一元一次不等式组题型大全

合集下载

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。

第3章一元一次不等式题型归纳【含答案】

第3章一元一次不等式题型归纳【含答案】

不等式题型归纳类型一1.若关于的不等式的解集是,则实数的值为________x 523<-x m 2>x m 2.已知不等式组的解集是2<x <3,则关于x 的方程ax+b=0的解为 ⎩⎨⎧>-<+121b x a x 3.不等式组的解集是x >2,则m 的取值范围是 ⎩⎨⎧+>+<+1159m x x x 4.已知实数是不等于3的常数,解不等式组, 则依据的取值情况此不等式a a 组的解为_________________类型二1.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a 的取值范围是 2.若实数a 是不等式2x -1>5的解,但实数b 不是不等式2x -1>5的解,则下列选项中,正确的是( )A ﹒a >b B ﹒a ≥b C ﹒a <b D ﹒a ≤b类型三:结合一元一次方程已知关于的方程的解是正数,则的取值范围为_________x 322=-+x m x m 若关于x 的一元一次方程2x +3m -6=0的解是负数,则m 的取值范围是( )类型四:结合二元一次方程组1.已知方程组的解x 、y 的值的符号相同,求a 的取值范围5214x y a x y a+=+⎧⎨-=-⎩2.关于x ,y 的方程组的解满足x >y >0,则的取值范围是( )⎩⎨⎧=++=-m y x m y x 523m ()⎪⎩⎪⎨⎧<+--≥+-021221332x a x x3.已知且,则的取值范围为____________⎩⎨⎧+=+=+1272454k y x k y x 01<-<-y x k 4.设为整数,若方程组的解x ,y 满足,则的最大值是m ⎩⎨⎧+=--=+m y x m y x 1313517->+y x m 5.已知关于的方程组的解满足不等式组y x ,⎩⎨⎧+=+=-42322m y x m y x ⎩⎨⎧>+≤+0503y x y x 求满足条件的的整数值.m 类型五:有解 无解1.若不等式组有解,则的取值范围是__________⎩⎨⎧->-≥+135305x x a x a 2.如果不等式组无解,那么的取值范围是 ()⎩⎨⎧>->-m x x x 1312m 3.若不等式组有解,则a 必须满足的条件是_______________112x x a -≤≤⎧⎨<⎩类型六:涉及整数解1.已知不等式的正整数解恰是1,2,3,则的取值范围为___________03≤-a x a 2.关于x 的不等式3x﹣a≤0,只有两个正整数解,则a 的取值范围是 3.若关于x 的不等式组的解中只有4个整数解,则a 取值范围是________.0122x a x x ->⎧⎨->-⎩4.如果关于x 的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数的⎩⎨⎧≤->-037025b x a x b a ,有序数对共有( )对()b a ,类型七:涉及两个不等式的范围1.不等式组的解集中任意一个x 的值均不在3≤x ≤7的范围内,求的取值范围。

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习(80 题、附答案)(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(3+y)(7)x ﹣≥﹣1(8)﹣>﹣1 (9)﹣1≤.(10)﹣3x+2≤8.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1 (18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3 (23)≤1.(24)≥;(25)﹣>﹣2.(26)5x﹣4>3x+2(27)4(2x﹣1)>3(4x+2)(28)≤(29)﹣2≥.(30)4(x﹣1)+3≥3x;(31)2x﹣3<;(32)≤1.(33)3[x﹣2(x﹣2)]>6+3 (34)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(47)5x﹣12≤2(4x﹣3);(48)≥x﹣2.(49)4x﹣2(3+x)<0 (50)﹣≥0.(51)3x﹣2<﹣4(x﹣5);(52)﹣1<<2.(53);(54).(55)5x+15>4x﹣13(56)≤.(57)7(4﹣x)﹣2(4﹣3x)<4x;(58)10﹣4(x﹣3)≥2(x﹣1);(59)3[x﹣2(x﹣2)]>x﹣3(x﹣3);(60)(2x﹣1)+x﹣1+(1﹣2x)≤0;(61)﹣y ﹣;(62).(63)x(x+1)>(x﹣2)2;(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1),3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8,5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2>6+3x﹣6,移项得,6x﹣8x﹣3x>6﹣6﹣2,合并同类项得,﹣5x>﹣2,把x的系数化为1得,x <﹣,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x ≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x ≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x ≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x ≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x ≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x ≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x)去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x ≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得: 4x﹣2﹣15x﹣3≤6,解得: x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x ≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x<﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x ≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≤4﹣3,合并同类项得,x≤1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x ≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8 去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:利用分数基本性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x ≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x ≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,表示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x ≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上表示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣15,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,x﹣6x﹣x+4x>9﹣12,合并同类项得,﹣3x>﹣3,系数化为1得,x<1.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x>1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y ≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的方向发生改变),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的方向改变,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥12,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得8x+2≤14﹣x,移项,合并同类项,得9x≤16,不等式的两边同时除以9,得x≤;所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.。

