一些常见基团质子的化学位移值

合集下载

特征质子的化学位移

特征质子的化学位移

特征质子的化学位移由于不同类型的质子化学位移不同,因此化学位移值对于分辨各类质子是重要的,而确定质子类型对于阐明分子结构是十分有意义的。

下表列出了一些特征质子的化学位移,表中黑体字的H是要研究的质子。

特征质子的化学位移质子的类型化学位移质子的类型化学位移RCH30.9ArOH4.5-4.7(分子内缔合10.5~16)R2CH21.3R3CH1.5R2C=CR—OH15~19(分子内缔合)0.22RCH2OH3.4~4R2C=CH24.5~5.9ROCH33.5~4R2C=CRH5.3RCHO9~10R2C=CR—CH31.7RCOCR2—H2~2.7RC≡CH7~3.5HCR2COOH2~2.6ArCR2—H2.2~3R2CHCOOR2~2.2RCH2F4~4.5RCOOCH33.7~4RCH2Cl3~4RC≡CCOCH32~3RCH2Br3.5~4RNH2或R2NH0.5~5(峰不尖锐,常呈馒头形)RCH2I3.2~4ROH0.5~5.5(温度、溶剂、浓度改变时影响很大)RCONRH或ArCONRH5~9.4[1]烷烃甲烷氢的化学位移值为0.23,其它开链烷烃中,一级质子在高场δ≈9处出现,二级质子移向低场在δ≈1.33处出现,三级质子移向更低场在δ≈1.5处出现。

例如:烷烃CH4CH3—CH3CH3—CH2—CH3(CH3)3CHδ0.230.860.860.911.330.910.861.50甲基峰一般具有比较明显的特征,亚甲基峰和次甲基峰没有明显的特征,而且常呈很复杂的峰形,不易辨认。

当分子中引人其它官能团后,甲基、次甲基及亚甲基的化学位移会发生变化,但其δ值极少超出0.7~4-5这一范围。

环己烷的各向异性屏蔽效应[1]环烷烃能以不同构象形式存在,未被取代的环烷烃处在一确定的构象中时,由于碳碳单键的各向异性屏蔽作用,不同氢的δ值略有差异。

例如,在环己烷的椅型构象中,由于C-I上的平伏(图键氢处于C⑵—C⑶键及C⑸—C⑹键的去屏蔽区,而C-I上的直立键氢不处在去屏蔽区,环己烷的各向异性屏蔽效应)。

核磁H谱化学位移

核磁H谱化学位移
质(通常以TMS作为基准物质)的谱峰位置作为核 磁谱图的坐标原点。 抗磁屏蔽:原子核外的电子在外加 磁场的感应下产生抗磁场,使原子 核实受磁场稍有降低,故此屏蔽称 为抗磁屏蔽。设以固定的电磁频率 扫描磁场强度的方式作图,横坐标 由左至右表示磁场强度增加的方向。 若某一官能团的氢核抗磁屏蔽较大, 则所需磁场强度更强,故可推断出 此谱线在其他官能团谱线的右方 (即相对高场的位置)。即谱线为 的场强为右高左低
在有机化合物中,氢核受核外电子的屏蔽作用, 使其共振频率发生变化,即引起共振吸收峰的 位移,这种现象称为化学位移。(不同的氢核, 所处的化学环境不同,化学位移的值也不相 同。)
2、化学位移的表示方法
如定义中所提到的,不同的氢核,所处的化学环境 不同,出峰位置也不同,其峰的位置不便精确测定,
故在试验中采用某一标准物质作为基准,以基准物
如图,苯上的六个π电子产生较强的感应磁场,H位于 去屏蔽区,处于低场。 化学位移为6.8-8.
3、影响化学位移的因素
3.4、氢键的影响
键合在杂原子(N、O等)上的 质子易形成氢键。氢键质子相 比于没有形成氢键的质子有较 小的屏蔽效应,共振吸收峰出 现在低场。
3.5、温度的影响 温度:大多数信号的共振位置受温度影响很小,但-OH、-NH和-SH在升高温度时形 成氢键的程度降低,化学位移移向高场。 3.6、溶剂效应 溶剂效应:溶剂的磁各向异性和溶质与溶剂之间形成氢键将对溶质中不同位置的 氢核的化学位移产生影响。
3.3、磁各向异性 屏蔽区:感应磁场与区域。
如图,双键的H处于去屏蔽区,故其处于低场。 化学位移为4.5-5.1
3、影响化学位移的因素
3.3、磁各向异性
如图,三键是直线构型,H所处感应磁场方向与外磁场 方向相反,处于屏蔽区,故其处于高场。 化学位移为2-3.

