(完整版)北师大版八年级数学下册第二章单元复习与专题训练
北师大版八年级数学下册第二章一元一次不等式与一元一次不等式组复习练习题(有答案)
(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?
(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手
机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的 2 倍,而且用于购进这两种手机的总
资金不超过 16 万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.
,a=1,b=2,∴xa﹣(2x﹣3)b+5=﹣3x+11<9,
3xa﹣(﹣6)b+5=3x+17≤t,即
解得:
,
∵关于 x 的不等式组
,有且只有一个整数解∴1≤
解得:20≤t<23,即字母 t 的取值范围是 20≤t<23;
<2,
(2)∵m◇n=n◇m,∴ma﹣nb+5=na﹣mb+5,∴ma﹣nb﹣na+mb=0,∴m(a+b)﹣n(a+b)=0, ∴(a+b)(m﹣n)=0, ∵m、n 为任意数,∴m﹣n 不一定等于 0,∴a+b=0, 即 a、b 所应满足的关系式是 a+b=0.
18.﹣4<m≤﹣2 或 2<m≤4.
19.解:(1)
,x> ;
把解集表示在数轴上为:
(2)
≥
,
14x﹣7(3x﹣8)+14≥4(10﹣x), 14x﹣21x+56+14≥40﹣4x, ﹣3x≥﹣30, 把解集表示在数轴上为:
x≤10;
(3) 把解集表示在数轴上为:
, 解①得 x>﹣6, 解②得 x>0, 故不等式组的解集为 x>0.
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
第二章复习练习题
北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)
章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?
北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)
第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。
八年级数学北师大版下册 第二章 一元一次不等式与一元一次不等式组 同步单元训练卷(含答案)
北师大版八年级数学下册第二章 一元一次不等式与一元一次不等式组同步单元训练卷一、选择题(共10小题,3*10=30)1.若2a +6的值是正数,则a 的取值范围是( ) A .a >0 B .a >3 C .a >-3 D .a <-32.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m≥2 B .m >2 C .m <2 D .m≤23.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A.⎩⎪⎨⎪⎧x >-1,x≤2B.⎩⎪⎨⎪⎧x≥-1,x <2 C.⎩⎪⎨⎪⎧x≥-1,x≤2 D.⎩⎪⎨⎪⎧x <-1,x≥2 4.在数轴上到原点的距离大于2的点对应的x 满足( ) A .x>2 B .x<2C .x>2或x<-2D .-2<x<25.若函数y =kx +b 的图象如图所示,则关于x 的不等式kx +2b <0的解集为( )A .x <3B .x >3C .x <6D .x >66. 不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1②中,不等式①和②的解集在数轴上表示正确的是( )7. 三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .348.关于x 的不等式2x +a ≤1只有2个正整数解,则a 的取值范围为( ) A.-5<a <-3 B.-5≤a <-3 C.-5<a ≤-3 D.-5≤a ≤-39.若不等式2x<4的解都能使关于x 的不等式(a -1)x<a +5成立,则a 的取值范围是( ) A .1<a≤7 B .a≤710.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( ) A .买甲站的 B .买乙站的 C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二.填空题(共8小题,3*8=24) 11. 不等式 2x -1>3的解集是________.12. 已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是__________. 13. 不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,5-12x >2x 的整数解是________.14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________.15.若|5-10x|=10x -5, 则x 的取值范围是________.16.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x(元),当x___________时,办理金卡购物省钱. 17.某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.18. 已知实数x ,y 满足2x -3y =4,并且x≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三.解答题(7小题,共66分)19.(8分) 解不等式,并把它们的解集在数轴上表示出来:15-9y <10-4y ;20.(8分) 已知不等式3x -a≤0的正整数解是1,2,3.求a 的取值范围.21.(8分) 根据题意列出不等式:(1)某市化工厂现有甲原料290千克,计划用这种原料与另一种足够多的原料配合生产A,B两种产品共50件.已知生产一件A型产品需甲种原料15千克,生产一件B型产品需甲种原料2.5千克,若该化工厂现有的原料能保证生产,试写出满足生产A型产品x(件)的关系式;(2)某厂生产一种机械零件,固定成本为2万元,每件零件成本为3元,零售价为5元,应纳税款为总销售额的10%.若要使该厂盈利,则该零件至少要生产销售x个,试写出x应满足的不等式.22.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值;(2)利用图象求出:当x取何值时,y1≥y2?(3)利用图象求出:当x取何值时,y1>0且y2<0?23.(10分) 某校九年级有三个班,其中九(一)班和九(二)班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九(一)班的满分率为70%,九(二)班的满分率为80%.(1)求九(一)班和九(二)班各有多少名学生;(2)该校九(三)班有45名学生,若九年级体育成绩的总满分率超过75%,求九(三)班至少有多少名学生体育成绩是满分.24.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值.(2)利用图象求出:当x取何值时,y1≥y2.(3)利用图象求出:当x取何值时,y1>0且y2<0.25.(12分) 某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.(1)当n=500时.①根据信息填表(用含x的代数式表示):②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?参考答案1-5CCACD 6-10BBCAB11. x>2 12.53<x≤6 13.-1,0,1 14.a <1 15. x≥1216.>500 17. 12 18.1≤k <319.解:移项,得-9y +4y <10-15.合并同类项,得-5y <-5.系数化为1,得y >1.不等式的解集在数轴上表示如图所示.20. 解:3x -a≤0,解得x≤a 3,因为它的正整数解为1,2,3,当a 3=3时,a =9;当a3=4时,a =12.当a =12时,x≤4,有4个正整数,舍去,∴9≤a<1221. 解:(1)生产A 型产品x 件,则生产B 型产品(50-x)件,根据题意, 得15x +2.5(50-x)≤290. (2)5x -3x -5x×10%-20 000>0.22. 解:(1)k =12,b =5.(2)当x≥2时,y 1≥y 2.(3)当x >4时,y 1>0且y 2<0.⎩⎪⎨⎪⎧x =50,y =55.答:九(一)班有50名学生,九(二)班有55名学生 (2)设九(三)班有m 名学生体育成绩满分,根据题意得79+m >(105+45)×75%,解得m >33.5,∵m 为整数,∴m 的最小值为34.答:九(三)班至少有34名学生体育成绩是满分24. 解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12. 将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5.(2)从图象可以看出:当x≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝⎛⎭⎫53,0.从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.25. 解:(1)①500-x 50x 80(500-x)②由题意得50x +80(500-x)=25600,解得x =480,500-x =20.答:甲种树苗买了480棵,乙种树苗买了20棵(2)由题意得90%x +95%(n -x)≥92%×n ,解得x≤35n ,50x +80(n -x)=26000,解得x =8n -26003.∵8n -26003≤35n ,∴n≤4191131.∵n 为正整数,x 为正整数,当n 为419时,x =7523≈250.7不是整数;当n 为418时,x =248,∴n 的最大值为418。
北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)
第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。
北师大版2020八年级数学下册第二章一元一次不等式(组)单元基础达标测试题(附答案)
北师大版2020八年级数学下册第二章一元一次不等式(组)单元基础达标测试题(附答案) 1.不等式组310x x <⎧⎨--≤⎩中两个不等式的解集,在数轴上表示正确的是( )A .B .C .D .2.李老师奖励在数学竞赛中的优胜者,给小明80元去购买奖品笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多能买( )支钢笔? A .5B .6C .7D .83.如图,数轴上表示的是下列哪个不等式组的解集( )A .x 5{x 3≥->-B .x 5{x 3>-≥-C .x 5{x 3<-<-D .x 5{x 3<->-4.若关于x 的不等式组的整数解共有5个,则a 的取值范围是( )A .﹣4<a≤﹣3B .﹣4≤a <﹣3C .﹣4≤a≤﹣3D .﹣4<a <﹣3 5.不等式1-2x <5-x 的负整数解有( ) A .1个 B .2个 C .3个 D .4个 6.下列说法中正确的是( )A .a 不是负数,则a >0B .b 是不大于0的数,则b <0C .m 不小于﹣1,则m >﹣1D .a ,b 是负数,则a + b <0 7.若m n >,则下列不等式中成立的是( ) A .m+a<n+bB .ma>nbC .ma 2>na 2D .a-m<a-n8.若三角形的三边长分别为3,12x +,8,则x 的取值范围是( ) A .2x 5<<B .3x 8<<C .4x 7<<D .5x 9<<9.不等式组的解集为( )A .x≥3B .-3≤x<4C .-3≤x<2D .x> 410.已知x y >,下列变形正确的是( )A .11x y -<-B .2121x y +<+C .x y -<-D .22x y <11.已知不等式组2123x a x b -<⎧⎨->⎩的解集为﹣1<x <1,则(a+b)(b ﹣1)的值为_____.12.6﹣的整数部分是 .13.在温箱里培养A 、B 两种菌苗,A 种菌苗的生长温度m ℃的范围是35≤m ≤ 39,B 种菌苗的生长温度n ℃的范围是33≤n ≤38,那么温箱里的温度T ℃应该设定在_____. 14.已知一次函数y=kx+b 的图象经过两点A (0,1),B (2,0),则当x 时,y≤0. 15.小丽种了一棵高75cm 的小树,假设小树平均每周长高3cm ,x 周后这棵小树的高度不超过100cm ,所列不等式为_________.16.不等式mx+2<12+4m 中x =7,如果m 是整数,那么m 的最大值是_____. 17.如图,经过点B (﹣2,0)的直线y =kx+b 与直线y =4x+2相交于点A (﹣1,﹣2),则不等式4x+2<kx+b 的解集为_____.18.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.19.若不等式组{12x x m <>-恰有两个整数解,则m 的取值范围是______ .20.如图,经过点B (-2,0)的直线y kx b =+与直线y 4x 2=+相交于点A (-1,-2),则不等式4x 2<kx b<0++的解集为 .21.今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?22.在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:.(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.23.对非负实数x“四舍五入”到个位的值记为[x].即当n为非负整数时,若n﹣12≤x<n+12,则[x]=n.如:[2.9]=3;[2.4]=2;……根据以上材料,解决下列问题:(1)填空[1.8]=,5=;(2)若[2x+1]=4,则x 的取值范围是 ; (3)求满足[x]=32x ﹣1的所有非负实数x 的值. 24.某工程机械厂根据市场需求,计划生产A 、B 两型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹集的资金全部用于生产此两型号挖掘机,所生产的此两型号挖掘机可全部售出,此两型号挖掘机的生产成本和售价如下表: 型号A B 成本(万元/台) 200 240 售价(万元/台) 250300(1)该厂对这两型号挖掘机有哪几种生产方案? (2)该厂如何生产才能获得最大利润? 25.解不等式组:(1)336213436x x x -≤⎧⎪--⎨≥⎪⎩ ;(2)()3242113x x x x ⎧-->⎪⎨+>-⎪⎩26.解不等式组,并把解集在数轴上表示出来.27.为了提高学生社会实践活动能力,某校团委与社区联合举办“保护地球,人人有责”活动.星期天选派学生到各条街道发放传单.若每条街道安排4人,那么还剩78人,若每条街道安排8人,那么最后一条街道不足8人,但不少于4人,这个学校共选派发放传单的学生有多少人?共有多少条街道? 28.先化简,再求值22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭,其中的值从不等式组02110a a -≤⎧⎨-<⎩的整数解中选取.参考答案1.B【解析】【分析】分别求解两个不等式,得到不等式组的解集,然后判断即可.【详解】解不等式-1-x≤0,可得x≥-1所以不等式组的解集为:-1≤x<3.所以表示在数轴上为:.故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.需要注意的是:如果是表示大于或小于号的点要用空心圆圈,如果是表示大于等于或小于等于号的点要用实心圆点.2.B【解析】【分析】设小明买钢笔x支,则买笔记本为(30-x)本,根据“笔记本数量×单价+钢笔数量×单价≤80”列等式求出x,再取整数即可;【详解】解:设小明买钢笔x支,则:2(30-x)+5x≤80,解得x≤203,∵x为整数,∴x≤6,∴小明最多只能买6支钢笔;故答案为:B.【点睛】本题主要考查了一元一次方程的其他应用,掌握一元一次方程的应用是解题的关键.3.B【解析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥﹣3.A、不等式组x5{x3≥->-的解集为x>﹣3,故本选项错误;B、不等式组x5{x3>-≥-的解集为x≥﹣3,故本选项正确;C、不等式组x5{x3<-<-的解集为x<﹣3,故本选项错误;D、不等式组x5{x3<->-的解集为﹣3<x<5,故本选项错误.故选B4.A【解析】先解出一元一次不等式的解集,然后根据解集来取不等式的5个整数解,再根据这5个整数解求a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.解:,不等式①的解集是:x<2,不等式②的解集是:x≥a,∴原不等式组的解集是:a≤x<2;当关于x的不等式组的整数解共有5个时,x的值可以取1、0、﹣1、﹣2、﹣3,∴a的取值范围是﹣4<a≤﹣3;故选A.5.C【解析】解不等式1−2x<5−x,移项,得:−2x+x<−1+5,合并同类项,得:−x<4,系数化为1,得x>−4,∴不等式的非负整数解有:−3、−2、−1这3个,故选:C.6.D【解析】A. ∵a不是负数,∴a≥0 ,故不正确;B. ∵b是不大于0的数,∴b≤0,故不正确;C. ∵m不小于﹣1,∴m≥﹣1,故不正确;D. ∵a,b是负数,∴a+ b<0,故正确;故选D.7.D【解析】分析:此题考查了立方根,以及算术平方根,熟练掌握运算法则是解本题的关键.详解:A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当a=0时,错误;D. 不等式两边都乘−1,不等号的方向改变,都加a,不等号的方向不变,正确;故选D.点睛:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.8.A【解析】【分析】首先根据三角形的三边关系定理三角形两边之和大于第三边三角形的两边差小于第三边可得8-3<1+2x<3+8解不等式即可.【详解】-<+<+,根据三角形的三边关系可得:8312x38<<.解得:2x5故选A.【点睛】此题主要考查了三角形的三边关系和解一元一次不等式,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.9.B【解析】试题分析:2x+9≥3的解集是x≥-3;的解集是x<4,∴不等式组的解集为:-3≤x<4故选B.考点: 解不等式组10.C【解析】【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A、两边都减3,不等号的方向不变,故A错误;B、两边都乘以2,不等号的方向不变,两边再加1,不等号的方向不变,故B错误;C、两边都乘以-1,不等号的方向改变,故C正确;D、两边都除以2,不等号的方向不变,故D错误;故选C.【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.11.3【解析】【分析】先解不等式,求出解集,然后根据题中已告知的解集,进行比对,从而得出两个方程,解答即可求出a、b,再代入计算即可求解.【详解】不等式组2123x ax b-<⎧⎨->⎩,解得1223axx b+⎧<⎪⎨⎪>+⎩,即2b+3<x<1 2a+,∵﹣1<x<1,∴2b+3=﹣1,12a+=1,解得a=1,b=﹣2;∴(a+b)(b﹣1)=﹣1×(﹣3)=3.故答案为:3.【点睛】本题考查了一元一次不等式组的解法,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.3【解析】试题分析:根据二次根式的性质求出2<<3,根据不等式的性质推出4>6﹣>3即可.解:∵2<<3,∴﹣2>﹣>﹣3,∴6﹣2>6﹣>6﹣3,即4>6﹣>3,∴6﹣的整数部分是3,故答案为:3.点评:本题考查了对不等式的性质,估计无理数的大小等知识点的应用,解此题的关键是确定的范围,此题是一道比较典型的题目.13.35≤T≤38【解析】【分析】T℃应该满足A种菌苗的生长温度,也要满足B种菌苗的生长温度,由此可得出答案.【详解】解:由题意得,3539 3338TT≤≤⎧⎨≤≤⎩,解得:35≤T≤38.故答案为:35≤T≤38.【点睛】本题考查一元一次不等式组的应用,求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.≥2【解析】【分析】利用待定系数法把点A(0,-1),B(1,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式,再解不等式即可.【详解】∵一次函数y=kx+b的图象经过两点A(0,1),B(2,0),∴1{20 bk b=+=,解得:1 {21kb=-=,这个一次函数的表达式为y=﹣12x+1.解不等式﹣12x+1≤0,解得x≥2.故答案为x≥2.15.75+3x≤100【解析】分析:根据x周后这棵小树的高度不超过100cm列不等式即可,不超过用不等号“≤”表示. 详解:由题意得,75+3x≤100.故答案为:75+3x≤100.点睛:本题考查了一元一次不等式的实际应用,解题的关键是正确理解题意,找出题目中的不等量关.16.3【解析】【分析】根据不等式解得概念将x=7代入不等式得关于m的不等式,解不等式可得m的取值范围,继而可得m的最大整数.【详解】∵不等式mx+2<12+4m中x=7,∴将x=7代入不等式,得:7m+2<12+4m,解得:m<103,则m的最大整数为3,故答案为:3.