.19.因式分解:﹣3a3b+6a2b2﹣3ab3.20.(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.21.先化简,再求值:÷﹣,其中x=.22.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元.23.张明、李成两位同学初二学年10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:利用图中提供的信息,解答下列问题.(1)完成下表:(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是;(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.24.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.求证:△AGE≌△BGF.。

【鲁教版】八年级数学上期末试题(带答案)(1)

【鲁教版】八年级数学上期末试题(带答案)(1)

一、选择题1.如图,在数轴上表示2224411424x x x x x x -++÷-+的值的点是( )A .点PB .点QC .点MD .点N 2.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2-B .2C .3-D .3 3.计算23211x x x x +-++的结果为( ) A .1 B .3 C .31x + D .31x x ++ 4.11121n n n x x x x+-+-+等于( ) A .11n x + B .11n x - C .21x D .15.若2()(2)3x a x x x b +-=-+,则实数b 等于( )A .2-B .2C .12-D .126.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个B .2个C .3个D .4个 7.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6-B .0C .12D .18 8.已知代数式2a -b =7,则-4a +2b +10的值是( )A .7B .4C .-4D .-7 9.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒10.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .1211.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对12.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒二、填空题13.计算:111x x---的结果是________. 14.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.15.若()2340x y -+=,则x y -=______.16.因式分解:(x +3)2-9=________.17.如图(1),已知AB AC =,D 为BAC ∠的角平分线上一点,连接BD ,CD ;如图(2),已知AB AC =,D ,E 为BAC ∠的角平分线上两点,连接BD ,CD ,BE ,CE ;如图(3),已知AB AC =,D ,E ,F 为BAC ∠的角平分线上三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依此规律,第7个图形中有全等三角形的对数是________.18.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是______.19.如图,△ABC中,AB=AC,点D、E、F分别在AB、BC、CA边上,且BE=CF,BD=CE,如果∠A=44°,则∠EDF的度数为__.20.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G=_____.三、解答题21.先化简,再求值.(1)22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中x是9的平方根;(2)2222221211⎛⎫-+-÷⎪-+-⎝⎭a a a aa a a,然后从-1,0,1,2中选一个合适的数作为a的值代入求值.22.解答下面两题:(1)解方程:353 22xx x-+= --(2)化简:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭ 23.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 24.已知AOB ∠及一点P ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法)(1)过点P 作OA 、OB 的垂线,垂足分别为点M 、N ;(2)猜想MPN ∠与AOB ∠之间的数量关系,并说明理由.25.如图1是一个平分角的仪器,其中OD=OE ,FD=FE .(1)如图2,将仪器放置在△ABC 上,使点O 与顶点A 重合,D 、E 分别在边AB 、AC 上,沿AF 画一条射线AP ,交BC 于点P .则AP 就是∠BAC 的平分线吗?请给出判断并说明理由.(2)如图3,在(1)的前提下,过点P 作PQ ⊥AB 于点Q ,已知PQ=4,AC=7,△ABC 的面积是32,求AB 的长.26.(问题引入)(1)如图1,△ABC ,点O 是∠ABC 和∠ACB 相邻的外角平分线的交点,若∠A=40°,请求出∠BOC 的度数.(深入探究)(2)如图2,在四边形ABDC 中,点O 是∠BAC 和∠ACD 的角平分线的交点,若∠B+∠D=110°,请求出∠AOC 的度数.(类比猜想)(3)如图3,在△ABC 中,∠CBO=13∠DBC ,∠BCO= 13∠ECB ,∠A=α,则∠BOC=___(用α的代数式表示,直接写出结果,不需要写出解答过程). (4)如果BO ,CO 分别是△ABC 的外角∠DBC ,∠ECB 的n 等分线,它们交于点O ,∠CBO=∠1n DBC ∠BCO=1n∠ECB ,则∠BOC=___(用n 、a 的代数式表示,直接写出结果,不需要写出解答过程).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++,242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键. 2.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 3.C解析:C【分析】直接进行同分母的加减运算即可.【详解】 解:23211x x x x +-++=2321x x x +-+=31x +, 故选C .【点睛】 本题考查了同分母的分式的运算,解题的关键是熟练掌握分式的运算法则.4.D解析:D【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】1131112311n n n n n n n x x x x x x x x+-+++++--++==, 故选:D【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.5.B解析:B【分析】等式左边去括号后两边经过比对可以得解 .【详解】解:原等式可变为:()22223x a x a x x b +--=-+,∴可得:232a b a-=-⎧⎨=-⎩, 解之得:a=-1,b=2,故选B .【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.6.A解析:A【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.7.A解析:A【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可.【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=,则()62106256126a b a b --=-+=-=-.故选:A .【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.8.C解析:C【分析】直接将原式变形,进而把已知代入求出答案.【详解】解:∵-4a +2b +10=10-2(2a-b ),把2a-b=7代入上式得:原式=10-2×7=10-14=-4.故选:C .【点睛】此题主要考查了代数式求值,正确将原式变形是解题关键.9.B解析:B【分析】根据AB AC =,D 为BC 的中点,∠CAD=40BAD ∠=︒,∠C=50︒,由AD AE =,得到∠AED =70︒,再根据∠AED=∠C+∠CDE 求得答案.【详解】∵AB AC =,D 为BC 的中点,∴∠CAD=40BAD ∠=︒,∠BAC=802BAD ∠=︒,∴∠B=∠C=50︒,∵AD AE =,∴∠AED=∠ADE=70︒,∵∠AED=∠C+∠CDE ,∴CDE ∠=20︒,故选:B .【点睛】此题考查等腰三角形的性质:等边对等角求角的度数以及三线合一,三角形的内角和定理,三角形外角的性质,熟记并熟练运用等腰三角形的性质是解题的关键.10.C解析:C【分析】过A 点作AD BC ⊥交BC 于点D ,利用等腰三角形的三线合一求出BD ,利用勾股定理求出AD 即可解决问题.【详解】过A 点作AD BC ⊥交BC 于点D ,如图∵5AB AC ==,8BC =,∴4BD CD ==, ∴2222543AD AB BD =--=, ∴3sin 5AD B AB ==. 故选:C .【点睛】本题考查等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.11.C解析:C【分析】根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.12.C解析:C【分析】根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数【详解】解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒∴45E ∠=︒又∵60ABC ∠=︒∴120FBE ∠=︒由三角形的外角性质得DFB E FBE ∠=∠+∠45120=︒+︒165=︒故选:C【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质二、填空题13.【分析】先把分式化成同分母再根据同分母分式相加减分母不变分子相加减即可得出答案【详解】解:===故答案为【点睛】本题考查了分式的加减熟练掌握运算法则是解题的关键 解析:21x x-. 【分析】先把分式化成同分母,再根据同分母分式相加减,分母不变,分子相加减,即可得出答案.【详解】 解:111x x --- =()111111x x x x x x------- =2111x x x x-+-+- =21x x- 故答案为21x x-. 【点睛】本题考查了分式的加减.熟练掌握运算法则是解题的关键.14.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此 解析:7a .【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案.【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=1526()a a a -÷-=158()a a -÷-=7a .故答案为:7a .【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键. 15.7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3y=-4代入x-y 中计算即可【详解】∵且∴x-3=0y+4=0∴x=3y=-4∴x-y=3-(-4)=7故答案为:7【点睛】此题考查已知字母解析:7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3,y=-4,代入x-y 中计算即可.【详解】∵()230x-=,且()230x-≥≥,∴x-3=0,y+4=0,∴x=3,y=-4,∴x-y=3-(-4)=7,故答案为:7.【点睛】此题考查已知字母的值求代数式的值,掌握偶次方的非负性及算术平方根的非负性求出x=3,y=-4是解题的关键.16.x(x+6)【分析】根据平方差公式分解因式【详解】(x+3)2-9=(x+3+3)(x+3-3)=x(x+6)故答案为:x(x+6)【点睛】此题考查多项式的因式分解掌握因式分解的方法:提公因式法和公解析:x(x+6)【分析】根据平方差公式分解因式.【详解】(x+3)2-9=(x+3+3)(x+3-3)=x(x+6),故答案为:x(x+6).【点睛】此题考查多项式的因式分解,掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)、分组分解法,根据多项式的特点选用恰当的方法分解因式是解题的关键.17.28【分析】设第n个图形中有an(n为正整数)对全等三角形根据各图形中全等三角形对数的变化可找出变化规律an=(n为正整数)再代入n=7即可求出结论【详解】解:设第n个图形中有an(n为正整数)对全解析:28【分析】设第n个图形中有a n(n为正整数)对全等三角形,根据各图形中全等三角形对数的变化可找出变化规律“a n=(1)2n n+(n为正整数)”,再代入n=7即可求出结论.【详解】解:设第n个图形中有a n(n为正整数)对全等三角形.∵点E在∠BAC的平分线上∴∠BAD=∠CAD在△ABD和△ACD中,AB ACBAD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACD(SAS),∴a 1=1;同理,可得:a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,…,∴a n =1+2+3+…+n=(1)2n n +(n 为正整数), ∴a 7=7(71)282⨯+=. 故答案为:28.【点睛】本题考查了全等三角形的判定以及规律型:图形的变化类,根据各图形中全等三角形对数的变化,找出变化规律“a n =(1)2n n +(n 为正整数)”是解题的关键. 18.10°【分析】设∠B =∠C =x ∠CDE =y 分别表示出∠DAE 构建方程解方程即可求解【详解】解:设∠B =∠C =x ∠EDC =y ∵AD =AE ∴∠ADE =∠AED =x +y ∵∠DAE =180°−2(x +y )=解析:10°【分析】设∠B =∠C =x ,∠CDE =y ,分别表示出∠DAE ,构建方程解方程即可求解.【详解】解:设∠B =∠C =x ,∠EDC =y ,∵AD =AE ,∴∠ADE =∠AED =x +y ,∵∠DAE =180 °−2(x +y )=180 °−20 °−2x ,∴2y =20 °,∴y =10 °,∴∠CDE =10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.19.56°【分析】根据可求出根据△DBE ≌△ECF 利用三角形内角和定理即可求出的度数【详解】解:∵AB =AC ∴∠ABC =∠ACB 在△DBE 和△CEF 中∴△DBE ≌△ECF (SAS )∴DE =EF ∴△DEF解析:56°【分析】根据44A ∠=︒可求出68ABC ACB ∠=∠=︒,根据△DBE ≌△ECF ,利用三角形内角和定理即可求出 EDF ∠的度数.【详解】解:∵AB =AC ,∴∠ABC =∠ACB ,在△DBE 和△CEF 中BE CF ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS ),∴DE =EF ,∴△DEF 是等腰三角形,∵△DBE ≌△ECF ,∴∠1=∠3,∠2=∠4,∵∠A +∠B +∠C =180°, ∴()118044682B ∠=︒-︒=︒, ∴1218068∠+∠=︒-︒,∴3218068∠+∠=︒-︒,∴∠DEF =68°, ∴18068562EDF ︒-︒∠==︒. 故答案为:56°.【点睛】 此题主要考查全等三角形的判定与性质的理解和掌握,主要应用了三角形内角和定理和平角是180︒,根据等腰三角形的性质得出B C ∠=∠是解题的关键.20.540°【分析】连接GD 根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F 进而可求解【详解】解:连解析:540°【分析】连接GD ,根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°,再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F ,进而可求解.【详解】解:连接GD ,∠A+∠B+∠C+∠CDG+∠DGA =(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG =180°,∠2+∠E+∠F =180°,∠1=∠2,∴∠FGD+∠EDG =∠E+∠F ,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA =540°,故答案为540°.【点睛】本题主要考查多边形的内角和定理,三角形的内角和定理,掌握相关定理是解题的关键.三、解答题21.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义,∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键. 22.(1)1x =-是该方程的解;(2)(1)x x +.【分析】(1)去分母将分式方程化为整式方程,解整式方程,最后验证根即可;(2)先计算括号内的,再将除法化为乘法分别因式分解后,约分即可.【详解】解:(1)去分母得:353(2)x x --=-,去括号得3536x x --=-,移项后合并得:1x =-,经检验,1x =-是该方程的解;(2)原式=22321121x x x x x x x x ⎛⎫+--÷ ⎪++++⎝⎭ =2232121x x x x x x x +--÷+++ =2222112x x x x x x -+++- =2(2)(1)12x x x x x -++- =(1)x x +.【点睛】本题考查解分式方程和分式的混合运算.(1)中注意分式方程一定要验根;(2)注意运算顺序,其次除法化为乘法后才能约分.23.(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+= ()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.24.(1)见解析;(2)∠MPN+∠AOB=180°或∠MPN=∠AOB ,理由见解析【分析】(1)根据垂线的定义画出图形即可解决问题;(2)根据四边形内角和为360°或“8字型”的性质即可解决问题;【详解】(1)过点P 作OA 、OB 的垂线PM 、PN 如图所示;(2)猜想:∠MPN+∠AOB=180°或∠MPN=∠AOB .理由:左图中,在四边形PMON 中,∵∠PMO=∠PNO=90°,∴∠MPN+∠AOB=180°.右图中,∵∠PJM=∠OJN ,∠PMJ=∠JNO=90°,∴∠MPN=∠AOB .【点睛】本题考查了作图-基本作图,解题的关键是熟练掌握基本知识,属于中考常考题型. 25.(1)AP 是∠BAC 的平分线,理由见解析;(2)AB=9【分析】(1)利用“SSS”证明△ADF ≌△AEF 即可证明AP 是∠BAC 的平分线;(2)利用角平分线的性质得到PG=PQ=4,再根据三角形的面积公式即可求解.【详解】解:(1)AP 是∠BAC 的平分线,理由如下:在△ADF 和△AEF 中,AD AE AF AF DF EF =⎧⎪=⎨⎪=⎩,∴△ADF ≌△AEF (SSS ),∴∠DAF=∠EAF ,即AP 平分∠BAC ;(2)过点P 作PG ⊥AC 于点G ,∵AP 平分∠BAC ,PQ ⊥AB ,PG ⊥AC ,∴PG=PQ=4, ∵11 22ABC ABP APC SS S AB PQ AC PG =+=⋅+⋅ ∴114743222AB ⨯+⨯⨯=, ∴AB=9.【点睛】本题考查了全等三角形的判定及性质,角平分线的判定和性质.熟练掌握确定三角形的判定方法,正确的识别图形是解题的关键.26.(1)70°;(2)55°;(3)120°-13α;(4)()11801n n n α-⨯︒- 【分析】(1)由三角形内角和定理可求得∠ABC+∠ACB ,再利用邻补角可求得∠DBC+∠ECB ,根据角平分线的定义可求得∠OBC+∠OCB ,在△BOC 中利用三角形内角和定理可求得∠BOC ; (2)根据三角形内角和等于180°,四边形内角和等于360°,结合角平分线的定义即可得到∠AOC 与∠B+∠D 之间的关系; (3)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=120°-3α; (4)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=()11801n n nα-⨯︒-. 【详解】(1)∵∠A=40°,∴∠ABC+∠ACB=180°-∠A=140°,∴∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-140°=220°,∵BO 、CO 分别平分∠DBC 和∠ECB ,∴∠OBC+∠OCB=12(∠DBC+∠ECB) =12×220°=110°,∴∠BOC=180°-(∠OBC+∠OCB)=180°-110°=70°;(2)∵点O是∠BAC和∠ACD的角平分线的交点,∴∠OAC=12∠CAB,∠OCA=12∠ACD,∴∠AOC=180°-(∠OAC+∠OCA)=180°-12(∠CAB+∠ACD)=180°-12(360°-∠B-∠D)=12(∠B+∠D),∵∠B+∠D=110°,∴∠AOC=12(∠B+∠D)=55°;(3)在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-13(∠DBC+∠ECB)=180°-13(∠A+∠ACB+∠A+∠ABC)=180°-13(∠A+180°)=120°-13α;故答案为:120°-13α;(4)在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-1n(∠DBC+∠ECB)=180°-1n(∠A+∠ACB+∠A+∠ABC)=180°-1n(∠A+180°)=()11801nn nα-⨯︒-.故答案为:()11801nn nα-⨯︒-.【点睛】本题考查了三角形的内角和定理,三角形的外角性质,角平分线的定义,整体思想的利用是解题的关键.。