三甲氧基苯_化学位移__解释说明

三甲氧基苯_化学位移__解释说明

三甲氧基苯化学位移解释说明1. 引言1.1 概述三甲氧基苯是一种常见有机化合物,具有多个甲氧基(-OCH3)官能团置于苯环上。

化学位移作为核磁共振(NMR)技术的重要参数,能够提供关于分子结构和官能团影响的重要信息。

因此,了解三甲氧基苯的化学位移及其解释是非常有意义的。

1.2 文章结构本文首先介绍三甲氧基苯的化学位移,并探讨其中的影响因素。

随后,我们将简要介绍核磁共振原理,并详细阐述化学位移的概念和定义。

最后,我们将重点讨论不同官能团对三甲氧基苯化学位移的影响并解释可能的机理。

1.3 目的本文旨在提供关于三甲氧基苯化学位移的全面解释说明。

通过对实验数据进行分析和比较,探讨可能存在的解释和机理。

同时,通过对不同官能团引入后化学位移变化情况进行比较研究,揭示不同官能团与三甲氧基苯之间相互作用的特性。

通过本文的研究,有望进一步完善对三甲氧基苯分子结构特征的理解,并为相关领域的应用提供理论支持。

2. 三甲氧基苯的化学位移2.1 定义和背景在有机化学中,化学位移是指核磁共振(NMR)谱图中出现的信号相对于参考信号位置的偏移量。

它常用来确定分子结构和官能团的存在。

三甲氧基苯是一种有机化合物,其分子结构中含有一个芳香环并且还连接了三个甲氧基基团(-OCH3)。

由于其独特的分子结构以及电子环境,三甲氧基苯的化学位移表现出一些特殊性质和规律。

2.2 影响因素化学位移受到多种因素的影响,其中最重要的因素是电子环境。

对于三甲氧基苯而言,附加在芳香环上的三个甲氧基基团对该分子的电子环境产生了显著影响。

这些取代基可以通过吸电子效应或推电子效应改变其周围原子核的化学位移值。

此外,溶剂效应也可能对化学位移产生一定影响。

不同溶剂具有不同极性和溶解度等性质,这些性质会干扰分子内部的相互作用,并可能导致化学位移的变化。

2.3 实验方法和测量技术确定化学位移通常是通过核磁共振谱仪进行实验来完成的。

核磁共振谱图显示了样品中各种不同原子种类的特定峰值信号,这些峰值与特定化学位移值相关联。

丙酮质子的相对化学位移2.1,这种质子共振吸收处于tms的低场

丙酮质子的相对化学位移2.1,这种质子共振吸收处于tms的低场

丙酮质子的相对化学位移2.1,这种质子共振吸收处于tms的低场1. 引言1.1 概述丙酮是一种常见的有机溶剂和化工原料,广泛应用于化学合成、药物制造、涂料和染料等领域。