【点睛】本题主要考查不等式解集的定义及解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键.17.x<﹣1.【解析】【分析】根据两函数图象的上下位置关系即可找出不等式的解集,此题得解.【详解】观察函数图象可知:当x<﹣1时,直线y=kx+b在直线y=4x+2的上方,∴不等式4x+2<kx+b的解集为x<﹣1.故答案为x<﹣1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.18.x≤1.【解析】【分析】将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;【详解】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1,故答案为:x≤1.【点睛】本题考查一次函数的交点坐标与一元一次不等式的关系;运用数形结合思想把一元一次不等式的解转化为一次函数图象的关系是解题的关键.19.0≤m<1【解析】【分析】先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.【详解】∵不等式组{x 1x m 2<>-的解集为m-2<x <1, 又∵不等式组{x 1x m 2<>-恰有两个整数解,∴-2≤m -2<-1,解得:0≤m <1,恰有两个整数解,故答案为0≤m <1.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.2<x<1--【解析】分析:不等式4x 2<kx b<0++的解集就是在x 下方,直线y kx b =+在直线y 4x 2=+上方时x 的取值范围.由图象可知,此时2<x<1--.21.(1)方案一:甲种货车2辆,乙种货车6辆方案二:甲种货车3辆,乙种货车5辆;方案三:甲种货车4辆,乙种货车4辆;(2)方案一运费最少,最少运费2040元【解析】试题分析:(1)首先设安排甲种货车x 辆,则安排乙种货车(8-x)辆,然后根据题意列出不等式组,从而得出x 的取值范围,根据x 为正整数得出方案;(2)分别求出每种方案所需要的费用,然后得出最小值.试题解析:(1)设安排甲种货车x 辆,则安排乙种货车(8-x)辆,依题意得 4x+2(8-x)≥20且x+2(8-x)≥12解此等式组得 x≥2且 x≤4 即 2≤x≤4.∵ x 正整数 ∴ x 取值2、3、4.因此安排甲、乙两种货车有三种方案: 方案一:甲种货车2辆,乙种货车6辆方案二:甲种货车3辆,乙种货车5辆;方案三:甲种货车4辆,乙种货车4辆(2)方案一所需运费 300×2 + 240×6 = 2040元;方案二所需运费300×3 + 240×5 = 2100元;方案三所需运费300×4 + 240×4 = 2160元.所王灿应选择方案一运费最少,最少运费2040元.考点:一元一次不等式组的应用22.【解析】解:(1)∵25≤28≤30,,∴把28代入y=40﹣x得,y=12(万件)。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》复习题含答案解析 (1)
一、选择题(共10题)1. 若实数 a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是 ( )A . ac >bcB . a +b >c +bC . a +c >b +cD . ab >cb2. 关于 x 的不等式组 {x −3<6(x −2)−1,x −2a ≤0. 有三个整数解,则 a 的取值范围 ( )A . a >2B . 52≤a <3C . 2≤a <3D . 52<a ≤33. 在下列不等式2+x 3>2x−15的变形过程中,错误的步骤是 ( )① 去分母,得 5(2+x )>3(2x −1); ② 去括号,得 10+5x >6x −3; ③ 移项、合并同类项,得 −x >−13; ④ 系数化为 1,得 x >13. A . ① B . ② C . ③ D . ④4. 若关于 x 的不等式组 {x2+x+13>0,3x +5a +4>4(x +1)+3a恰有三个整数解,则 a 的取值范围是 ( ) A . 1≤a <32 B . 1<a ≤32 C . 1<a <32D . a ≤1 或 a >325. 若整数 a 既使关于 x 的分式方程x−1x−3−a−2x (3−x )=1 的解为非负数,又使不等式组 {x2+a+34>0,−3x +8>5x有解,且至多有 5 个整数解,则满足条件的 a 的和为 ( )A . −5B . −3C . 3D . 26. 若关于 x 的不等式组 {x+13<x2−1,x <4m,无解,则 m 的取值范围为 ( )A . m ≤2B . m <2C . m ≤2D . m >27. 四个小朋友玩跷跷板,他们的体重分别为 P ,Q ,R ,S ,如图所示,则他们的体重关系是 ( )A . P >R >S >QB . Q >S >P >RC . S >P >Q >RD . S >P >R >Q8. 把不等式组 {2−x ≤5,x+32<2的解集在数轴上表示出来,正确的是 ( )A .B .C .D .9. 若关于 x 的不等式组 {2−x2>2x−43,−3x >−2x −a的解集是 x <2,则 a 的取值范围是 ( )A . a ≥2B . a <−2C . a >2D . a ≤210. 若关于 x 的不等式组 {x −m <03−2x ≤1 所有整数解的和是 10,则 m 的取值范围是 ( )A . 4<m ≤5B . 4<m <5C . 4≤m <5D . 4≤m ≤5二、填空题(共7题)11. 不等式组 {12x +1>0,1−x >0 的解集为 .12. 若不等式组 {x −a >1,bx +3≥0 的解集是 −1<x ≤1,则 a = ,b = .13. 已知 {x +y +z =15,−3x −y +z =−25, x ,y ,z 为非负数,且 N =5x +4y +z ,则 N 的取值范围是 .14. 为了提高学校的就餐效率,巫溪中学实践小组对食堂就餐情况进行调研后发现:在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部的人数各是一个固定值,并且发现若开一个窗口,45 分钟可使等待的人都能买到午餐,若同时开 2 个窗口,则需 30 分钟.还发现,若能在 15 分钟内买到午餐,那么在单位时间内,去小卖部就餐的人就会减少 80%.在学校总人数一定且人人都要就餐的情况下,为方便学生就餐,总务处要求食堂在 10 分钟内卖完午餐,至少要同时开 个窗口.15. 如果关于 x 的不等式 3x −k +1≤0 有且只有 4 个正整数解,则 k 的取值范围是 .16. 不等式 x −3<0 的解集是 .17. 已知关于 x 的不等式组 {x −a ≥0,3−2x ≥−1 的整数解共有 5 个,则 a 的取值范围是 .三、解答题(共8题)18. 解不等式组 {2x +5≤−1, ⋯⋯①2x +1<3. ⋯⋯②请结合题意填空,完成本题的解答. (Ⅰ)解不等式 ①,得 ; (Ⅰ)解不等式 ②,得 ;(Ⅰ)把不等式 ① 和 ② 的解集在数轴上表示出来: (Ⅰ)原不等式组的解集为 .19. 解不等式组:{2x +3>x −2,6x −2(x −1)<6,3(2x +1)−5<2(x −3).20. 甲,乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案.在甲商场累计购物超过 100 元后,超出 100 元的部分按 90% 收费;在乙商场累计购物超过 50 元后,超出 50 元的部分按 95% 收费.设小红在同一商场累计购物 x 元,其中 x >100.(1) 根据题意,填写下表:(单位:元)累计购物金额130290⋯x在甲商场实际花费127⋯ 在乙商场实际花费126⋯(2) 当 x 取何值时,小红在甲,乙两商场的实际花费相同?(3) 当小红在同一商场累计购物超过 100 元时,在哪家商场的实际花费少?21. 快递公司准备购买机器人来代替人工分拣已知购买一台甲型机器人比购买一台乙型机器人多 2 万元;购买 2 台甲型机器人和 3 台乙型机器人共需 24 万元. (1) 求甲、乙两种型号的机器人每台的价格各是多少万元;(2) 已知甲型、乙型机器人每台每小时分拣快递分别是 1200 件、 1000 件,该公司计划最多用41 万元购买 8 台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?22. 馨浓商品批发商场共用 22000 元同时购进A ,B 两种型号背包各 400 个,购进A 型号背包 30个比购进B 型背包 15 个多用 300 元.(1) 求A ,B 两种型号背包的进货单价各为多少元?(2) 若商场把A ,B 两种型号背包均按每个 50 元定价进行零售,同时为扩大销售,拿出一部分背包按零售价的 7 折进行批发销售.商场在这批背包全部售完后,若总获利不低于 10500 元,则商场用于批发的背包数量最多为多少个?23. 已知抛物线 G:y =x 2−2tx +3 ( t 为常数)的顶点为 P .(1) 求点 P 的坐标;(用含 t 的式子表示)(2) 在同一平面直角坐标系中,存在函数图象 H ,点 A (m,n 1) 在图象 H 上,点 B (m,n 2) 在抛物线 G 上,对于任意的实数 m ,都有点 A ,B 关于点 (m,m ) 对称. ①当 t =1 时,求图象 H 对应函数的解析式;②当 1≤m ≤t +1 时,都有 n 1>n 2 成立,结合图象,求 t 的取值范围.24. 已知 ∣x −2∣+(3x +y +m )2=0,当 m 为何值时,y ≥0?25. 如图,数轴上两点 A ,B 对应的数分别是 −1,1,点 P 是线段 AB 上一动点,给出如下定义:如果在数轴上存在动点 Q ,满足 ∣PQ∣∣=2,那么我们把这样的点 Q 表示的数称为连动数,特别地,当点 Q 表示的数是整数时我们称为连动整数.(1) −3,0,2.5 是连动数的是 ;(2) 关于 x 的方程 2x −m =x +1 的解满足是连动数,求 m 的取值范围 ;(3) 当不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时,求 a 的取值范围.答案一、选择题(共10题) 1. 【答案】D【知识点】不等式的性质2. 【答案】D【解析】 {x −3<6(x −2)−1, ⋯⋯①x −2a ≤0. ⋯⋯②解不等式①得 x >2, 解不等式②得 x <2a , 因为不等式组有三个整数解, 所以整数解一定为 3,4,5, 所以 5<2a ≤6, 解得 52<a ≤3.【知识点】含参一元一次不等式组3. 【答案】D【知识点】常规一元一次不等式的解法4. 【答案】B【解析】解不等式 x2+x+13>0,得 x >−25,解不等式 3x +5a +4>4(x +1)+3a , 得 x <2a ,∵ 不等式组恰有三个整数解, ∴ 这三个整数解为 0,1,2, ∴2<2a ≤3, 解得 1<a ≤32.【知识点】含参一元一次不等式组5. 