【鲁教版】初二数学上期末试卷(附答案)

【鲁教版】初二数学上期末试卷(附答案)

一、选择题1.化简2111313x x x x +⎫⎛-÷ ⎪---⎝⎭的结果是( ) A .2B .23x - C .41x x -- D .21x - 2.下列各式计算正确的是( )A .33x x y y=B .632m m m=C .22a b a b a b+=++D .32()()a b a b b a -=-- 3.若分式 2132x x x --+的值为0,则x 的值为( ) A .1-B .0C .1D .±14.已知有理数a ,b 满足:1ab =,1111M a b =+++,11a b N a b=+++,则M ,N 的关系为( ) A .M N > B .M N <C .M N =D .M ,N 的大小不能确定5.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n ==6.若3a b +=,1ab =,则()2a b -的值为( ) A .4B .5C .6D .77.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断: ①**a b b a =; ②()222**a b a b =; ③()()**a b a b -=-; ④()**a b c a b a c +=+*. 其中所有正确推断的序号是( ) A .①②③④ B .①③④ C .①② D .①③ 8.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+9.如图,在平面直角坐标系xOy 中,点A 的坐标为()4,3-,点P 在x 轴上,且使AOP 为等腰三角形,符合题意的点P 的个数为( ).A .2B .3C .4D .510.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③11.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个12.下列每组数分别三根小木棒的长度,用它们能摆成三角形的是( ) A .3,4,8cm cm cmB .7,8,15cm cm cmC .12,13,22cm cm cmD .10,10,20cm cm cm二、填空题13.计算2216816a a a -++÷428a a -+=__________.14.计算22111m m m ---,的正确结果为_____________. 15.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.16.如图,在ABC 和ADE 中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,其中点C ,D ,E 在同一条直线上,连接BD ,BE .以下四个结论:①ACE DBC ∠=∠;②45ACE DBC ∠+∠=︒;③BD CE ⊥;④BD CE =.一定正确的是______.17.如图,在ABC 中,AB AC =,40B ∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E ,在点D 从B 向C 运动过程中,如果ADE 是等腰三角形,则BDA ∠的度数是____________18.若9m =4,27n =2,则32m ﹣3n =__.19.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________. 20.如图所示,∠A+∠B+∠C+∠D+∠E+∠F=____.(填写度数).三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?22.雪梨是石家庄市某地的特色时令水果.雪梨上市后,水果店的老板用2400元购进一批雪梨,很快售完;老板又用3750元购进第二批雪梨,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)求第一批雪梨每件进价是多少元?(2)老板以每件225元的价格销售第二批雪梨,售出80%后,为了尽快售完,剩下的决定打折促销,要使得第二批雪梨的销售利润为2460元,剩余的雪梨每件售价应该打几折?(利润=售价-进价) 23.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.(1)如图①,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE BD CE =+.(2)如图②,将(1)中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC a ∠=∠=∠=,其中a 为任意锐角或钝角.请问结论DE BD CE =+是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF 和ACF 均为等边三角形,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状.(不需要说明理由)25.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅; (2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.26.如果正多边形的每个内角都比它相邻的外角的4倍多30°. (1)它是几边形?(2)这个正多边形的内角和是多少度?(3)求这个正多边形对角线的条数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)xx xx x x+⋅--⋅--+-=1-31xx--=21x-,故选D.【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.2.D解析:D【分析】根据分式的基本性质进行判断即可得到结论.【详解】解:A、33xy是最简分式,所以33x xy y≠,故选项A不符合题意;B、624mmm=,故选项B不符合题意;C、22a ba b++是最简分式,所以22a ba ba b+≠++,故选项C不符合题意;D、3322()()()()a b a ba bb a a b--==---,正确,故选:D.【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.3.A【分析】根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案. 【详解】由题意得:|x|−1=0,x 2−3x+2≠0,解得,x =-1, 故选:A . 【点睛】本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.4.C解析:C 【分析】先通分,再利用作差法可比较出M 、N 的大小即可. 【详解】 解:∵1111M a b=+++ ()()1111b a a b +++=++()()211b aa b ++=++,()()()()()()1121111a b b a a ab bN a b a b +++++==++++,∴()()()()221111b a a ab bM N a b a b ++++-=-++++()()2211a b a ab ba b ++---=++ ()()2211aba b -=++,∵1ab =, ∴220ab -=, ∴0M N -=,即M N .故选:C. 【点睛】本题考查的是分式的加减法及分式比较大小的法则,分式比较大小可以利用作差法、作商法等.5.D解析:D根据题意逐一计算即可判断. 【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意; 故选:D . 【点睛】本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.6.B解析:B 【分析】由3a b +=结合完全平方式即可求出22a b +的值,再由222()2a b a b ab -=+-,即可求出结果. 【详解】 ∵3a b +=,∴22()3a b +=,即2229a ab b ++=, 将1ab =代入上式得:229217a b +=-⨯=. ∵222()2a b a b ab -=+-, ∴2()725a b -=-=. 故选:B . 【点睛】本题考查代数式求值以及因式分解.熟练利用完全平方式求解是解答本题的关键.7.D解析:D 【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可. 【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-, ∴a*b=b*a 成立; ②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a ba b a b -=-+,∵()()()422a b a b a b -≠-+∴(a*b )2=a 2*b 2不成立;③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦, ∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立; 故选:D . 【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键.8.A解析:A 【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答. 【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式; 故选:A . 【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.C解析:C 【分析】以O 为圆心,AO 长为半径画圆可得与x 轴有2个交点,再以A 为圆心,AO 长为半径画圆可得与x 轴有1个交点,然后再作AO 的垂直平分线可得与x 轴有1个交点. 【详解】 解:如图所示:点P 在x 轴上,且使△AOP 为等腰三角形,符合题意的点P 的个数共4个, 故选:C .【点睛】此题主要考查了等腰三角形的判定,关键是考虑全面,作图不重不漏.10.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC =∠HCB ,即不能推出BH =CH ,故④错误; 故选:B . 【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.11.B解析:B 【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明. 【详解】解:①在ABC 和AED 中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩, ∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC AED AAS ≅;⑤不可以; 故选:B . 【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理.12.C解析:C 【分析】根据三角形两边之和大于第三边,两边之差小于第三边计算判断即可.【详解】∵3+4<8,∴A 选项错误;∵7+8=15,∴B 选项错误;∵12+13>22,∴C 选项正确;∵10+10=20,∴D 选项错误;故选C.【点睛】本题考查了三角形的存在性,熟练掌握三角形的三边关系定理是解题的关键.二、填空题13.-2【分析】原式利用除法法则变形约分即可得到结果【详解】解:原式==-2故答案为:-2【点睛】本题考查了分式的除法熟练掌握运算法则是解本题的关键解析:-2【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=2(4)(4)2(4)(4)4a a a a a-++-⋅+-=-2, 故答案为:-2.【点睛】本题考查了分式的除法,熟练掌握运算法则是解本题的关键.14.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +--=1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.15.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故解析:﹣25【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键. 16.②③④【分析】根据题意易证△ABD ≌△ACE 根据三角形全等的性质及余角的性质角的和差关系可进行判断进而得出正确答案【详解】解:∠DAC=∠DAC △ABD ≌△ACEBD=CE ∠ABD=∠ACE④正确;解析:②③④【分析】根据题意易证△ABD ≌△ACE ,根据三角形全等的性质及余角的性质、角的和差关系可进行判断,进而得出正确答案.【详解】 解:90BAC DAE ∠=∠=︒,∠DAC=∠DAC ,∴BAD CAE ∠=∠,AB AC =,AD AE =,∴△ABD ≌△ACE ,∴BD=CE ,∠ABD=∠ACE ,④正确;∵AB AC =,90BAC ∠=︒,∴∠ABC=∠ACB=45°,即∠ABC=∠ABD+∠DBC=45°,∴45ACE DBC ∠+∠=︒,②正确;∵90BAC ∠=︒,∴∠ABC+∠ACB=90°,∴∠DBC+∠DCB=90°,∴BD ⊥CE ,③正确;∴由题意可知ACE DBC ∠=∠不一定成立,综上所述:②③④正确;故答案为:②③④.【点睛】本题主要考查全等三角形的性质与判定及直角三角形的性质,熟练掌握全等三角形的性质与判定及直角三角形的性质是解题的关键.17.110°或80°【分析】根据等腰三角形的性质先求出∠BAC 的度数然后分3种情况:①AD =AE 时②AD =ED 时③当AE =DE 时分别求解即可【详解】∵在△ABC 中AB =AC ∠B =40°∴∠B =∠C=40解析:110°或80°【分析】根据等腰三角形的性质,先求出∠BAC 的度数,然后分3种情况:①AD =AE 时,②AD =ED 时,③当AE =DE 时,分别求解,即可.【详解】∵在△ABC 中,AB =AC ,∠B =40°,∴∠B =∠C=40°∴∠BAC =100°,①AD =AE 时,∠AED =∠ADE =40°,∴∠DAE =100°,此时,点D 与点B 重合,不符合题意舍去,②AD =ED 时,∠DAE =∠DEA ,∴∠DAE =12(180°−40°)=70°, ∴∠BAD =∠BAC−∠DAE =100°−70°=30°,∴∠BDA =180°−∠B−∠BAD =110°,③当AE =DE 时,∠DAE =∠ADE =40°,∴∠BAD =100°−40°=60°,∴∠BDA =180°−40°−60°=80°,综上所述:∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形,故答案是:110°或80°【点睛】此题主要考查学生对等腰三角形的性质,三角形内角和定理的理解和掌握,解本题的关键是分类讨论,是一道基础题目.18.2【分析】根据指数的运算把32m ﹣3n 改写成同底数幂除法再用幂的乘方的逆运算即可【详解】解:32m ﹣3n =32m÷33n ==9m÷27n =4÷2=2;故答案为:2【点睛】本题考查了幂的乘方与同底数幂解析:2【分析】根据指数的运算,把32m﹣3n 改写成同底数幂除法,再用幂的乘方的逆运算即可.【详解】解:32m ﹣3n ,=32m ÷33n ,=23(3)(3)m n=9m ÷27n ,=4÷2,=2;故答案为:2.【点睛】本题考查了幂的乘方与同底数幂的除法的逆运算,根据指数的运算特点,把原式改写成对应的幂的运算是解题关键. 19.22【分析】由三角形全等性质可得mn 中有一边为5pq 中有一边为3mn 与pq 中剩余两边相等再由三角形三边关系可知mn 与pq 中剩余两边最大为7如此即可得到m+n+p+q 的最大值【详解】∵△ABC ≌△DE解析:22【分析】由三角形全等性质可得m 、n 中有一边为5,p 、q 中有一边为3,m 、n 与p 、q 中剩余两边相等,再由三角形三边关系可知m 、n 与p 、q 中剩余两边最大为7,如此即可得到m+n+p+q 的最大值.【详解】∵△ABC ≌△DEF ,∴m 、n 中有一边为5,p 、q 中有一边为3,m 、n 与p 、q 中剩余两边相等, ∵3+5=8,∴两三角形剩余两边最大为7,∴m+n+p+q 的最大值为:3+5+7+7=22.【点睛】本题考查三角形全等与三角形三边关系的综合运用,灵活运用三角形全等的性质及三角形三边关系的应用是解题关键 .20.360°【分析】连接BE 先利用三角形内角和定理得出∠C+∠D=∠PBE+∠PEB 继而在四边形ABEF 中利用内角和定理进行求解即可【详解】连接BE ∵∠C+∠D+∠DPC=180°∠PBE+∠PEB+∠解析:360°【分析】连接BE ,先利用三角形内角和定理得出∠C+∠D=∠PBE+∠PEB ,继而在四边形ABEF 中利用内角和定理进行求解即可.【详解】连接BE,∵∠C+∠D+∠DPC=180°,∠PBE+∠PEB+∠BPE=180°,∠DPC=∠BPE,∴∠C+∠D=∠PBE+∠PEB,在四边形ABEF中,∠A+∠ABE+∠BEF+∠F=(4-2)×180°=360°,∴∠A+∠ABP+∠PBE+∠PEB+∠PEF+∠F=360°,∴∠A+∠ABP+∠C+∠D+∠PEF+∠F=360°,故答案为:360°.【点睛】本题考查了三角形内角和定理以及四边形内角和的应用,正确添加辅助线,准确识图,熟练应用相关知识是解题的关键.三、解答题21.(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y的取值【详解】解:(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件依题意得:80x=7030x解得:x=16,经检验x=16是原方程的解.∴30﹣x=14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,依题意得: 16y+14(50-y)≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y 为非负整数,∴y 取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组. 22.(1)120元;(2)六折【分析】(1)设第一批雪梨每件进价是x 元,则第二批每件进价是(x +5)元,再根据等量关系:第二批仙桃所购件数是第一批的32倍,列方程解答; (2)设剩余的雪梨每件售价打y 折,由利润=售价﹣进价,根据第二批的销售利润为2460元,可列方程求解.【详解】解:(1)设第一批雪梨每件进价为x 元, 依题意列方程,得24003375025x x +⋅=,解方程,得120x =.经检验,120x =是原分式方程的解,且符合实际题意.答:第一批雪梨每件进价为120元;(2)设剩余的雪梨每件售价打y 折, 依题意列方程,得()22580%225180%0.137502460y ++⨯⨯+⨯⨯-⨯-=3750375012051205. 解得y =6.答:剩余的雪梨每件售价应该打六折.【点睛】本题考查分式方程、一元一次方程的应用,关键是根据数量作为等量关系列出分式方程,根据利润作为等量关系列出一元一次方程求解.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 24.(1)见解析;(2)成立,证明见解析;(3)DEF 为等边三角形【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD ,然后根据“AAS”可判断△ADB ≌△CEA ,则AE=BD ,AD=CE ,于是DE=AE+AD=BD+CE ;(2)由∠BDA=∠AEC=∠BAC ,就可以求出∠BAD=∠ACE ,进而由AAS 就可以得出△BAD ≌△ACE ,就可以得出BD=AE ,DA=CE ,即可得出结论;(3)由等边三角形的性质,可以求出∠BAC=120°,就可以得出△BAD ≌△ACE ,就有BD=AE ,进而得出△BDF ≌△AEF ,得出DF=EF ,∠BFD=∠AFE ,而得出∠DFE=60°,即可推出△DEF 为等边三角形.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴90BDA CEA ∠=∠=︒∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒∵90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.在ADB △和CEA 中:CAE ABD BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADB CEA AAS ≌()△△. ∴AE BD =,AD CE =.∴DE AE AD BD CE =+=+.(2)成立.证明如下:∵∠BDA=∠BAC=α,又∵DBA ADB BAC CAE ∠+∠=∠+∠∴∠DBA=∠CAE ,在ADB △和CEA 中:DBA CAE BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ADB CEA AAS ≌△△. ∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+.(3)DEF 为等边三角形.证明:∵△ABF 和△ACF 均为等边三角形,∴AB=AF=AC ,∠ABF=∠CAF=60°,BF=AF,∴由(2)可知,△ADB ≌△CEA ,∴BD=AE ,∠DBA=∠CAE ,∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE ,∵在△DBF 和△EAF 中,BD AE DBF FAE BF AF ⎧⎪∠∠⎨⎪⎩=== ∴△DBF ≌△EAF (SAS ),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题属于三角形综合题,主要考查了全等三角形与等边三角形的综合应用,解题的关键是熟练掌握全等三角形的判定与性质以及等边三角形的判定与性质并灵活运用,属于中考常考题型.25.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.26.(1)十二边形;(2)这个正多边形的内角和为1800︒;(3)对角线的总条数为54 条.【分析】(1)设一个外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x 的值,再利用外角和360°÷外角的度数可得边数; (2)利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答. 【详解】(1)设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =, 3603012︒÷︒=∴这个正多边形是十二边形.(2)这个正多边形的内角和为(122)1801800-⨯︒=︒;(3)对角线的总条数为()12312542⨯=-(条) . 【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引(n-3)条对角线.。

鲁教版第一学期初二期末考试数学试卷及参考答案

鲁教版第一学期初二期末考试数学试卷及参考答案

第一学期初二期末考试数学试卷一、选择题1.若点P (b a ,)在第三象限,则点Q (1-a ,32-b )在A .第一象限B .第二象限C .第三象限D .第四象限2.下列方程组中,是二元一次方程组的是A .⎩⎨⎧==-21xy y xB .⎩⎨⎧=-=-3214x y y xC .⎩⎨⎧=-=-323z x y xD .⎪⎩⎪⎨⎧=+=-03211y x y x3.函数①x y 2=,②xy 2=,③22x y -=,④32-=x y 中,y 是x 的一次函数的个数为 A .1个B .2个C .3个D .4个4.实数x 在数轴上的位置如下图所示,则x ,2x x ,的大小关系是A .x xx <<2B .2x x x <<C .2x x x <<D .x x x <<25.若△ABC 的三边长分别为c b a ,,,则下列条件不能推出△ABC 是直角三角形的是A .222b c a =-B .C B A ∠=∠+∠ C .ab b a 222=+D .C 2B 2A ∠=∠=∠6.将平面直角坐标系内某图形各点的横坐标不变,纵坐标都乘以-1,所得图形与原图形的关系是A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .重合7.若函数b x y +-=的图像不经过第一象限,则常数b 的取值是A .0>bB .0<bC .0≥bD .0≤b8.小孙设的微机密码由6位数字组成,每位上的数字都是0—9这十个数字中的一个。