在有机化学研究中,通过核磁共振(NMR)技术可以对丙酮分子进行分析和表征。

其中,丙酮质子的相对化学位移则是一个重要的参数,可以给出关于丙酮分子结构和其它相关性质的信息。

1.2 文章结构本文将首先概述丙酮质子相对化学位移的背景和意义,然后详细介绍质子共振吸收处于三甲基硅烷(TMS)低场下的解释原理。

接着,我们将探讨影响丙酮质子相对化学位移的因素,并通过实验数据分析来验证这些因素在实际情况中的作用。

最后,我们将讨论丙酮质子相对化学位移与其结构之间可能存在的关系,并展望未来研究在此领域中的重要意义。

1.3 目的本文旨在系统地讲解丙酮质子相对化学位移及其相关内容,并深入分析影响丙酮质子相对化学位移的因素。

通过本文的阐述,读者将能够更好地理解丙酮质子相对化学位移与结构之间的关系,并对该领域的未来研究方向有所了解。

以上就是本文章“1. 引言”部分的详细内容,希望能满足您的需求。

如有任何问题,请随时提问。

2. 正文:2.1 丙酮质子的相对化学位移概述在核磁共振(NMR)光谱中,丙酮的质子信号是一个常见的实验信号。

相对化学位移是指某个原子核在强加外磁场下的共振频率与参考物质(通常为四甲基硅烷,简称TMS)的共振频率之比。

丙酮质子的相对化学位移被测定为2.1,在一般实验条件下,这个数值较为稳定。

2.2 质子共振吸收处于TMS的低场解释TMS作为一个标准参考物质,其H-NMR谱图中包含一个定义为零点的信号。

这个信号被定义为0 ppm (部分百万)。

而丙酮所产生的信号出现在更高场(消化位置),意味着它比TMS更受外界磁场影响。

这种低场位移可以通过电荷环境、溶剂效应以及分子构象等因素来解释。

2.3 影响丙酮质子相对化学位移的因素有多种因素会影响丙酮质子相对化学位移。

各类质子的化学位移

各类质子的化学位移

各类质子的化学位移碳上质子的化学位移值取决于质子的化学环境。

因此,我们也可以反过来由质子的化学位移推测质子的化学环境及分子的结构。

各类质子的化学位移大体有一个范围,下面给出各类质子的粗略化学位移:碳上的氢(H)脂肪族CH(C上无杂原子)0——2.0β-取代脂肪族CH1.0——2.0炔氢1.6——3.4α-取代脂肪族CH(C上有O、N、X或与烯键、炔键相连) 1.5——5.0烯氢4.5——7 .5苯环、芳杂环上氢6.0——9.5醛基氢9——10 .5氧上的氢(OH)醇类0.5——5.5酚类4 .0——8.0酸9——13.0氮上的氢(NH)脂肪族0.6——3.5芳香胺3.0——5.0酰胺5——8.5对于大部分有机化合物来说氢谱的化学位移值在0-13 ppm. 大致可分以下几个区0-0.8 ppm :很少见,典型化合物; 环丙烷,硅烷,以及金属有机化合物。

0.8-1.5 ppm :烷烃区域. 氢直接与脂肪碳相连,没有强电负性取代基。

化学位移地次序CH>CH2>CH3.。

如果有更多的取代基化学位移移向低场。

2-3 ppm:羰基αH(醛、酮、羧酸、酯)、苄位碳H。

1.5-2ppm:烯丙位碳H卤代烃(氯、溴、碘)同碳氢:2-4ppm,氟代烃:4-4.53.0-4.5 ppm:醚区域。

即醚,羟基或者酯基碳氧单键的αH如果有更多的电负性取代基化学位移移向低场。

5.0-7.0 ppm :双键区域,氢直接与C=C 双键相连。

炔氢化学位移2-3。

7.0-8.0 ppm :芳环质子区域. 磁各向异性作用,导致芳环质子处于去屏蔽区。

同样现象发生在醛由于羰基地磁各向异性,醛质子化学位移在9-10 ppm-OH 可以出现在任何位置,谱线的性质由多重因此影响H的交换:pH.浓度,温度,溶剂等。

一般芳环酚羟基更趋于低场。

醇羟基0.5-5.5ppm,酚羟基4-8ppm 醇在DMSO中4.0-6.5大多数的-NHR, -NH2和醇一样,可被交换,在 2-3 ppm 区域显示宽峰。

核磁共振氢谱中的几个重要参数

核磁共振氢谱中的几个重要参数

2.1核磁共振氢谱中的几个重要参数1、化学位移(1)影响化学位移的主要因素:a.诱导效应。

电负性取代基降低氢核外电子云密度,其共振吸收向低场位移,δ值增大,如CH3F CH3OH CH3Cl CH3Br CH3I CH4TMSδ(ppm) 4.06 3.40 3.05 2.68 2.16 0.23 0X电负性 4.0 3.5 3.0 2.8 2.5 2.1 1.6对于X-CH<YZ型化合物,X、Y、Z基对>CH-δ值的影响具有加合性,可用shoolery公式估算,式中0.23为CH4的δ,Ci值见下表。

