线代习题

合集下载

线性代数习题集带答案

线性代数习题集带答案

线性代数习题集带答案第一部分专项同步练习第一章行列式一、单项选择题1.下列排列是5阶偶排列的是().(A ) 24315 (B ) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D )k n n --2)1(3。

n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A ) 0 (B)1- (C) 1 (D ) 25. =0001100000100100()。

(A ) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是()。

(A ) 0 (B)1- (C ) 1 (D) 27。

若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D (). (A ) 4 (B) 4- (C) 2 (D ) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B )ka - (C)a k 2 (D)a k 2- 9.已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-,则=x ( )。

(A) 0 (B )3- (C) 3 (D ) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。

(A)1- (B )2- (C )3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为().(A)1- (B )2- (C )3- (D )012。

最全线性代数习题及参考答案

最全线性代数习题及参考答案

第一章:一、填空题:1、若a a D ij n ==||,则=-=||ij a D ;解:a a a a a D aa a a a D n nnn nnnn nn )1(11111111-=----=∴==2、设321,,x x x 是方程03=++q px x 的三个根,则行列式132213321x x x x x x x x x = ; 解:方程023=+++d cx bx ax 的三个根与系数之间的关系为:a d x x x a c x x x x x x ab x x x ///321133221321-==++-=++所以方程03=++q px x 的三个根与系数之间的关系为:q x x x p x x x x x x x x x -==++=++3211332213210033)(3321221321333231132213321=--++-=-++=x x x q x x x p x x x x x x x x x x x x x x x3、行列式1000000019980001997002001000= ;解:原式按第1999行展开:原式=!19981998199721)1(0001998001997002001000219981999-=⨯⨯⨯-=+++4、四阶行列式4433221100000a b a b b a b a = ; 解:原式按第一行展开:原式=))(()()(000004141323243243214324321433221433221b b a a b b a a b b b b a a b a b b a a a a b a b b a b a a b b a a --=---=-5、设四阶行列式cdb a a cbda dbcd c ba D =4,则44342414A A A A +++= ;解:44342414A A A A +++是D 4第4列的代数余子式,44342414A A A A +++=0111111111111==d a c d d c c a bd b a c bdd b c c ba6、在五阶行列式中3524415312a a a a a 的符号为 ;解:n 阶行列式可写成∑-=n np p p ta a aD 2211)1(,其中t 为p 1p 2…p n 的逆序数所以五阶行列式中3524415312a a a a a 的符号为5341352412a a a a a 的符号,为1)1()1(5)3,1,5,4,2(-=-=-t7、在函数xx x xxx f 21112)(---=中3x 的系数是 ; 解:根据行列式结构,可知3x 须由a 11=2x ,a 33=x 和第二行的一个元素构成,但此时第三个元素只能取a 22(行、列数均不可重复),所以此式为3332211)3,2,1(2)1(x a a a t -=-,系数为-2。

线性代数习题集(带答案)

线性代数习题集(带答案)

. .. . ..第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题. .. . ..1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .. .. . ..16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a aa a a a aD ---------=1101100011000110001.. .. . ..四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略). .. . ..第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

(完整版)线性代数习题集(带答案)

(完整版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。

(A) 0 (B )1- (C) 1 (D) 25。

=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。

(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。

(A) 0 (B)3- (C) 3 (D) 210。

若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。

(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。

线性代数练习题及答案10套

线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2

1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2

07线性代数练习题(含答案)

07线性代数练习题(含答案)

