变频调速原理ppt课件

合集下载

变频调速的基本控制方式ppt课件

变频调速的基本控制方式ppt课件

28
机械特性曲线
n
可见,当频率ω1提高 时,同步转速n1随之提 n1c 高,最大转矩减小,机 n1b
械特性上移;转速降落 n1a
1c 1b 1a
随频率的提高而增大, n1N 1N
1N <1a <1b <1c 恒功率调速
特性斜率稍变大,其它
形状基本相似。如右图
所示。
2024/7/16
O Te
图6-5 基频以上恒压变频调速的机械特性29
2024/7/16
22
结论
➢在恒压频比的条件下改变频率 1 时,机械特性基本上是
平行下移 ➢当转矩增大到最大值以后,转速再降低,特性就折回来 了。而且频率越低时最大转矩值越小
➢最大转矩 Temax 是随着的 1 降低而减小的。频率很
低时,Temax太小将限制电机的带载能力,采用定子压 降补偿,适当地提高电压Us,可以增强带载能力
(U漏—漏磁阻抗压降;Us—每相电压),
当Us很大时,U漏很小;可以认为Us≈Eg 。
m
US f1
C
要改变f1实现调速,则同时应改变Us来保持Φm不变。
—恒压频比控制方式
2024/7/16
12
带定子压降补偿的恒压频比控制特性
但当f1太小时,忽略U漏则误差较大,这时可以人为增 大Us进行补偿,以减小误差。
2024/7/16
30
小结
电压Us与频率1是变频器—异步电动机调速系统的两个独立
的控制变量,在变频调速时需要对这两个控制变量进行协调 控制。 在基频以下,有两种协调控制方式。采用不同的协调控制方 式,得到的系统稳态性能不同。 在基频以上,采用保持电压不变的恒功率弱磁调速方法。
2024/7/16

变频器原理及应用ppt完整版

变频器原理及应用ppt完整版

变频器原理及应用ppt完整版•变频器基本概念与原理•变频器主要技术参数与性能指标•变频器应用领域与案例分析•变频器选型、安装与调试方法目•变频器维护保养与故障排除技巧•变频器市场前景与发展趋势预测录01变频器基本概念与原理变频器定义及作用定义变频器是一种电力电子设备,通过改变电源频率来控制交流电动机的速度和转矩。

作用在工业生产中,变频器被广泛应用于电动机的速度控制和节能领域。

通过调节电源频率,变频器可以实现对电动机的无级调速,满足不同生产工艺对电机速度的需求。

010405060302分类:根据电压等级、功率大小、控制方式等,变频器可分为低压变频器、中压变频器、高压变频器等类型。

特点调速范围广,可实现无级调速;节能效果显著,通过降低电机运行频率来减少能源消耗;控制精度高,可实现精确的速度和位置控制;具有多种保护功能,如过流、过压、欠压、过热等保护。

变频器分类与特点工作原理及电路构成工作原理变频器的工作原理基于电力电子技术,通过整流器将交流电转换为直流电,再通过逆变器将直流电转换为可调频率的交流电。

在转换过程中,通过控制逆变器的开关器件(如IGBT、MOSFET等)的通断时间,实现对输出频率和电压的调节。

电路构成变频器的电路主要由整流器、滤波器、逆变器、控制电路等部分组成。

其中,整流器负责将交流电转换为直流电;滤波器用于平滑直流电压;逆变器则将直流电转换为可调频率的交流电;控制电路则负责接收用户指令,并根据指令控制逆变器的开关器件,实现对电动机的速度和转矩的精确控制。