完整版)一元一次不等式应用题分类专题(10种)

完整版)一元一次不等式应用题分类专题(10种)

完整版)一元一次不等式应用题分类专题(10种)1.一堆玩具要分给若干个小朋友,每人分3件,剩余4件;每人分4件,最后一人得到的玩具最多3件。

问小朋友的人数至少有多少人?2.用若干辆载重量为8吨的汽车运一批货物。

每辆汽车只装4吨时,剩下20吨货物;每辆汽车装满8吨时,最后一辆汽车不满也不空。

问有多少辆汽车?3.一次知识竞赛有15道题,对1题记8分,错1题扣4分,不答不得分。

XXX2道题没答,飞艇队全答了,两队的成绩都超过了90分。

问两队分别至少答对了几道题?4.在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得分不少于35分的射手为优胜者。

问至少要中靶多少次才能成为优胜者?5.某校校长暑假将带领该校“三好学生”去三峡旅游。

甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。

已知两家旅行社的全票价都是240元,问至少要多少名学生选甲旅行社比较好?6.XXX有存款600元,XXX有存款2000元。

从本月开始,XXX每月存款500元,XXX每月存款200元。

问到第几个月,XXX的存款能超过XXX的存款?7.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s。

为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?8.XXX家到学校2.1千米,现在需要在18分钟内走完这段路。

已知XXX步行速度为90米/分,跑步速度为210米/分。

问XXX至少需要跑几分钟?9.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方。

现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?10.某工人计划在15天里加工408个零件。

最初三天中每天加工24个。

问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?11.在1千克含有40克食盐的海水中,加入食盐,使其成为浓度不低于20%的食盐水。

一元一次不等式练习题(含五篇)

一元一次不等式练习题(含五篇)