例如:BrCH2Cl(括号内为实测值)δ=0.23+2.33+2.53=5.09ppm(5.16ppm)利用此公式,计算值与实测值误差通常小于0.6ppm,但有时可达1pmm。

值得注意的是,诱导效应是通过成键电子传递的,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个碳以上的影响可以忽略不计。

例如:b.磁各向异性效应。

上面所述的质子周围的电子云密度,能阐明大多数有机化合物的化学位移值。

但是还存在用这一因素不能解释的事实:如纯液态下的乙炔质子与乙烯质子相比,前者在高场共振;相反苯的质子又在低场下发生共振。

这些现象可用磁各向异性效应解释。

当分子中某些基团的电子云排布不是球形对称时,即磁各向异性时,它对邻近的H核就附加一个各向异性磁场,使某些位置上核受屏蔽,而另一些位置上的核受去屏蔽,这一现象称为各向异性效应。

在氢谱中,这种邻近基团的磁各向异性的影响十分重要。

现举例说明一下:叁键的磁各向异性效应:如乙炔分子呈直线型,叁键轴向的周围电子云是对称分布的。

乙炔质子处于屏蔽区,使质子的δ值向高场移动。

双键:π电子云分布于成键平面的上、下方,平面内为去屏蔽区。

与SP杂2化碳相连的氢位于成键的平面内(处于去屏蔽区),较炔氢低场位移。

乙烯:5.25ppm;醛氢:9-10ppm。

化学键的各向异性还可由下述化合物(1)至(4)看出:化合物(1)、(3)中的标记氢分别处于双键和苯环的屏蔽区,而化合物(2)、(4)中相应的氢分别处于双键和苯环的去屏蔽区,δ值增大。

第三章 核磁共振氢谱2-化学位移

第三章 核磁共振氢谱2-化学位移

六、 氢键的影响 • 氢键的形成 降低了核外电子云密度,有去屏蔽效应, 使质子的δ值显著增大。δ值会在很宽的范围内变化。
• 随样品浓度的增加,缔合程度增大,分子间氢键 增强,羟基氢δ值增大。
PhOH中酚羟基H的化学位移与浓度的关系:
浓度 δ/ppm 100% 7.45 20% 6.8 10% 6.4 5% 5.9 2% 4.9 1% 4.35
一、 饱和碳上质子的化学位移 甲基 甲基的化学位移在0.7~4ppm之间。
亚甲基(CH2)和次甲基(CH):1-2ppm Shoolery经验计算: δ :-CH< = 0.23 + ∑Ci
0.23是甲烷的化学位移值,Ci是与次甲基(亚甲
基)相连的取代基的影响参数(P95,表3.1)。 例:BrCH2Cl Br: 2.33; Cl: 2.53
-CH 2 -NO
13
12
11
10
9
8
7
6
5
4
3
2
1
0
各类质子的化学位移值范围
• 有机化合物中质子化学位移规律:
饱和碳原子上的质子的 值:叔碳 > 仲碳 > 伯碳 与H相连的碳上有电负性大的原子或吸电子基团 (N, O, X, NO2, CO等), 值变大。电负性越 大,吸电子能力越强, 值越大。 值:芳氢 > 烯氢 > 烷氢
吸电子诱导效应:去屏蔽效应,化学位移增大 给电子诱导效应:屏蔽效应,化学位移减小
化合物 δ
CH4 0.23
CH3Cl 3.05
CH2Cl2 5.33
CHCl3 7.27
化合物 电负性 δ
C-CH3 C: 2.5 0.7~1.9
N-CH3 N: 3.0 2.1~3.1

13CNMR核磁共振碳谱化学位移总览表

13CNMR核磁共振碳谱化学位移总览表

1) INEPT法
由于核磁共振本身信号灵敏度很低,尤其是低天然丰度的核 (如13C、15N等)更为突出。INEPT法是在具有两种核自旋的系统 中,以CH为例,通过脉冲技术,把高灵敏1H核的自旋极化传递到 低灵敏的13C核上去,这样由1H到与其偶合的13C的完全极化传递可 使,13C信号强度增强4倍。