小孙忘了密码,如果他任意拨一个密码,恰好打开微机的概率是 A .6101 B .5101 C .4101 D .31019.方程组⎩⎨⎧-=-=+14343y x y x 的解是A .⎩⎨⎧-=-=11y xB .⎩⎨⎧==11y xC .⎩⎨⎧=-=22y xD .⎩⎨⎧-=-=12y x10.如下图所示的象棋盘上,若的坐标是(-2,-2),的坐标是(3,2),则的坐标是A .(-3,-1)B .(-3,0)C .(-3,-2)D .(-2,-3) 11.某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半,若设该班男生人数为x ,女生人数为y ,则可列方程组是 A .⎩⎨⎧+==-)1(249x y y xB .⎩⎨⎧+==+)1(249x y y x C .⎩⎨⎧-==-)1(249x y y x D .⎩⎨⎧-==+)1(249x y y x12.已知函数式63--=x y ,当自变量x 增加1时,函数值A .增加3B .减少3C .增加1D .减少113.如下图,△ABC 中,AB=AC ,AB 的垂直平分线DE 交BC 的延长线于E ,交AC 于F ,交AB 于D ,连接BF 。

【鲁教版】八年级数学上期末试卷(含答案)(1)

【鲁教版】八年级数学上期末试卷(含答案)(1)

一、选择题1.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)2.下列命题中,真命题的个数为( )(1)如果22a b >,那么a>b ; (2)对顶角相等;(3)四边形的内角和为360︒; (4)平行于同一条直线的两条直线平行; A .1个 B .2个 C .3个 D .4个3.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短,其中假命题有( )A .1个B .2个C .3个D .4个4.某学校操场是周长为400 m 的长方形,且长比宽的2倍少40m .若设该长方形的长为 x ,宽为y ,则可列方程组为( )A .400240x y y x +=⎧⎨-=⎩B .400240x y y x +=⎧⎨+=⎩C .200240x y y x +=⎧⎨-=⎩D .200240x y y x +=⎧⎨+=⎩5.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A .50人,40人B .30人,60人C .40人,50人D .60人,30人 6.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( ) A . B .C .D .7.函数1y x =-自变量x 的取值范围是( ) A .1x > B .1≥x C .1x ≥- D .1x ≠8.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( )A .B .C .D .9.已知a b c 、、是ABC 的三边长,其中a b 、是二元一次方程组10216a b a b +=⎧⎨+=⎩的解,那么c 的值可能是下面四个数中的( )A .2B .6C .10D .18 10.若点(0,2)A -与点B 关于x 轴对称,则点B 的坐标为( ) A .(0,2)-B .(2,0)C .(0,2)D .(2,0)- 11.132252的结果估计在( ) A .10到11之间B .9到10之间C .8到9之间D .7到8之间 12.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A.103B.256C.203D.154二、填空题13.把“同角的补角相等”改成“如果···那么···”的形式_________________.14.如图, AM、CM分别平分∠BAD和∠BCD,且∠B=31°,∠D=39°,则∠M=______.15.一个两位数的十位数字与个位数字的和是13,把这个两位数减去27,结果恰好成为数字对调后组成的两位数,则这个两位数为__________.16.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.17.已知平面直角坐标系中A.B两点坐标如图,若PQ是一条在x轴上活动的线段,且PQ=1,求当BP+PQ+QA最小时,点Q的坐标___.18.点P的坐标是(1,4),它关于y轴的对称点坐标是_____________.19.已知M是满足不等式27a-<<N52M N+的平方根为__________.20.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE,以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的是________________.三、解答题21.已知:如图,180BAE AED ∠+∠=︒,12∠=∠,那么M N ∠=∠.下面是推理过程,请你填空:解:180BAE AED ∠+∠=︒(已知),∴______//______.( ) BAE ∴∠=______(两直线平行内错角相等)又12∠=∠(已知)1BAE ∴∠-∠=______2-∠,即MAE ∠=______.∴______//______( ).M N ∴∠=∠( )22.学校为奖励优秀学生,用695元钱在某文具店购买甲、乙两种笔记本共100本,已知甲种笔记本每本8元,乙种笔记本每本5元.请问两种笔记本各购买了多少本? 23.已知12y y y =+,其中1y 与3x -成正比例,2y 与21x +成正比例,且当0x =时,4y =-,当1x =-时,6y =-.(1)求y 与x 的函数关系式;(2)判断点()1,4A -是否在此函数图像上,并说明理由.24.如图,ABC 的三个顶点的坐标分别是()2,3A -,()3,1B -,()1,2C -.(1)直接写出点A 、B 、C 关于y 轴对称的点A '、B '、C ';坐标:A '( , )、B '( , )、C '( , )(2)在x 轴上求作一点P ,使PA PB +最短.(保留痕迹)(3)求ABC 的面积.25.阅读下列问题: ()()()121121122121⨯-==-++-;()()()132132323232⨯-==-++-;以上化简的方法叫作分母有理化,仿照以上方法化简:(1)165=+______; (2)求120212020+的值: (3)求22n nn n +++-(n 为正整数)的值.26.如图,//,90AD BC A ∠=︒,E 是AB 上的点,且,12AD BE =∠=∠.(1)求证:ADE BEC ≌△△.(2)若30,3AED AE ∠=︒=,求线段CD 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】因为∠DAM 和∠CBM 是直线AD 和BC 被直线AB 的同位角,因为∠DAM =∠CBM 根据同位角相等,两直线平行可得AD ∥BC ,所以D 选项错误,故选D.2.C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果22a b >,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B解析:B【分析】根据对顶角的定义对①进行判断;根据补角的定义对②进行判断;根据平行线的性质对③进行判断;根据垂线段公理对④进行判断.【详解】解:相等的两个角不一定为对顶角,所以①为假命题;若∠1+∠2=180°,则∠1与∠2互为补角,所以②为真命题;两直线平行,同旁内角互补,所以③为假命题;垂线段最短,所以④为真命题.故选:B.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.C解析:C【分析】根据长加宽等于周长的一半200m,长比宽的2倍少40m,列得方程组.【详解】解:若设该长方形的长为 x,宽为y,则可列方程组为200 240x yy x+=⎧⎨-=⎩,故选:C.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.5.C解析:C【分析】等量关系为:生产的螺栓的工人数+生产螺帽的人数等于90;螺栓总数乘以2等于螺帽总数,把相关数值代入求解即可.【详解】解:设生产螺栓和生产螺帽的人数分别为x,y人,根据题意得90 15224x yx y+=⎧⎨⨯=⎩,解得4050 xy=⎧⎨=⎩,∴生产螺栓和生产螺帽的人数分别为40人,50人.故选C.【点睛】本题考查了二元一次方程组的应用,读懂题意,找到等量关系式是解题的关键.6.D解析:D【分析】随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.【详解】解:设蜡烛点燃后剩下h厘米时,燃烧了t小时,则h与t的关系是为h=20-5t,是一次函数图象,即t越大,h越小,符合此条件的只有D.故选:D.【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.7.B解析:B【分析】根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得x-1≥0,解得x≥1.故选:B.【点睛】本题考查函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.8.B解析:B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键. 9.B解析:B【分析】先解二元一次方程组求出a,b的值,然后再根据三角形三边之间的关系确定c的值.【详解】解:由题意可知:10(1) 216(2) a ba b+=⎧⎨+=⎩,(2)-(1)式得:a=6,代回(1)中,解得b=4,根据三角形两边之和大于第三边,两边之差小于第三边可知,6-4<c<6+4,即:2<c<10,故选:B.【点睛】本题考查了二元一次方程组的解法及三角形三边之间的关系,熟练掌握二元一次方程组的解法是解决本题的关键.10.C解析:C【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】解:点A与点B关于x轴对称,点A的坐标为(0,-2),则点B的坐标是(0,2).故选:C.【点睛】本题考查了关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.11.D解析:D【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.【详解】解:原式4===∵3104<<, ∴74108<+<,故选:D .【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.12.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°,∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.二、填空题13.如果两个角是同一个角的补角那么这两个角相等【分析】把命题的题设写在如果的后面把命题的结论写在那么的后面即可【详解】解:命题同角的补角相等改成如果…那么…的形式为:如果两个角是同一个角的补角那么这两个解析:如果两个角是同一个角的补角,那么这两个角相等【分析】把命题的题设写在如果的后面,把命题的结论写在那么的后面即可.【详解】解:命题“同角的补角相等”改成“如果…,那么…”的形式为:如果两个角是同一个角的补角,那么这两个角相等.