一元一次不等式练习题(含五篇)第一篇:一元一次不等式练习题一元一次不等式练习题解下列不等式,并把解集在数轴上表示出来:(1)3x-2>2x+1(2)3(x+3)<5(x-1)+7(3)2x-19<7x+3126(4)3x-2(9-x)>3(7+2x)-(11-6x).(5)2(3x-1)-3(4x+5)≤x-4(x-7)(6)2(x-1)-x>3(x-1)-3x-5.(7)3[y-2(y-7)]≤4yxx+1x-1x+43y+17y-32(y-2)-≥-2>1(8)15-(7+5x)≤2x+(5-3x).(9(10-1<+11+323515322x+1x-22x+1x-22x+1x-3->1(13)-(x+1)>-2(14)->-1(15)->2(12)23323-23--223-x)-(x+1)≤-2(18)-3>(16)-3>(17)(223(19)2x-x11x+1x-2x+1x-21-x≥-(20)4-2x≤--x(21)-≥-1(22)-≥-1 2222323417.求不等式8(1-x)≤5(4-x)+3的负整数解.一元一次不等式练习题解下列不等式,并把解集在数轴上表示出来:(1)3x-2>2x+1(2)3(x+3)<5(x-1)+7(3)2x-19<7x+3126(4)3x-2(9-x)>3(7+2x)-(11-6x).(5)2(3x-1)-3(4x+5)≤x-4(x-7)(6)2(x-1)-x>3(x-1)-3x-5.(7)3[y-2(y-7)]≤4yxx+1x-1x+43y+17y-32(y-2)-≥-2>1(8)15-(7+5x)≤2x+(5-3x).(9(10-1<+11+323515322x+1x-22x+1x-22x+1x-3->1(13)-(x+1)>-2(14)->-1(15)->2(12)23323-23--223-x)-(x+1)≤-2(18)-3>(16)-3>(17)(223(19)2x-x11x+1x-2x+1x-21-x≥-(20)4-2x≤--x(21)-≥-1(22)-≥-1 2222323417.求不等式8(1-x)≤5(4-x)+3的负整数解.第二篇:解一元一次不等式练习题1、判断下列式子是否一元一次不等式:(是的打√,否的打╳)(1)7>4(2)3x ≥ 2x+1(3)2>0(4)x+y>1(5)x2+3>2xx1、解下列的一元一次不等式(并在数轴上表示出来,自己画数轴)(1)x-5<0(2)x+3 ≥ 4(3)3x > 2x+1(4)-2x+3 >-3x+1(1)2x > 1(2)–2x ≤ 1(3)2x >-1(4)22x>2(5)-x>-2(6)-x>2 33(1)2(x+3)<7(2)3x-2(x+1)>0(3)3x-2(x-1)>0(4)-(x-1)>04、下列的一元一次不等式(1)xx+1xx2x+1x-2xx>1(3)->1(4)->1 >(2)+323223231、解下列不等式12(1)-x>-(2)-(x+1)>-2(3)-x>2+x232x+1x-2->-1(4)-(x+1)>-2(5)323-2x+1x-3->2(7)-3(6)-23> 2已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围第三篇:一元一次不等式和分式练习题复习题(1)1、已知2-a和3-2a的值的符号相反,那么a的取值范围是:2、.当m________时,不等式(2-m)x<8的解集为x>82-m.3、生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则____________< b <_____________.4、若干学生分宿舍,每间 4 人余 20 人,每间 8 人有一间不空也不满,则宿舍有()间.A、5B、6C、7D、85、x为何值时,代数式-6、设关于x的不等式组⎨⎧2x-m>2⎩3x-2m<-13(x+1)的值比代数式-3的值大.无解,求m的取值范围.7、某公司经营甲、乙两种商品,每件甲种商品进价12万元,•售价14.5万元.每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.•现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?8、当x时,分式1a1bxx-4x+2无意义;当x时,分式x-4x+2的值为零.9、已知-=3,求2a+3ab-2ba-2ab-b的值。

一元一次不等式组试题(含答案)

一元一次不等式组试题(含答案)

