低频信号发生器设计开题报告
基于DDS的超低频信号发生器设计与实现开题报告
西安交通大学城市学院本科毕业设计(论文)开题报告题目基于DDS的超低频信号发生器设计与实现所在系学生姓名专业班级学号指导教师教学服务中心制表2012 年3 月本科毕业设计(论文)开题报告对题目的陈述1. 文献综述信号发生器是用来提供各种测量所需信号的仪器,它是一种常用的信号源,广泛应用于电子电路、自动控制和科学试验等领域。
超低频信号发生器采用单片机波形合成发生器产生高精度,低失真的正弦波电压,可用于校验频率继电器,同步继电器等,也可作为低频变频电源使用。
高精度的信号源对通信系统、电子对抗以及各种电子测量技术十分重要。
随着电子技术的发展,对信号源频率的稳定度、准确度以及频谱纯度提出越来越高的要求。
DDS(直接数字频率合成)技术是从相位概念出发直接合成所需波形的一种新的频率合成技术。
与传统的频率合成技术相比,它具有频率分辨率高、频率转变速度快、输出相位连续、相位噪声低、可编程和全数字化、便于集成等突出优点,成为现代频率合成技术中的佼佼者,得到越来越广泛的应用,成为众多电子系统中不可缺少的组成部分。
基于DDS波形产生的应用现阶段主要在两个方面:1、设计通讯系统需要灵活的和极好的相噪,极低的失真性能的频率源,它通常选用DDS结合它的光谱性能和频率调谐方案,这种应用包括用DDS于调制方面,作为PLL参考去加强整个频率的可调制度,作为本机振荡器(LO),或者射频率的直接传送。
作为选择地,许多工业和医学应用DDS作为可编程波形发生器。
因为DDS是数字可编程,它的相位和频率在不改变外围成分的情况下能很容易地改变,而传统的基于模拟编程产生波形的情况下要改变外围成分。
DDS允许频率的实时调整去定位参考频率或者补偿温度漂移。
这种应用包括应用DDS在可调整频率源去测量阻抗(比如:基于阻抗的传感器),去产生脉冲波形已调制信号用于微型刺激,或者去检查LAN中的稀薄化和电缆。
国内外纷纷采用直接数字频率合成技术设计制作先进的信号发生器,从学术价值来看,直接数字式频率合成技术将会占据频率合成技术的主流,从使用价值来看,各高校中信号发生器应用极为广泛,能够设计出基于DDS技术的低成本高精度直扩信号发生器并推广使用具有非常重要意义。
低频信号发生器设计与实现报告
仪器科学与电气工程学院本科生“六个一”工程之课外实验项目报告低频信号发生器的设计与实现专业:测控技术与仪器姓名:刘雪锋学号:65090215时间:2011年11月一、实验目的:练习基本技能:常用测试仪器使用、电路安装、测试、调试;初步学会查阅电子器件英文说明书;训练基本单元电路设计、调试、测试。
二、实验内容:设计一个低频信号发生器,可输出方波、矩形波、三角波、锯齿波、正弦波。
频率和幅度可调;矩形波占空比可调;锯齿波上升、下降时间可调;根据电路原理图的具体结构,安装单元电路;测输出幅度、频率、失真度、上升沿、下降沿、观察三角波线性度;不得使用8038模块;写出设计与总计报告,说明电路原理、特点、测试结果、结果分析。
三、总体设计方案:(一)总体设计原理框图产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波转换成方波,再由积分电路将方波变成三角波;也可以先由振荡器产生方波,再经积分电路产生三角波,再经过滤波电路产生正弦波等等。
我选用的是前一种方案,上图为总体设计流程。
(二)各部分电路图及其原理1、正弦波产生电路及其原理:正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入反馈电路,并创造条件,使其产生稳定可靠的振荡。
电路接通电源的一瞬间,由于电路中电流从零突变到某一值,它包含着很多的交流谐波,经过选频网络选出频率为f0的信号,一方面由输出端输出,另一方面经正反馈网络传送回到输入端,经放大和选频,这样周而复始,不断地反复,只要反馈信号大于初始信号,震荡就逐渐变强,最后稳定的震荡起来。
我所设计的正弦波震荡电路为RC 串并联式正弦波震荡电路,又被称为文氏桥电路。
这个电路由两部分组成,即放大电路和选频网络,放大电路为由集成运741放所组成的电压串联负反馈放大电路,选频网络兼作正反馈网络,它具有电路简单、易起振、频率可调等特点被大量应用于低频振荡电路,电路图如下所示 :我选用的电阻R和电容C分别为100kΩ的电位器和0.1μf瓷片电容,这样根据在C不变的情况下,改变电位器R的值可以改变电路的震荡频率,但由于两个R的阻值要相等才能震荡出正弦波,所以我在实际焊制电路时两个R采用一个同轴电位器。
单片机 低频脉冲信号发生器 设计报告
低频脉冲信号发生器“低频脉冲信号发生器”功能:在P1.0引脚输出低频脉冲信号,脉冲信号的频率可以通过键盘设定,输出的脉冲频率在6位数码管显示。
在程序执行过程中,读取键盘设置,根据设置改变输出频率,根据脉冲频率计算定时周期,使用定时器产生定时中断,在中断服务程序中对P1.0取反(cpl P1.0),产生脉冲。
编写数码管显示程序,完成频率显示。
MCS-51单片机内部有2个定时/计数器,当工作在定时器模式时,可以对时钟的12分频计数,实现准确定时。
利用定时器的周期中断,就可以实现在P1.0上产生脉冲波。
单片机实验开发系统上提供了键盘,在程序执行过程中,读取键盘状态,根据状态值改变定时器的定时周期,就可以实现改变输出频率。
单片机实验开发系统上数码管显示采用8155的PB、PC口控制的动态扫描方式,共6位数码管。
编写一个通用的数码管显示驱动程序,在每一次定时器中断中显示一位数码,6个定时器中断周期完成扫描,只要保证扫描周期<20ms,就可以稳定显示。
程序中各功能模块如下所示:程序清单如下:ORG 0000HMOV R1,#50HAJMP MAINORG 000BHAJMP TC0S ;转到T/C0的中断TC0SMAIN: MOV TMOD,#00H ;置T/C0为方式0,定时MOV TH0,#0E0HMOV TL0,#18HSETB ET0 ;T/C0允许中断SETB EA ;CPU开中断SETB TR0 ;启动T/C0定时HERE: SJMP HERE ;等待中断ORG 0150HTC0S: MOV TH0,#0E0HMOV TL0,#18HCPL P1.0 ;输出方波START: MOV DPTR,#0FF20HMOV A,#03HMOVX @DPTR,A ;设定状态字MOV 70H,#00HKEY1: ACALL KS1 ;跳至KS1,扫描是否有键闭合JNZ LK1 ;有键闭合跳至LK1N1: ACALL DIRAJMP KEY1 ;转到KEY1,继续扫描是否有闭合键LK1: ACALL DIRACALL DIRACALL KS1 ;转到KS1,扫描闭合键是否为波动JNZ LK2 ;键不是波动,跳至LK2判断键号ACALL DIRAJMP KEY1LK2: MOV R2,#0FEH ;列扫描码送到R2MOV R4,#00H ;R4是列数的计数单元LK4: MOV DPTR,#0FF21HMOV A,R2MOVX @DPTR,A ;列扫描码送到PA口INC DPTRINC DPTRMOVX A,@DPTR ;读PC口JB ACC.0,LONE ;第零行为高电平,转到第一行MOV A,#00H ;第零行为低电平,行首健号送到AAJMP LKP ;转到LKP,计算键号LONE: JB ACC.1,LTWOMOV A,#08HAJMP LKPLTWO: JB ACC.2,LTHRMOV A,#10HAJMP LKPLTHR: JB ACC.3,LFORMOV A,#18HSJMP LKPLFOR: JB ACC.4,NEXTMOV 70H,#19H ;“19号键”为确认键AJMP KEY2 ;转到KEY2,将输入值给TL0&TH0赋值LKP: ADD A,R4 ;行首键号+列号=键号MOV @R1,AINC R1MOV 70H,A ;将键号送入70H单元PUSH ACC ;键号压入堆栈LK3: ACALL DIRACALL KS1 ;进行第二次扫描JNZ LK3 ;有键闭合,返回LK3POP ACCAJMP KEY1NEXT: INC R4 ;第一行没有键闭合,进行第二列的扫描MOV A,R2 ;列扫描码送到A中JNB ACC.7,KND ;全部列扫描完成,跳到KND进行下一轮扫描RL A ;列扫描码向后移一位MOV R2,A ;列扫描码送回R2AJMP LK4KND: AJMP KEY1KS1: MOV DPTR,#0FF21H ;PA口地址0FF21HMOV A,#00HMOVX @DPTR,AINC DPTR ;转到PC口,地址0FF23HINC DPTRMOVX A,@DPTR ;读键入状态CPL A ;键入状态取反ANL A,#0FH ;屏蔽键入状态高四位RETDIR: MOV R0,#70H ;键值放入R0MOV A,@R0ANL A,#0FH ;屏蔽键值高四位MOV 30H,AMOV A,@R0SW AP AANL A,#0FH ;屏蔽键值高四位MOV 31H,AMOV R0,#30HMOV R3,#01HDO1: MOV A,R3MOV DPTR,#0FF21HMOVX @DPTR,AINC DPTRMOV A,@R0ADD A,#0DH ;计算偏移量MOVC A,@A+PC ;查表得出相应的键值DIR1: MOVX @DPTR,AACALL DL1MOV A,R3RL AJB ACC.2,LD1MOV R3,AINC R0AJMP DO1LD1: RETDSEH: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8HDB 80H,90H,88H,83H,0C6H,0A1H,086H,08EH,0FFH,0C0HDL1: MOV R7,#2DL: MOV R6,#0FFHDL6: DJNZ R6,DL6DJNZ R7,DLRETKEY2: MOV B,50H ;将输入值给B,A,并合并存在A中MOV A,51HSW AP AANL A,BMOV TL0,A ;低位赋给TL0MOV 40H,A ;保存以备后用MOV B,52HMOV A,53HSW AP AANL A,BMOV TH0,A ;高位赋给TH0MOV 41H,AEND改进方案:本程序为了方便输入的是计时初值而非频率,可以尝试使用频率,然后编写一个多位除法的程序。
低频函数信号发生器的项目设计实验报告
实验报告课程名称:电子系统综合设计指导老师:周箭成绩:实验名称:低频函数信号发生器(预习报告)实验类型:同组学生姓名:一、课题名称低频函数信号发生器设计二、性能指标(1)同时输出三种波形:方波,三角波,正弦波;(2)频率范围:10Hz~10KHz;(3)频率稳定性:;(4)频率控制方式:①改变RC时间常数;②改变控制电压V1实现压控频率,常用于自控方式,即F=f(V1),(V1=1~10V);③分为10Hz~100Hz,100Hz~1KHz,1KHz~10KHz三段控制。
(5)波形精度:方波上升下降沿均小于2μs,三角波线性度δ/Vom<1%,正弦波失真度;(6)输出方式:a)做电压源输出时输出电压幅度连续可调,最大输出电压不小于20V负载RL =100Ω~1KΩ时,输出电压相对变化率ΔVO/VO<1%b)做电流源输出时输出电流幅度连续可调,最大输出电流不小于200mA负载RL =0Ω~90Ω时,输出电流相对变化率ΔIO/IO<1%c)做功率源输出时最大输出功率大于1W(RL =50Ω,VO>7V有效值)具有输出过载保护功能三、方案设计根据实验任务的要求,对信号产生部分,一般可采用多种实现方案:如模拟电路实现方案、数字电路实现方案、模数结合的实现方案等。
数字电路的实现方案一般可事先在存储器里存储好函数信号波形,再用D/A转换器进行逐点恢复。
这种方案的波形精度主要取决于函数信号波形的存储点数、D/A转换器的转换速度、以及整个电路的时序处理等。
其信号频率的高低,是通过改变D/A转换器输入数字量的速率来实现的。
数字电路的实现方案在信号频率较低时,具有较好的波形质量。
随着信号频率的提高,需要提高数字量输入的速率,或减少波形点数。
波形点数的减少,将直接影响函数信号波形的质量,而数字量输入速率的提高也是有限的。
因此,该方案比较适合低频信号,而较难产生高频(如>1MHz)信号。
模数结合的实现方案一般是用模拟电路产生函数信号波形,而用数字方式改变信号的频率和幅度。
信号发生器开题报告
信号发生器开题报告信号发生器开题报告一、引言信号发生器是电子工程领域中常用的一种仪器设备,用于产生各种类型的电信号。
它在电子测试、通信、无线电、音频等领域有着广泛的应用。
本文将对信号发生器的原理、分类、应用以及未来发展进行探讨。
二、信号发生器的原理信号发生器的原理基于信号的合成和调制技术。
它通过内部的振荡器产生基准信号,然后经过调制电路进行调制,最终输出各种类型的电信号。
常见的信号类型包括正弦波、方波、脉冲波等。
三、信号发生器的分类根据输出信号的频率范围,信号发生器可以分为射频信号发生器和低频信号发生器两大类。
射频信号发生器主要用于无线通信领域,其频率范围通常在几十千赫兹到几十吉赫兹之间。
低频信号发生器则主要应用于音频、电子测试等领域,其频率范围通常在几赫兹到几百兆赫兹之间。
四、信号发生器的应用1. 电子测试:信号发生器可以用于测试电子元器件的性能。
通过产生不同类型的信号,可以对电路的频率响应、非线性失真、幅度稳定性等进行测试和评估。
2. 通信系统:信号发生器在通信系统中起着重要的作用。