故答案为:如果两个角是同一个角的补角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.14.35°【分析】根据三角形内角和定理用∠B∠M表示出∠BAM-∠BCM再用∠B∠M表示出∠MAD-∠MCD再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD然后求出∠M与∠B∠D关系代入数解析:35°【分析】根据三角形内角和定理用∠B、∠M表示出∠BAM-∠BCM,再用∠B、∠M表示出∠MAD-∠MCD,再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD,然后求出∠M与∠B、∠D关系,代入数据进行计算即可得解;【详解】解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM,∴∠BAM-∠BCM=∠M-∠B,同理,∠MAD-∠MCD=∠D-∠M,∵AM、CM分别平分∠BAD和∠BCD,∴∠BAM=∠MAD,∠BCM=∠MCD,∴∠M-∠B=∠D-∠M,∴∠M=12(∠B+∠D)=12(31°+39°)=35°;故答案为:35°【点睛】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.15.85【分析】设这个两位数的个位数字为x十位数字为y则两位数可表示为10y+x对调后的两位数为10x+y根据题中的两个数字之和为13及对调后的等量关系可列出方程组求解即可【详解】设这个两位数的个位数字解析:85【分析】设这个两位数的个位数字为x,十位数字为y,则两位数可表示为10y+x,对调后的两位数为10x+y ,根据题中的两个数字之和为13及对调后的等量关系可列出方程组,求解即可.【详解】设这个两位数的个位数字为x ,十位数字为y ,根据题意得:13102710x y x y y x +=⎧⎨+-=+⎩, 解得:85x y =⎧⎨=⎩, 则这个两位数为8×10+5=85.故答案为:85.【点睛】本题考查了二元一次方程组的应用,解题关键是掌握两位数的表示方法,读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.16.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x ﹣1)求解【详解】解:设树有x 棵依题意列方程:4x+5=5(x ﹣1)解得:x =10所以树有1解析:10【分析】本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x 棵,即可列方程:4x+5=5(x ﹣1)求解.【详解】解:设树有x 棵依题意列方程:4x+5=5(x ﹣1)解得:x =10所以树有10棵,鸦的个数为:10×4+5=45故答案为45,10【点睛】本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.17.(0);【分析】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此时的值最小求出直线的解析式即可解决问题【详解】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此解析:(197,0); 【分析】 如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,求出直线AF 的解析式,即可解决问题.【详解】如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,设最小AF 的解析式为y kx b =+,则有354k b k b +=-⎧⎨+=⎩,解得74194k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AF 的解析式为71944y x =-, 令0y =,得到197x =, ∴19,07Q ⎛⎫ ⎪⎝⎭. 故答案为19,07⎛⎫⎪⎝⎭. 【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型. 18.【分析】根据关于y 轴对称的点的特征即可得解;【详解】∵点的坐标是∴点P 关于y 轴的点是;故答案是【点睛】本题主要考查了关于对称轴对称点的应用准确计算是解题的关键解析:()1,4-【分析】根据关于y 轴对称的点的特征即可得解;【详解】∵点P 的坐标是(1,4),∴点P 关于y 轴的点是()1,4-;故答案是()1,4-.【点睛】本题主要考查了关于对称轴对称点的应用,准确计算是解题的关键.19.±3【分析】先通过估算确定MN 的值再求M+N 的平方根【详解】解:∵∴∵∴∵∴∴a 的整数值为:-1012M=-1+0+1+2=2∵∴N=7M+N=99的平方根是±3;故答案为:±3【点睛】本题考查了算解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵<< ∴221, ∵< ∴23<<,∵a <<∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵< ∴78<<,N=7, M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20.①②③【分析】①由条件证明△ABD ≌△ACE 就可以得到结论;②由△ABD ≌△ACE 就可以得出∠ABD=∠ACE 就可以得出∠BDC=90°而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°由∠解析:①②③【分析】①由条件证明△ABD ≌△ACE ,就可以得到结论;②由△ABD ≌△ACE 就可以得出∠ABD=∠ACE ,就可以得出∠BDC=90°而得出结论; ③由条件知∠ABC=∠ABD+∠DBC=45°,由∠DBC+∠ACE=90°,就可以得出结论; ④△BDE 为直角三角形就可以得出BE 2=BD 2+DE 2,由△DAE 和△BAC 是等腰直角三角形就有DE 2=2AD 2,BC 2=2AB 2,就有BC 2=BD 2+CD 2≠BD 2就可以得出结论.【详解】解:①∵∠BAC=∠DAE ,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE .在△ABD 和△ACE 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴BD=CE .故①正确;∵△ABD ≌△ACE ,∴∠ABD=∠ACE .∵∠CAB=90°,∴∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACE+∠ACB=90°,∴∠BDC=180°-90°=90°.∴BD ⊥CE ;故②正确;③∵∠BAC=90°,AB=AC ,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故③正确;④∵BD ⊥CE ,∴BE 2=BD 2+DE 2.∵∠BAC=∠DAE=90°,AB=AC ,AD=AE ,∴DE 2=2AD 2,BC 2=2AB 2.∵BC 2=BD 2+CD 2≠BD 2,∴2AB 2=BD 2+CD 2≠BD 2,∴BE 2≠2(AD 2+AB 2).故④错误.故答案为:①②③.【点睛】本题考查了全等三角形的性质和判定的应用,垂直的性质和判定的应用,等腰直角三角形的性质的应用,勾股定理的应用,能利用全等三角形的性质和判定求解是解此题的关键.三、解答题21.见解析【分析】先根据平行线的判定,得到AB ∥CD ,再根据平行线的性质,得出∠MAE=∠NEA ,进而得出AM ∥NE ,最后根据平行线的性质即可得到结论.【详解】解:∵∠BAE+∠AED=180°,(已知)∴AB ∥CD ,(同旁内角互补,两直线平行)∴∠BAE=∠CEA ,(两直线平行,内错角相等 )又∵∠1=∠2,∴∠BAE-∠1=∠AEC-∠2,即∠MAE=∠NEA ,∴AM ∥NE ,(内错角相等,两直线平行)∴∠M=∠N .(两直线平行,内错角相等)【点睛】本题主要考查了平行线的性质与判定的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系. 22.甲种笔记本购买了65本,乙种笔记本购买了35本.【分析】设甲种笔记本购买了x 本,乙种笔记本购买了y 本,根据题意可列出二元一次方程组,解方程组求出x 、y 的值即可得答案.【详解】设甲种笔记本购买了x 本,乙种笔记本购买了y 本,∵用695元钱购买两种笔记本共100本,甲种笔记本每本8元,乙种笔记本每本5元, ∴10085695x y x y +=⎧⎨+=⎩, 解得:6535x y =⎧⎨=⎩. 答:甲种笔记本购买了65本,乙种笔记本购买了35本.【点睛】本题考查二元一次方程的应用,正确得出等量关系,列出方程组是解题关键. 23.(1)24y x x =-+-;(2)在,理由见解析.【分析】(1)根据正比例函数的定义,设()113y k x =-;()2221k x y =+,代入当0x =和1x =-时的值,即可求出和1k 和2k ,即可得到函数解析式;(2)将1x =代入函数解析式中,得出y 的值,如果等于-4,则A 点在函数图像上,如果不等于-4则不在函数图像上.【详解】(1)由题意得:设()113y k x =-;()2221k x y =+ ∴()()12213y x k x k =-++, 由当0x =时,4y =-,当1x =-时,6y =-,得,()()()()12124030161311k k k k ⎧-=-++⎪⎨-=--++⎪⎩,解得1211k k =⎧⎨=-⎩ ∴y 与x 的函数关系式为24y x x =-+-;(2)当1x =时,21144y =-+-=-∴A 点在函数图像上.【点睛】本考查了正比例函数的定义,待定系数法求函数解析式,关键是掌握待定系数法. 24.(1)2,3,3,1,-1,-2;(2)见解析;(3)5.5【分析】(1)根据关于y 轴对称点的坐标,纵坐标不变,横坐标改变符号得出答案即可; (2)作A 点关于x 轴的对称点A 1,连接A 1B ,与x 轴交点即为P ;(3)利用割补法求解可得.【详解】解:(1)A′(2,3),B′(3,1),C′(-1,-2);故答案为:2,3,3,1,-1,-2;(2)如图所示,点P 即为所求作;(3)三角形ABC 得面积为11145433521 5.5222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】 本题考查了轴对称-最短路线问题以及坐标与图形的性质,找到关于x 轴、y 轴的对称点,是解本题的关键.25.(165220212505-3)1(2)+++n n n .【分析】(1)分子分母同乘以65计算即可;(2)分子分母同乘以20212020)化简即可;(3)分子分母同乘以2n n +,化简彻底.【详解】解(1)∵1(65)6565(6565)()⨯-==++-⨯ 65(220212020+ 20212020(20212020)(20212020)-=+-==;(3)原式=1n =++【点睛】本题考查了二次根式的分母有理化,抓住根式特点,确定有理化因式是解题的关键.26.(1)证明见详解;(2)【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由30,3AED AE ∠=︒=,可求得AD 、DE 的长,再利用勾股定理求得CD 的长即可.【详解】(1)∵AD ∥BC ,∠A =90°,∴∠A =∠B =90°,∵∠1=∠2,∴DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中AD BE DE CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .DE=CE ,∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.在Rt △ADE 中又∵30,3AED AE ∠=︒=设AD =x ,则DE =2x,由勾股定理222AD AE DE +=,即2294x x +=解得x =∴在Rt △CDE 中由勾股定理,DC 2=DE 2+CE 2∴CD【点睛】本题主要考查全等三角形的判定与性质的运用,熟练掌握等三角形的判定与性质的运用是解题关键.。