习题线性代数练习题一、单项选择题111011011.行列式 ( )10110111A. 1B. 3C. -1D. -3a102.行列式b40a2b300b2a30b10() 0a4A. a1a2a3a4 b1b2b3b4B.a1a2a3a4 b1b2b3b4C. (a1a2 b1b2)(a3a4 b3b4)D. (a1a4 b1b4)(a2a3 b2b3) 3、在下列矩阵中,可逆的是()000 A. 010 001 110 011C. 121110B. 220 001 100 111D. 1014、A是n阶方阵,且A 0,则A中()A.必有一列元素全为0 B.必有两列元素成比例C.必有一列向量是其余列向量的线性组合D.任一列向量是其余列向量的线性组合5.对任意n阶方阵A、B总有()A.AB=BAB.|AB|=|BA|TTT222C.(AB)=ABD.(AB)=AB 6、设n阶方阵A、B、C满足关系式ABC=En,则必有()(A)ACB=En (B)BCA=En (C)CBA=En (D)BAC=En 7、设有m维向量组(I): 1, 2, , n,则()A.当m<n时,(I)一定线性相关B.当m>n时,(I)一定线性相关C.当m<n时,(I)一定线性无关D.当m>n时,(I)一定线性相关8.设A是m n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是()A.A的行向量组线性无关 B.A的行向量组线性相关 C.A的列向量组线性无关 D.A的列向量组线性相关-19.设A是3阶方阵,且|A|=-2,则|A|等于()习题A.-2B.11C. 22D.2* 110.设A,B均是n阶方阵, 2,B 3,则2AB ()2n 122n 12n 12nn2 (A)(B)( 1) (C)(D) 333 3(A是A的伴随矩阵)*1 111 的秩为2,则 =()11.设矩阵A= 1223 1A.2C.0B.1 D.-112.设A是三阶矩阵,有特征值1,-1,2,则下列矩阵中可逆矩阵是() A. E-A B. E+A C. 2E-A D. 2E+A22213.二次型f(x1,x2,x3) x1 3x2 4x3 6x1x2 10x2x3的矩阵是( C )A. 330 50 4 130C. 335 05 4160B. 0310 00 4 0 16 D. 6310 010 4二、填空题(每小题4分,共20分)0121.行列式123的值为 .2342、=x+1 -1 1 -13.设A 022x123 4 1,已知矩阵A的秩r(A)=2,则x4.已知A 2A 2E 0,则(A E) (其中E是n阶单位阵)习题1 1 0 15、初等矩阵A 0 1 0 ,A0 0 100F6.设 A G13G24H2I, 则 A0JJ0K等于1 1 1 11 1 1 1 ,A的非零特征值为7、A1 1 1 1 1 1 1 1T8、向量组 1 1 -1 2 4 , 2 (0 3 1 2),T3 (3 0 7 14)T,4 (1 -1 2 0)T,5 (2 1 5 6)T的秩为。

线代习题及答案

线代习题及答案

1.设B A ,均为三阶矩阵,2,3A B =-=,则*2T A B = . 2.设A 是4阶矩阵,伴随矩阵*A 的特征值是1,2,4,8--,则矩阵A 的全部特征值是 . 3. 若向量组1(1,3,6,2)T α=,2(2,1,2,1)T α=-,3(1,1,,2)T a α=--的秩为2,则a = .4.若矩阵111111t A t t ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭为正定的,则t 满足的条件为 .. .5 若⎪⎪⎪⎭⎫ ⎝⎛-==301020201,2)(B A R ,则=)(AB R6 设A 是n 阶方阵,21,x x 均为方程组b AX =的解,且21x x ≠,则=A ___________7 已知(1,1)T x =是⎪⎪⎭⎫ ⎝⎛=a A 011的一个特征向量,则=a .8 设⎪⎪⎭⎫ ⎝⎛=521a A 是正定矩阵,则a 的取值为_____________.1写出四阶行列式中含有因子2311a a 的项.2求 排列1 3 … )12(-n 2 4 … )2(n 逆序数;2试计算行列式3112513420111533------.3 设γβααα,,,,321都是4维列向量,且4阶行列式a =βααα,,,321,b =321,, ,αααγ,求4阶行列式γβααα+,,,321。

4.设矩阵A=423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程 1、AB=A+2B.2、BA=A+2B.5设向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=23102α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=1410233a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=52114a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=10612b β,问:b a ,取何值时,向量β可由向量组4321,,,αααα线性表示?并在可以线性表示时求出此线性表示式-7 求下列矩阵的秩,并指出该矩阵的一个最高阶非零子式⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------11011111100222021110解1011111002202110,4.2----秩为 8.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数。

线性代数习题及解答完整版

线性代数习题及解答完整版

线性代数习题及解答 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( ) A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是( )A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是( ) A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。

(完整版)线性代数试题和答案(精选版)