它可以产生各种调制方式的信号,用于模拟不同的通信场景,如调制解调器的性能测试、无线电信号的发射与接收等。
3. 音频设备:信号发生器可以用于音频设备的测试和校准。
通过产生标准的音频信号,可以对音响设备的频率响应、失真程度等进行评估。
4. 科学研究:信号发生器在科学研究中也有广泛的应用。
例如,在物理实验中,可以使用信号发生器产生特定频率的信号,用于研究波动、共振等现象。
五、信号发生器的未来发展随着科技的不断进步,信号发生器也在不断发展和创新。
未来的信号发生器有望具备更高的频率范围、更精确的信号调制能力以及更多的信号类型选择。
同时,随着人工智能和互联网技术的发展,信号发生器可能会与其他设备进行智能连接,实现更高效的测试和调试。
六、结论信号发生器作为一种重要的电子仪器设备,在电子测试、通信、无线电、音频等领域发挥着重要的作用。
基于51单片机的低频信号发生器(C语言).
3
第一章 绪论
1.1 选题背景及其意义
信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种 波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如方波、锯齿波、三角 波、正弦波的电路被称为函数信号发生器。在通信、广播、电视系统,在工业、农业、 生物医学领域内,函数信号发生器在实验室和设备检测中具有十分广泛的用途。
第三章 主要电路元器件介绍----------------------------------5
3.1 AT89C51 单片机简介-------------------------------------------------------5 3.1.1 单片机简介--------------------------------------------------------5 3.1.2 主要特性----------------------------------------------------------5 3.1.3 管脚功能说明------------------------------------------------------5 3.2 DAC0809-----------------------------------------------------------------6 3.2.1 工作原理----------------------------------------------------------6 3.2.2 DAC0832的主要特性参数----------------------------------------7 3.2.3 DAC0832 引脚功能简介------------------------------------------8 3.3 数码显示管--------------------------------------------------------------8 3.3.1 原理及分类---------------------------------------------------------8 3.3.2 显示器的工作方式---------------------------------------------------8 3.3.3 显示管字型码-------------------------------------------------------9
单片机 低频脉冲信号发生器 设计报告2
河北工业大学计算机硬件技术基础(MCS-51单片机原理及应用)课程设计报告书一、题目:低频脉冲信号发生器二、设计思路:该程序不用连线,或检查脉冲时可用P1.0口连个小灯即可。
四、程序清单和注释:ORG 0000HJB P1.6 ZZ ;P1.6=1转移到ZZMOV 31H,#3CH ;给定时器0赋初值MOV 30H,#0B0HMOV 79H,#10H ;给数码管赋值5MOV 7AH,#10HMOV 7BH,#10HMOV 7CH,#10HMOV 7DH,#01HMOV 7EH,#00HAJMP MAIN ;转移到主程序ORG 002BHAJMP TOS ;转移到T/C0的中断服务程序TOSZZ: MOV 31H,#9EHMOV 30H,#58HMOV 79H,#10HMOV 7AH,#10HMOV 7BH,#10HMOV 7CH,#10HMOV 7DH,#02HMOV 7EH,#00HAJMP MAINORG 002BHAJMP TOS;产生低频定时脉冲MAIN: MOV SP,#4FHMOV TMOD,#01H ;置T/C0为方式1,定时MOV TH0,#31HMOV TL0,#30HMOV IE,#82H ;CPU开中断,T/C0允许中断SETB P1.0SETB TR0 ;启动T/C0定时LOOP: SJMP LOOP ;等待中断TOS: MOV TH0,#31HMOV TL0,#30HCPL P1.0 ;输出方波SJMP DISP ;转到数码管显示RETI;显示子程序DISP: MOV A,#03H ;方式控制字03H送AMOV DPTR,#0FF20HMOVX @DPTR,A ;方式控制字送8155命令口DISP4: MOV R5,#01H ;位选端指向最左一位显示器 MOV R0,#79HMOV A,R5LD0: MOV DPTR,#0FF21H ;位码送位选端MOVX @DPTR,AMOV DPTR,#0FF22HMOV A,@R0 ;待显字符地址偏移量送A ADD A,#0EHMOVC A,@A+PC ;查段码表MOVX @DPTR,AACALL DLAY ;延时1MSINC R0MOV A,R5JB ACC.5,LD1 ;显示一遍则返回RL A ;位码左移一位MOV R5,AAJMP LD0 ;显示下一个数码LD1: SJMP DISP4DB 0C0H,0F9H,0A4H,0B0H,99H,92H ;字码表DB 82H,0F8H,80H,90H,88H,83H,0C6HDB 0A1H,86H,8EH,0FFH,0CH,89HDB 0C8H,0C1H,7FH,0BFHDLAY: MOV R7,#02H ;延时子程序DL1: MOV R6,#0FFHDL2: DJNZ R6,DL2DJNZ R7,DL1RETEND五、更完善方案和创新:该程序采用的是P1.0连接的开关设定的频率,同样,也可以采用键盘设定,采用键盘设定是比较麻烦些,但设定的范围可大大的提高,设定也更加方便,功能更加强大。
PWM信号发生器设计开题报告