【答案】A【解析】不等式组整理得:{x >−a−32,x <1,由且至多有 5 个整数解,得到 −5≤−a−32<1,解得:−5<a≤7,即a=−3,−2,−1,0,1,2,3,4,5,6,7,分式方程去分母得:x(x−1)+(a−2)=x(x−3),解得:x=2−a2,由分式方程的解为非负数,得到a=−3,−2,−1,0,1之和为−5.【知识点】含参一元一次不等式组6. 【答案】A【解析】解不等式x+13<x2−1,得x>8,∵不等式组无解,∴4m≤8,解得m≤2.【知识点】含参一元一次不等式组7. 【答案】D【解析】由三个图分别可以得到{S>P,P>R,P+R>Q+S,而Q+S>Q+P,代入第三个式子得到P+R>Q+P,所以R>Q.所以他们的大小关系为S>P>R>Q.【知识点】不等式的性质8. 【答案】C【解析】{2−x≤5, ⋯⋯①x+32<2, ⋯⋯②解不等式①得:x≥−3,解不等式②得:x<1,故不等式组的解集为:−3≤x<1,在数轴上表示为:【知识点】常规一元一次不等式组的解法9. 【答案】A【知识点】含参一元一次不等式组10. 【答案】A【解析】解不等式 x −m <0 得:x <m , 解不等式 3−2x ≤1,得:x ≥1, 因为不等式组所有整数解的和为 10,所以不等式组的整数解有 1,2,3,4 这 4 个, 则 4<m ≤5.【知识点】含参一元一次不等式组二、填空题(共7题) 11. 【答案】 −2<x <1【知识点】常规一元一次不等式组的解法12. 【答案】 −2 ; −3【解析】 {x −a >1, ⋯⋯①bx +3≥0. ⋯⋯②∵ 解不等式①得:x >1+a , 解不等式②得:x ≤−3b,∴ 不等式组的解集为:1+a <x ≤−3b , ∵ 不等式组 {x −a >1,bx +3≥0 的解集是 −1<x ≤1,∴ 1+a =−1,−3b =1,解得:a =−2,b =−3,故答案为:−2,−3. 【知识点】含参一元一次不等式组13. 【答案】 55≤N ≤65【解析】 ∵{x +y +z =15,−3x −y +z =−25,∴ 解关于 y ,z 的方程可得:{y =20−2x,z =x −5,∵x ,y ,z 为非负数, ∴{y =20−2x ≥0,z =x −5≥0,x ≥0,解得 5≤x ≤10 ,∴N =5x +4y +z =5x +4(20−2x )+(x −5)=−2x +75, ∵−2<0,∴N 随 x 增大而减小,∴ 故当 x =5 时,N 有最大值 65; 当 x =10 时,N 有最小值 55, ∴55≤N ≤65.【知识点】常规一元一次不等式组的解法、三元一次方程(组)的解法14. 【答案】 9【解析】设每个窗口每分钟能卖 x 人的午餐,每分钟外出就餐有 y 人,学生总数为 z 人,并设同时开 n 个窗口,依题意有{45x =z −45y, ⋯⋯①2×30x =z −30y, ⋯⋯②10nx ≥z −10(1−80%)y. ⋯⋯③由①,②得y =x,z =90x.代入③得10nx ≥90x −2x.所以 n ≥8.8. 因此,至少要同时开 9 个窗口. 【知识点】一元一次不等式的应用15. 【答案】 13≤k <16【知识点】含参一元一次不等式16. 【答案】 x <3【知识点】常规一元一次不等式的解法、不等式的性质17. 【答案】 −3<a ≤−2【知识点】含参一元一次不等式组三、解答题(共8题)18. 【答案】 x ≤−3;x <1;略;x ≤−3【知识点】常规一元一次不等式组的解法19. 【答案】 −5<x <−1.【知识点】常规一元一次不等式组的解法20. 【答案】(1) 271;0.9x +10;278;0.95x +2.5(2) 根据题意,得0.9x +10=0.95x +2.5,解得x =150.∴ 当 x =150 时,小红在甲,乙两商场的实际花费相同.(3) 令0.9x +10<0.95x +0.25,解得x >150;∴ 当小红累计购物超过 150 元时,在甲商场实际花费少;当小红累计购物超过 100 元但不足 150 元时,在乙商场实际花费少. 【知识点】一元一次不等式组的应用、方案决策21. 【答案】(1) 设甲型机器人每台的价格是 x 万元,乙型机器人每台的价格是 y 万元.依题意,得:{x −y =2,2x +3y =24.解得:{x =6,y =4.答:甲型机器人每台的价格是 6 万元,乙型机器人每台的价格是 4 万元.(2) 设购买 m 台甲型机器人,则购买 (8−m ) 台乙型机器人. 依题意,得:6m +4(8−m )≤41.解得:m ≤412.∵m 为整数,∴m ≤4. ∵1200>1000,∴ 每小时的分拣量随购买甲型机器人增大而增大.∴ 当公司购买 4 台甲型机器人、 4 台乙型机器人时,每小时的分拣量最大.【知识点】二元一次方程组的应用、一元一次不等式的应用22. 【答案】(1) 设A 种型号背包进货价 x 元, 22000÷400=55(元),所以B 种背包的进货价为(55−x )元, 根据题意得:30x −15×(55−x )=300,解得x =25,55−25=30(元),答:A 种背包进货价 25 元,B种背包进货价 30 元.(2) 设商场用于批发的背包数量为 a 个.由题意得50×(800−a )+50×0.7a −22000≥10500,解得:a ≤500,答:商场用于批发的背包数量最多为 500 个.【知识点】一元一次不等式的应用、和差倍分23. 【答案】(1)y =x 2−2tx +3=x 2−2tx +t 2−t 2+3=(x −t )2−t 2+3.∴ 顶点 P 的坐标为 (t,−t 2+3).(2) ①当 t =1 时,得 G 的解析式为:y =x 2−2x +3, 点 B (m,n 2) 在 G 上, ∴n 2=m 2−2m +3,∵ 点 A (m,n 1) 与点 B 关于点 (m,m ) 对称,则点 A ,B 到点 (m,m ) 的距离相等,此三点横坐标相同,有 n 2−m =m −n 1. ∴(m 2−2m +3)−m =m −n 1, 整理,得 n 1=−m 2+4m −3,由于 m 为任意实数,令 m 为自变量 x ,n 1 为 y . 即可得 H 的解析式为:y =−x 2+4x −3;②关于抛物线 G 的性质: 点 B (m,n 2) 在 G 上, ∴n 2=m 2−2tm +3, 由 G:y =x 2−2tx +3,知抛物线 G 开口向上,对称轴为 x =t ,顶点 P (t,−t 2+3),且图象恒过点 (0,3) . ∴ 当 t ≤x ≤t +1 时,图象 G 的 y 随着 x 的增大而增大.当 x =t +1 时,y 取最大值 −t 2+4;当 x =t 时,y 取最小值 −t 2+3;最大值比最小值大 1 .关于图象 H 的性质:∵ 点 A (m,n 1) 与点 B 关于点 (m,m ) 对称, 有 n 2−m =m −n 1,(m 2−2tm +3)−m =m −n 1, 整理,得 n 1=−m 2+2tm +2m −3.∴ 图象 H 的解析式为:y H =−x 2+2tx +2x −3 . 配方,得 y H =−[x −(t +1)]2+(t 2+2t −2)∴ 图象 H 为一抛物线,开口向下,对称轴为 x =t +1,顶点 P (t +1,t 2+2t −2),且图象恒过点 (0,−3) .∴ 当 t ≤x ≤t +1 时,图象 H 的 y 随着 x 的增大而增大.当 x =t +1 时,y 取最大值 t 2+2t −2;当 x =t 时,y 取最小值 y =t 2+2t −3,即过 Q (t,t 2+2t −3);最大值比最小值大 1.情况 1:当 P ,Q 两点重合,即两个函数恰好都经过 (t,t ),(t +1,t +1) 时,把 (t,t ) 代入 y =x 2−2tx +3 得 t =t 2−2t ⋅t +3, 解得,t =−1+√132或 t =−1−√132.分别对应图 3,图 4 两种情形,由图可知,当 m =t ,或 m =t +1 时,A 与 B 重合,即有 n 1=n 2,不合题意,舍去; 情况 2:当点 P 在点 Q 下方,即 t >−1+√132时,大致图象如图 1,当 t <−1−√132时,大致图象如图 2,都有点 A 在点 B 的上方,即 n 1>n 2 成立,符合题意; 情况 3:当点 P 在点 Q 上方,即 −1−√132<t <−1+√132时,大致图象如图 5,图 6,当 t ≤m ≤t +1 时,存在 A 在 B 的下方,即存在 n 1<n 2,不符合题意,舍去; 综上所述,所求 t 的取值范围为:t >−1+√132或 t <−1−√132.【知识点】二次函数的顶点、二次函数的最值、二次函数与不等式、y=ax^2+bx+c 的图象24. 【答案】由非负数性质,得 {x −2=0,3x +y +m =0.11 ∴{x =2,y =−6−m.∵y ≥0,∴−6−m ≥0.∴m ≤−6.【知识点】常规一元一次不等式的解法25. 【答案】(1) −3,2.5(2) −4≤m ≤−2 或 0≤m ≤2(3) {x+12>−1, ⋯⋯①1+2(x −a )≤3, ⋯⋯② 由 ① 得,x >−3;由 ② 得,x ≤a +1,∵ 不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时, ∴ 四个连动整数解为 −2,−1,1,2, ∴2≤a +1<3,∴1≤a <2∴a 的取值范围是 1≤a <2.【解析】(2) 解关于 x 的方程 2x −m =x +1 得,x =m +1.∵ 关于 x 的方程 2x −m =x +1 的解满足是连动数,∴{−1−m −1≤2,1−m −1≥2或 {m +1−1≤2,m +1+1≥2, 解得 −4≤m ≤−2 或 0≤m ≤2.【知识点】常规一元一次不等式组的解法、含参一元一次方程的解法、数轴的概念、含参一元一次不等式组、不等式组的整数解。
北师大版初中八年级数学下册单元复习课 第二章实数
【阅读收获】 通过阅读了解了无理数的发现过程,希伯索斯因为发现了什么而被杀害?
一个正数的平方根有两个,它们互为相反数,记作± a ;其中正的那一个叫作算
术平方根,记作 a .
2.区别开平方运算和开立方运算
开平方 开立方
正数
两个平方根,互为相 反数
一个立方根,是正数
0
负数
一个平方根,是0 没有平方根
一个立方根,是0 一个立方根,是负数
二次根式的运算 掌握二次根式的加、减、乘、除运算.还要明确怎样算能够条理清楚、步骤 简洁.类比整式乘法解决较简单的混合运算问题,能够解决较简单的条件求值问 题.
答:希伯索斯发现,边长为 1 的正方形,它的对角线(根号 2)却不能用整数之比来 表达.
A.-1 B.14
C.0 D.- 2
3.(2020·绥化中考)化简| 2 -3|的结果正确的是( D )
A. 2 -3 B.- 2 -3 C. 2 +3 D.3- 2
4.(2020·黔东南州中考)实数 2 10 介于( C )
A.4 和 5 之间 B.5 和 6 之间 C.6 和 7 之间 D.7 和 8 之间 5.(2020·遂宁中考)下列各数 3.141 592 6, 9 ,
开方运算
掌握开平方和开立方运算,明白它们之间的联系.考点主要集中在平方根和
算术平方根的概念区分、求值等方面.