【鲁教版】初二数学上期末试卷附答案

【鲁教版】初二数学上期末试卷附答案

一、选择题1.关于代数式221a a+的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a +的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a +的值就越大 D .当01a <<时,a 越大,221a a +的值就越大 2.要使分式()()221x x x ++-有意义,x 的取值应满足( ) A .1x ≠ B .2x ≠- C .1x ≠或2x ≠- D .1x ≠且2x ≠- 3.下列式子的变形正确的是( )A .22b b a a= B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- 4.在代数式2π,15x +,221x x --,33x -中,分式有( ) A .1个 B .2个 C .3个 D .4个5.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c b d =ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ). A .2 B .3 C .4 D .66.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 7.2a =1,b 是2的相反数,则a+b 的值是( ) A .1B .-3C .-1或-3D .1或-3 8.下列计算正确的是( ) A .(a 2)3=a 5 B .(2a 2)2=2a 4 C .a 3•a 4=a 7 D .a 4÷a =a 4 9.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A 13B 32C 40D 2010.等腰三角形的两边a ,b 满足7260a b --=,则它的周长是( ) A .17 B .13或17 C .13 D .1911.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等12.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( )A .10B .8C .6D .4二、填空题13.分式2(1)(3)32m m m m ---+的值为0,则m =______________. 14.(1) 计算:(-a 2b )2=________;(2)若p +3=(-2020)0,则p =________;(3)若(x +2)0=1,则x 应满足的条件是________. 15.若3x y -=,2xy =,则22x y +=__________.16.分解因式3225a ab -=____.17.如图,点C 在DE 上,,,45B E AB AE CAD BAE ∠=∠=∠=∠=︒,则ACB =∠_____________.18.如图,DF 垂直平分AB ,EG 垂直平分AC ,若110BAC ∠=︒,则DAE =∠__________°.19.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .20.如图1,ABC 纸片面积为24,G 为ABC 纸片的重心,D 为BC 边上的一个四等分点(BD CD <)连结CG ,DG ,并将纸片剪去GDC ,则剩下纸片(如图2)的面积为__________.三、解答题21.观察下列等式:第1个等式:111122=-⨯; 第2个等式:1112323=-⨯; 第3个等式:1113434=-⨯;……(1)写出第5个等式:________________;(2)探究规律:猜想第n 个等式,并证明;(3)问题解决:一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,……,第n 次倒出的水量是1n 升的11n +,如果不考虑实际操作因素,按照这种倒水的方法,这1升水能倒完吗?为什么?22.某工程队用甲、乙两台隧道挖掘机从两个方向挖掘同一条隧道,因为地质条件不同,甲、乙的挖掘速度不同,已知甲、乙同时挖掘3天,可以挖216米,若甲挖2天,乙挖5天可以挖掘270米.(1)请问甲、乙挖掘机每天可以挖掘多少米?(2)若隧道的总长为2400米,甲、乙挖掘机工作20天后,因为甲挖掘机进行设备更新,乙挖掘机设备老化,甲比原来每天多挖m 米,同时乙比原来少挖m 米,最终,甲、乙两台挖掘机完成的时间相同,且各完成隧道总长的一半,请求出m .23.化简:(1)()34322223x y x y z x y -÷;(2)2(4)3(1)(3)x x x x -+-+.24.如图,在ABC ∆中,60B ∠=︒,点M 从点B 出发沿线段BC 方向,在线段BC 上运动.在点M 运动的过程中,连结AM ,并以AM 为边在线段BC 上方,作等边AMN ∆,连结CN .(1)当_________BAM ∠=时,2AB BM =;(2)请添加一个条件:_________,使得ABC ∆为等边三角形;当ABC ∆为等边三角形时,求证:CN CM AC +=;25.如图,AD 是ABC 的角平分线,AB AC >,求证:AB AC BD CD ->-.26.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A ′,若∠C =125°,∠A =20°,求∠BD A ′的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可;【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0,当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确; B 、当a 取互为倒数的值时,即取m 和1m ,则11m m ⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫ ⎪⎝⎭ ①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3) 则22112=424++< 22113=939++ , 故C 正确; D 、可举例判断,由01a <<得,取a=12,13(12>13) 2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误;故选:D .【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.2.D解析:D【分析】根据分式有意义的条件得出x +2≠0且x ﹣1≠0,计算即可.【详解】解:要使分式()()221x x x ++-有意义,必须满足x +2≠0且x ﹣1≠0, 解得:x ≠﹣2且x ≠1,故选:D .【点睛】本题考查了分式有意义的条件,能根据分式有意义的条件得出x +2≠0且x ﹣1≠0是解此题的关键.3.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A. 22b b a a=不一定正确;B. 22+++a b a b a b=不正确; C.2422x y x y x x --=分子分母同时除以2,变形正确; D. 22m n n m-=-不正确; 故选:C .【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.4.B解析:B【分析】根据分式的定义逐个判断即可得.【详解】 常数2π是单项式, 15x +是多项式, 221x x --和33x -都是分式, 综上,分式有2个,故选:B .【点睛】 本题考查了分式的定义,掌握理解分式的定义是解题关键.5.B解析:B【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.【详解】 解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12,解得:x=3,故选:B .【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键. 6.D解析:D根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.7.C解析:C【分析】根据平方及相反数定义求出a 、b 的值,代入a+b 计算即可.【详解】∵2a =1,b 是2的相反数,∴1a =±,b=-2,当a=1时,a+b=1-2=-1,当a=-1时,a+b=-1-2=-3,故选:C .【点睛】此题考查求代数式的值,根据平方及相反数定义求出a 、b 的值是解题的关键. 8.C解析:C【分析】根据幂的乘方、积的乘方、同底数幂的乘除法逐项判断即可得.【详解】A 、236()a a =,此项错误;B 、224(2)4a a =,此项错误;C 、347a a a ⋅=,此项正确;D 、34a a a ÷=,此项错误;故选:C .【点睛】本题考查了幂的乘方、积的乘方、同底数幂的乘除法,熟练掌握各运算法则是解题关键. 9.A解析:A根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A,再根据三角形内角和等于180°求出∠B=72°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,然后根据等角对等边的性质和勾股定理解答.【详解】解:∵D是AC的中点,ED AC⊥交AB于点E,∴ED垂直平分AC,∴AE=CE,∴∠ECD=∠A,∵∠A=36°,∴∠ECD=36°,∵AB=AC,∠A=36°,∴∠B=12(180°-36°)=72°,∵∠ECD=∠A=36°,∴∠BEC=∠ECD+∠A=36°+36°=72°,∴∠B=∠BEC,∴BC=CE,∵AE=CE,ED⊥AC,∴CD=12AC=3,在Rt△CED中,∴故选A.【点睛】本题考查了等腰三角形三线合一的性质,勾股定理,线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角以及等角对等边的性质,熟练掌握有关性质是解题的关键.10.A解析:A【分析】根据绝对值和二次根式的性质求出a,b,再根据等腰三角形的性质判断即可;【详解】∵70a-=,∴70 260 ab-=⎧⎨-=⎩,解得73 ab=⎧⎨=⎩,∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系,此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17.故答案选A .【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.11.A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A 、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键. 12.A解析:A【分析】设这个多边形的边数为n ,根据内角和公式以及多边形的外角和为360°即可列出关于n 的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n ,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.二、填空题13.3【分析】要使分式的值为0必须分式分子的值为0并且分母的值不为0【详解】解:要使分式由分子解得:或3;而时分母;当时分母分式没有意义所以的值为3故答案为:3【点睛】本题主要考查了分式的值为零的条件要 解析:3【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】解:要使分式由分子(1)(3)0m m --=.