02变频器主要技术参数与性能指标输入电压范围输出电压输出频率范围输出电流输入输出特性参数变频器能够接受的电源电压范围,通常包括额定电压及允许的电压波动范围。

变频器能够输出的频率范围,通常从0到几百赫兹不等。

变频器输出给电机的电压,其大小和波形可根据需要进行调整。

变频器输出给电机的电流,其大小与负载有关。

控制方式及精度指标控制方式包括开环控制和闭环控制两种。

《变频调速系统》课件

《变频调速系统》课件

03
变频调速系统的控制策略
转矩控制
01
转矩控制是通过控制电机的输出转矩来满足系统的转矩需求。
02
在转矩控制中,电机的转速和转矩是独立控制的,可以根据负
载的需求精确地调整转矩。
转矩控制广泛应用于需要精确转矩控制的场合,如电梯、起重
03
机等。
速度控制
1
速度控制是通过控制电机的输出转速来满足系统 的速度需求。
群控管理
在多台电梯并存的场合,变频调速系统可以实现群控管理 ,根据乘客需求和电梯运行状态,智能调度和控制多台电 梯的运行,提高电梯的使用效率。
05
变频调速系统的维护与保养
日常维护与保养
01
02
03
每日检查
检查变频器是否有异常声 音、异常气味、过热等现 象。
清洁保养
定期清洁变频器的外壳和 散热风扇,保持其良好的 散热性能。
电力能源
用于风力发电、水力发 电等可再生能源设备的
控制和调节。
交通运输
应用于地铁、动车、船 舶和飞机等交通工具的
驱动和控制。
空调和制冷
变频空调和制冷设备能 够实现节能降耗,提高
舒适度。
变频调速系统的优缺点
节能降耗
根据实际需求调节电机速度,减少能源浪费。
精确控制
可以实现高精度的速度和位置控制。
变频调速系统的优缺点
定期检查与保养
定期检查
每季度或半年对变频器进行一次全面检查,包括 所有接线、元件、散热系统等。
保养内容
根据检查结果,对变频器进行必要的保养,如更 换元件、清洗散热系统等。
注意事项
在保养过程中,应遵循安全操作规程,确保人员 和设备安全。
06

《变频器教材》课件

《变频器教材》课件

02
变频器的基本组成与电路
变频器的基本组成
变频器主要由整流器、中间电路、逆变器和控制电路组成。
整流器的作用是将交流电转换为直流电,逆变器的作用是将直流电转换为交流电。
中间电路起到调节直流电压和电流的作用,控制电路则负责整个变频器的控制和调 节。
变频器的整流电路
整流电路是变频器的输入部分,主要 作用是将三相交流电整流成直流电。
变频器的使用注意事项与维护保养
使用注意事项
避免在变频器输出端接入电容补偿,以免引起过电流或损坏变频器。同时,要定期检查 接线端子是否松动、电缆是否破损等。
维护保养
定期对变频器进行清洁除尘,检查冷却风扇是否正常工作,定期更换过滤网等易损件, 确保变频器的正常运行。
THANKS
感谢观看
《变频器教材》PPT课 件
目录
• 变频器概述 • 变频器的基本组成与电路 • 变频器的控制方式与调速原理 • 变频器的应用领域与案例分析 • 变频器的选型与使用注意事项
01
变频器概述
变频器的定义与工作原理
总结词
理解变频器的定义和工作原理是掌握其应用的基础。
详细描述
变频器是一种电力控制设备,通过改变交流电的频率来控制电动机的转速。其 工作原理基于电力电子技术和微处理器控制技术,通过改变电源的频率来实现 电动机的无级调速。
04
变频器的应用领域与案例分析
变频器在工业自动化领域的应用
总结词
广泛应用、提高效率、精确控制
详细描述
变频器在工业自动化领域中应用广泛,如电机、风机、水泵等设备的调速控制, 能够提高设备的运行效率,实现精确控制,降低能耗,提升生产效率。
变频器在电力电子领域的应用
总词

电动机变频调速原理1

电动机变频调速原理1

率以减缓起动过 程,减小起动电 流。 起动中动态转矩 小,升速平稳, 对机械负载冲击 减小。
变频起动特性与起动电流
变频降速时电动机的状态
正常 电动
降频 回馈
频率下降过程的机械特性
电动机的起动和制动
电动机从静止一直加速到
稳定转速的过程。 制动就是加上一个与电动 机转向相反的转矩,用来 使电动机迅速停转或限制 电动机的转速。
工频直接起动
起动电流大。
对电网产生干 扰。 对生产机械的 冲击很大。影 响机械的使用 寿命
工频起动特性与起动电流
4-7IN
变频起动
通过逐渐增大频
基频以下的机械特性
问题:带负载能力下降
曲线近似平行的下降,这说明
减速后的电动机仍然保持原来 较硬的机械特性。但是,临界 转矩却随着电动机转速的下降 而逐渐减小。这就造成了电动 机带负载能力的下降。
转矩提升(Torque boost)
针对频率降低时,电源电压成
比例地降低引起的下降过低, 采用适当提高电压的方法来保 持磁通量恒定,使电动机转矩 回升,即所谓转矩提升。 (Torque boost)
I1 I 0 I 2
m 变化
磁通量变化带来的问题