一元一次不等式组A卷:基础题一、选择题1.下列不等式组中,是一元一次不等式组的是()A.2,3 xx>⎧⎨<-⎩B.10,20xy+>⎧⎨-<⎩C.320,(2)(3)0xx x->⎧⎨-+>⎩D.320,11xxx->⎧⎪⎨+>⎪⎩2.下列说法正确的是()A.不等式组3,5xx>⎧⎨>⎩的解集是5<x<3 B.2,3xx>-⎧⎨<-⎩的解集是-3<x<-2C.2,2xx≥⎧⎨≤⎩的解集是x=2 D.3,3xx<-⎧⎨>-⎩的解集是x≠33.不等式组2,3482xx x⎧>-⎪⎨⎪-≤-⎩的最小整数解为()A.-1 B.0 C.1 D.44.在平面直角坐标系中,点P(2x-6,x-5)在第四象限,则x的取值范围是()A.3<x<5 B.-3<x<5 C.-5<x<3 D.-5<x<-35.不等式组20,30xx->⎧⎨-<⎩的解集是()A.x>2 B.x<3 C.2<x<3 D.无解二、填空题6.若不等式组2,xx m<⎧⎨>⎩有解,则m的取值范围是______.7.已知三角形三边的长分别为2,3和a,则a的取值范围是_____.8.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;•如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_____个儿童,分_____个橘子.9.若不等式组2,20x ab x->⎧⎨->⎩的解集是-1<x<1,则(a+b)2006=______.三、解答题10.解不等式组2(2)4,(1) 10(2) 32x xx x-≤-⎧⎪+⎨-<⎪⎩11.若不等式组1,21x mx m<+⎧⎨>-⎩无解,求m的取值范围.12.为节约用电,某学校于本学期初制定了详细的用电计划.•如果实际每天比计划多用2度电,那么本学期用电量将会超过2530度;如果实际每天比计划节约了2度电,那么本学期用电量将会不超过2200度.若本学期的在校时间按110天计算,那么学校每天计划用电量在什么范围内?B卷:提高题一、七彩题1.(一题多变题)如果关于x的不等式(a-1)x<a+5和2x<4的解集相同,则a•的值为______.(1)一变:如果(1)5,24a x ax-<+⎧⎨<⎩的解集是x<2,则a的取值范围是_____;(2)二变:如果24,1,51xxaxa⎧⎪<⎪≥⎨⎪+⎪<-⎩的解集是1≤x<2,则a的取值范围是____二、知识交叉题2.(科内交叉题)在关于x1,x2,x3的方程组121232133,,x x ax x ax x a+=⎧⎪+=⎨⎪+=⎩中,已知a1>a2>a3,请将x1,x2,x3按从大到小的顺序排列起来.3.(科外交叉题)设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图1-6-1所示,那么每个“○”、“□”、•“△”这样的物体,按质量从小到大的顺序排列为()A.○□△B.○△□ C.□○△D.△□○三、实际应用题4.某宾馆底层客房比二楼少5间,某旅游团有48人,若全安排在底层,每间4人,则房间不够;若每间5人,则有房间没有住满5人;若全安排在二楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人,求该宾馆底层有客房多少间?四、经典中考题5.(2007,厦门,3分)小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为69•千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,•这时爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,•加在他和妈妈坐的一端,结果爸爸被跷起,那么小宝的体重可能是()A.23.2千克B.23千克C.21.1千克D.19.9千克6.(2008,天津,3分)不等式组322(1),841x xx x+>-⎧⎨+>-⎩的解集为______.7.(2007,青岛,8分),某饮料厂开发了A,B两种新型饮料,主要原料均为甲和乙,•每瓶饮料中甲,乙的含量如下表所示,现用甲原料和乙原料各2800克进行试生产,•计划生产A,B两种饮料共100瓶.设生产A种饮料x瓶,解答下列问题.(1)有几种符合题意的生产方案?写出解答过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,•这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低.C卷:课标新型题1.(结论开放题)有甲,乙,丙三个人在一起讨论一个一元一次不等式组,•他们各说出该不等式组的一个性质.甲:它的所有解为非负数.乙:其中一个不等式的解集为x≤8.丙:其中一个不等式在解的过程中需改变不等号的方向.请试着写出符合上述条件的一个不等式组,并解答.2.(阅读理解题)先阅读不等式x2+5x-6<0的解题过程,然后完成练习.解:因为x2+5x-6<0,所以(x-1)(x+6)<0.因为两式相乘,异号得负.所以10,60xx->⎧⎨+<⎩或10,60xx-<⎧⎨+>⎩即1,6xx>⎧⎨<-⎩(舍去)或1,6xx<⎧⎨>-⎩所以不等式x2+5x-6<0的解集为-6<x<1.练习:利用上面的信息解不等式228xx-+<0.3.(方案设计题)为了保护环境,某企业决定购买10台污水处理设备,现有A,B•两种型号的设备,其中每台的价格,月处理污水量如下表:经预算,•该企业购买设备的资金不高于105•万元,•若企业每月产生的污水量为2040t,为了节约资金,请你为企业设计购买方案.3.