开题报告毕业设计题目: PWM信号发生器设计浙江理工大学本科毕业设计(论文)开题报告班级10电子1班姓名课题名称PWM信号发生器设计目录:一、选题意义二、国内外研究现状三、研究的基本内容与拟解决的主要问题四、总体研究思路(方法与技术路线)五、可行性分析六、预期研究成果七、研究工作计划参考文献成绩:答辩意见答辩组长签名:年月日系主任审核意见签名:年月日PWM信号发生器设计开题报告一、选题意义PWM是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。
这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点[1]。
PWM信号发生器是实验室常见的一种仪器,其控制方法也是包括模拟电路、数字电路和计算机控制等方法。
其中,计算机控制的数字信号发生器因为功能多、精度高成为现代信号发生器的主要控制方法。
本设计将采用单片机实现各种信号的频率、幅值的控制,硬件电路设计是以AT89C52单片机为核心控制器构成的,由信号发生电路,频率可调电路、幅值可调输出电路,键盘显示器电路、电源电路等模块组成[2]。
二、国内外研究现状信号发生器又称波形发生器,是一种常用的信号源,被广泛地应用于无线电通信、自动测量和自动控制等系统中。
传统的信号发生器绝大部分是由模拟电路构成,借助电阻电容,电感电容、谐振腔、同轴线作为振荡回路产生正弦或其它函数波形。
频率的变动由机械驱动可变元件完成,当这种模拟信号发生器用于低频信号输出往往需要的RC 值很大,这样不但参数准确度难以保证,而且体积和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵[3]。
在今天,随着大规模集成电路和信号发生器技术的发展,许多新型信号发生器应运而生。
开题报告 低频正弦信号源
本科毕业设计开题报告
题目:基于单片机的低频正弦信号源设计
专题:
院(系):
班级:
姓名:
学号:
指导教师:
教师职称:
黑龙江科技学院本科毕业设计开题报告
填表说明:
1、题目:为选定的题目,不要把专题写入此项
2、专题:如果有专题,填此项,如果没有专题不填此项;
3、院(系):按二级院系填写(如资源与环境工程学院或外语系)
4、指导教师:如果有两个以上的教师指导,可填老师A/老师B(两位老师必须都为讲师以上职称,否则只填具有讲师以上职称的老师)
5、教师职称:是指指导教师职称,如果有两个以上的教师指导,可填职称A/职称B,老师与职称一定要对应上,前后顺序不能颠倒;
6、题目来源:可填教师科研、假想等,具体参考“毕业设计(论文)题目汇总表”;
7、国内外发展情况:要依据文献资料论述的情况,进行归纳总结提炼,要国内、国外都要涉及到;
8、研究/设计的目标:要由教师给出,与任务书中的一致;
9、时间进程:参见今年具体安排
10、指导教师意见:如果有两位以上的指导教师,并且都具有讲师以上职称,要全部签名。
如果有一人不具有讲师以上职称,则只需具有讲师以上职称的教师签字。
低频信号发生器设计报告
低频信号发生器设计报告一.设计要求(一)设计题目要求1.分析电路的功能并设计电路的单元电路2.查找图中相应元件的参数,找出国内外对应元件的型号3.用EWB或Multisim软件进行电路仿真,打印仿真原理图和仿真结果4.用A3图纸绘出系统电路原理图(二)其他要求1.必须独立完成设计课题2.合理选用元器件3.要求有目录、参考资料、结语4.论文页数不少于20页二.设计的作用、目的(一)设计的作用低频信号发生器是电子测量中不可缺少的设备之一。
完成一个低频信号发生器的设计,可以达到对模拟电路知识较全面的运用和掌握。
(二)设计的目的电子电路设计及制作课程设计是电子技术基础课程的实践性教学环节,通过该教学环节,要求达到以下目的:1.进一步掌握模拟电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力;2.基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。
信 号 输 出 电 路三.设计的具体实现(一)系统概述根据课题任务,所要设计的低频信号发生器由三大部分组成:⑴正弦信号发生部分⑵信号输出部分⑶稳幅部分其中由正弦信号发生部分的电路产生所需要的正弦信号,由输出电路将信号放大后进行输出,再由稳幅电路部分从输出的信号采样反馈回信号发生部分进行稳幅。
1.正弦信号发生部分可以有以下实现方案:⑴以晶体管(晶体管(transistor )是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。
开关速度可以非常快)为核心元件,加RC (文氏桥或移相式)或变压器反LC (馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的分立元件正弦波振荡电路。
这种电路的优点是简单、廉价,但由于采用分立元件,稳定性较差,元件较多时调节也较麻烦。
正 弦 信 号 发 生 电 路 稳 幅 电 路⑵以集成运放为核心元件,加RC (文氏桥或移相式)或LC (变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的正弦波振荡电路。
单片机低频信号发生器课程设计报告书
目录一、题目的意义 (1)二、本人所做的工作 (1)三、课设要求 (2)四、课设所需设备及芯片功能介绍 (2)4.1、所需设备 (2)4.2、芯片功能介绍 (2)五、总体功能图及主要设计思路 (5)5.1、总体功能图 (5)5.2、主要设计思想 (5)六、硬件电路设计及描述 (7)6.1、硬件原理图 (7)6.2、线路连接步骤 (7)七、软件设计流程及描述 (7)7.1、锯齿波的实现过程 (7)7.2、三角波的实现过程 (8)7.3、梯形波的实现过程 (9)7.4、方波的实现过程 (11)7.5、正弦波的实验过程 (12)7.6、通过开关实现波形切换和调频、调幅 (13)八、程序调试步骤与运行结果 (15)8.1、调试步骤 (15)8.2、运行结果 (15)九、课程设计体会 (17)十、参考文献 (18)十一、源代码及注释 (18)一、题目的意义(1)、利用所学单片机的理论知识进行软硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。
(2)、我们这次的课程设计是以单片机为基础,设计并开发能输出多种波形(正弦波、三角波、锯齿波、方波、梯形波等)且频率、幅度可变的函数发生器。
(3)、掌握各个接口芯片(如0832等)的功能特性及接口方法,并能运用其实现一个简单的微机应用系统功能器件。
(4)、在平时的学习中,我们所学的知识大都是课本上的,在机房的练习大家也都是分散的对各个章节的容进行练习。
因此,缺乏一种系统的设计锻炼。