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。

m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。

130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。

13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。

120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。

设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。

6C。

2 D. –24。

设A是方阵,如有矩阵关系式AB=AC,则必有( )A。

A =0 B. B≠C时A=0C. A≠0时B=C D。

|A|≠0时B=C5。

已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。

2C。

3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。

有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。

有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。

设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。

线代一二章习题及答案

线代一二章习题及答案

第一讲 行列式例1、下三角行列式nnnn n nnnn n n n n n n a a a a a a a a a a a a a a a a22112211)12(121111211222111)1(000000000=-=-----τ对角行列式,上(下)三角行列式的值就等于对角线上的元素的乘积例2、 求xx b x a x 1221102085413+----的4x 和3x 的系数.解析:4x 的系数是1;3x 的系数是-10例3、 求3阶行列式 754102643--=(-3)A 11+4A 12+6A 13=(-3)M 11-4M 12+6m 3=(-3)⨯(-5)-4⨯(-18)+6⨯(-10)=27.例4、1010001001tt tt解析: 原式=1 A 11+t A 1n =1+11)1(-+-⋅n ntt=1+ nnt +-1)1(例5、 求行列式 2235007022220403--的第四行各元素的余子式的和. 解析: 所求为4443424144434241A A A A M M M M +-+-=+++原式=444342412235A A A A +-+将原行列式换为1111007022220403---即他的值就是原题的余子式之和答案为-28(对第三行展开 323277M A =-)例6、27718497518100549754102643=--==--08题aaa aa aa a a A 2012001200012000122222=. 证明|A |=(n+1)a n .分析: 证明:初等变换nan nan a a a n an a a a aaa aa a a a aa aa a a a )1()1(34232)1(010000340000023000012201200034000002300001220012001200002300001222222+=+⋅⋅=+→→→例7、 ?=cA 答A c n; 例 8、设4阶矩阵BA B A B A +====求,3,2),,,,(),,,,(321321γγγβγγγα解:40,,,8,,,8,,,82,2,2,),2,2,2,(321321321321321=+=+=+=++=+γγγβγγγαγγγβαγγγβαγγγβαB A B A例9、 已知行列式3123111++++-+--z x y y x z z y xd c b a 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z.解析:思路:利用性质8⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧=+++--→z y x z y x 0)1(339(二)、典型例题 例1①22222aaaaa a a a a a a a a a a aa a a a ②xx x x ++++1111111111111111③aa a a ++++4444333322221111④ 对角线上的元素都为0,其它元素都为1的n 阶行列式. ②分析:解:4)x 00000001114111411141114111411111111111111113+=+→+++++++→++++(所以值x xx x x xxx x x x x xx x x①分析:与②同理 ④分析:类型一致③分析:把下面三行分别加到第一行例24321532154215431543254321解:100510501500115111111411411411115111411411411411115111401141014110411105432154321153215152154151543155432154321532154215431543254321-------→-------→----→----→→所以值=15×125=1875例343211111111111111111x x x x ++++解:+=+++++==+++++++=++++4321431432432143214324321401010********01001001000100000000011101110111011111111111111111111111111111111111x x x x x x x x x x x x x x x x x x x x x x x x x例4 证明时)当b a ba bab aba ab b a b b a a b b a n n ni iin ≠--==++++++=-∑(00000000011分析:证明:归纳法:展开递推21n )(---+=→n n abD D b a D 递推公式 再用归纳法证明之 也可以:nn n n abD ab a b ab a bD ba ab b a b ab a bD ba ab b a b b a b b b a a b b a b b a a b a +=+==+++=+++++++---111000000000000000000000000000000000000000000时)当另b a ba baD baD b a b a D D D D n n n n n n nn nn ≠--=→-=-→⨯〉〈-⨯〉〈〉〈+=〉〈+=++++--()(212b a 1a b 111111-n 11-n na n aaa a a a a a ab a )1(2020000020002+=其值为时另当第二讲 矩阵例、⎪⎪⎪⎭⎫ ⎝⎛---=101111010A ,⎪⎪⎪⎭⎫⎝⎛--=301521B .求 B AX =的解⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫⎝⎛-----=313315210010101301521101111010)(B A⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→211213100010001413415200010101⎪⎪⎪⎭⎫⎝⎛---=211213X2007年的一个题中,求3阶矩阵 B , 满足⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-222111B ,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛011011B ,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛110110B .