1.(2020·攀枝花中考)下列说法中正确的是( C )
北师大版八年级下册数学总复习 第二章一元一次不等式与一元一次不等式组单元过关专题练习(无答案)
一元一次不等式与一元一次不等式组单元过关【含参不等式】1. 若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .1a ≥B .1a >C .1a -≤D .1a <-2. 已知关于x 的不等式组221x a b x a b -⎧⎨-<+⎩≥的解集为3≤x <5,则ba 的值为( )A .-2B .12-C .-4D .14-3. 若不等式组30x ax >⎧⎨-⎩≤只有三个整数解,则a 的取值范围为( )A .0≤a <1B .0<a <1C .0<a ≤1D .0≤a ≤14. 如图,如果不等式组4030x a x b -⎧⎨-<⎩≥的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( ) A .16个B .12个C .9个D .2个5. 一元一次不等式组x ax b >⎧⎨>⎩的解集是x >a ,则a 与b 的关系为( )A .a ≥bB .a >bC .a ≤bD .a <b6. 已知关于x 的不等式组21321x ax b <+⎧⎨+⎩≥仅有3个自然数解,则整数a 与整数b 的和的最小值等于_________.7. 已知关于x 的不等式424233x x a +<-的解,也是不等式12162x -<的解,则a的取值范围是___________.8. 若不等式组0122x a x x -⎧⎨->-⎩≥恰有两个整数解,则a 的取值范围是________.9. 若关于x ,y 的方程组2121x y p x y p +=+⎧⎨-=-⎩的解满足x >y ,求p 的取值范围.10.已知关于x,y的方程组1173x y mx y m-=-⎧⎨+=-⎩.(1)当m=2时,请解关于x,y的方程组1173x y mx y m-=-⎧⎨+=-⎩;(2)若关于x,y的方程组1173x y mx y m-=-⎧⎨+=-⎩中,x为非负数,y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.【数形结合求范围】1.如图所示,函数y1=|x|和214 33y x=+的图象相交于(-1,1),(2,2)两点.当y1>y2时,x的取值范围是()A.x<-1 B.-1<x<2 C.x>2 D.x<-1或x>22.如图所示,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是()A .BC .D .3. 一次函数y 1=kx +b 与y 2=x +a 的图象如图,交点横坐标为3,则下列结论:①当x <3时,y 1>0;②当x <3时,y 2>0;③当x >3时,y 1<y 2.正确的个数是( ) A .0B .1C .2D .3第3题图 第4题图4. 已知函数y 1=x ,2113y x =+,3455y x =-+的图象如图所示,若无论x 取何值,y 总取y 1,y 2,y 3中的最小值,则y 的最大值为( )A .32B .3717C .6017D .2595. 如图,直线y 1=kx +b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx +b >mx -2的解集是( ) A .1<x <2B .0<x <2C .0<x <1D .x >1第5题图 第6题图6. 如图,直线y 1=3x +b 和y 2=ax -3的图象交于点P (-2,-5),当y 1>y 2时,x 的取值范围是__________________.7. 已知一次函数y =3x -6的图象如图所示,回答下列问题:(1)当-5<y ≤3时,x 的取值范围是__________; (2)当x >3时,y 的取值范围是__________.8.如图,直线y1=mx与直线y2=kx+b交于点P(2,1),则不等式组12-<mx<kx+b的解集为________________.9.三个数3,1-a,1-2a在数轴上从左到右依次排列,你能确定a的取值范围吗?10.如图,直线OC,BC的函数关系式分别是11 2y x=和y2=-x+12,两直线的交点为C.(1)求点C的坐标,并直接写出y1>y2时x的范围;(2)在直线y1上找一点D,使△DCB的面积是△COB的一半,求点D的坐标;(3)点M(t,0)是x轴上的任意一点,过点M作直线l⊥x轴,分别交直线y1,y2于点E,F,当E,F两点间的距离不超过8时,求t的取值范围.【应用题】1.小明要从甲地到乙地,两地相距1千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15-x)≥1800 B.90x+210(15-x)≤1800C.210x+90(15-x)≥1.8 D.90x+210(15-x)≤1.82.一次数学竞赛共有30道题,规定答对一道得10分,答错一道或者不答扣3分,在这次竞赛中,小亮想至少得120分,设他答对了x道题,则根据题意可列出不等式为()A.10x-(30-x)≤120 B.10x≥120C.10x>120 D.10x-3(30-x)≥1203.三个连续正偶数的和小于19,这样的正偶数组共有多少组?把它们都写出来.4.某校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?5.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可打几折?6.某公司准备把240吨白砂糖运往A,B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见表:(2)如果安排10辆货车前往A地,其中大货车有m辆,其余货车前往B 地,且运往A地的白砂糖不少于130吨.①求m的取值范围;②请设计出总运费最少的货车调配方案,并求最少总运费.7.某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品,若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?(用一元一次不等式求解)8.某市计划修建一条长60千米的地铁,根据甲、乙两个地铁修建公司标书数据发现:甲、乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.(1)求甲、乙两个公司每天分别修建地铁多少千米?(2)该市规定:“该工程由甲、乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的56”.设甲公司工作a天,乙公司工作b天.①请求出b与a的函数关系式及a的取值范围;②设完成此项工程的工期为W天,请求出W的最小值.9. 某商场促销方案规定:商场内所有商品按标价的8折出售,同时,若折后价满一定金额后,按表中获得相应的现金返还.根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若购买标价为400元的商品,则顾客第一重优惠是:400×80%=320元,第二重优惠是返回现金30元,实际付款320-30=290元,获得的优惠额是400-290=110元.(1)购买一件标价为1000元的商品,顾客实际付款多少?优惠额是多少? (2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?10. 我县黄泛区农场有A ,B 两个果园,分别收获水果380件,320件,现需把这些水果全部运往甲、乙两个销售点,每件运费如图所示.现甲销售点需水果400件,乙销售点需水果300件.(1)设从A 果园运往甲销售点水果x 件,总运费w 元,请用含x 的代数式表示w ,并写出x 的取值范围.(2)若总运费不超过18 300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求最低运费.乙元20B A。
北师大版八年级下册数学 第二章 一元一次不等式与一元一次不等式组 同步课时练习题(含答案)
北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组同步课时练习题2.1不等关系01基础题知识点1不等式的意义1.(2017·太原期中)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是(A)A.两种客车总的载客量不少于500 人B.两种客车总的载客量不超过500 人C.两种客车总的载客量不足500人D.两种客车总的载客量恰好等于500人2.有下列数学表达式:①3<0;②4x+5>0;③x=3;④x+x;⑤x≠-4;⑥x+2>x+1.其中是不等式的有4 个.2知识点2列不等式3.某电梯标明“载客不超过13人”,若载客人数为x,x 为自然数,则“载客不超过13人”用不等式表示为(C)A.x<13 C.x≤13 B.x>13 D.x≥134.如图为一隧道入口处的指示标志牌,图1 表示汽车的高度不能超过3.5 m,由此可知图2 表示汽车的宽度l(m)应满足的关系为l≤3.限制高度限制宽度图1 图25.用适当符号表示下列关系:(1)x的绝对值是非负数;解:|x|≥0.15(2)a的3倍与b的的和不大于3;1解:3a+b≤3.5(3)x与17的和比它的5 倍小.解:x+17<5x.02中档题6.小新买了一罐八宝粥,看到外包装标明:净含量为330±10 g,那么这罐八宝粥的净含量x 的范围是(D)A.320<x<340 C.320<x≤340 B.320≤x<340 D.320≤x≤3407.下列叙述:①a是非负数,则a≥0;②“a减去10不大于2”可表示为a-10<2;③“x 的倒数超过10”可表2 21x示为>10;④“a,b两数的平方和为正数”可表示为a2+b2>0.其中正确的个数是(C)A.1 C.3 B.2 D.48.在数轴上,点A 表示2,点B 表示-0.6,点C 在线段A B 上,点C 表示的数为a,则用不等关系表示为-0.6≤a≤2.9.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5 分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式为10n-5(20-n)>90.03 综合题10.请设计不同的实际背景来表示下列不等式:(1)x>y ;(2)2.0≤x ≤2.6;(3)3a +4b ≤560.解:答案不唯一,如:(1)八年级(1)班的男生比女生多,其中男生 x 人,女生 y 人.(2)某班级男生立定跳远成绩 x 在 2.0 米到 2.6 米之间.(3)3 条长裤和 4 件上衣的总价不超过 560 元,其中长裤单价 a 元,上衣单价 b 元.2.2 不等式的基本性质01 基础题知识点 1 不等式的基本性质1.若 a<b ,则下列各式中一定成立的是(B)A .-3a<-3b C .a +c>b +cB .a -3<b -3D .2a>2b2.(2017·成都期末)若 x>y ,则下列式子中错误的是(D)x y A .x -3>y -3 C .x +3>y +3B. > 3 3D .-3x>-3y 3.(2017·株洲)已知实数 a ,b 满足 a +1>b +1,则下列选项错误的为(D)A .a >bB .a +2>b +2D .2a >3bC .-a <-b 4.下列说法不一定成立的是(C)A .若 a >b ,则 a +c >b +cB .若 a +c >b +c ,则 a >bC .若 a >b ,则 ac >bc 2 2D .若 ac >bc 则 a >b2 2, 5.由不等式 a >b 得到 am <b m 的条件是 m <0.6.已知 m <n ,下列关于 m ,n 的命题:①6m >6n ;②-3m <-3n ;③m -5<n -5;④2m +5>2n +5.其中正确命 题的序号是③.7.小燕子竟然推导出了 0>5 的错误结论.请你仔细阅读她的推导过程,指出问题到底出在哪里.已知 x >y ,两边都乘 5,得 5x >5y .①两边都减去 5x ,得 0>5y -5x .②即 0>5(y -x).③两边都除以(y -x),得 0>5.④解:错在第④步.∵x >y ,∴y -x <0.不等式两边同时除以负数(y -x),不等号应改变方向才能成立.知识点 2 将不等式化为“x >a ”或“x <a ”的形式8.(2017·太原期中)下列不等式的变形过程中,正确的是(D)A .不等式-2x >4 的两边同时除以-2,得 x >2B .不等式 1-x >3 的两边同时减去 1,得 x >2C .不等式 4x -2<3-x 移项,得 4x +x <3-2x 3 x 2D .不等式 <1- 去分母,得 2x <6-3x 9.将下列不等式化成“x>a”或“x<a”的形式.(1)x -5<1; (2)2x>x -2;解:x<6. 解:x>-2.12(3)x>-3;(4)-5x<-2.2解:x>-6.解:x>.502中档题10.若点P(x-2,y-2)在第二象限,则x与y的关系正确的是(D)A.x≥y C.x≤y B.x>y D.x<y11.设“▲”“●”“■”分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲,●,■这三种物体按质量从大到小排列应为(C)A.■●▲C.■▲●B.▲■●D.●▲■12.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是(B)A.a-c>b-c C.ac>bc B.a+c<b+c a cD.<b b13.已知x-y=3,若y<1,则x的取值范围是x<4.14.下列变形是怎样得到的?1 21 2(1)由x>y,得x-3>y-3;1 21 2解:两边都除以2,得x>y.1 21 2两边都减去3,得x-3>y-3.1 21 2(2)由x>y,得(x-3)>(y-3);解:两边都减去3,得x-3>y-3.1 21 2两边都除以2,得(x-3)>(y-3).(3)由x>y,得2(3-x)<2(3-y).解:两边都除以-1,得-x<-y.两边都加上3,得3-x<3-y.两边都乘2,得2(3-x)<2(3-y).15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.。
8年级下册数学北师大 版第2单元复习课件
课堂小结
谈一谈你这节课的收获吧
不等式的故事结束啦 下期再见!
解:设张三每天读x页,则李四读(x+3)页, 由题意得 7x<98
( 7 x 3)>98
解得:11<x<14.整数解为:x=12,13. 答:张三每天读12页或者13页.
应用提高
4.某公司有甲种货物1530吨,乙种货物1150吨待运. 现计划用50节A、B两种型号的车厢来运送这批货物,每 节A型车厢的运费是0.5万元,可以装载甲种货物35吨和乙种货 物15吨;每节B型车厢的运费是0.8万元,可以装载甲种货物 25吨和乙种货物35吨.按此要求安排车厢节数,有哪些方案? 哪种方案最省钱?请设计出来.
–5 –4 –3 –2 –1 0 1
巩固练习
2xx814xx211解不等式组
① ②
解:解不等式 ①,得 x > 2
解不等式 ②,得 x <3 在同一条数轴上表示不等式 ① ② 的解集
–1 0 1 2 3 4 5 6
不等式组的解集为:2<x<3.
知识点回顾
三、一元一次不等式(组)的应用:
1. 一元一次不等式与一次函数的关系.
2.已知 a-1 + 2a-b-x =0,b是负数,求x的取值范围.