的峰的裂分应全部去除。如果还有谱线的裂分不能去除,应考虑分
子中是否含F或P等元素。 (6)从分子式和可能的结构单元,推出可能的结构式。利用化学位移 规律和经验计算式,估算各碳的化学位移,与实测值比较。 (7)综合考虑1H NMR、IR、MS和UV的分析结果,必要时进行其他 的双共振技术及τ 1测定,排除不合理者,得到正确的结构式。
δ值范围在100-150ppm,sp杂化碳的δ值范围在60-95ppm。
2.诱导效应
当电负性大的元素或基团与碳相连时,诱导效应使碳的核外 电子云密度降低,故具有去屏蔽作用。随着取代基电负性增强, 或取代基数目增大,去屏蔽作用也增强, δ值愈向低场位移。
3.共轭效应
共轭作用会引起电子云分布的变化,导致不同位置碳的共 振吸收峰向高场或低场移动。
5.弛豫时间τ1可作为化合物结构鉴定的波谱参数
在化合物中,处于不同环境的13C核,它们的弛豫时间τ1数
值相差较大,可达2-3个数量级,通过τ1可以指认结构归属,
窥测体系运动状况等。
4.2.1
脉冲傅里叶变换法
原理同1H NMR。
4.2.2
核磁共振碳谱中几种去偶技术
在有机化合物的13C NMR中,13C-13C之间的偶合由于13C的天然丰 度很低,可以不予考虑。但13C-1H核之间的偶合常数很大,如1JCH高达 120-320Hz,13C的谱线会被与之偶合的氢按n+1规律裂分成多重峰,这 种峰的裂分对信号的归属是有用的,但当谱图复杂时,加上2JCCH、

核磁共振化学位移

核磁共振化学位移

HO
O CH3
7.85ppm 7.48ppm 7.54ppm
7.26ppm
6.84ppm 7.18ppm 6.90ppm
苯甲醚
苯甲醛
溴甲烷
溴乙烷
1-溴丙烷
H 7.27
7.78
Ha
A
H
OH
C=O
H 6.73
H 7.81
OCH3 Hb
6.70
8.58
Ha1 O
COCH3
OCH3 B
Hb 8.08 Ha2 C 7.94
Cl CH2 H Cl2 CH H Cl3 C H
3.05 5.30 7.27
基团距离越远,受到的影响越小
CH3 CH2 CH2 Br
1.25 1.69 3.30
CH3F CH3OH CH3Cl CH3Br CH3I CH3-H
/ppm 4.26
3.40
3.05
2.68
2.16
0.23
cba
正屏蔽:
由于结构上的变化或介质的影响使氢核外
电子云密度增加,或者感应磁场的方向与外磁
场相反,则使谱线向高磁场方向移动(右移), 值减小,亦叫抗磁性位移。
去屏蔽:
由于结构上的变化或介质的影响使氢核外
电子云密度减少,或者感应磁场的方向与外磁
场相同,则使谱线向低磁场方向移动(左移), 值增加,亦称顺磁性位移。
优点:
12个氢处于完全相同的化学环境,只有一个 峰,
电负性 Si C, 屏蔽作用很高,一般质子的 吸收峰都出现在它的左边-----低场,
沸点低,27oC,易挥发,能与许多有机溶剂 相溶。
标准:四甲基硅(TMS),δ=0
TMS的化学位移最大,但规定 TMS=0,

氨基氢的化学位移

氨基氢的化学位移

氨基氢的化学位移
氨基氢(NH)的化学位移是指在涉及到核磁共振(NMR)技术时,NH基团中氢原子产生的信号所对应的化学位移值。

NH基团通常会出现在有机化合物、氨基酸和蛋白质等生物分子中,因此氨基氢的化学位移是研究这些化合物结构和性质的重要指标。

氨基氢的化学位移是由多种因素影响的,其中最主要的因素是分子的局部电荷分布和分子的环境。

通常情况下,NH基团中的氢原子呈现出比较明显的化学位移,这主要是由于NH基团中的氢原子具有较强的负云电荷,同时又处于氨基团中间的位置,容易受到周围空间中的电场作用。