解:建立矩阵方程⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-102112012101111011B⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---21311001112011001111011222110011111⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-→011101110100010001033110011300110011⎪⎪⎪⎭⎫ ⎝⎛--=011101110TB⎪⎪⎪⎭⎫⎝⎛--=011101110B2008年考题: 03=A ,时 证明: A E -可逆.证 E A E A A E A E =-=++-32))((.所以A E -可逆例1、设C B A ,,都是n 阶矩阵,满足CA A C AB E B +=+=,,则C B -为(A)E .(B) E -. (C)A . (D)A -. )(A (2005年数学四)AB E B +=化为E B A E =-)( 即 B 与 )(A E - 互为逆矩阵CA A C += 化为 A A E C =-)(, 用 B 右乘得 AB C = 例2、 设A 是3阶矩阵,将A 的第2行加到第1行上得B ,将B 的第1列的-1倍加到第2列上得 *C .记⎪⎪⎪⎭⎫⎝⎛=100011001PAP P C A 1)(-= 1)(-=PAP C B AP P C C T =)( TPAPD =)(A B ⎪⎪⎪⎭⎫ ⎝⎛=100010011⎪⎪⎪⎭⎫⎝⎛-=100010011B C110010011100010011-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=PAP A C例3、 设A 是3阶可逆矩阵,交换A 的1,2行得B ,则(A) 交换*A 的1,2行得到*B . (B) 交换*A 的1,2列得到*B . (C) 交换*A 的1,2行得到*-B . (D) 交换*A 的1,2列得到*-B . 2009题设A 和B 都是2阶矩阵,2=A , 3=B .则 ()=⎪⎪⎭⎫⎝⎛*O BA O⎪⎪⎭⎫⎝⎛**O A B O A 23)(⎪⎪⎭⎫⎝⎛**O A B OB 32)( ⎪⎪⎭⎫⎝⎛**O B A O C 23)(⎪⎪⎭⎫⎝⎛**O B A O D 32)(( 2009年的考题)解:1-*=CC C先求1-C()⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=00100011000010010010*********A O O B O B A OE C⎪⎪⎭⎫ ⎝⎛→--O ABO E O O E11⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=----*O ABOO A BO O BA O C 1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=**----O A B B A O OA AB B B A O O ABOB A 1111例4、 设A 是n 阶非零实矩阵,满足 TA A =*. 证明:)1(>A)2(如果2>n 则1=A解:条件TA A =*,即,)()(Tij T ij a A =即ji ij ij a A ,,∀=(1)inin i i i i A a A a A a A ++=2211022221≥+++=ini i a a a又因为 0≠A , 即A 有非零元素, 则2221>+++=in ke k a a a A(2)EA AAAAT==*nAA=2得12=-n A因为>A2-n 是正整数,得1=A例5、 3阶矩阵B A ,满足E BA ABA +=**2,其中⎪⎪⎪⎭⎫⎝⎛=100021012A ,求B .(04一) 解:E BA ABA+=**2E BA E A =-*)2(AB E A A =-)2(AB E A A =-23913112122=⨯=-=AE A B例6 设3阶矩阵,⎪⎪⎪⎭⎫⎝⎛---=201011153A A XA XA A 21+=-,求X .解: 11112)(----+=AAXAAAXA AE X X A 21+=-A AX X 2+=A X A E 2)(=-⎪⎪⎪⎭⎫⎝⎛------=-4020222106101021152)2(A A E ⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛------→010424202210001002142262022120110021⎪⎪⎪⎭⎫⎝⎛---→01042424106100010001得⎪⎪⎪⎭⎫ ⎝⎛---=01042424106X例7 设3阶矩阵,⎪⎪⎪⎭⎫ ⎝⎛---=111111111A X A X A 21+=-*,求X .解: X A X A 21+=-*AXE X A 2+=E X A E =-)24(1)24(--=A E X411110112111111111=--=---=A例8 4阶矩阵B A ,满足E BAABA311+=--,已知⎪⎪⎪⎪⎪⎭⎫⎝⎛-=*8000010030100101A 求B . (00一) 解: E BAABA311+=--A B AB 3+=EA B A B A 3+=*83==*AA得2=AE B A E 6)2(=-*1)2(6-*-=A E B例9 设B A ,是3阶矩阵,A 可逆,它们满足E B B A 421-=-.(1) 证明E A 2-可逆.(2) 设⎪⎪⎪⎭⎫⎝⎛-=200021021B ,求A .(2002)A 可逆解:EB B A 421-=-即A AB B 42-= B A AB 24+= A B E A 4)2(=-由A 可逆得E A 2-可逆例10 设n 阶矩阵B A ,满足bB aA AB +=.其中0≠ab ,证明 (1)bE A -和aE B -都可逆. (2) A 可逆B ⇔可逆. (3)BA AB =解:(1)令aE B D bE A C -=-=,aE D B bE C A +=+=,abE bD abE aC aE D bE C +++=++))(( abE bD aC abE bD aC CD 2++=+++D C abE CD ,⇒=都可逆或者直接把bE A -和aE B -相乘abE bB aA AB +--(2)aA B bE A =-)( (3)abE aE B bE A =--))((E aE B ab bE A =--)()( EabbE A aE B =--)()( abE bE A aE B =--))((O bB aA BA =--AB bB aA BA =+=例11 设B A ,都是n 阶对称矩阵,AB E +可逆,证明A AB E 1)(-+也是对称矩阵. 证:验证A AB E A AB E T11)(])[(--+=+ TTTAB E A A AB E ])[(])[(11--+=+ 111)()(])[(---+=+=+=BA E A A B E A AB E A T T T即要证明)()()()(111BA E A AB E A A AB E BA E A ++=⇔+=+---)()(BA E A A AB E +=+⇔。