解得:1m =或3;而3m =时,分母23220m m -+=≠;当1m =时分母2321320m m -+=-+=,分式没有意义.所以m 的值为3.故答案为:3.【点睛】本题主要考查了分式的值为零的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义.14.-2x-2【分析】(1)根据积的乘方计算公式得出答案;(2)根据零次幂的定义得到(-2020)0由此求出p 的值;(3)根据零次幂的定义得到x+20求出结果【详解】(1)(-a2b )2=故答案为:;(解析:42a b -2 x ≠-2【分析】(1)根据积的乘方计算公式得出答案;(2)根据零次幂的定义得到(-2020)0,,由此求出p 的值;(3)根据零次幂的定义得到x+2≠0求出结果.【详解】(1)(-a 2b )2=42a b ,故答案为:42a b ;(2)∵(-2020)0=1,∴p +3=(-2020)0=1,∴p=-2,故答案为:-2;(3)∵(x +2)0=1,∴x+2≠0,x ≠-2,故答案为:x ≠-2.【点睛】此题考查整式的积的乘方计算公式,零次幂的定义,熟记计算公式是解题的关键. 15.【分析】根据完全平方公式变形计算即可得解【详解】∵∴=9+4=13故答案为:13【点睛】此题考查完全平方公式变形计算熟记完全平方公式并正确理解所求与公式的关系是解题的关键解析:13【分析】根据完全平方公式变形计算即可得解.【详解】∵3x y -=,2xy =,∴22x y +=2()2x y xy -+=9+4=13,故答案为:13.【点睛】此题考查完全平方公式变形计算,熟记完全平方公式并正确理解所求与公式的关系是解题的关键.16.a (a+5b )(a-5b )【分析】首先提取公因式a 进而利用平方差公式分解因式得出答案【详解】解:a3-25ab2=a (a2-25b2)=a (a+5b )(a-5b )故答案为:a (a+5b )(a-5b )解析:a (a+5b )(a-5b )【分析】首先提取公因式a ,进而利用平方差公式分解因式得出答案.【详解】解:a 3-25ab 2=a (a 2-25b 2)=a (a+5b )(a-5b ).故答案为:a (a+5b )(a-5b ).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 17.【分析】由条件可证得△ABC ≌△AED 则可求得∠ACB=∠ADEAD=AC 再利用等腰三角形的性质可求得答案【详解】解:∵∠CAD=∠BAE ∴∠CAD+∠CAE=∠BAE+∠CAE 即∠BAC=∠DAE解析:67.5【分析】由条件可证得△ABC ≌△AED ,则可求得∠ACB=∠ADE ,AD=AC ,再利用等腰三角形的性质可求得答案.【详解】解:∵∠CAD=∠BAE ,∴∠CAD+∠CAE=∠BAE+∠CAE ,即∠BAC=∠DAE ,在△ABC 和△AED 中,B E AB AEBAC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△AED (ASA ),∴AD=AC ,∠ACB=∠ADE ,∴∠ACD=∠ADC ,∵∠CAD=45°,∴∠ADC=67.5°,∴∠ACB=67.5°,故答案为:67.5.【点睛】本题主要考查全等三角形的判定和性质及等腰三角形的性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(全等三角形的对应边相等、对应角相等)是解题的关键.18.【分析】先由已知求出∠B+∠C=70°再根据线段垂直平分线的性质和等腰三角形的等边对等角的性质证得∠B=∠BAD ∠C=∠CAE 则有∠BAD+∠CAE=70°进而求得∠DAE 的度数【详解】解:∵在△A解析:40︒【分析】先由已知求出∠B+∠C=70°,再根据线段垂直平分线的性质和等腰三角形的等边对等角的性质证得∠B=∠BAD ,∠C=∠CAE ,则有∠BAD+∠CAE=70°,进而求得∠DAE 的度数.【详解】解:∵在△ABC 中,∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵DF 垂直平分AB ,EG 垂直平分AC ,∴AD=BD ,AE=CE ,∴∠B=∠BAD ,∠C=∠CAE ,∴∠BAD+∠CAE=70°,∴∠ADE=∠BAC ﹣(∠BAD+∠CAE )=110°﹣70°=40°,故答案为:40°.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的内角和等理,熟练掌握线段垂直平分线的性质和等腰三角形的等边对等角的性质是解答的关键.19.OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ∠C =∠D 然后根据全等三角形的判定方法添加条件即可【详解】解:添加的条件是OA =OB 理由如下:∵AD ∥BC ∴∠A =∠B ∠C =∠D 在△AOD 和解析:OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ,∠C =∠D ,然后根据全等三角形的判定方法添加条件即可.【详解】解:添加的条件是OA =OB ,理由如下:∵AD ∥BC ,∴∠A =∠B ,∠C =∠D在△AOD 和△BOC 中A B AO BO AOD BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOD ≌△BOC (ASA ).故答案为:OA =OB (答案不唯一).【点睛】本题主要考查了全等三角形的判定定理和平行线的性质,掌握全等三角形的判定定理的内容是解答本题的关键.20.18【分析】连接BG 根据重心的性质得到△BGC 的面积再根据D 点是BC 的四等分点得到△GDC 的面积故可求解【详解】连接BG ∵G 为纸片的重心∴S △BGC=S △ABC=8∵D 为边上的一个四等分点()∴S △解析:18【分析】连接BG ,根据重心的性质得到△BGC 的面积,再根据D 点是BC 的四等分点得到△GDC 的面积,故可求解.【详解】连接BG ,∵G 为ABC 纸片的重心,∴S △BGC =13S △ABC =8 ∵D 为BC 边上的一个四等分点(BD CD <) ∴S △DGC =34S △BGC =6 ∴剪去GDC ,则剩下纸片的面积为24-6=18 故答案为:18.【点睛】此题主要考查重心的性质,解题的关键是熟知重心的性质及面积的换算关系.三、解答题21.(1)1115656=-⨯ (2)()11111n n n n =-++;证明见解析 (3)不能;见解析 【分析】(1)观察各等式,找出分子分母中的数与序号的关系即可写出第五个等式;(2)根据题目中的式子,可以写出生意人猜想,并验证猜想是否正确;(3)根据题意求出前n 次倒水量之和,再与1进行比较即可.【详解】解:(1)第5个等式:1115656=-⨯; 故答案为:1115656=-⨯; (2)猜想:()11111n n n n =-++,证明: 等式右边()()()11111111n n n n n n n n n n +=-=-==++++等式左边, ∴猜想成立;(3)由题意可得:第n 次倒出水量:()11L n n +, ∴前n 次总共倒出水量:()11111223341n n ++++⨯⨯⨯+ 1111112231n n =-+-++-+ 111n =-+ 1n n =+, ∵11n n <+, ∴这1L 水不能倒完.【点睛】本题主要考查了数字变化规律的问题,通过观察、分析、归纳并发现其中的规律,并应用发现的规律解决问题,解题的关键是发现分子分母中的数与序号的关系.22.(1)甲每天挖30米,乙每天挖42米;(2)m=15【分析】(1)设甲、乙每天分别挖x 、y 米.等量关系:3(甲+乙)216=米、2⨯甲5+⨯乙(2)由题意可知20天后甲完成(30×20)米,剩余1(24003020)2⨯-⨯米,乙完成(4220⨯)米,剩余1(24004220)2⨯-⨯米,根据关键描述语:甲、乙两台挖掘机在相同时间里各完成隧道总长的一半列出方程,解之即可.【详解】解:(1)设甲、乙每天分别挖x 、y 米.依题意得:3()21625270x y x y +=⎧⎨+=⎩. 解得3042x y =⎧⎨=⎩. 答:甲每天挖30米,乙每天挖42米;(2)由题意可知:20天后甲完成(30×20)米,剩余1(24003020)2⨯-⨯米,乙完成(4220⨯)米,剩余1(24004220)2⨯-⨯米, 依题意得:112400302024004220223042m m⨯-⨯⨯-⨯=+-, 解得:m=15,经检验:m=15是原方程的解.【点睛】本题考查了二元一次方程组的应用,分式方程的应用,找到等量关系是解题的关键,切记,分式方程一定要验根.23.(1)223xy xz -;(2)2529x x --【分析】(1)按照多项式除以单项式的法则计算即可;(2)先按整式乘法法则去括号,再合并同类项即可.【详解】解:(1)原式3422322223x y x y x y z x y =÷-÷223xy xz =-.(2)原式()2228323x x x x =-++- 2228369x x x x =-++-2529x x =--.【点睛】本题考查了整式的混合运算,准确掌握并运用法则是解题关键.24.(1)30;(2)AB=AC ;证明详见解析.(1)根据含30°角的直角三角形的性质解答即可;(2)利用等边三角形的判定即可解答;利用等边三角形的性质和全等三角形的判定证得△BAM ≌△CAN (SAS ),利用全等三角形的性质即可求证结论.【详解】(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM ;故答案为30;(2)添加一个条件AB=AC ,可得△ABC 为等边三角形;故答案为AB=AC ;①∵△ABC 与△AMN 是等边三角形,∴BC =AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC ,即∠BAM=∠CAN ,∴△BAM ≌△CAN (SAS ),∴BM=CN ,∴BM +CM=CN +CM即BC =AC =CN +CM .【点睛】本题考查等边三角形的判定及性质、全等三角形的判定及性质、含30°角的直角三角形的性质,解题的关键是熟练掌握所学知识.25.见解析【分析】在 AB 上取 AE = AC ,然后证明ADC ≌()SAS ADE △,根据全等三角形对应边相等得到DC DE =,再根据三角形的任意两边之差小于第三边证明即可.【详解】证明:如解图,在AB 上截取AE AC =,连接DE ,∵ AD 是ABC 的角平分线,∴ CAD EAD ∠=∠.在ADC 和ADE 中,,,,AC AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴ ADC ≌()SAS ADE △.∴ DC DE =.∵在BDE 中,BE BD ED >-,∵ AB AE BE -=,∴ AB AC BD CD ->-.【点睛】本题主要考查全等三角形的判定和全等三角形对应边相等的性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.26.110°【分析】利用翻折变换的性质以及三角形内角和定理求出∠BDE ,∠A′DE ,即可解决问题.【详解】∵∠A +∠B +∠C =180°,∠A =20°,∠C =125°,∴∠B =35°,∵DE ∥BC ,∴∠ADE =∠B =35°,∠BDE +∠B =180°,∴∠BDE =180−∠B =180°−35°=145°,∵△ADE 沿DE 折叠成△A′DE ,∴∠A′DE =∠ADE =35°,∴∠BDA′=∠BDE−∠A′DE =145°−35°=110°.【点睛】本题考查三角形内角和定理,翻折变换的性质以及平行线的性质,解题的关键是熟练掌握翻折变换的性质,属于中考常考题型.。