解:由题意得
a 1 2a ຫໍສະໝຸດ b0 x0
解得:a=1,b=2-x.
又∵b是负数,
∴2-x<0.
解得:x>2
应用提高
3.一本故事书共98页,张三读了7天还没读完,而李四 不到7天就读完了.已知李四每天比张三多读3页,求张三 平均每天读多少页(答案取整数)?
概念 性质
一元一次 不等式
不等式的 解集
一元一次 不等式组
不等式组 的解集
(完整版)北师大版八年级数学下册_第二章_因式分解_单元检测试题[1]
北师版八年级分解因式综合练习一、选择题1.下列各式中从左到右的变形,是因式分解的是( )(A)(a +3)(a -3)=a 2-9 (B)x 2+x -5=(x -2)(x +3)+1 (C)a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x 1) 2.下列各式的因式分解中正确的是( ) (A)-a 2+ab -ac = -a (a +b -c ) (B)9xyz -6x 2y 2=3xyz (3-2xy ) (C)3a 2x -6bx +3x =3x (a 2-2b ) (D)21xy 2+21x 2y =21xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( )(A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1)4.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +45.下列多项式中,不能用完全平方公式分解因式的是( ) (A)412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D)13292+-n n 6.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )(A)4x (B)-4x (C)4x 4 (D)-4x 47.下列分解因式错误的是( )(A)15a 2+5a =5a (3a +1) (B)-x 2-y 2= -(x 2-y 2)= -(x +y )(x -y ) (C)k (x +y )+x +y =(k +1)(x+y ) (D)a 3-2a 2+a =a (a -1)28.下列多项式中不能用平方差公式分解的是( )(A)-a 2+b 2 (B)-x 2-y 2 (C)49x 2y 2-z 2 (D)16m 4-25n 2p 29.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)4-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )(A)①② (B)②④ (C)③④ (D)②③10.两个连续的奇数的平方差总可以被 k 整除,则k 等于( )(A)4 (B)8 (C)4或-4 (D)8的倍数二、填空题11.分解因式:m 3-4m = .12.已知x +y =6,xy =4,则x 2y +xy 2的值为 .13.将x n -y n 分解因式的结果为(x 2+y 2)(x +y )(x -y ),则n 的值为 .14.若ax 2+24x +b =(mx -3)2,则a = ,b = ,m = . (第15题图)15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是 .三、(每小题6分,共24分)16.分解因式:(1)-4x 3+16x 2-26x (2)21a 2(x -2a )2-41a (2a -x )3(3)56x 3yz+14x 2y 2z -21xy 2z 2 (4)mn(m -n)-m(n -m)17.分解因式:(1) 4xy –(x 2-4y 2) (2)-41(2a -b )2+4(a -21b )218.分解因式:(1)-3ma 3+6ma 2-12ma (2) a 2(x -y )+b 2(y -x )19、分解因式(1)23)(10)(5x y y x -+-; (2)32)(12)(18b a b a b ---; (3))(6)(4)(2a x c x a b a x a ---+-;20.分解因式:(1)21ax 2y 2+2axy +2a (2)(x 2-6x )2+18(x 2-6x )+81 (3) –2x 2n -4x n21.将下列各式分解因式:(1)2294n m -; (2)22)(16)(9n m n m --+; (3)4416n m -;22.分解因式(1)25)(10)(2++++y x y x ; (2)4224817216b b a a +-;23.用简便方法计算:(1)57.6×1.6+28.8×36.8-14.4×80 (2)39×37-13×34 (3).13.731175.231178.193117⨯-⨯+⨯24.试说明:两个连续奇数的平方差是这两个连续奇数和的2倍。
北师大版八年级数学下册第2章【一元一次不等式和一元一次不等式组】单元测试卷(二)含答案与解析
北师大版八年级数学下册第2章单元测试卷(二)一元一次不等式和一元一次不等式组学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.若3a >,则下列各式正确的是( )A .14a +<B .30a -<C .41a ->-D .21a -<2.对于不等式组015x x ≥⎧⎨+<⎩,下列说法正确的是( ) A .此不等式组的解集是44x -≤<B .此不等式组有4个整数解C .此不等式组的正整数解为1,2,3,4D .此不等式组无解3.设有理数a 、b 、c 满足(0)a b c ac >><,且c b a <<,则222a b b c a c x x x ++++++﹣﹣的最小值是( ) A .2a c - B .22a b c ++ C .22a b c ++ D .22a b c +- 4.如果关于x 的一元一次方程3(x +4)=2a +5的解大于关于x 的方程()414a x+()343a x -=的解,那么a 的取值是( ). A .2a > B .2a < C .718a > D .718a < 5.不等式231x +≥的解集是( )A .1x ≤-B .1x ≥-C .2x -≤D .2x ≥-6.如图所示,两函数y 1=k 1x +b 和y 2=k 2x 的图象相交于点(m ,−2),则关于x 的不等式 k 1x +b >k 2x的解集为( )A .x >mB .x <-1C .x >-1D .x <m7.若a >b ,则下列不等式成立的是( )A .a 2>b 2B .1﹣a >1﹣bC .3a ﹣2>3b ﹣2D .a ﹣4>b ﹣3 8.下列变形属于移项的是( )A .由3x =-7+x ,得3x =x -7B .由x =y ,y =0,得x =0C .由7x =6x -4,得7x +6x =-4D .由5x +4y =0,得5x =-4y9.若不等式组的解集为0<x <1,则a 的值为( )A .1B .2C .3D .410.已知一次函数1y kx b =+与2y ax c =+的图象如图所示,则不等式kx b ax c +>+的解集为( )A .3x >B .3x <C .1x >D .1x < 11.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .12.如果关于x的分式方程1 311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3B.0C.3D.9二、填空题(本大题共6小题,每小题3分,共18分)13.若一次函数(1)2y k x k=-++的图像不经过第三象限,则k的取值范围是_____.14.若不等式组841x xx m+>-⎧⎨≤⎩的解集为x<3,则m的取值范围是____________.15.如图,在平面直角坐标系中,点A、B的坐标分别为()1,4、()3,4,若直线y kx=与线段AB有公共点,则k的取值范围为__________.16.若关于x,y的二元一次方程组2134x y ax y-=-⎧⎨+=⎩的解满足40x y-<,则a的取值范围是________.17.若关于x的一元一次不等式组21122x ax x->⎧⎨->-⎩的解集是21x-<<,则a的取值是__________.18.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x 时,y≤0.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.小明今年12岁,老师告诉他:“我今年的年龄是你的3倍小4岁”,接着老师又问小明:“再过几年我的年龄正好是你的2倍?”请你帮助小明解决这一问题.20.2020年疫情期间,某公司为了扩大经营,决定购进6台机器用于生产口罩.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产口罩的数量如下表所示.经过预算,本次购买机器所耗资金不能超过36万元,(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于42万个,那么为了节约资金应选择什么样的购买方案?21.解下列不等式:(1)2x-3≤12(x+2);(2)3x>1-36x-.22.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.23.解不等式组:1011122xx-≥⎧⎪⎨--<⎪⎩,并求出它的最小整数解.24.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。
北师大版初中数学8年级下册第二章 小结与复习-优课件
小结与复习
知识 归纳
合作 探究
课堂 小结
随堂 作业
知识归纳
1、用不等式表示下列数量关系:
(1) 2x与1的和小于零. (2) x的一半与3的差不大于2.
2x+1<0
x-3≤2
(3) a是负数. a<0
(4) a与b的和是非负数a. +b ≥ 0
(5)
x的31与y的5倍的差的平方是一个非负数.
x 6
-
6m-1 3
=x-
5m-1 的解大 2
m>2
课堂小结
本章知识结构框图
不等式
概念
一元一次
解集
不等式
解集的数轴表示
不
等 式
性质1,2,3
组
(
解法
解一元一次不等式 解一元一次不等式组
分
析 抽
应用
象
)
首页
()
随堂训练
1、某饮料瓶上有这样的字样:保质期18个月。如果 用x(单位:月)表示该饮料出厂后到饮用时的月数, 那么x应该在什么范围内表示这饮料还可以饮用?
谢谢观赏
You made my day!
我们,还在路上……
(
1 3
x-5y)2≥0
首页
2、用不等号填空:若a< b,则 a+c__<__b+c a-c__<___b-c 5a__<___5b -5a__>___-5b c-5a__>__c-5b ac2__≤___bc2