磁通量减弱时,铁心利用不充分,同样 的转子电流下电磁转矩小,电动机负载 能力下降;磁通量增加时,又会使铁心 饱和,造成实际磁通量增加不上去,从
而导致过大的励磁电流,严重时会因绕
组过热而损坏电机。
保持磁通量恒定的方法
E 4.44 K1 N1 f m
认识变频器
调速器
调速的含义
调速:是在负载没有改变的情
况下,根据生产过程需要人为 地强制性地改变拖动系统的转 速。 速度变化:是由于负载的变化 而引起拖动系统的转速改变。

变频调速的基本原理

变频调速的基本原理

变频器的种类很多,分类方法也有多种。
整理课件
3
(1)按变换环节可分为二类
1)交—交变频器 把频率固定的交流电直接变换成频率和
电压连续可调的交流电。其主要优点是没有中间环节,故变换
效率高。但连续可调的频率范围窄,一般为额定频率的l/2以
下,主要适用于电力牵引等容量较大的低速拖动系统中。
2)交一直一交变频器 先把频率固定的交流电整流成直流电,
再把直流电逆变成频率连续可调的三相交流电。由于把直流电
逆变成交流电的环节较易控制,因此在频率的调节范围以及改
善变频后电动机的特性等方面,部有明显优势,是目前广泛采
用的变频方式。
(2)按直流环节的储能方式分为二类
1)电流型变频器 直流环节的储能元件是电感线圈L,如下
图a所示
2)电压型变频器 直流环节的储能元件是电容器C,如下图b
大小,从外形上看有书本型结构(0.75~37 kW)和装柜 型结构(45~1500 kW)两种。日本日立公司的J300系列 通用变频器为书本型结构,其外形和结构如下图所示。
a)外型
b)结构
l一底座 2一外壳 3一控制电路接线端子 4充电指示灯 5一防护盖板
6一前盖 7螺钉 8一数字操作面板 9主电路接线端于 lO一接线孔
器CF的充电电流限制在允许的范围内。当CF充电到一定程度,令
开关S接通,将RL短接掉。
在许多新系列的变频器中。s已由晶闸管代替。
整理课件
12
④电源指示HL HL除表示电源是否接通外,还有 一 个重 要的功能,即在变频器切电源后,指示电容器CF上的电荷是否 已释放完毕。
电容器CF的容量较大,而切断变频器电源又必须在逆变电 路停l止工作的状态下进行,所以CF没有快速放电电路,其放 电时间往往需数分钟,而CF上的电压又较高,如不放完,将对 人身安全构成威胁。故在维修时,必须等HL完全熄灭后才能接 触变频器的内部带电部分。