当NH基团所在分子中,存在一些带电原子或者化学键发生变化时,NH基团中的氢原子的化学位移值就会发生变化。

例如,当NH基团中的氢原子与一个带正电荷的氮原子相邻时,氢原子的化学位移值就会增加,因为它会受到相邻氮原子的电场效应。

同样地,当NH基团中的氢原子周围的分子环境中存在较强的电场效应时,它的化学位移值也会发生变化。

此外,NH基团中的氢原子的化学位移值还可能受到分子的化学结构和构象的影响。

例如,当分子中存在相对位移较大的基团时,NH基团中的氢原子的化学位移值就会发生变化。

在蛋白质分子中,NH基团中的氢原子的化学位移值的变化还可能由于分子的异构化和构象变化所导致。

因此,NH基团中的氢原子的化学位移值是一个极其重要的指标,用于研究分子结构、性质、构象和异构化等方面,对于了解生物化学和有机化学等学科的发展具有重要意义。

同时,在生物医学和药物研发领域,NH基团中的氢原子的化学位移值也被广泛地应用于药物分子的结构优化和设计,以及生物分子的功能性研究等方面。

波谱分析报告报告材料习的题目

波谱分析报告报告材料习的题目

波谱分析习题一、选择题DCCBB DAB一、选择题1 下面五种气体不吸收红外光的是( )A. CH3ClB. CH4C. CO2D. N2。

2 有一种含氮的药物如用红外光谱判断它是否为腈类物质主要依据的谱带范围为A. 1500一1300cm-lB.3000—2700cm-1C.2400—2100cm-1D.1900—1650cm-1E. 3300—3000cm-13. 峰的裂分数反应的是相邻碳原子上的质子数因此化合物BrCH2-CHBr2中-CH2-基团应该表现为A单峰B四重峰 C. 两重峰D. 三重峰。

4紫外光谱中观察到230-270nm有多个精细结构的弱吸收峰可能是含有以下哪种基团A. 烷基B. 苯环C. 双烯D. 羰基。

5某化合物红外光谱在3600-3200cm-1有两个中等强度的尖峰可能含有下列哪种基团A. -OHB.NH2C. –C=ND. –C=C6计算化合物C8H10O的不饱和度是A. 7B.6C. 5D. 4。

7. 处于高能级的核将其能量及时转移给周围分子骨架中的其它核从而使自己返回到低能态称为A. 纵向弛豫B. 横向弛豫C. 核磁共振D. 拉莫进动。

8. 下列化合物按化学位移值的从大到小的顺序排列正确的是A. CH3Br >CH3Cl> CH4> CH3I;B. CH3F >CH3Cl> CH3I> CH4C. CH4> CH3I > CH3Cl > CH3Br;D. CH3I > CH4> CH3Cl > CH3F.二、填空题1. 1/22. C=O3. 助色团红移增色4. 偶极矩5. 低四甲基硅烷TMS12大能级分裂核磁共振棱镜光栅振动能级1的原子呈核电荷均匀分布的球体有磁矩产生核磁共振吸收。