3、已知(2a-1)x<4的解为x> 4
____.
2a-1
,则a的取值范围为 a<
2020-2021学年北师大版初二数学下册第二单元练习题及解析
八年级数学下册不等式专题提升训练1.缤纷节临近,小西在易物活动中发现班级同学捐赠的一个布偶的成本为60元,定价为90元,为使得利润率不低于5%,在实际售卖时,该布偶最多可以打()折.A.8B.7C.7.5D.8.52.三个连续正整数的和小于14,这样的正整数有()A.2组B.3组C.4组D.5组3.李老师网购了一本书,让大家猜书的价格.甲说:“不少于10元”,乙说:“少于12元”.老师说:“大家说的都没有错”.则这本书的价格x(元)所在的范围为()A.10<x<12B.10≤x≤12C.10≤x<12D.10<x≤124.王芳同学到文具店购买中性笔和笔记本,中性笔每支1元,笔记本每本3元,王芳同学现有10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于1元)()A.2B.3C.4D.55.某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,根据题意得()A.10x﹣5(20﹣x)≥120B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)<120D.10x﹣5(20﹣x)>1206.20名工人在工厂活动,每名工人每天可以加工甲种零件5个或乙种零件4个,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元,若要使车间每天获利不低于1800元,加工乙种零件的工人至少为()A.11B.12C.13D.147.对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9.如果|(x]|=3,则x 的取值范围为.8.如图,函数y=kx+b经过点A(﹣3,2),则关于x的不等式k(x+1)+b<2的解集为()A.x>﹣4B.x<﹣4C.x>﹣3D.x<09.如图,已知直线y1=k1x过点A(﹣3,﹣6),过点A的直线y2=k2x+b交x轴于点B(﹣6,0),则不等式k1x<k2x+b<0的解集为()A.x<﹣6B.﹣6<x<﹣3C.﹣3<x<0D.x>010.如图,直线l1:y1=kx﹣4与l2:y2=﹣2x+3相交于点A,若不等式kx﹣4>﹣2x+3的解集为x>2,则直线l1的表达式为()A.y1=x﹣4B.y1=﹣x﹣4C.y1=x﹣4D.y1=﹣x﹣411.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a,例如{2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+5},则该函数的最大值为()A.2B.3C.D.12.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(﹣1,2),则关于x的不等式(k1﹣k2)x>﹣m+n的解集是()A.x>2B.x>﹣1C.﹣1<x<2D.x<﹣113.如果直线y=kx+b(k≠0)经过第一、二、四象限,且与x轴的交点为(6,0),那么当kx+b>0时x的取值范围是()A.x>6B.x<6C.x≥6D.x≤614.若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<015.若关于x的一元一次不等式组的解集是x<﹣3,则m的取值范围是()A.m≥﹣3B.m>﹣3C.m≤﹣3D.m<﹣316.若关于x的一元一次不等式组有且只有四个整数解,且关于y的方程y﹣3=3k﹣y的解为非负整数,则符合条件的所有整数k的和为()A.﹣3B.﹣2C.2D.017.已知关于x的不等式组无解,则a的取值范围是()A.a≤﹣2B.a>3C.﹣2<a<3D.a<﹣2或a>318.若不等式组无解,则a的取值范围为()A.a≥4B.a≤4C.0<a<4D.a>419.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥20.如果关于x,y的方程组的解是正数,那么a的取值范围是()A.﹣4<a<5B.﹣5<a<4C.a<﹣4D.a>521.已知关于x、y的二元一次方程组的解满足x>y,且关于x的不等式组无解,那么所有符合条件的整数a的个数为()A.6个B.7个C.8个D.9个22.已知不等式组的解集为﹣1<x<2,则2019a﹣4(b+6)3﹣37=()A.2018B.2019C.2020D.202223.不等式组的解集是x>a+1,则a的取值范围是()A.a≤2B.a≥2C.a≤1D.a≥124.整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.30二、填空题25.对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9.如果|(x]|=3,则x的取值范围为.26.某大型超市从生产基地购进一批水果,运输过程中质量损失5%,假设不计超市其他费用.如果超市至少要获得20%的利润,那么这种水果的售价最低应提高%.(结果精确到0.1%)27.某电器商场促销,海尔某型号冰箱的售价是2500元,进价是1800元,商场为保证利润率不低于5%,则海尔该型号冰箱最多降价元.28.某知识竞赛共有20道题,规定答对一题得10分,答错或不答都扣5分.本次竞赛中,浩轩要超过90分,则他至少答对道题.29.一次函数y=kx+b,(k,b为常数)的图象如图所示,则关于x的不等式kx+2b<0的解集是.30.已知直线y=kx+b(k≠0)过(1,0)和(0,﹣2),则关于x的不等式kx+b<0的解集是.31.在平面直角坐标系xOy中,一次函数y=kx和y=mx+n的图象如图所示,则关于x的一元一次不等式kx﹣n>mx的解集是.32.已知一次函数y1=x+2与y2=﹣x+b(b为常数),当x<1时,y1<y2.则b的取值范围是.33.直线y=kx+b过第一、二、四象限且与x轴交于点(2,0),则关于x的不等式kx<b的解集为.34.已知整数a使得不等式组的解集为x>﹣4,且使得一次函数y=(a+5)x+5的图象不经过第四象限,则整数a的值为.35.一次函数y1=mx+n与y2=﹣x+a的图象如图所示,则0<mx+n<﹣x+a的解集为.36.已知关于x、y的二元一次方程组的解满足x>y,且关于x的不等式组无解,那么所有符合条件的整数a的个数为.37.关于x的不等式组的解集为2<x<5,则a的值为.38.若不等式组的解集是0<x<,则(a+b)2020=.39.定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣3p+5)⊕11=11,则p的取值范围是.三、应用题40.2020年春节前夕,为满足社会需求,某一工厂现需购买A、B两种材料,用来生产甲、乙两种口罩,已知生产一件甲型口罩需A种材料30千克;B种材料10千克;生产一件乙型口罩需A、B两种材料各20千克;A种材料每千克15元,B种材料每千克25元.(1)若生产甲型口罩的数量比生产乙型口罩的数量多10件时,两种口罩需购买材料的资金相同,求生产甲、乙两种口罩各多少件?(2)若工厂用于购买A、B两种材料的资金不超过385000元,且需生产两种口罩共500件,求至少能生产甲种口罩多少件?41.科技改变世界,随着电子商务的高速发展,快递分拣机器人应运而生.某快递公司启用A种机器人80台、B种机器人100台,1小时共可以分拣6400件包裹,若A、B两种机器人各启用50台,1小时共可以分拣3500件包裹.(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共150台,若要保证新购进的这批机器人每小时的总分拣量不少于5000件,求最多应购进A种机器人多少台?42.在如图坐标系下画出函数y1=﹣2x+5的图象.(1)正比例函数y2=x的图象与y1图象交于点A,画出y2的图象并求A点坐标;(2)根据图象直接写出y2≤y1时自变量x的取值范围.(3)y1与x轴交点为B,求△OAB的面积.43.直线y=kx+b经过点A(2,4)和点B(﹣4,0),在同一直角坐标系中画出直线AB和直线y=2x的图象.(1)求不等式2x>kx+b的解集;(2)点M是AB的中点,点N是OB的中点,求线段MN的长.44.已知一次函数y=kx+b的图象经过A,B两点.根据图象回答下列问题:(1)直接写出方程kx+b=0的解;(2)直接写出不等式kx+b>2的解集;(3)求出一次函数y=kx+b的解析式.45.(1)阅读下面问题的解答过程并补充完整.问题:实数x,y满足x﹣y=2,x+y=a,且x>1,y<0,求a的取值范围.解:列关于x,y的方程组,解得,又因为x>1,y<0,所以,解得;(2)已知x﹣y=4,且x>3,y<1,求x+y的取值范围;46.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解集为x>1,请写出整数m的值.八年级数学下册不等式专题提升训练答案1.解:设在实际售卖时,该布偶可以打x折,依题意得:90×﹣60≥60×5%,解得:x≥7.故选:B.2.解:设最小的正整数为x,则另外两个数分别为x+1,x+2,依题意,得:x+x+1+x+2<14,解得:x<3.∵x为正整数,∴x=1,2,3,∴这样的正整数有3组.故选:B.3.解:依题意,得10≤x<12.故选:C.4.解:设购买x支中性笔,y本笔记本,根据题意得出:9<x+3y≤10,当x=1时,y=3,当x=4时,y=2,当x=7时,y=1,故一共有3种方案.故选:B.5.解:设小明答对x道题,则答错或不答(20﹣x)道题,依题意,得:10x﹣5(20﹣x)>120.故选:D.6.解:设加工乙种零件的同学x人,则这天加工乙种零件有4x个,甲种零件有5(20﹣x)个,根据题意,得24×4x+16×5(20﹣x)≥1800,解得:x≥12.5,因为x是正整数,所以x最小值是13.即:加工乙种零件的同学至少为13人.故选:C.7.解:由题意可得,当x>0时,|(x]|=(x]=3,则3<x≤4,当x<0时,|(x]|=﹣(x]=3,则﹣3<x≤﹣2,故答案为:3<x≤4或﹣3<x≤﹣2.8.解:∵函数y=kx+b图像向左平移1个单位得到平移后的解析式为y=k(x+1)+b,∴A(﹣3,2)向左平移1个单位得到对应点为(﹣4,2),关于x的不等式k(x+1)+b<2的解集为x>﹣4,故选:A.9.解:当x>﹣6时,y2=k2x+b<0;当x<﹣3时,y1<y2,所以不等式k1x<k2x+b<0的解集为﹣6<x<﹣3.故选:B.10.解:把x=2代入y2=﹣2x+3,得y=﹣2×2+3=﹣1,∴A(2,﹣1).把A(2,﹣1)代入y1=kx﹣4,得2k﹣4=﹣1,解得k=,∴直线l1的表达式为y1=x﹣4.故选:A.11.解:当2x﹣1≥﹣x+5,即x≥2时,y=﹣x+5,则x=2时,y的值最大,最大值为3;当2x﹣1≤﹣x+5,即x≤2时,y=2x﹣1,则x=2时,y的值最大,最大值为3;所以该函数的最大值为3.故选:B.12.解:由图形可知,当x>﹣1时,k1x+m>k2x+n,即(k1﹣k2)x>﹣m+n,所以,关于x的不等式(k1﹣k2)x>﹣m+n的解集是x>﹣1.故选:B.13.解:如图,当x<6时,y>0,即当kx+b>0时x的取值范围是x<6.故选:B.14.解:∵不等式组,∴该不等式组的解集为m﹣1≤x<1,∵不等式组恰恰有两个整数解,∴﹣2<m﹣1≤﹣1,∴﹣1<m≤0.故选:B.15.