变频器工作原理及应用-PPT

变频器工作原理及应用-PPT

变频器选型—选型原则
确定负载可能出现的最大电流,以此电流作为待选变频器的额定电流。如果该
电流小于适配电机额定电流,则按适配电机选择对应变频器,考虑成本因素, 如
选用的是通用变频器,则可以选择P型机
以下情况要考虑容量放大一档:
1、长期高温大负荷
2、异常或故障停机会出现灾难性后果的现场
3、目标负载波动大
4、现场电网长期偏低而负载接近额定
5、绕线电机、同步电机或多极电机(6极以上)
变频器选型—选型原则
充分了解各变频器支持的选配件是正确选配的基础。 对于变频器的选配件选配,必须要把握以下几个原则: 以下情况要选用交流输入电抗器、直流电抗器
民用场合,如:宾馆中央空调、电机功率大于55KW以上 电网品质恶劣或容量偏小的场合 如不选用可能会造成干扰、三相电流偏差大,变频器频繁炸机 以下情况要选用交流输出电抗器 变频器到电机线路超过100米(一般原则) 以下情况一般要选用制动单元和制动电阻 提升负载 频繁快速加减速 大惯量(自由停车需要1min以上,恒速运行电流小于加速电流的设备)
变频器保护功能
由于变频器大量的使用了各种半导体器件,如整流桥、IGBT、电解电容等, 要想保证变频器长期稳定工作,则必须保证各器件工作在其允许条件下。 超出条件则必须立刻或延时停止变频器工作,待异常条件消失后才能重 新开始工作,如保护失效或动作延迟将导致变频器出现不可恢复性损害。
变频器的保护功能
T电机转矩
T负载转矩
T电机转矩>T负载转矩---加速运行 T电机转矩<T负载转矩---减速运行 T电机转矩=T负载转矩---恒速运行
电机转矩控制性能是影响电气传动系统性能高低的最重要因素 加减速时间和电机转矩、负载转矩以及系统惯量有关

变频调速技术PPT课件

变频调速技术PPT课件
由上可知,只改变频率f实际上并不能正常凋速。在许多场合,要求在调 节定子供电频率的同时,调节定子供电电压U的大小,通过u和f的配台实现 不同类型的调频凋速。
所以,变频的同时也必须变压,这也就是变频器常被简称为 VVVF(Variable Voltage Variable Frequency) 的原因。
n=n1(1-s)=6p0f1(1-s)
调速方式主要有: 1、变极调速 2、变频调速 3、变转差率调速 4、转子串电阻调速(绕线式)
10
表面看来,只要改变定子电压的频率f就可以调节转速大小 了,但是事实上只改变,并不能正常调速.为什么呢?
假设现在只改变f调速.设f上升,则φ将下降,于是拖动转矩T下降,这样 电动机的拖动能力会降低,对恒转矩负载会因拖不动而堵转;倘若调节f下 降,则φ上升.会引起主磁通饱和,这样励磁电流急剧升高.会使定子铁芯 损耗I2R急剧增加。这两种情况都是实际运行中所不允许的。
控制电压
控制电压
载波
载波
PWM调制
17
交流调速的控制核心是: 只有保持电机磁通恒定才能保证电机出力,才能获得理想的调速效果
V/F控制----简单实用,性能一般,使用最为广泛 只要保证输出电压和输出频率恒定就能近似保持磁通保持恒定
例: 对于380V 50Hz电机,当运行频率为40HZ时,要保持V/F 恒定,则 40HZ时电机的供电电压:380×(40/50)=304V
提升机、风机等
2
交(直)流电气传动系统的特点
直流电气传动系统特点: 控制对象:直流电动机 控制原理简单,一种调速方式 性能优良,对硬件要求不高 电机有换向电刷(换向火化) 电机设计功率受限 电机易损坏,不适应恶劣现场 需定期维护
交流电气传动系统特点: 控制对象:交流电动机 控制原理复杂,有多种调速方式 性能较差,对硬件要求较高 电机无电刷,无换向火化问题 电机功率设计不受限 电机不易损坏,适应恶劣现场 基本免维护

变频器工作原理-整流逆变演示幻灯片

变频器工作原理-整流逆变演示幻灯片
34
SPWM 2. 电压型正弦波脉宽调制(SPWM)
变频器及应用技术
35
2.6 SPWM变频器的工作原理:
❖所谓正弦波脉宽调制(SPWM)就是把正弦波 等效为一系列等幅不等宽的矩形脉冲波形, 如图4所示,等效的原则是面积相等。
u
u rU
uc urV
urW
O
t
u UN'
Ud
2
O
Ud
t
2
u VN'
电路有公共端,连线方便。
T
a
VT1
b
VT2
c ud
VT3
R id
图3-19 三相半波可控整流电路
10
2.3.2共阳极三相半波可控整流电路
❖电路
➢ 共阳极电路,即将三个晶 闸管的阳极连在一起,其 阴极分别接变压器三相绕 组,变压器的零线作为输
T
a
b
VT1 VT2
c
VT3
出电压的正端,晶闸管共 阳极端作为输出电压的负 端,如图2-26所示。
16
(3)ud一周期脉动6次,每次脉动的波形都一样,所以三相全桥电路称 为6脉波整流电路;
(4)需保证同时导通的2个晶闸管均有脉冲: 可采用两种方法:一种是宽脉冲触发(大于600)
另一种是双脉冲触发(常用):在Ud的六个时间段,均给应该导 通的SCR提供触发脉冲,而不管其原来是否导通。所以每隔600 就需要提供两个触发脉冲。 实际提供脉冲的顺序为:1,2 - 2,3 - 3,4 - 4,5 - 5,6 - 6,1 - 1,2,不断 重复。 (5)晶闸管承受的电压波形与三相半波时相同, 晶闸管承受最大正、反向电压的关系也相同为:
➢ 这种共阳极电路接法,对