线性代数习题及解答

线性代数习题及解答

线性代数习题说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||:. ||表示向量:.的长度,:.T表示向量:.的转置, 单位矩阵,A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列岀的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

a11a12a133耳13a123a131.设行列式a21a22a23=2,则_a31_a32_a33=( )a31932a33a21 — a31a22 — a32323 —a33A . -6 B. -3C. 3D. 62 .设矩阵A,X为同阶方阵,且A可逆,若A (X七)=E,则矩阵X=( )■1A. E +A 1B. E-A■1C. E+AD. E-A 13•设矩阵A,B均为可逆方阵,则以下结论正确的是( )A 1A可逆,且其逆为"< A;B 1A不可逆I B丿丿I B丿r B、% )A-1C.. 可逆,且其逆为 D .. 可逆,且其逆为I B丿<A-1」I B丿< B J4. 设:• 1,「2,…,:-k是n维列向量,则1,2,…,:-k线性无关的充分必要条件是(A .向量组仆2,…,〉k中任意两个向量线性无关B .存在一组不全为0的数11,12,…,I k,使得11 1 + 12〉2+…+ l k二0C .向量组:-1,:- 2,…,〉k中存在一个向量不能由其余向量线性表示D .向量组:•仆〉2,…,〉k中任意一个向量都不能由其余向量线性表示5. 已知向量2:-(1,一2,-2,-1)丁,3二日'21 =(1,Y,-3,0)丁,则鳥-■'■=( )A.(0,-2, -1, 1) T B . (-2 , 0, -1, 1) TC.(1 , -1, -2 , o) T D . (2, -6 , -5, -1) T6 . 实数向量空间V={( x, y, z)|3x+2y+5z=0}的维数是( )A . 1B . 2E表示C . 3D . 47 •设:.是非齐次线性方程组 Ax =b 的解,1是其导出组Ax = 0的解,则以下结论正确的是B .+『■是Ax =b 的解D . :- - 是 Ax =0 的解、填空题(本大题共10小题,每空2分,共20 分)请在每小题的空格中填上正确答案,错填、不填均无分。

《线性代数》习题集(含答案)

《线性代数》习题集(含答案)

《线性代数》习题集(含答案)第一章【1】填空题 (1) 二阶行列式2a ab bb=___________。

(2) 二阶行列式cos sin sin cos αααα-=___________。

(3) 二阶行列式2a bi b aa bi+-=___________。

(4) 三阶行列式xy zzx y yzx =___________。

(5) 三阶行列式a bc c a b c a bbc a+++=___________。

答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。

【2】选择题(1)若行列式12513225x-=0,则x=()。

A -3;B -2;C 2;D 3。

(2)若行列式1111011x x x=,则x=()。

A -1, B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。

A -70;B -63;C 70;D 82。

(4)行列式00000000a ba b b a ba=()。

A 44a b -;B ()222a b-;C 44b a -;D 44a b 。

(5)n 阶行列式0100002000100n n -=()。

A 0;B n !;C (-1)·n !;D ()11!n n +-•。

答案:1.D ;2.C ;3.A ;4.B ;5.D 。

【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。

【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。

答案:(1)τ(134782695)=10,此排列为偶排列。

线代第一章测试题及答案

线代第一章测试题及答案

线代第一章测试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项不是线性代数的研究对象?A. 向量空间B. 线性方程组C. 矩阵D. 微分方程答案:D2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行(或列)的最大数目D. 矩阵的元素个数答案:C3. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 奇异矩阵D. 任意矩阵答案:B4. 向量空间的基是指:A. 空间中的任意一组向量B. 空间中的一组线性无关的向量C. 空间中的一组线性相关的向量D. 空间中的一组正交向量答案:B二、填空题(每题5分,共20分)1. 矩阵的元素个数称为矩阵的______。

答案:阶数2. 如果一个矩阵的行向量组线性无关,则该矩阵是______矩阵。

答案:满秩3. 向量空间中,一组向量如果满足线性组合的系数全为零,则称这组向量是______的。

答案:线性无关4. 一个n阶方阵的行列式等于______。

答案:0三、简答题(每题10分,共20分)1. 请简述什么是线性方程组的解。

答案:线性方程组的解是指满足方程组中所有方程的未知数的取值。

2. 请解释什么是矩阵的转置。

答案:矩阵的转置是指将矩阵的行向量变成列向量,列向量变成行向量,即交换矩阵的行和列。

四、计算题(每题15分,共40分)1. 计算矩阵A的行列式,其中A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\]。

答案:\[ \text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 已知矩阵B = \[\begin{bmatrix} 2 & 1 \\ 4 & 2\end{bmatrix}\],求B的逆矩阵。

答案:\[ B^{-1} = \frac{1}{(2)(2) - (1)(4)} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -0.5 \\-2 & 1 \end{bmatrix} \]。