【鲁教版】八年级数学上期末试卷(及答案)(1)

【鲁教版】八年级数学上期末试卷(及答案)(1)

一、选择题1.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x-= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x-=+ 2.分式242x x -+的值为0,则x 的值为( ) A .2- B .2-或2 C .2 D .1或2 3.下列式子的变形正确的是( )A .22b b a a= B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- 4.下列各式中,无论x 取何值,分式都有意义的是( ).A .132x -B .213x +C .231x x +D .21x x + 5.多项式2425a ma ++是完全平方式,那么m 的值是( )A .10±B .20±C .10D .206.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 7.下列运算正确的是( )A .()23636a =B .()()22356a a a a --=-+C .842x x x ÷=D .326326x x x ⋅= 8.计算()201920180.52-⨯的值( ) A .2 B .2- C .12 D .12- 9.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.510.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒11.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD 12.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 二、填空题13.已知实数a 、b 满足32a b =,则a b a b +-_________. 14.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________. 15.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a b x cd cd+-+的值为_______. 16.下列说法:①用两个钉子就可以把木条固定在墙上依据的是“两点之间,线段最短”;②若2210m m +-=,则2425m m ++的值为7;③若a b >,则a 的倒数小于b 的倒数;④在直线上取A 、B 、C 三点,若5cm AB =,2cm BC =,则7cm AC =.其中正确的说法有________(填号即可).17.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.18.△ABC 中,∠A =50°,当∠B =____________时,△ABC 是等腰三角形.19.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.20.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.三、解答题21.先化简:22122441a a a a a a ⎛⎫-÷ ⎪-⎭-⎝+-+,然后从0,2,3中选择一个合适的数代入求值.22.己知A 、B 两地相距240千米,甲从A 地去B 地,乙从B 地去A 地,甲比乙早出发3小时,两人同时到达目的地.已知乙的速度是甲的速度的2倍.(1)甲每小时走多少千米?(2)求甲乙相遇时乙走的路程.23.已知x 、y 为有理数,现规定一种新运算,满足1x y xy *=+.(1)求24*的值;(2)求(14)(2)*-的值;(3)探索()a b c *+与a b a c *+*的关系,并用等式把它们表达出来.24.已知在平面直角坐标系xOy 中,ABC ∆如图所示,()()()5,2,5,2,1,4A B C ----.(1)作出ABC ∆关于y 轴对称的图形''A B C '∆;(2)求出ABC ∆的面积;(3)在边BC 上找一点,D 连结AD ,使得BAD ABD ∠=∠.(请仅用无刻度直尺按要求画图)25.如图,A 、D 、F 、B 在同一直线上,EF ∥CD ,AE ∥BC ,且AD =BF .求证:AE =BC26.如图,AD ,AE 分别是△ABC 的高和角平分线.(1)已知∠B =40°,∠C =60°,求∠DAE 的度数;(2)设∠B =α,∠C =β(α<β).请直接写出用α、β表示∠DAE 的关系式 .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程.【详解】设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,根据题意得:6000600052x x-=,故选:A.【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键.2.C解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x2-4=0,且x+2≠0,所以x2=4,且x≠-2,解得,x=2.故选:C.【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A.22b ba a=不一定正确;B.22+++a ba ba b=不正确;C.2422x y x y x x --=分子分母同时除以2,变形正确; D. 22m n n m-=-不正确; 故选:C .【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.4.B解析:B【分析】根据分式有意义的条件:分母不等于0确定答案.【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意; C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意; 故选:B .【点睛】此题考查分式有意义的的条件:分母不等于0. 5.B解析:B【分析】由4a 2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m 的值.【详解】解:∵4a 2+ma+25是完全平方式,∴4a 2+ma+25=(2a±5)2=4a 2±20a+25,∴m=±20.故选:B .【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.6.D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.7.B解析:B【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可.【详解】解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意;C .844x x x ÷=,故本选项不合题意;D .325326x x x ⋅=,故本选项不合题意.故选:B .【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.8.D解析:D【分析】 将原式变形为201920181-22⎛⎫⨯ ⎪⎝⎭,再利用同底数幂的乘法逆运算变为2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭,然后运用乘法交换律及积的乘方的逆运算计算即可. 【详解】 解:原式=201920181-22⎛⎫⨯ ⎪⎝⎭=2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =2018201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =()20181-1-2⎛⎫⨯ ⎪⎝⎭=1×1-2⎛⎫ ⎪⎝⎭=12- 故选:D .【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法、积的乘方的逆运算是解题的关键.9.C解析:C【分析】延长BD 与AC 交于点E ,由题意可推出BE=AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC=CE ,AE=BE=2BD ,根据AC=6,BC=4,即可推出BD 的长度.【详解】解:延长BD 与AC 交于点E ,∵∠A=∠ABD ,∴BE=AE ,∵BD ⊥CD ,∴BE ⊥CD ,∵CD 平分∠ACB ,∴∠BCD=∠ECD ,∴∠EBC=∠BEC ,∴△BEC 为等腰三角形,∴BC=CE ,∵BE ⊥CD ,∴2BD=BE ,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C .【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.10.C解析:C【分析】根据等腰ABC ,118ABC ︒∠=,得到AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=,由DE 垂直平分AB ,求得∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,根据∠EBQ=∠ABC-∠ABE-∠QBC 计算得出答案.【详解】在等腰ABC 中,118ABC ︒∠=,∴AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=, ∵DE 垂直平分AB ,∴AE=BE ,∴∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,∴∠EBQ=∠ABC-∠ABE-∠QBC=56︒,故选:C .【点睛】此题考查等腰三角形的性质,线段垂直平分线的性质,三角形的内角和定理,熟记线段垂直平分线的性质是解题的关键. 11.C解析:C【分析】在△ACD 和△ABD 中,AD=AD ,AB=AC ,由全等三角形判定定理对选项一一分析,排除不符合题意的选项即可.【详解】解:添加A 选项中条件可用HL 判定两个三角形全等,故选项A 不符合题意; 添加B 选项中的条件可用SSS 判定两个三角形全等,故选项B 不符合题意;添加C 选项中的条件∠1=∠2可得∠CDA=∠BDA ,结合已知条件不SS 判定两个三角形全等,故选项C 符合题意;添加D 选项中的条件可用SAS 判定两个三角形全等,故选项D 不符合题意.故选:C .【点睛】本题考查了全等三角形的判定,判定三角形全等的方法:SSS 、SAS 、ASA 、AAS ,判断直角三角形全等的方法:“HL”.12.B解析:B【分析】根据角的度数之比,求得最大角的度数,根据最大角的性质判断即可.【详解】∵三个内角的度数之比为11:13:24,∴最大角的度数为°24180111324⨯++=90°, ∴三角形是直角三角形,故选B.【点睛】 本题考查了三角形按角的分类,根据度数之比求得最大角的度数是解题的关键.二、填空题13.5【分析】根据已知用b 表示a 然后把a 的值代入所求的代数式分子分母约掉b 后可以得到解答【详解】∴∴故答案为:5【点睛】本题考查分式的化简与求值熟练掌握分式化简与求值的各种方法是解题关键解析:5【分析】根据已知用b 表示a ,然后把a 的值代入所求的代数式,分子分母约掉b 后可以得到解答.【详解】 32a b =, ∴32a b = ∴32532b ba b a b b b ++==--, 故答案为:5.【点睛】本题考查分式的化简与求值,熟练掌握分式化简与求值的各种方法是解题关键. 14.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件, 依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.15.0或-2【分析】根据ab 互为相反数cd 互为倒数x 是数轴上到原点的距离为1的点表示的数可以得到a+b=0cd=1x=±1从而可以求得所求式子的值【详解】解:∵ab 互为相反数cd 互为倒数x 是数轴上到原点解析:0或-2【分析】根据a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,可以得到a+b=0,cd=1,x=±1,从而可以求得所求式子的值.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数, ∴a+b=0,cd=1,x=±1,∴x 2021=±1, ∴2021a b x cd cd+-+ =1-1+0=0; 或2021a b x cd cd+-+ =-1-1+0=-2.