变频调速器的基本原理与结构

变频调速器的基本原理与结构

正弦脉宽调制(SPWM)原理
u
• 如何用一系列等幅不等宽的脉冲来代替一个正弦半 波
u
O
ωt
>
O
ωt
>
u
O
ωt
>
正弦脉宽调制(SPWM)原理
• 如何用一系列等幅不等宽的脉冲来代替一个正弦半 u 波 u
SPWM波
O
ωt
>
O
ωt
&g输出正弦 波幅值,按同一比例改 变各脉冲宽度即可。
变频调速器的基本原理与结构
§4.1 绪论
根据交流电机的转速公式 n 60 f ( 1 s) P
可以看出均匀地改变定子电源频率,就可以平滑地改变电机的转速, 从而实现调速。
§4.2 静止式变频装置
变频调速需要变频电源。过去采用旋转变频机组或离子变 频器来改变电源频率,设备投资大,效率低,可靠性差, 目前已被静止式变频装置所代替。 从结构上,静止式变频装置可以分为交-直-交变频器和交 交变频器。交-直-交变频器,又称为带直流环节的变频器 或间接变频器,它首先将电网的交流电通过整流器整流成 直流,然后再经逆变器将直流转变为可控频率的交流电。
~
us
A
B
C
VT4 VT6 VT2 三相逆变器主电路

• 什么是逆变?

逆变(invertion)——把直流电转变成交流电, 整流的逆过程。
实例:电力机车再生制动行驶,机车的动能转变为电 能,反送到交流电网中去。
逆变电路——把直流电逆变成交流电的电路。
有源逆变电路——交流侧和电网连结。
V3 VD 1 U V VD 4 V6
V5 VD 3 W VD 6 V2 VD 5 N VD 2

第六章交流异步电动机变频调速系统PPT课件

第六章交流异步电动机变频调速系统PPT课件

电动势值较高时,可以忽略定子绕组的漏磁阻
抗压降,而认为定子相电压 Us ≈ Eg,
8
则得 U s 常值
这是恒压频f1 比的控制方式。
(6-3)
但是,在低频时 Us 和 Eg 都较小,定子阻 抗压降所占的份量就比较显著,不再能忽略。
这时,需要人为地把电压 Us 抬高一些,以便 近似地补偿定子压降。
3
第一节 变频调速的基本控制方式和机械特性 通过改变定子供电频率来改变同步转速实现
对异步电动机的调速,在调速过程中从高速到 低速都可以保持有限的转差率,因而具有高效 率、宽范围和高精度的调速性能。可以认为, 变频调速是异步电动机的一种比较合理和理想 的调速方法 。
原理:利用电动机的同步转速随频率变化的特 性,通过改变电动机的供电频率进行调速。保
带定子压降补偿的恒压频比控制特性示于下
图中的 b 线,无补偿的控制特性则为a 线。
2. 基频以上调速
在基频以上调速时,频率应该从f1N向上升高,
但定子电压Us 却不可能超过额定电压
9
UsN ,最多只能保持Us = UsN ,这将迫使磁通
与频率成反比地降低,相当于直流电机弱磁升 速的情况。
Us UsN
11
Us Φm
恒转矩调速
UsN ΦmN
Us
恒功率调速
Φm
O
f1N
f1
图6-2 异步电机变压变频调速的控制特性
异步电动机的变压变频调速是进行分段控制的:
基频以下,采取恒磁恒压频比控制方式;
基频以上,采取恒压弱磁升速控制方式。
12
U Te
P
N
UN
Te
U
P
O
变电压调速