把若干个糖果分给几只猴子,若每只猴子分3个,则余8个;若每只猴子分5个,•则最后一个猴子分得的糖果数不足3个,问共有多少只猴子,多少个糖果?参考答案A卷一、1.A 点拨:B中含有两个未知数x,y.C中x的最高次数是2,D中分母中含有未知数.2.C 点拨:A中不等式组的解集是x>5,B,D中不等式组的解集是空集.3.B 点拨:不等式组的解集为-23<x≤4,所以最小整数解为0.4.A 点拨:由题意得260,50,xx->⎧⎨-<⎩,解得3<x<5.5.C二、6.m<27.1<a<5 点拨:由题意知3-2<a<3+2,即1<a<5.本题考查三角形三边之间的关系.8.7;37 点拨:设有x个儿童,则橘子的个数为4x+9,依题意得0<4x+9-6(x-1)<3,解之得6<x<7.5,因为x为正整数,所以x=7,所以4x+9=4×7+9=37(个).9.1三、10.解:不等式(1)的解集为x≤0.不等式(2)的解集为x>-3.所以原不等式组的解集为-3<x≤0.点拨:先求每一个不等式的解集,然后找出它们的公共部分.11.错解:由不等式组无解可知2m-1>m+1,所以m>2.正确解法:由题意得2m-1≥m+1时,因为原不等式组无解,所以m≥2.点拨:此题错误原因在于忽略了m+1与2m-1可以相等,即类似,x ax a>⎧⎨<⎩的形式也是无解的.12.解:设学校每天计划用电量为x度,依题意,得110(2)2530,110(2)2200.xx+>⎧⎨-≤⎩,解得21<x≤22,•即学校每天计划用电量在21度(不包括21度)到22度(包括22度)范围内.B卷一、1.7 (1)1<a≤7 (2)1<a≤7点拨:由题意得(a-1)x<a+5的解集为x<2,所以52110.aaa+⎧=⎪-⎨⎪->⎩,所以a=7.(1)由题意得a-1>0,即a>1时,512axax+⎧<⎪-⎨⎪<⎩的解集为x<2.所以51aa+-≥2,所以a≤7,所以1<a≤7.(2)由一变可知51aa+-≥2,当a-1>0,即a>1时,1<a≤7;当a-1<0,即a<1时,a+5≤2(a-1),所以a≥7,此时a的值不存在.综上所述,1<a≤7.去分母时,要根据分母是正是负两种情况进行讨论.二、2.解:将方程组的三式相加得2(x1+x2+x3)=a1+a2+a3.所以x1+x2+x3=12(a1+a2+a3),因为x1+x2=a1,所以a1+x3=12(a1+a2+a3),所以x3=12(a2+a3-a1).同理x1=12(a1+a3-a2),x2=12(a1+a2-a3).因为a1>a2>a3.所以x1-x2=12(a1+a3-a2)-12(a1+a2-a3)=a3-a2<0,所以x1<x2,同理x1>x3,所以x3<x1<x2.3.D 点拨:由第一个天平知○>□,由第二个天平知□=2△,即□>△,所以○>□>△.本题主要考查了数形结合的数学思想和观察识别图形的能力.三、4.解:设该宾馆底层有客房x间,则二楼有客房(x+5)间,根据题意得4848,5448485,43xx⎧<<⎪⎪⎨⎪<+<⎪⎩,•解得485<x<11,因为x为整数,所以x=10.答:宾馆底层有客房10间.四、5.C 点拨:设小宝的体重为x千克,根据题意,得269,2669. x xx x+<⎧⎨++>⎩解这个不等式组得21<•x<23,故选C.6.-4<x<3 点拨:由①得:x>-4;由②得:x<3,分别解完不等式后可以利用数轴或口诀“比大的小,比小的大,中间找”得到最终结果.此题考查利用数形结合解不等式组,是对学生基本运算方法、运算法则、基本性质的动用能力的考查.7.解:(1)设生产A种饮料x瓶,根据题意,得2030(100)2800, 4020(100)2800.x xx x+-≤⎧⎨+-≤⎩解这个不等式组,得20≤x≤40,因为其中正整数解共有21个,所以符合题意的生产方案有21种.(2)根据题意,得y=2.6x+2.8(100-x),整理,得y=-0.2x+280.因为k=-0.2<0,所以y随x的增大而减小,所以当x=40时成本总额最低.C卷1.解:可以写出不同的不等式组,如3325(1), 221(2). x xx x-≤+⎧⎨-<-⎩,不等式(1)的解集为x≤8,•不等式(2)的解集为x>1,所以原不等式组的解集为1<x≤8.点拨:此题为结论开放性试题,答案不唯一,只要符合题意即可.2.解:因为两式相除,异号得负,由228xx-+<0,得220,80xx->⎧⎨+<⎩或220,80xx-<⎧⎨+>⎩,即1,8xx>⎧⎨<-⎩(舍去)或1,8xx<⎧⎨>-⎩所以不等式228xx-+<0的解集是-8<x<1.点拨:认真阅读所给材料,从中获取相关信息,由两式相乘,异号得负,•得到两式相除,异号得负,由此解不等式228xx-+<0.3.解:设购买污水处理设备A型号x台,则购买B型号(10-x)台,根据题意,得1210(10)105,240200(10)2040.x xx x+-≤⎧⎨+-≥⎩,解这个不等式组,得1≤x≤2.5.因为x是整数,所以x=1或2.当x=1时,购买资金为12×1+10×9=102(万元),当x=2时,购买资金为12×2+10×8=104(万元).因此,为了节约资金,应购污水处理设备A型号1台,B型号9台.点拨:本题是“方案设计”问题,•一般可把它转化为求不等式组的整数解问题.通过表格获取相关信息,在实际问题中抽象出不等式组是解决这类问题的关键.3.解:设共有x只猴子,则有糖果(3x+8)个,由题意,得1≤3x+8-5(x-1)<3,即385(1)3, 385(1) 1.x xx x+--<⎧⎨+--≥⎩,•解这个不等式组,得5<x≤6,因为x是整数,所以x=6,则3x+8=26.答:共有6只猴子,26个糖果.。