在课程所学结束以后,这样的课程设计十分有助于学生的知识系统的总结到一起。
(5)、通过这几个波形进行组合形成了一个函数发生器,使得我对系统的整个框架的设计有了一个很好的锻炼。
这不仅有助于大家找到自己感兴趣的题目,更可以锻炼大家单片机知识的应用。
二、本人所做的工作本次课设组员:正、邓强、志组长:正经过了这一个星期的时间,我们已经基本完成了老师所提出的课程设计要求。
其中,我本人是组长整个系统的设计框架和编写代码由我亲自完成。
fpga和dds的信号发生器开题报告
二、主要研究(设计)内容、研究(设计)思想及工作方法或工作流程 2、1 设计思路 A、AD9854 主要功能 以 FPGA 为核心控制 DDS 芯片元件,完成 0Hz~100MHz 内常用雷达、通信波形信 号输出。 AD9854 主要由时钟乘法器、48 位频率累加器、48 位相位加法器、12 正交数模转 换器、I/O 口缓冲器、比较器、滤波器、数字幅度调制乘法器、频率相位控制乘法器、 正旋转换表等组成。它的电源只需+3.3v。一般情况下 DDS 时钟的 40%为实际输出波形 的最高频率 AD9854 时钟频率达到 300MHz 时, 输出波形最高频率能达到 100MHz 的题 目要求,正旋信号输出经过平滑滤波后,再通过内部比较器转换为方波,用于时钟信号 输出。 B、AD9854 工作方式 分别为 Single-Tone、 FSK、 Ramped FSK、 Chirp 和 BPSK, AD9854 有五种工作模式, 模式选择,模式选择可在控制寄存器中修改。这五种模式中,Single-Tone 模式为最灵活 的一种,也是主复位后的默认模式。通过该模式可以根据需要任意设定输出信号的频率 及相位等特性。在 FSK 模式下,其输出信号频率可根据引脚 p29 的电平高低在频率控 制字 F1 和 F2 之间选择,而其相位则由相位控制字 P1 决定,频率跳变时相位保持连续。 Ramped FSK 和 FSK 模式不同之处在于:F1 和 F2 分别存储高低电平频率,输出从 F1 到 F2 扫描,Chirp 模式是在指定的频率范围和频率精度上。与 Ramped FSK 模式相比, 该模式需要用户自己通过”HOLD”(P29 高电平)控制停止频率点,同时控制停止后的状 态。BPSK 模式的工作方式几乎和 FSK 完全相同,只是 BPSK 模式将频率 F1 和 F2 之间 的切换成了相位 P1 和 P2 之间的切换,引脚 P29 低电平时选择 P1,高电平时选择 P2。 C、AD9854 控制方式 AD9854的数据输入方式分为并行方式和串行方式两种,以并行数据传输方式输入 控制字的时序 2、2 DDS 基本原理
电子技术课程设计报告--低频正弦信号发生器
电子技术课程设计课题名称: 低频正弦信号发生器班级: 32010803姓名:指导教师:日期: 2012年12月27号前言此次课程设计,我们组所选的题目是低频正弦信号发生器,它的要求如下:1.信号频率范围20HZ~20kHZ;2.输出信号电压幅度 5;3.输出信号频率数字显示;4.输出电压幅度数字显示。
根据题目的要求,我们根据所学的知识初步判断,这是一个数字电子技术与模拟电子技术相结合的题目,中间必然会用到数模之间的转换,很明显,我们要用的是A/D转换。
于是我们组就先将题目大致分成四个模块:正弦波的产生、正弦波幅值的调节、频率数字显示和幅度数字显示。
并根据手中已有的数字电子技术和模拟电子技术教材,在网上和图书馆中寻找我们需要的资料。
当资料收集的差不多的时候,就着手进行开始电路图的设计与仿真。
在工作的过程中,我们又发现所收集的资料与具体的操作中有出入,中途又几次在网上和图书馆中收集我们所欠缺的资料,最终经过一周多的时间完成了此次任务,也从中学到了很多。
由于时间仓促和我们水平的有限,其中不免会有不太合理的地方,请谅解。
目录前言 (2)摘要 (4)一、系统概述 (5)二、单元电路设计 (8)1、正弦波的产生模块 (8)2、正弦波的幅值调节模块 (13)3、正弦波的的频率数字显示模块 (14)4、正弦波的幅值数字显示模块 (18)三、参考文献 (22)四、鸣谢 (22)五、元器件明细表 (22)六、收获体会与存在问题 (23)七、评语 (25)低频正弦信号发生器摘要正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。
由数字电路构成的低频信号发生器,多是由一些芯片组成,其低频性能比模拟信号发生器好得多,并且体积较小,输出的信号谐波较少,频率和振幅相对比较稳定。
本文借助555定时器产生方波,再借助滤波电路,产生频率可调且输出稳定的正弦波。
低频信号发生器设计报告
低频信号发生器设计报告一.设计要求(一)设计题目要求1.分析电路的功能并设计电路的单元电路2.查找图中相应元件的参数,找出国内外对应元件的型号3.用EWB或Multisim软件进行电路仿真,打印仿真原理图和仿真结果4.用A3图纸绘出系统电路原理图(二)其他要求1.必须独立完成设计课题2.合理选用元器件3.要求有目录、参考资料、结语4.论文页数不少于20页二.设计的作用、目的(一)设计的作用低频信号发生器是电子测量中不可缺少的设备之一。
完成一个低频信号发生器的设计,可以达到对模拟电路知识较全面的运用和掌握。
(二)设计的目的电子电路设计及制作课程设计是电子技术基础课程的实践性教学环节,信 号 输 出 电 路通过该教学环节,要求达到以下目的:1. 进一步掌握模拟电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力;2. 基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3. 熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。
三.设计的具体实现(一)系统概述根据课题任务,所要设计的低频信号发生器由三大部分组成:⑴正弦信号发生部分⑵信号输出部分⑶稳幅部分正 弦 信 号 发 生 电 路稳幅电路其中由正弦信号发生部分的电路产生所需要的正弦信号,由输出电路将信号放大后进行输出,再由稳幅电路部分从输出的信号采样反馈回信号发生部分进行稳幅。
1.正弦信号发生部分可以有以下实现方案:⑴以晶体管(晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。
开关速度可以非常快)为核心元件,加RC(文氏桥或移相式)或变压器反LC(馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的分立元件正弦波振荡电路。
这种电路的优点是简单、廉价,但由于采用分立元件,稳定性较差,元件较多时调节也较麻烦。