《变频器原理及应用》ppt课件

《变频器原理及应用》ppt课件
• 当再次衔接电机电缆时,应检查相序能否正确。 • 假设电机的额定电压小于传动单元额定输入电压
的1/2,那么不允许运转。在DTC 方式下电机额 定电流的范围是1/6 ... 2 ·I2hd,在SCALAR 方式 下电机额定电流的范围是0 ... 2 ·I2hd。电机控制 方式是由传动的一个参数来选择的。
• 26 MOTOR CONTROL • 30 FAULT FUNCTIONS • 31 AUTOMATIC RESET • 32 SUPERVISION • 40 PID CONTROL
〔性能优化〕
可编程的缺点维护功能 自动缺点复位。
监控极限值。
ACS800
99
9904 SCALAR
规范控制
9905
• 14 RELAY OUTPUTS
继电器输出的形状信号
• 15 ANALOGUE OUTPUTS 选择由模拟输出显示的实践信号。 •
20 LIMITS 21 START/STOP 22 ACCEL/DECEL 23 SPEED CTRL 25 CRITICAL SPEEDS
传动运转极限值。 电机启动和停顿的方式 加速和减速时间。 速度控制器的变量。〔微积分〕 危险速度区,电机不允许在这区域里运转。
根本启动过程。假设选择 ID MAGN那么自动进入下一步。 • 或选择ID Run (STANDARD 或 REDUCED) : • 按LOC/REM 键改为本地控制 (L 显示在第一排)。 • 按启动键运转辨识励磁方式。在零速下电机励磁20-60秒。
电动机的快速启动
• 检查电机的运转方向
• 设置最小转速。
• 风机、泵等轴输出功率于速度的立方成比 例添加,所以转速少许升高时也要留意〕。
日常维护与检查 对于延续运转的变频
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由上可知,只改变频率f1实际上并不能正常调速。 在 许多场合,要求在调节定子供电频率f1的同时,调节 定子供电电压U1的大小,通过U1和f1的不同配合实现
安全的调频调速。
• 1. 保持U1/f1=常数的近似恒磁通控制方式 • 由于Φ∝E1/f1≈U1/f1, 故调节三相异步电动机的
供电频率f1时, 按比例调节供电电压的U1的大小可以 近似实现Φ为常数。 以星形接法的电机为例, 变频调
因为T=CTΦI2 cosφ2 ,电动机的拖动能力会降低, 对恒转矩负载会因拖不动而堵转; 如f1向下调, 则Φ
会增强, 这会带来更大的危险, 因为电机铁磁材料的 磁化曲线不是直线而具有饱和特性, 设计电机时为了 建立更强的磁场, 其工频下的工作点已经接近磁饱和, 如再增强磁场势必引起励磁电流(体现在定子电流上) 急剧升高, 最终烧坏电机。
异步电动机和变频调速原理
• 目前市场上, 实现交、直流电动机调速的驱动器产品
有多种, 就调速性能来说,无论对直流电动机还是对交 流电动机都可以实现十分优良的无级调速;但从电动机本 身的现场使用来说,交流电动机远优于直流电动机, 主 要原因在于直流电动机内部有碳刷和换向片,需要经常检 修,不能适用于恶劣的环境,耐压和容量也受限制。因此, 近年来交流电动机调速技术在使用上取得了绝对优势,在 交流电动机的各种调速技术中,异步电动机的变频调速技 术最具代表性。
U1≈E1=4.44f1K1N1Φ
式中: U1——定子相电压 E1——定子相电动势 N1——定子相绕组总匝数 K1——基波绕组系数 Φ——每极气隙磁通
假设现在只改变f1进行调速, 设供电频率f1上下调节, 而 供电电压U1不变, 因K1N1为常数, 则异步电动机的主磁 通Φ必将改变: 如f1向上调, 则Φ会下降, 这使得拖动转 矩T下降,