比较C=C和C=O键的伸缩振动谱带强度更大者是。

3. 有一些含有n电子的基团本身没有生色功能但当它们与生色团相连时就会发生n—π共轭作用增强其生色能力这样的基团称为即使得最大吸收波长λmax 同时伴随效应。

核磁共振波谱法 2

核磁共振波谱法 2

9
自旋偶合与自旋裂分
如果H 邻近没有其他质子, 共振条件为: 如果Ha邻近没有其他质子,则Ha共振条件为:
ν0 = [γ / (2π ) ](1- σ)H0 π
由公式9-6和9-8 由公式 和
邻近有H 存在, Ha邻近有Hb存在,Hb 在外磁场中有两 种自旋取向,相应产生两种自旋磁场, 种自旋取向,相应产生两种自旋磁场,对Ha 核有干扰。 核有干扰。
O CH 3 H 3C C N CH 3
O H H 3C C N H
与手性碳相连的CH2的两个氢化学不等价。 的两个氢化学不等价。 ⑷ 与手性碳相连的
H2 R1 R C C R2 R3
H 2 CH 3 R 1 C C C R2 CH 3 R 3
自旋体系的分类
核磁共振氢谱谱图分分为一级谱和高级谱(不要求) 核磁共振氢谱谱图分分为一级谱和高级谱(不要求)。 高级谱 一级谱的特征: 一级谱的特征:
22
谱Байду номын сангаас解析的步骤 (3)已知分子式,计算不饱和度 已知分子式,
2x + 2 − y Ω= 2
23
(4)利用化学位移确定各吸收峰所对应的 氢核类型
谱图解析的步骤
(5)根据重峰数、偶合常数及峰形确定基团的连接关系 根据重峰数、 利用n+1规律) n+1规律 (利用n+1规律) 结合元素分析、红外光谱、紫外光谱、质谱、 ( 6) 结合元素分析 、 红外光谱 、 紫外光谱 、 质谱、 13 C 核 磁共振谱和化学分析的数据推导化合物的结构。 磁共振谱和化学分析的数据推导化合物的结构。 (7)仔细核对个组信号的化学位移和偶合常数与推定的结 7)仔细核对个组信号的化学位移和偶合常数与推定的结 构是否相符,必要时, 构是否相符,必要时,找出类似化合物的共振谱进行 比较, 比较,进而确定化合物的结构式 。

有机化学光谱(考研备考)汇总

有机化学光谱(考研备考)汇总

红外光谱的八个峰区第三章 核磁共振碳谱图9.11 b 2,2,4-三甲基-1,3-戊二醇的核磁共振碳谱核磁共振碳谱图中谱线的多少,表示有机物分子中碳原子数的种类,即有多少谱线就说明有机物分子至少有多少碳原子组成。

如图9.11a是特丁醇的核磁共振碳谱,特丁醇分子中共有四个碳原子,但三个甲基的碳原子是相同的,这样谱图上只有两个峰。

而图9.11 b是手性分子2,2,4-三甲基-1,3-戊二醇的核磁共振碳谱,2,2,4-三甲基-1,3-戊二醇分子共8个碳原子,但谱图上只有7个峰,这是因为该分子结构中端位的两个甲基是相同的。

事实上,端位的这两个甲基也是有细微差别的,若用高分辨的核磁共振仪器或使用位移试剂也可能将峰c分成两个峰。

综上所述,我们可以看到:核磁共振氢谱和碳谱技术有许多共性,原理基本相同,只是针对测定的原子核对象改变而有一些相应的改变。

如重氢交换技术对碳谱就不适合,但位移试剂和去偶等技术是一样的。

除此之外,除非采用特定技术条件,碳谱峰高与碳原子数无关,只关注化学位移,而氢谱则是峰面积和化学位移具有同等重要的地位。

同时碳谱都是完全去偶的谱线,而氢谱却都是多重分裂能够重叠的峰。

核磁共振碳谱主要关注谱线的化学位移δ值,不同类型的碳原子在有机物分子中的位置不同,则化学位移δ值不同。

反之,根据不同的化学位移可以推断有机物分子中碳原子的类型。

有机物分子中常见类型的碳原子的化学位移列于表9.3中。

表9.3可以看出:核磁共振碳谱的化学位移值,按有机物的官能团有明显的区别,这种区别比红外光谱还要准确可辩,现分述如下:表9.3 不同类型碳原子的化学位移碳原子类型化学位移(ppm)>C=O 酮类188~228醛类185~208酸类165~182酯、酰胺、酰氯、酸酐150~180>C=N-OH 肟155~165>C=N-亚甲胺145~165-N=C=S 异硫氰化物120~140-S-C≡N 硫氰化物110~120-C≡N 氰110~130X115~155X:O S N 芳杂环110~135芳环>C=C< 烯110~150-C≡C-炔70~100C O70~85季碳醚>CH-O-叔碳醚65~75-CH2-O-仲碳醚40~70CH3-O-伯碳醚40~60C N65~75季碳胺CH N叔碳胺50~70CH2N仲碳胺40~60CH3N伯碳胺20~45C S55~70季碳硫醚CH叔碳硫醚40~55S-CH2-S-仲碳硫醚25~45CH3-S-伯碳硫醚10~30C XI 35~75 ClX:Cl,Br,I 季碳卤化物CH X叔碳卤化物I 30~65 Cl-CH2-X 仲碳卤化物I 10~45 ClCH3-X 伯碳卤化物I -35~35 ClC35~70季碳烷烃CH叔碳烷烃30~60-CH2-仲碳烷烃25~45CH3-伯碳烷烃-20~30环丙烷-5~5150-220ppm,这是各类羰基 C=O碳的特征化学位移值,尤其是酮类羰基的化学位移超过188ppm,而酯、酰胺和酰卤等羧酸衍生物中羰基的化学位移又低于180ppm,据此可以非常清楚地区分这几类有机物。