⑵以集成运放为核心元件,加RC(文氏桥或移相式)或LC(变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的正弦波振荡电路。
基于DSP低频信号处理系统的研究与设计的开题报告
基于DSP低频信号处理系统的研究与设计的开题报告一、选题背景和研究意义随着科技的不断发展,数字信号处理技术已经成为现代电子设备中的重要技术之一。
数字信号处理系统广泛应用于通信、音频、视频、医学、雷达等领域,在电子电路的设计和优化中起着至关重要的作用。
在实际研究和应用中,低频信号处理系统作为数字信号处理系统的重要分支,经常被应用于音频和通信系统的设计和优化工作中。
低频信号处理系统主要是指处理信号频率在几百KHz以下的系统。
这种系统对处理密集的或具有多种复杂功能的信号来说非常有用。
基于数字信号处理器(DSP)的低频信号处理系统具有可编程性高、能够实现各种信号处理功能、易于实现基于软件的解决方案等优点,在相关领域中得到了广泛应用。
本选题旨在设计和开发一种基于DSP的低频信号处理系统,结合实际应用需求,实现对低频信号的高效、精确处理,探索提高数字信号处理在实际应用中的性能和精度的方法和途径,拓展数字信号处理技术在不同领域的应用,以满足业界需求,具有重要的理论意义和实际应用价值。
二、研究内容和主要技术路线本研究拟设计和开发一种基于DSP的低频信号处理系统,主要包括以下几方面内容:1.低频信号预处理技术研究:主要包括信号采样、滤波、增益控制、采样率控制等方面。
2.数字信号处理技术研究:主要包括FFT变换、数字滤波、数字调制解调、数字信号加工等方面。
3.系统硬件设计与优化:主要包括DSP芯片的选型、接口设计、电源电路设计等方面。
4.软件开发与算法优化:主要包括DSP编程、算法实现、软件调试等方面。
本研究将主要采用以下技术路线:1. 分析低频信号处理的需求和问题,确定系统功能和性能指标。
2. 研究数字信号处理中常用的算法和技术,并根据具体需求进行优化和改进。
3. 设计和搭建DSP处理器的硬件和软件系统,并进行系统集成和测试。
4. 对系统的性能、功能和应用进行评估和分析,并不断进行系统的改进和优化。
三、研究预期成果通过本研究,预期可以获得以下成果:1. 实现基于DSP的低频信号处理系统的设计、开发和优化,并取得实用性良好的成果。
低频信号发生器设计
低频信号发生器设计报告姓名:学号:学院:、设计任务设计一个低频信号发生器要求:1、正弦波、方波、矩形波、三角波、锯齿波可选,占空比可调2、幅度10mv~ 1v可调3、频率1kHz〜3kHz可调二、方案选择1方案一:采用传统的直接频率合成器。
这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。
但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。
2方案二:采用锁相环式频率合成器。
利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。
这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。
但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。
而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。
3方案三:采用8038单片压控函数发生器,8038 可同时产生正弦波方波和三角波。
改变8038 的调制电压,可以实现数控调节,其振荡范围为0.001Hz~ 300KHz。
因此,选择方案三(上述方案均来自于网上的论文)三、元、器件参数选择图3.1低频信号设计电路图1、电源的选择由8038特性可知,8038的工作电压在-5V~ -15V之间,所以可以选择我们之前做的电源进行提供工作环境。
即工作电压选择10V。
2、R s与R12的选择当R5与R12相等时,输出三角波;Rs与R12不相等时,输出锯齿波由8038A说明书得,|=空兰」VccR1+ R2R A 5R A由说明书得1uA |A 1mA得-10-6R A1010 R A10RA=RB=5.7K所以,取Rs=R12=1K,Rv3=4.7K3、电容的选取1V B -V A (V -V ),即V c 在V A ,V B 之间变化,31 t 由 V c I c d .得C o当电容充电时充电时电流I c =1 当电容放电时电流I c =2I B - l A 因此,% €心护)20(计算公式来自于实验指导书中)4、 分压器件RV4的选择为了使输出电压幅值可以进行调节,我在信号的输出端加上 一个滑动变阻器进行分压调节,该滑动变阻器可以自由选取,只 要能起到分压作用就行,在这里我们选择 1k 的。
低频信号发生器设计开题报告
1 研究的目的及其意义随着电子测量及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类增多,性能提高。
尤其随着70年代微处理器的出现,更促使信号发生器向着自动化、智能化方向发展。
现在,信号发生器带有微处理器,因而具备了自校、自检、自动故障诊断和自动波形形成和修正等功能,可以和控制计算机及其他测量仪器一起方便的构成自动测试系统。
当前信号发生器总的趋势是向着宽频率覆盖、低功耗、高频率、精度、多功能、自动化和智能化方向发展。
在科学研究、工程教育及生产实践中,如工业过程控制、教学实验、机械振动试验、动态分析、材料试验、生物医学等领域,常常需要用到低频信号发生器。
而在我们日常生活中,以及一些科学研究中,锯齿波和正弦波、矩形波信号是常用的基本测试信号。
譬如在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波产生器作为时基电路。
信号发生器作为一种通用的电子仪器,在生产、科研、测控、通讯等领域都得到了广泛的应用。
但市面上能看到的仪器在频率精度、带宽、波形种类及程控方面都已不能满足许多方面实际应用的需求。
加之各类功能的半导体集成芯片的快速生产,都使我们研制一种低功耗、宽频带,能产生多种波形并具有程控等低频的信号发生器成为可能。
便携式和智能化越来越成为仪器的基本要求,对传统仪器的数字化,智能化,集成化也就明显得尤为重要。
平时常用信号源产生正弦波,方波,三角波等常见波形作为待测系统的输入,测试系统的性能。
单在某些场合,我们需要特殊波形对系统进行测试,这是传统的模拟信号发生器和数字信号发生器很难胜任的。
利用单片机,设计合适的人机交互界面,使用户能够通过手动的设定,设置所需波形。