(完整版)一元一次不等式各题型练习

(完整版)一元一次不等式各题型练习

一元一次不等式各题型练习例一.解不等式组-+<-+-≥⎧⎨⎪⎩⎪21113121x x x 31151235x x x x +>-≤-⎧⎨⎪⎪⎩⎪⎪ -<-<1232x例二.若||()x x y m -+--=4502,求当y ≥0时,m 的取值范围。

例三.班级50名学生上体育课,老师出了一道题目:现在我拿来一些篮球,如果每5人一组玩一个篮球,有些同学没有球玩;如果每6人一组玩一个篮球,就会有一组玩篮球的人数不足6个.你们知道有几个篮球吗?甲同学说:如果有x 个篮球,550x <.乙同学说:650x >.丙同学说:6(1)50x -<.你明白他们的意思吗?例四.3.若不等式组的解集为−1<x<1,求(a+1)(b −1)的值.例五.用不等式表示:x 的2倍与1的和大于-1为__________,y 的13与t 的差的一半是负数为_________。

例六.x 为何值时,代数式5123--+x x 的值是非负数?例七.已知:关于x 的方程m x m x =--+2123的解是非正数,求m 的取值范围.一.填空:1、有下列数学表达:①30<;②450x +>;③3x =;④2x x +;⑤4x ≠-; ⑥21x x +>+.其中是不等式的有________个.2. 学校食堂出售两种厚度一样但大小不同的面饼,小饼直径30cm,售价30分;大饼直径40cm ,售价40分.你更愿意买 饼,原因是 .3.若m <n ,比较下列各式的大小:(1)m -3______n -3 (2)-5m______-5n (3)3m -______3n - (4)3-m______2-n (5)0_____m -n (6)324m --_____324n -- 4.用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______23; (3)如果15x >-2,那么x______-10; (4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 5.有如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a ,b 的不等式表示为 .6、有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<”填空。

一元一次不等式试题(大全5篇)

一元一次不等式试题(大全5篇)

一元一次不等式试题(大全5篇)第一篇:一元一次不等式试题10.(2012湖北随州4分)若不等式组⎨⎧x-b<0⎩x+a>0的解集为2A.-2,3B.2,-3C.3,-2D.-3,2【答案】A。