我们知道,电网提供的交流电是恒压恒频的,变频
器产品的作用是改变电源的频率和电压,对交流异步电
动机实现无级变速。变频调速技术是功率电子技术、微
电子技术与微机控制技术高度发展的产物, 在变频器—
交流电动机调速系统中,变频器具有升速快,无级变速
范围宽,动特性好等优点,而交流电动机又具有环境适
应性强, 维修简单,价格低等优势, 这使得变频调速技
速时, 如供电50 Hz对应220 V相电压(一般为额定 点), 则25 Hz需提供110 V相电压, 10 Hz需提供 44 V相电压。
n 额 定 压频 下
降 压 降频 下
O
T
图1 保持U1/f1=常数控制方式的机械特性

在机械特性上,保持U1/f1=常数的近似恒磁
通控制方式的机械特性曲线族体现为近似恒转矩性质,

严格恒磁通控制方式下, 变频调速电动机的机械
特性如图3所示, 特性曲线族呈现恒转矩性质。 实际 补偿时, 必须根据不同参数的电动机运用不同的补偿
曲线才能取得理想的补偿效果, 补偿不足会造成拉力
不足, 过度补偿则会造成起动时电流过大。
• 此外, 在变频调速时, 如果将频率调到额定频率 以上(大于50 Hz), 则不允许将供电电压比例上调,
• 当供电频率和电压变得较低时, 内阻的影响增大,
E1达不到要求值, 就出现了低速下拖动转矩明显不足 的问题。 解决这个问题的方法是采用E1/f1=常数的严
格恒磁通控制方式。
2. 保持E1/f1=常数的严格恒磁通控制方式 在三相异步电动机中,E1不是一个可以直接测量和控
制的物理量, 所以变频调速所能做的仍然是通过控制
术在机械、 钢铁、有色金属、矿山、 石油化工、纺织、
电力、建材、轻工、医药、造纸、 卷烟、 自来水等行业
中均获得广泛应用。
• 交流异步电动机的变频调速的原理,可从异步电动 机的转速方程得出。转速方程如下所示:
n1
60 f1 p
式中:n——电动机的实际转速 f1——电动机定子绕组的供电频率 p—— S——转差率,表示定子旋转磁场的同步转速n1
低频低速运行时内阻压降较小,需要加强U1的补偿
量; 而额定工作点附近(50 Hz)内阻压降较小, 可 以不加补偿。
U /U 1 1N
1.0
大内阻 0.6
小内阻
无内阻 0.2
0
0.2
0.6
1.0 f / f 1 1N
图2 实现严格恒磁通的U1与f1配合关系
n
f1 N
U1N
f11=常数控制方式的机械特性
供电电压U1来间接控制反电势E1。 在通用变频器产品 中满,足下通图常的采配用合的关措系施。是低图频2中段U电1N压和补f偿1N法分,别使为U电1动与机f1
的额定电压和额定频率。
利用图2实现严格恒磁通的基本思路是以近似恒磁通
控制方式为基础, 在U1/f1=常数的基础上加一定的供 电电压U1提升,以补偿定子内阻压降对反电势E1的影 响, 使E1/f1=常数。
与n的关系:n=n1(1-S)
因此,只要平滑地调节异步电动机的定子供电频率
f1,就可以平滑调节异步电动机的同步转速n1。由于转 子是跟随旋转磁场同步旋转的,转子转速为n=n1(1-s),
所以变频能通过同步转速的改变实现异步电动机的无级调 速。
表面看来, 只要改变定子电压的频率f1就可以调节转速的大 小, 但是事实上, 只改变f1并不能正常调速。 参考异步电
如图1所示。
• 由机械特性曲线可以看出,U1/f1=常数调速方式在 低频低速运行时拖动力矩不足,显然,U1/f1=常数的
调速方式并不是真正的恒磁通调速,这是因为电动机
的 主 磁 通 Φ 与 E1/f1 成 正 比 例 , 严 格 意 义 上 不 是 与 U1/f1成正比,外加电压U1只是在不计定子内阻时才近 似等于反电势E1。
U1只能保持在U1N不变, 因为所有的用电器都不允
许超过额定电压。
相关文档
最新文档