线代练习题(新最终稿)

线代练习题(新最终稿)

专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
)T
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日
专业班级学号末两位姓名成绩批改日期月日。

线性代数习题及解答

线性代数习题及解答

线性代数习题及解答 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1 B .E -A C .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),TT+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T B .(-2,0,-1,1)T C .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( )A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( ) A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是( )A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是( ) A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。

线性代数同步习题及答案

线性代数同步习题及答案
2
c21 c c2源自1 d d2 d4a4
b4
c4
= (a − b)(a − c)(a − d )(b − c)(b − d )(c − d )(a + b + c + d )
5.试求一个 2 次多项式 f ( x ) ,满足 f (1) = 0, f ( −1) = 1, f ( 2) = −1 .
a 0 0 b
b a 0 0
0 ⋯ b ⋯ 0 ⋯ 0 ⋯
0 0 a 0
0 0 b a
a a
(6) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
习 题 1.3
1. 解下列方程组
x1 + x 2 + x3 + x 4 = 5 5 x1 + 2 x 2 + 3x3 = −2 x + 2 x − x + 4 x = −2 1 2 3 4 (1) 2 x1 − 2 x 2 + 5 x3 = 0 (2) 2 x − 3 x − x − 5 x 2 3 4 = −2 3x + 4 x + 2 x = −10 1 2 3 1 3 x1 + x 2 + 2 x3 + 11x 4 = 0 2. k 取何值时,下列齐次线性方程组可能有非零:
3 2 − 1 − 3 − 2 (2) 2 − 1 3 1 − 3 7 0 5 − 1 8
1 1 (4) 0 0 0
0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1
2.问能否适当选取矩阵
1 − 2 − 1 3 A= 3 − 6 − 3 9 4 2 k − 2

线性代数习习题及解答

线性代数习习题及解答

线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1A .C .2A .E C .E 3A .⎛ ⎝C .⎛ ⎝4 )A B C D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),TT+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T B .(-2,0,-1,1)T C .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( ) A .12,4,B .111,, C 9A C 10A C 111213.设方阵A 满足A k =E ,这里k 为正整数,则矩阵A 的逆A -1=__________. 14.实向量空间R n 的维数是__________.15.设A 是m ×n 矩阵,r (A )=r ,则Ax =0的基础解系中含解向量的个数为__________. 16.非齐次线性方程组Ax =b 有解的充分必要条件是__________.17.设α是齐次线性方程组Ax =0的解,而β是非齐次线性方程组Ax =b 的解,则(32)+A αβ=__________. 18.设方阵A 有一个特征值为8,则det (-8E +A )=__________.19.设P 为n 阶正交矩阵,x 是n 维单位长的列向量,则||Px ||=__________.20.二次型222123123121323(,,)56422f x x x x x x x x x x x x =+++--的正惯性指数是__________. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式1112114124611242-----. 2223.24252627313233⎝⎭⎝⎭⎝⎭线性代数习题二说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 表示单位矩阵。

线代1-3章练习题

线代1-3章练习题

第一至第三章练习题一、单项选择题(每小题2分,共10分)1. 设A ,B 均为n 阶方阵, 且,))((22B A B A B A -=-+则必有 ( ).(A) B A =(B) E A = (C) BA AB =(D) E B =2. 已知A 是三阶方阵,且2=A ,A 的伴随矩阵为*A ,则=*A 2( ).(A) 4(B) 8(C) 16(D) 323. 线性方程组⎩⎨⎧=+-=-by x ay x λλ有唯一解,则λ ( ).(A) 可为任意实数 (B) 等于±1 (C) 不等于±1 (D) 不等于零 5. 设向量组γβα,,线性相关,则γβα,,中( ).(A) 任一个都可用其余两个线性表示; (B) 至少有一个是零向量;(C) 至少有一个可用其余两个线性表示; (D) 任一个都不能用其余两个线性表示。

6、 设A 为3阶方阵,则121-⎪⎭⎫⎝⎛A 为( ) (A)121-A(B) 12-A(C) 181-A(D) 18-A 7、 设A 为n 阶方阵,则下面命题正确的是( )(A) 若n A r =)(,则0=A (B) 若n A r <)(,则可能存在B ,使E AB = (C) 若AC AB =,则C B =(D) 若0≠A ,则1-*=n AA8、矩阵A 在下列运算中,其秩将被改变的是( )(A) 乘以奇异矩阵 (B) 乘以非奇异矩阵 (C) 进行初等行变换(D) 转置9、若齐次线性方程组0=AX 有非零解,其中A 为n m ⨯矩阵,则必有( ) (A) n m <(B) m A r <)((C) n A r <)((D) n A r =)(10. 设A,B,C 均为n 阶矩阵, 且ABC=E (E 为n 阶单位矩阵), 则必有 ( ) (A ) E BCA = (B ) E BAC = (C ) E CBA = (D ) E ACB =11. 设A 、B 均为n (≥2)阶矩阵,且AB =0,则 ( )(A )A 、B 均为零矩阵 (B )A =0或B =0(C )A 、B 至少有一个矩阵为奇异矩阵 (D )A 、B 均为奇异矩阵。