该设计课题的研究和制作全面说明对低频信号发生系统要有一个全面的了解、对低频信号的发生原理要理解掌握,以及低频信号发生器工作流程:波形的设定,D/A 转换,显示和各模块的连接通信等各个部分要熟练联接调试,能够正确的了解常规芯片的使用方法、掌握简单信号发生器应用系统软硬件的设计方法,进一步锻炼了我们在信号处理方面的实际工作能力。
低频函数信号发生器设计实验报告(1)
低频函数信号发生器设计实验报告实验报告课程名称:电子系统综合设计指导老师:周箭成绩:实验名称:低频函数信号发生器(预习报告)实验类型:同组学生姓名:一、课题名称低频函数信号发生器设计二、性能指标(1)同时输出三种波形:方波,三角波,正弦波;(2)频率范围:10Hz~10KHz;(3)频率稳定性:;(4)频率控制方式:①改变RC时间常数;②改变控制电压V1实现压控频率,常用于自控方式,即F=f(V1),(V1=1~10V);③分为10Hz~100Hz,100Hz~1KHz,1KHz~10KHz三段控制。
(5)波形精度:方波上升下降沿均小于2μs,三角波线性度δ/Vom<1%,正弦波失真度;(6)输出方式:a)做电压源输出时输出电压幅度连续可调,最大输出电压不小于20V负载RL =100Ω~1KΩ时,输出电压相对变化率ΔVO/VO<1%b)做电流源输出时输出电流幅度连续可调,最大输出电流不小于200mA负载RL =0Ω~90Ω时,输出电流相对变化率ΔIO/IO<1%c)做功率源输出时最大输出功率大于1W(RL =50Ω,VO>7V有效值)具有输出过载保护功能三、方案设计根据实验任务的要求,对信号产生部分,一般可采用多种实现方案:如模拟电路实现方案、数字电路实现方案、模数结合的实现方案等。
数字电路的实现方案一般可事先在存储器里存储好函数信号波形,再用D/A转换器进行逐点恢复。
这种方案的波形精度主要取决于函数信号波形的存储点数、D/A转换器的转换速度、以及整个电路的时序处理等。
其信号频率的高低,是通过改变D/A转换器输入数字量的速率来实现的。
数字电路的实现方案在信号频率较低时,具有较好的波形质量。
随着信号频率的提高,需要提高数字量输入的速率,或减少波形点数。
波形点数的减少,将直接影响函数信号波形的质量,而数字量输入速率的提高也是有限的。
因此,该方案比较适合低频信号,而较难产生高频(如>1MHz)信号。
单片机_低频信号发生器课程{1}
目录一、题目的意义 0二、本人所做的工作 (1)三、课设要求 (1)四、课设所需设备及芯片功能介绍 (2)4.1、所需设备 (2)4.2、芯片功能介绍 (2)五、总体功能图及主要设计思路 (5)5.1、总体功能图 (5)5.2、主要设计思想 (5)六、硬件电路设计及描述 (7)6.1、硬件原理图 (7)6.2、线路连接步骤 (7)七、软件设计流程及描述 (7)7.1、锯齿波的实现过程 (7)7.2、三角波的实现过程 (8)7.3、梯形波的实现过程 (9)7.4、方波的实现过程 (10)7.5、正弦波的实验过程 (11)7.6、通过开关实现波形切换和调频、调幅 (12)八、程序调试步骤和运行结果 (15)8.1、调试步骤 (15)8.2、运行结果 (15)九、课程设计体会 (16)十、参考文献 (17)十一、源代码及注释 (17)一、题目的意义(1)、利用所学单片机的理论知识进行软硬件整体设计,锻炼学生理论联系实际、提高我们的综合使用能力。
(2)、我们这次的课程设计是以单片机为基础,设计并开发能输出多种波形(正弦波、三角波、锯齿波、方波、梯形波等)且频率、幅度可变的函数发生器。
(3)、掌握各个接口芯片(如0832等)的功能特性及接口方法,并能运用其实现一个简单的微机使用系统功能器件。
(4)、在平时的学习中,我们所学的知识大都是课本上的,在机房的练习大家也都是分散的对各个章节的内容进行练习。
因此,缺乏一种系统的设计锻炼。
在课程所学结束以后,这样的课程设计十分有助于学生的知识系统的总结到一起。
(5)、通过这几个波形进行组合形成了一个函数发生器,使得我对系统的整个框架的设计有了一个很好的锻炼。
这不仅有助于大家找到自己感兴趣的题目,更可以锻炼大家单片机知识的使用。
二、本人所做的工作本次课设组员:刘正、邓强、刘志组长:刘正经过了这一个星期的时间,我们已经基本完成了老师所提出的课程设计要求。
其中,我本人是组长整个系统的设计框架和编写代码由我亲自完成。
姜杰强开题报告(低频信号)
6.完成开题报告;
7.设计中涉及到的电路必须规范符合国家颁布标准并用Protel绘图,重要电路部分要用仿真软件实现仿真;
8.完成毕业论文的撰写(至少1.5万字);
9.依据论文内容,完成答辩所用PPT的设计;
10.毕业设计说明书应阐述整个设计内容,要突出重点和特色,图文并茂、文字通畅、字迹清晰、内容完整,且必须是电子文档,排版格式;
6.准备毕业答辩(一周);
7.答辩。
六、阅读的主要参考文献及资料名称
1.张洪润,易涛编著,《单片机应用技术教程》(第二版),清华大学出版社,2003。
2.常敏,王涵,范洪波编著,《单片机应用程序开发与实践》,电子工业出版社,2009。
3.潘新民,王燕芳编著,《微型计算机控制技术》,电子工业出版社,2004。
开题报告内容:(调研资料的准备,设计目的、要求、思路与预期成果;任务完成的阶段
内容及时间安排;完成论文(设计)所具备的条件因素等。)
一、课题的初步了解
1.本设计主要致力于研究基于单片机的低频信号发生技术研究,掌握基于单片机系统设计流程及相关技术。实现一个基于单片机程控的低频任意波形的信号发生器设计。
4.波形转换电路的设计
功能:将波形样值的编码转换为模拟值,完成波形的输出。
由一片DAC0832和运算放大器组成。DAC0832是一个具有两个输入数据寄存器的8位DAC。DAC0832是电流输出型,示波器上显示波形,通常需要电压信号,电流信号到电压信号的转换可以通过运算放大器。
5.显示接口电路的设计
功能:驱动LCD1602液晶显示,扫描按钮。
4.杨宁编著,《单片机与控制技术》,北京航空航天大学出版社,2005。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 研究的目的及其意义
随着电子测量及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类增多,性能提高。
尤其随着70年代微处理器的出现,更促使信号发生器向着自动化、智能化方向发展。
现在,信号发生器带有微处理器,因而具备了自校、自检、自动故障诊断和自动波形形成和修正等功能,可以和控制计算机及其他测量仪器一起方便的构成自动测试系统。
当前信号发生器总的趋势是向着宽频率覆盖、低功耗、高频率、精度、多功能、自动化和智能化方向发展。
在科学研究、工程教育及生产实践中,如工业过程控制、教学实验、机械振动试验、动态分析、材料试验、生物医学等领域,常常需要用到低频信号发生器。