解:解不等式2x﹣1>3x+2,得:x<﹣3,∵不等式组的解集为x<﹣3,∴m≥﹣3.故选:A.16.解:一元一次不等式组整理得:,由不等式组有且只有四个整数解,得到﹣3≤<﹣2,解得:﹣2≤k<2,即整数k=﹣2,﹣1,0,1,解方程y﹣3=3k﹣y得:y=,∵关于y的方程y﹣3=3k﹣y的解为非负整数,∴≥0,∴k为﹣1,1,整数k的和为0.故选:D.17.解:∵关于x的不等式组无解,∴a>3,故选:B.18.解:不等式组整理得:,由不等式组无解,得到a≥4.故选:A.19.解:,解不等式①得:x≥1,解不等式②得:x≤4a,又∵不等式组有解,∴4a≥1,解得:a≥,故选:D.20.解:解方程组得:,∵关于x,y的方程组的解是正数,∴,解得:﹣5<a<4,故选:B.21.解:解方程组得:,∵关于x、y的二元一次方程组的解满足x>y,∴2a+1>a﹣2,解得:a>﹣3,,∵解不等式①得:x,解不等式②得:x≥,又∵关于x的不等式组无解,∴≥a﹣,解得:a≤4,即﹣3<a≤4,∴所有符合条件的整数a的个数为7个(﹣2,﹣1,0,1,2,3,4,共7个),故选:B.22.解:,∵解不等式①得:x>2﹣a,解不等式②得:x<,∴不等式组的解集是2﹣a<x<,∵不等式组的解集为﹣1<x<2,∴2﹣a=﹣1,=2,解得:a=3,b=4,∴2019a﹣4(b+6)3﹣37=2019×3﹣4×(4+6)3﹣37=2020,故选:C.23.解:,由①得:x>2,根据不等式组的解集为x>a+1,得到a+1≥2,解得:a≥1.故选:D.24.解:解方程组得:,∵方程组的解为正整数,∴a﹣3=1或a﹣3=2或a﹣3=5或a﹣3=10,解得a=4或a=5或a=8或a=13;解不等式(2x+8)≥7,得:x≥10,解不等式x﹣a<2,得:x<a+2,∵不等式组无解,∴a+2≤10,即a≤8,综上,符合条件的a的值为4、5、8,则所有满足条件的a的和为17,故选:C.二、填空题25.解:由题意可得,当x>0时,|(x]|=(x]=3,则3<x≤4,当x<0时,|(x]|=﹣(x]=3,则﹣3<x≤﹣2,故答案为:3<x≤4或﹣3<x≤﹣2.26.解:设这种水果的售价应提高x%,依题意得:(1﹣5%)(1+x%)﹣1≥20%,解得:x≥≈26.4.故答案为:26.4.27.解:设海尔该型号冰箱降价x元,根据题意可得:2500﹣1800﹣x≥5%×1800,解得:x≤610,答:海尔该型号冰箱最多降价610元.故答案为:610.28.解:设浩轩应答对x道,由题意得:10x﹣5(20﹣x)>90,解得x>12,∵x取整数,∴x最小为:13,故答案为:13.29.解:把(3,0)代入y=kx+b得,3k+b=0,∴b=﹣3k,∵kx+2b<0,∴kx<6k,由图象可知k<0,∴x>6,故答案为x>6.30.解:∵直线y=kx+b(k≠0)过点(1,0)和(0,﹣2),∴直线经过一、三、四象限,∴y随x的增大而增大,当x<1时,y<0,即kx+b<0.故答案为:x<1.31.解:根据图象可知:两函数的交点为(1,2),所以关于x的一元一次不等式kx﹣n>mx的解集是x>1,故答案为:x>1.32.解:解方程组得,∴两函数图象的交点坐标为(,),∵当x<1时,y1<y2,∴≥1,∴b≥4.故答案为b≥4.33.解:直线y=kx+b过第一、二、四象限且与x轴交于点(2,0),∴k<0,且2k+b=0,∴b=﹣2k,则kx<b化为kx<﹣2k,解得x>﹣2.故答案为x>﹣2.34.解:∵不等式组的解集为x>﹣4,∴的解集为x>﹣4,∴a≤﹣4,∵一次函数y=(a+5)x+5的图象不经过第四象限,∴a+5>0,解得:a>﹣5,∴﹣5<a≤﹣4,∴整数a的值为:﹣4.故答案为:﹣4.35.解:由图可得,当0<mx+n时,x>2;当mx+n<﹣x+a时,x<3;∴不等式组0<mx+n<﹣x+a的解集为2<x<3,故答案为:2<x<3.36.解:解方程组得:,∵关于x、y的二元一次方程组的的解满足x>y,∴2a+1>a﹣2,解得:a>﹣3,,∵解不等式①得:x<a﹣,解不等式②得:x≥,又∵关于x的不等式组无解,∴≥a﹣,解得:a≤4,即﹣3<a≤4,∴所有符合条件的整数a的个数为7个(﹣2,﹣1,0,1,2,3,4,共7个),故答案是:7.37.解:,解不等式①得:x>2,解不等式②得:x<a﹣5,所以不等式组的解集为:2<x<a﹣5,∵关于x的不等式组的解集为2<x<5,∴a﹣5=5,解得:a=10,故答案为:10.38.解:,∵解不等式①得:x>2+a,解不等式②得:x<,∴不等式组的解集是2+a,∵不等式组的解集是0<x<,∴2+a=0,=,解得:a=﹣2,b=3,∴(a+b)2020=(﹣2+3)2020=1,故答案为:1.39.解:由题意,得:﹣3p+5≤11,解得:p≥﹣2,故答案为:p≥﹣2.40.解:(1)设生产甲种口罩x件,乙种口罩y件,根据题意,得.解得.答:生产甲种口罩80件,乙种口罩70件.(2)设能生产甲种口罩m件,根据题意,得15×30m+25×10m+20×(15+25)(500﹣m)≤385000.解得m≥150.答:至少能生产甲种口罩150件.41.解:(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,由题意得,,解得,,答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;(2)设最多应购进A种机器人a台,购进B种机器人(150﹣a)台,由题意得,30a+40(150﹣a)≥5000,解得:a≤100,答:最多应购进A种机器人100台.42.解:(1)解方程﹣2x+5=x得x=2,则A(2,1),如图,(2)x≤2时,y2≤y1;(3)当y=0时,﹣2x+5=0,解得x=,则B(,0),∴△OAB的面积=×1×=.43.解(1)如图,当x>2时,2x>kx+b,∴不等式2x>kx+b的解集为x>2;(2)OA=.∵M是AB的中点,N是OB的中点,∴MN=OA=.44.解:(1)当x=﹣2时,y=0,所以方程kx+b=0的解为x=﹣2;(2)当x>2时,y>2,所以不等式kx+b>2的解集为x>2;(3)把A(﹣2,0),B(2,2)代入y=kx+b,得:,解得:,所以,这个函数的解析式为:y=x+1 45.解:(1),解不等式①得:a>0,解不等式②得:a<2,∴不等式组的解集为0<a<2,故答案为:0<a<2;(2)①设x+y=a,则,解得:,∵x>3,y<1,∴,解得:2<a<6,即2<x+y<6;(3)由3a2+5|b|=7得|b|=,则,解得a2≤,∴0≤a2≤,将|b|=,代入S=2a2﹣3|b|中,得S=,∵0≤a2≤,∴当a2=0时,S取最小值为S=;当a2=时,S取最大值为S=,∴S的取值范围为:.46.解:(1)解方程组得:.∵x≤0,y<0,∴,解得﹣2<m≤3;(2)不等式(2m+1)x﹣2m<1移项得:(2m+1)x<2m+1.∵不等式(2m+1)x﹣2m<1的解集为x>1,∴2m+1<0,解得m<﹣.又∵﹣2<m≤3,∴m的取值范围是﹣2<m,又∵m是整数,∴m的值为﹣1.。
北师大版八年级下册数学第二单元测试题与答案(一)
北师大版八年级下册数学第二单元测试题与答案(一)北师大版八年级下册数学第二单元测试题及答案(一)一、选择题1.不等式-2x<4的解集是()A。
x>2B。
x<2C。
x<-2D。
x>-22.下列不等式一定成立的是()A。
5a>4aB。
x+2<x+3C。
-a>-2aD。
x<y3.不等式-3x+6>的正整数解有()A。
1个B。
2个C。
3个D。
无数多个4.在数轴上表示不等式x≥-2的解集,正确的是()A。
B。
C。
D。
5.如图,当y<时,自变量x的范围是()A。
x<-2B。
x>-2C。
x<2D。
x>26.要使代数式有意义,则x的取值范围是()A。
x≥2B。
x≥-2C。
x≤-2D。
x≤27.不等式组的解集是()A。
x<3B。
3<x<4C。
x<4D。
无解8.若a>b>0,则下列结论正确的是()A。
-a>-bB。
a+b>a-bC。
a3<b3D。
a2>b29.下列图形中,能表示不等式组的解集的是()A。
B。
C。
D。
10.观察函数y1和y2的图象,当x=1,两个函数值的大小为()A。
y1>y2B。
y1<y2C。
y1=y211.如果不等式组有解,那么m的取值范围是()A。
m>5B。
m≥5C。
m<5D。
m≤812.不等式组的最小整数解为()A。
-1B。
0C。
1D。
4二、填空题13.已知三角形的两边为3和4,则第三边a的取值范围是2<a<7.14.不等式组的解集是{x|-3<x<2}。
15.不等式组-1<x<4的整数解有5个。
16.若a>c,则当m<loga c时,am<cm;当m>loga c 时,am>cm。
17.小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有2个。
18.不等式组-1<x-5<11的解集是{ x|4<x<16 }。
19.若不等式组有解,则a的取值范围是{ a|a<1或a>3 }。
20.一次函数y=-3x+12中x=-2时,y<18.21.不等式x-8>3x-5的最大整数解是-4.22.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为{ x|x≥a }。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、某种铂金饰品在甲,乙两个商店销售,甲店标价477元/克,按标价出售,不优惠;乙店标价530元/克,则超出3克的部分可打八折出售。
分别写出到甲,乙商店购买该种铂金饰品所需费用 (元)与重量 (克)之间的函数关系式;
李阿姨要买一条重量不少于4克且不超过10克的此种铂金饰品,到哪个商购买最合算?
课后反思:
专题二:一元一次不等式(组)与方程(组)之间的内在联系
1.整数 取何值时,方程组 的解满足条件: 且 ?
2.当为什么值时,关于 的方程 的解为非正数?
3.和谐商场销售甲,乙两种商品,甲钟商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。
(1)若该商场同时购进甲,乙两种商品共100件,恰好用去2700元,求能购进甲,乙两种商品各多少件?
3.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得 分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了_______道题。
4.如果关于 的不等式组 无解,则 的取值范围是_____________
5.已知关于 的不等式 的解集为 ,则 的取值范围是_____________
课题:第10课时单元复习与专题训练
教师个性化设计、学法指导或学生笔记
专题一:利用一元一次不等式(组)有关概念及性质,解决不等式的变形和待定系数的范围
1.下列叙述①若 ,则 ; ②若 ,则 ;③若 ,则 ④若 ,则 。其中正确的是( )
. ③④ ①③ ①② ②④
2. 已知关于 的不等式组 的整数解共有3个,则 的取值范围_____________
(2)该商场为使甲,乙两种商品共100件的总利润(利润=售价—进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案。
思路点拨:根据题意,列出方程求解,在根据条件列出不等式组求解集,最后因为未知数是正整数求出进货方案
专题三:一元一次不等式(组)是解决函数的桥梁
1、如图 直线 : 与直线 : 在同一平面直角坐标系中的图像如图所示,则关于 的不等式 的解集为_______________