线代习题及答案

线代习题及答案

1.设B A ,均为三阶矩阵,2,3A B =-=,则*2T A B = . 2.设A 是4阶矩阵,伴随矩阵*A 的特征值是1,2,4,8--,则矩阵A 的全部特征值是 . 3. 若向量组1(1,3,6,2)T α=,2(2,1,2,1)T α=-,3(1,1,,2)T a α=--的秩为2,则a = .4.若矩阵111111t A t t ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭为正定的,则t 满足的条件为 .. .5 若⎪⎪⎪⎭⎫ ⎝⎛-==301020201,2)(B A R ,则=)(AB R6 设A 是n 阶方阵,21,x x 均为方程组b AX =的解,且21x x ≠,则=A ___________7 已知(1,1)T x =是⎪⎪⎭⎫ ⎝⎛=a A 011的一个特征向量,则=a .8 设⎪⎪⎭⎫ ⎝⎛=521a A 是正定矩阵,则a 的取值为_____________.1写出四阶行列式中含有因子2311a a 的项.2求 排列1 3 … )12(-n 2 4 … )2(n 逆序数;2试计算行列式3112513420111533------.3 设γβααα,,,,321都是4维列向量,且4阶行列式a =βααα,,,321,b =321,, ,αααγ,求4阶行列式γβααα+,,,321。