化学位移ppt课件

化学位移ppt课件
10
(3) 磁的各向异性效应
化合物中非球形对称的电子云(如:π电子系统)因电子的流动而产生诱 导磁场,这个磁场是各向异性的。在不同区域,磁场方向不一致。
与外磁场H0方向相同的区域, 对其中的质子产生顺磁屏蔽
作用(去屏蔽作用, -),发生低场位移。 与外磁场方向相反的区域,对其中的质子产生抗磁屏蔽作 用(屏蔽作用,+),发生高场位移。 产生各向异性的常见基团:
• 炔氢正好位于正屏蔽 区,故共振峰出现在较 高场,δ较小,小于烯氢, 一般2~3
17
单键的各向异性效应
形成单键的sp3杂化轨道是非球形对称的,也有各向 异性效应,但很弱。在沿着单键键轴方向是去屏蔽区, 而键轴的四周为屏蔽区。
R3CH 1.40 ~ 1.65
R2CH2 1.20 ~ 1.48
RCH3 0.85 ~ 0.95
A. 氨基 B. 甲基 C. 苯环
答案:A
54
53
重氢交换——若分子中存在酸性氢核,化学位移不稳定,识别困 难,且有时还干扰其他信号的识别。通常可以在样品中加入12滴重水后剧烈震摇几分钟,使混合物静置(或离心)直到明 显分层。上部水层不会产生干扰。这样,酸性氢核通过与重水 交换而使其信号得以清除。
例 对甲基苯胺的1H NMR谱中,出现在δ4.0ppm处的一个单 峰在加入重水后再次测定时消失,表明此峰代表( )吸收峰。
醛氢:9~10 羧基氢(COOH):10~12 活泼氢(单峰)化学位移不固定(如 -OH,1.0-5.5)
32
相邻有电负性基团的饱和碳上H的化学位移
苄基氢
6.0~9.0 H
2.0~3.0 CHR2
烯丙位H
与卤素相连 与O (醇、醚、酯)相连
33

不同类型质子的化学位移甲基

不同类型质子的化学位移甲基

而重现的测定,一般采用核磁共振峰间共振频率差异去测定。所以核
磁共振谱峰的位置均以标准物质的共振峰为参比,用相对数值表示化
学位移(Δν, δ)。通常最常采用的参比物质是四甲基硅烷(TMS)。
二、化学位移标准物质和化学位移的表示
四甲基硅烷(TMS)具有以下优点:
1. 硅的电负性(1.9)比碳的电负性(2.5)小,TMS上的氢和碳核 外电子云密度相对较高,产生较大的屏蔽效应,其位置出现于高磁场 处。
1. 共振频率差(Δν,Hz):
v v样品 - v标准 2 B0 标准 - 样品
共振频率差(Δν,Hz)与外磁场强度B0成正比。同一样品的同一磁性核 用不同MHz仪器测得的共振频率差不同。如我们假定一个峰在300 MHz仪器上对于频率为1200 Hz,如果换作600 MHz的仪器,我们 指定的峰将会是2400 Hz的位置。
二、化学位移标准物质和化学位移的表示
2. 化学位移常数(δ 值)


v样品 v标准 v标准
106

v 106 v0
标准 样品 106 1 标准

标准 样品
106
δ 值只取决于测定核与标准物质参比核间的屏蔽常数差,即反映原子 核所处的化学环境,而与外磁场强度无关。如在300 MHz仪器上的 化学位移为1200 Hz/300 MHz = 4,在600 MHz的仪器上化学位 移为2400 Hz/600 MHz = 4。
共轭取代基可使与之共轭结构中的价电子分布发生改变,从而引起质
子的化学位移变化。如醛基(-CHO)与苯环间呈吸电子共轭效应,
使苯环上总的电子云密度减少,苯环上各质子δ 值都大于未取代苯上
质子的δ值。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档