故答案为:0或-2.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.②【分析】①用两个钉子可以把木条固定的依据是两点确定一条直线;②利用整体代换的思想可以求出代数式的值;③根据倒数的定义举出反例即可;④直线上ABC 三点的位置关系要画图分情况讨论【详解】①用两个钉子可解析:②【分析】①用两个钉子可以把木条固定的依据是“两点确定一条直线”;②利用“整体代换”的思想,可以求出代数式的值;③根据倒数的定义,举出反例即可;④直线上A 、B 、C 三点的位置关系,要画图,分情况讨论.【详解】①用两个钉子可以把木条固定的依据是“两点确定一条直线”,故①错误;②∵2210m m +-=,∴()2242522172077m m m m ++=+-+=⨯+=,故②正确;③∵a >b ,取a=1,b=-1, ∴11a =,11b=-,11a b >,故③错误; ④当点C 位于线段AB 上时,AC=AB -BC=5-2=3cm ;当点C 位于线段AB 的延长线上时,AC=AB+BC=5+2=7cm ,则AC 的长为3cm 或7cm ,故④错误;综上可知,答案为:②.【点睛】本题考查了两点确定一条直线、整体代换思想、求代数式的值、倒数的有关计算及数形结合法求线段的长度,综合性较强,需要学生熟练掌握相关的知识点.17.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB1A1=30°,∠OB1A2=90°∴OA1=A1B1=12OA2,同理可得OA2=A2B2=12OA3,OA3=A3B3=12OA4∵48OA=∴OA3=1842⨯==312-,OA2=1422⨯==212-,OA1=1112122-⨯==,以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.18.50°或80°或65°【分析】由已知条件根据题意分三种情况讨论:①∠A是顶角;②∠A是底角∠B=∠A时③∠A是底角∠B=∠A时利用三角形的内角和进行求解【详解】①∠A是顶角∠B=(180°−∠A)÷解析:50°或80°或65°【分析】由已知条件,根据题意,分三种情况讨论:①∠A是顶角;②∠A是底角,∠B=∠A 时,③∠A是底角,∠B=∠A时,利用三角形的内角和进行求解.【详解】①∠A是顶角,∠B=(180°−∠A)÷2=65°;②∠A是底角,∠B=∠A=50°.③∠A是底角,∠A=∠C=50°,则∠B=180°−50°×2=80°,∴当∠B的度数为50°或65°或80°时,△ABC是等腰三角形.故答案为:50°或65°或80°.【点睛】本题考查了等腰三角形的判定及三角形的内角和定理;分情况讨论是正确解答本题的关键.19.2或【分析】分点Q在BC上和点Q在AC上根据全等三角形的性质分情况列式计算【详解】由题意得AP=3tBQ=2tAC=8cmBC=6cmCP=8﹣3tCQ=6﹣2t①如图当与全等时PC=QC解得;②如解析:2或145.【分析】分点Q在BC上和点Q在AC上,根据全等三角形的性质分情况列式计算.【详解】由题意得,AP=3t,BQ=2t,AC =8cm ,BC =6cm ,∴ CP =8﹣3t ,CQ =6﹣2t ,①如图,当PMC △与QNC 全等时,PC=QC ,6283t t -=-,解得2t =;②如图,当PMC △与QNC 全等时,点P 已运动至BC 上,且与点Q 相遇, 则PC=QC ,6238t t -=-,解得145t =;故答案为:2或145. 【点睛】 本题考查了全等三角形的性质,掌握全等三角形对应边相等是解决问题的关键. 20.2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ∠D+∠E 再根据邻补角表示出∠CGF 然后利用三角形的内角和定理列式整理即可得解【详解】解:如图根据三角形的外角性质∠1=∠A解析:2α【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ,∠D+∠E ,再根据邻补角表示出∠CGF ,然后利用三角形的内角和定理列式整理即可得解.【详解】解:如图,根据三角形的外角性质,∠1=∠A+∠B ,∠2=∠D+∠E ,∵∠3=180°-∠CGE=180°-α,∴∠1+∠F+180°-α=180°,∴∠A+∠B+∠F=α,同理:∠2+∠C+180°-α=180°,∴∠D+∠E+∠C=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α.故答案为:2α【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.三、解答题21.3a;1 【分析】 根据分式的减法和除法可以化简题目中的式子,然后从0,2,3中选择一个使得原分式有意义值,代入化简后的式子即可解答本题.【详解】 解:22122441a a a a a a ⎛⎫-÷ ⎪-⎭-⎝+-+ ()()2212222a a a a a a a ⎛-+-=---÷⎪⎝⎭-⎫ 22322a a a a3a= ∵当0a =或2时,原式没有意义,∴当3a =时,原式1=.【点睛】本题考查分式的化简求值,明确分式化简求值的方法和分式有意义的条件是解答本题的关键.22.(1)40千米;(2)80千米【分析】(1)设甲每小时走x 千米,则乙每小时走2x 千米,根据题意列出分式方程,即可求解; (2)设相遇时甲出发t 小时,根据相遇时甲乙路程和为240千米列出方程,求解即可.【详解】解:(1)设甲每小时走x 千米,则乙每小时走2x 千米, 根据题意可得:24024032x x-=, 解得40x =,经检验得40x =是原分式方程的解,∴甲每小时走40千米;(2)设相遇时甲出发t 小时,由(1)可得乙每小时走80千米,根据题意可得:()40803240t t +-=,解得4t =,此时乙走的路程为()804380⨯-=千米.【点睛】本题考查分式方程的应用,根据题意找出等量关系,并列出方程是解题的关键. 23.(1)9;(2)-27;(3)a b a c *+*=()a b c *++1.【分析】(1)根据1x y xy *=+,可以求得所求式子的值;(2)根据1x y xy *=+,可以求得所求式子的值;(3)根据1x y xy *=+,可以得到()a b c *+与a b a c *+*的关系,并用等式把它表达出来.【详解】解:(1)∵1x y xy *=+,∴24=24+1=8+1=9*⨯;(2)1x y xy *=+,∴(14)(2)=14(2)128127*-⨯-+=-+=-;(3))∵1x y xy *=+,∴()()11a b c a b c ab ac *+=++=++ 1111a b a c ab ac ab ac *+*=+++=+++∴a b a c *+*=()a b c *++1.【点睛】本题考查有理数的混合运算,解答本题的关键理解新定义,代入数据,注意由式子转化为具体数据的时候符号及运算顺序的变化,求出相应式子的值.24.(1)见解析 (2)8 (3)见解析【分析】(1)分别作出A ,B ,C 关于y 轴的对称点连接即可;(2)根据三角形的面积,确定三角形的底和高计算即可;(3)根据已知条件可知x 轴所在的直线为AB 线段的垂直平分线,判断即可;【详解】解:(1)∵()5,2A -,()5,2B --,()1,4C -,∴关于y 轴对称的点为()5,2A ',()5,2B '-,()1,4C ',如图,(2)过点C 作CE AB ⊥,由题可知:()154CE =---=,()224AB =--=, ∴1144822=⨯⨯=⨯⨯=S AB CE ; (3)根据已知条件可得到x 轴所在的直线为AB 线段的垂直平分线,即可得到点D 的位置,如图所示.【点睛】本题主要考查了平面直角坐标系的知识点,结合等腰三角形的性质判断是解题的关键. 25.见详解【分析】欲证明AE=BC ,只要证明△AEF ≌△BCD 即可.【详解】证明:∵EF ∥CD ,AE ∥BC ,∴∠A=∠B ,∠EFD=∠CDB ,∵AD=BF ,∴AF=DB ,在△AEF 和△BCD 中,A B AF BD EFA CDB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BCD ,∴AE=BC .【点睛】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.26.(1)10︒;(2)1122βα- 【分析】(1)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案;(2)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案.【详解】(1)∵∠B =40°,∠C =60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC ,∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-, 故答案为:1122βα-. 【点睛】 此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁教版八年级上册数学期末试卷
一.选择题
1.把多项式m2﹣9m分解因式,结果正确的是()
A.m(m﹣9) B.(m+3)(m﹣3)C.m(m+3)(m﹣3)D.(m﹣3)2
2.下列各式从左边到右边的变形是因式分解的是()
A.(a+1)(a﹣1)=a2﹣1 B.a2﹣6a+9=(a﹣3)2
C.x2+2x+1=x(x+2x)+1 D.﹣18x4y3=﹣6x2y2•3x2y
3.多项式15m3n2+5m2n﹣20m2n3的公因式是()
A.5mnB.5m2n2C.5m2n D.5mn2
4.如果多项式x2﹣mx+6分解因式的结果是(x﹣3)(x+n),那么m,n的值分别是()A.m=﹣2,n=5 B.m=2,n=5 C.m=5,n=﹣2 D.m=﹣5,n=2
5.在中,分式的个数是()
A.2 B.3 C.4 D.5
6.若分式有意义,则x的取值范围是()
A.x>3 B.x<3 C.x≠3 D.x=3
7.若分式的值为零,则x等于()
A.2 B.﹣2 C.±2 D.0
8.若x,y的值均扩大为原的2倍,则下列分式的值保持不变的是()A.B.C.D.
9.化简分式:(1﹣)÷的结果为()
A.B.C.D.
10.下列调查中,适宜采用全面调查(普查)方式的是()
A.了解我国民众对乐天集团“萨德事件”的看法
B.了解《人民的名义》反腐剧的收视率
C.调查我校某班学生喜欢上数学课的情况
D.调查某类烟花爆竹燃放的安全情况
11.如图,在平行四边形ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接CE,若△CED的周长为6,则▱ABCD的周长为()
A.6 B.12 C.18 D.24
12.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE 等于()
A.AB B.AC C.AB D.AC
二.填空题
13.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:
名学生平均每人植树棵.
14.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为.
15.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为m.
16.因式分解:a3﹣4a= .
17.化简:= .
三.解答题
18.已知分式,试问:
(1)当m为何值时,分式有意义?
(2)当m为何值时,分式值为0?
19.解方程:=1﹣.
20.阅读后填空:某家灯具厂为了比较甲、乙两种灯的使用寿命,各抽出8支做试验,结果如下(单位:小时).
甲:457,438,460,443,464,459,444,451;
乙:466,455,467,439,459,452,464,438.
试说明哪种灯的使用寿命长?哪种灯的质量比较稳定?
21.如图,在平行四边形ABCD中,点E是AB边的中点,DE的延长线与CB的延长线交于点F.求证:BC=BF.
22.如图,点C是AB的中点,AD=CE,CD=BE.
(1)求证:△ACD≌△CBE;
(2)连接DE,求证:四边形CBED是平行四边形.
23.△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.
24.如图:小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°照这样走下去,他第一次回到出发点A时,一共走了多少米?。

相关文档
最新文档