4.设矩阵A=423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程 1、AB=A+2B.2、BA=A+2B.5设向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=23102α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=1410233a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=52114a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=10612b β,问:b a ,取何值时,向量β可由向量组4321,,,αααα线性表示?并在可以线性表示时求出此线性表示式-7 求下列矩阵的秩,并指出该矩阵的一个最高阶非零子式⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------11011111100222021110解1011111002202110,4.2----秩为 8.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 4 3
2 0 1
E(1,
2)
2
0
1
E
(2,
3)
r1 r
2
1
4
3
E(2,
3)
1 2 0
1 2 0
2 1 0
c
2c3
1
3
4
1 0 2
11. 设AB=A+2B,求B,其中
4 2 3
A=
1
1
0
-1 2 3
解:AB=A+2B
AB 2B=A
(A-2E)B=A
2 2 3 -1 4 2 3
n
rn rn1
rn1 rn2
L
0
解法2:D
r2 r1
(1)n1 M
0 L 00
n0
rn rn1
0
L
0 1 rn1 rn2 L
0 n 1
M
M
M
M
r3 r2
(1)n1 (1)n2
M
M
LL LL ML
0 0 M
0 0 L 00
0 0 0 L0
0 n 1 L 0 0
0 0 n2 L 0
n 0 000
0 n 1 0 0 0
L
a1n a11 a21 L
a2n
a12
a22
L
M M M L
ann
a1n
a2n
L
an1
an2
AA
(det
A)E
M
ann
a112
a122 L M
a1n2
M
L
L
L
M
L
M
ai12
ai
2 2
L
ain2
L
L
L det A
M M
M M
L
L
LL ML M det A LL
L
M
M
n ( n 1)
L =(1)(n1)(n2)L 21 M M M M M (1) 2 n!
0 0 020
0 0 001
1 2L 2 2
2 2L 2 2 3.(4) 计算行列式D M M M M M
2 2 L n 1 2
2 2L 2 n
1 r2r1 2 L 2 2
2 2L 2 2
r 3 r1
L1
0
)
det(A11A22
A A 21 12 )
B=(A-2E)-1A = 1
-1
0
1
1
0
L
-1 2 1 -1 2 3
13. 设A是n阶矩阵,证明:det(A* ) (det A)n1 证:
由于A* A (det A)E det A* det A det(A* A) det((det A)E) (det A)n det E (det A)n
a1 M
a2
M
L M
an1 M
(ai
1 jin1
aj)
n1
(ai
i1
x)
xn1
an1 1
an1 2
L
an1 n1
令C
(ai aj ),则C是不为0的常数,
1 jin1
n1
D(x) C (ai x)是n 1次多项式。 i 1
n1
令: (ai x) 0,得到根x a1, a2 , a3 ,L , an1 i 1
按第n-1列展开 0 1 2 L 0 0
Dn
MMM M MM
1 21L 00 01 2L 0 0 2 MMM M MM
0 0 0L 21
0 0 0L 21
0 0 0L 1 2 n2
0 0 0L 1 2 n1
Dn2 2Dn1 则 Dn Dn1 Dn1 Dn2
21
Dn Dn1 Dn1 Dn2 Dn2 Dn3 L L D2 D1 1
L
0
0
01L 0 0
解:D
rn r1
1
0
1
M
0
(1)21 M M M
M
M
MM M M M
0 0 L n3 0
1 0 L 0 n2
0 0 L 0 n2
2 (n 2)!
21 0L 0 0
1 21L 00
3.(5)计算行列式Dn
0 M
1 M
2L MM
00 MM
000L 21
解:
000L 1 2
21 0L 00
21 11 12
)
若 A11与A22同阶,且A A 21 11 A11A21
det
A11 A 21
A12 A 22
det
A11 0
A 22
A12
A
A A 1
21 11 12
det
A11
det(A22
A
A A 1
21 11 12
)
det(A11A22
A11A
A A 1
21 11 12
10(2) 解矩阵方程
1 1 1 1 1 1
0
2
2
X
1
1
0
1 -1 0 2 1 1
解:
1
1
1
1
1
1 1
X
0 1
2 -1
2 0
1 2
1 1
10 L
10(3) 解矩阵方程:
0 1 0 1 0 0 1 4 3
1
0
0
X
0
0
1
2
0
1
0 0 1 0 1 0 1 2 0
L
det
A
a
2 i1
ai22
L
ain2 (i
1, 2,..., n)
Q A 0, aij 0,
detA>0
又 AAT =(detA)E,
det(AAT )=det((detA)E) detA det AT =(detA)ndetE=(detA)n (detA)2 = (detA)n
(detA)2 ( (detA)n-2 1) 0 (detA)n-2 1 0,则 (detA)n-2 1
余子式Aij ,求detA.
A11 A21 L
解:A
A12
A22 L
M M L
A1n A2n L
An1 a11 a21 L
An2
a12
a22
L
M M M L
Ann a1n a2n L
an1
an2
AT
M
ann
a11 a12 L
AAT
a21
a22
L
M M L
an1
an2
11
1L 1L MM
1 a1 0 1 1 1 a2 M M M
MM M M M
1 L 1 an 1 1
0L 0 1 1 1 L
1 L 1 0 a2 0 L M M M M M M M
M M M 0 0 0 an1 1 L 1 an 0 0 0 L
1 0 M a1Dn1 0 an
a1(a2 L an a2 L an1 a2 L an2an L a3L an ) a2 L an a1a2 L an a1a2 L an1 a1a2 L an2an L a2 L an
n2 L 0 0
(1)n(n1)L 2(11L 1) n(n 1)L
(n1)(n2) (n1)
n2 3n4
3 2 1 (1) 2
n! (1) 2 n!
n2 n
(1) 2 n!
0 0 L 01 0 0 L 20 3.(3) 计算行列式 D M M M M M 0 n 1 L 0 0 n 0 L 00
解:原式 2 3 1 3 9 12 4
27
4 3 2 5
8 6 42 32 22 ( 5)2
1 5 25 125
43 33 23 ( 5)3
6 (3 4)(2 4)(5 4)(2 3)(5 3)(5 2) 6048
5(1) 证明:
1 a1 1
Dn M
M
1 1 a2
M M
2 3 2 1 2
Dn 1 Dn1 1 1 Dn2 2 Dn2 = 2 1 Dn3 3 Dn3 L L n 1 D1 n 1 2 n 1
4.(1) 计算行列式:
1 4 16 64 2 6 18 54 3 6 12 24 1 5 25 125
1 4 16 64
111 1
11
证:用归纳法。
1L 1
1L 1
M M M a1a2 L an a1a2 L an1 a1a2 L an2an L a2 L an
MM M
1 L 1 an
n=2:
1+a1 1
1 1 a2 (1 a1 )(1 a2 ) 1 a1a2 a1 a2
假设n-1阶时算式成立。
11 1 1 a2 Dn M M MM
由于 detA>0, 所以 detA=1
16.
A11
A
21
A12 r2(A21A111)r1 A11
A
22
0
A12
A 22
A
A A 1
21 11 12
Er
A
A 1
21 11
0 A11
E n-r
A21
A12 A22
A11 0
A12
A22
A 21A111A12
det
E(2, 3)1
E (2, 3)
0
0
1
0 1 0
0 1 0
0 1 0 1 1 4 3 1 0 0 1
相关文档
最新文档