而在我们日常生活中,以及一些科学研究中,锯齿波和正弦波、矩形波信号是常用的基本测试信号。
譬如在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波产生器作为时基电路。
信号发生器作为一种通用的电子仪器,在生产、科研、测控、通讯等领域都得到了广泛的应用。
但市面上能看到的仪器在频率精度、带宽、波形种类及程控方面都已不能满足许多方面实际应用的需求。
加之各类功能的半导体集成芯片的快速生产,都使我们研制一种低功耗、宽频带,能产生多种波形并具有程控等低频的信号发生器成为可能。
便携式和智能化越来越成为仪器的基本要求,对传统仪器的数字化,智能化,集成化也就明显得尤为重要。
平时常用信号源产生正弦波,方波,三角波等常见波形作为待测系统的输入,测试系统的性能。
单在某些场合,我们需要特殊波形对系统进行测试,这是传统的模拟信号发生器和数字信号发生器很难胜任的。
利用单片机,设计合适的人机交互界面,使用户能够通过手动的设定,设置所需波形。
该设计课题的研究和制作全面说明对低频信号发生系统要有一个全面的了解、对低频信号的发生原理要理解掌握,以及低频信号发生器工作流程:波形的设定,D/A 转换,显示和各模块的连接通信等各个部分要熟练联接调试,能够正确的了解常规芯片的使用方法、掌握简单信号发生器应用系统软硬件的设计方法,进一步锻炼了我们在信号处理方面的实际工作能力。
2 国内外研究现状
在 70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。
这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信
号波形,则电路结构非常复杂。
同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节。
在 70 年代后,微处理器的出现,可以利用处理器、A/D/和 D/A,硬件和软件使波形发生器的功能扩大,产生更加复杂的波形。
这时期的波形发生器多以软件为主,实质是采用微处理器对 DAC 的程序控制,就可以得到各种简单的波形。
90 年代末,出现几种真正高性能、高价格的函数发生器、但是 HP 公司推出了型号为 HP770S 的信号模拟装置系统,它由 HP8770A 任意波形数字化和HP1776A 波形发生软件组成。
HP8770A 实际上也只能产生 8 种波形,而且价格昂贵。
不久以后,Analogic 公司推出了型号为 Data-2020 的多波形合成器,Lecroy 公司生产的型号为 9100 的任意波形发生器等。
二十一世纪,随着集成电路技术的高速发展,出现了多种工作频率可过 GHz的 DDS 芯片,同时也推动了函数波形发生器的发展,2003 年,Agilent 的产品 33220A 能够产生 17 种波形,最高频率可达到 20M,2005 年的产品 N6030A能够产生高达 500MHz .
3 主要内容要求和目标
3.1 内容:
根据设计目标通过调研、查阅相关资料确定以单片机和D/A转换器为核心的低频信号发生器方案。
主要包括:
1)电源电路设计;
2)键盘电路设计;
3)D/A数模转换电路设计;
4)信号放大及低通滤波电路设计;
5)显示电路设计;
5)应用软件(主程序及用于改变频率和信号类型的中断服务程序)设计等。
3.2 要求:
1)系统能产生3种以上的信号;
2)信号频率在一定范围内可调且应具有较高的精度;
3)能显示信号波形的类型和频率;
4)原理电路图应采用工程设计工具软件绘制;
5) 详细的软件系统框架、流程及源代码。
3.3 目标:
设计出一款以单片机和D/A数模转换电路为核心的低频信号发生器。
信号类型不低于3种。
系统能显示信号类型及频率。
通过该设计及安装调试,达到掌握小型电子系统设计方法和常用设计软件、调试仪器使用的目的。
4 设计方案
4.1 设计模块
本次设计所研究的就是对所需要的某种波形输出对应的数字信号,在通过D/A 转换器和单片机部分的转换输出一组连续变化的0~5V 的电压脉冲值。
在设计时分块来做,按波形设定、D/A 转换、52单片机连接、键盘控制四个模块的设计。
最后通过联调仿真,完成相应功能。
图1 设计模块图
4.2 硬件电路设计
据低频信号发生器系统主要由CPU 、D/A 转换电路、电流/电压转换电路、按键和显示电路、电源等电路组成。
其工作原理为当按下第一个按键就会分别出现方波、三角波、正弦波。
图2 硬件电路基本图
4.3 软件部分
本系统的软件包括以下几个程序模块:初始化程序;键盘扫描程序与处理程序;定时器0服务程序;正弦波发生程序及其服务程序;三角波发生程序;方波发生程序。
图3 程序流程图
5 毕业设计(论文)进度安排
查找并阅读相关资料,完成开题报告、外文翻译 ——2012.12.15 完成系统原理、软件流程设计,完成中期检查报告 12.12.15——2013.3.30 完成系统组装、调试 2013.4.1——2013.4.30 撰写毕业设计 2013.5.1——2013.5.14 论文修改、评阅、答辩 2013.5.15——2013.5.30
6 参考资料
[1] 求是科技.单片机典型模块设计实例导航[M] (第二版).北京:人民邮电出版社, 2008,7 [2] 范风强.兰婵丽.单片机语言C51应用实战集锦[M].北京:电子工业出版社,2003,3 [3] 黄智伟.全国大学生电子设计竞赛训练教程[M].北京:电子工业出版社,2005,1 [4] 周立功.单片机实验与实践[M].北京:北京航空出版社,2004,8 [5] 黄继昌.电子元器件应用手册[M].北京:人民邮电出版社,2004,7 [6] 张宪,何宇斌.电子电路制作指导[M].北京:化学工业出版社,2005,8
[7] Raj Kamal. Embedded Systems: Architecture, Programming and Design[M].
McGraw-Hill.2003
[8] 新概念51单片机C语音教程—入门、提高、开发、拓展全攻略[M]. 北京:电子工业出
版社,2009
[9] 潭博学,苗江静.集成电路原理及应用[M].北京:电子工业出版社,2003.9
[10] 谢自美.电子线路设计.实验.测试(第三版)[M].武汉:华中科技大学出版社,2000
年7月
[11] Tierney. J Rader. C.M. and Gold. B. "A Digital Frequency Synthesizer." IEEE
Transactions on Audio and Electroacoustics AU-19:1, March 1971。