【考点】解一元一次不等式组【分析】∵解不等式x-b<0得:x<b,解不等式x+a>0得:x >-a,∴不等式组的解集是:-a<x<b,∵不等式组⎨⎧x-b<0 ⎩x+a>0解集为2<x<3,∴-a=2,b=3,即a=-2,b=3。

故选A。

11.(2012湖北孝感3分)若关于x的一元一次不等式组⎨范围是【】⎧x-a>0⎩1-2x>x-2无解,则a的取值A.a≥1B.a>1C.a≤-1D.a<-1【答案】A。

【考点】解一元一次不等式组。

【分析】解出两个不等式,再根据“大大小小找不到”的原则解答即可:⎧x-a>0①,由①得:x>a,由②得:x<1。

⎨1-2x>x-2②⎩∵不等式组无解,∴a≥1。

故选A。

12.(2012湖北襄阳3分)若不等式组⎨⎧1+x>a⎩2x-4≤0有解,则a的取值范围是【】A.a≤3B.a<3C.a<2D.a≤2【答案】B。

【考点】解一元一次不等式组。

【分析】先求出不等式的解集,再不等式组有解根据“同大取大,同小取小,大小小大中间找,大大小小解不了(无解)”即可得到关于a的不等式,求出a的取值范围即可:由1+x>a得,x>a﹣1;由2x-4≤0得,x≤2。

∵此不等式组有解,∴a﹣1<2,解得a<3。

故选B。

20.(2012四川凉山4分)设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<aB.b<c<aC.c<a<bD.b<a<c【答案】A。

30.(2012山东淄博4分)若a>b,则下列不等式不一定成立的是【】(A)a+m>b+m(B)a(m2+1)>b(m2+1)(C)-a2<-b2(D)a2>b2x+2⎧4+x>⎪32的解集为x<2,则a的取值范9.(2012湖北鄂州3分)若关于x的不等式组⎪⎨⎪x+a<0⎪⎩2围是▲.12.(2012四川广安3分)不等式2x+9≥13.(2012四川达州3分)若关于x、y的二元一次方程组⎨⎧2x+y=3k-1⎩x+2y=-2的解满足x+y>1,则k的取值范围是▲.3(x+2)的正整数解是14.(2012四川绵阳4分)如果关于x的不等式组:⎨⎧3x-a≥0⎩2x-b≤0,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有▲个。

一元一次不等式(组)专题训练

一元一次不等式(组)专题训练

一元一次不等式(组)一、 一元一次不等式(组)的解A 、 已知不等式(组)的解(集),求参数的值或取值范围 例1:不等式-<+mx 23x 4的解集是63x m >-,求m 的取值范围。

练习:1、若关于x 的不等式a(1)x 12a x ->+-的解集是1x <-求a 的取值范围。

2、若关于x 的不等式(1)x 5a a -<+的解集和24x <的解集相同,求a 的取值。

3、不等式475x a x ->+的解集是1x <-求a 的取值4、若关于x 的不等式2132x a a ->-的解集和2x a <的解集相同,求a 的取值例2:若不等式组3x x a >⎧⎨>⎩的解集是x a >则a 的取值范围是 练习:1、(1)若不等式组5x x m <⎧⎨>⎩ 无解,则a 的取值范围是 (2)若无解,则a 的取值范围是2、已知不等式组x a x b <⎧⎨>⎩无解,求不等式组11x a x b >-⎧⎨<-⎩的解3、当a 满足什么条件时,不等式组131x a x a >+⎧⎨<-⎩无解4、如果2a <,那么不等式组2x x a >⎧⎨>⎩的解集为 ,2x x a <⎧⎨<⎩的解集为 例3:若不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<求(a 3)(b 3)-+ 的值。

练习:1、一元一次不等式组13x a x -≤⎧⎨+>⎩的解集为x a ≥-,求a 的取值范围。

2、一元一次不等式组221x a b x a a -≥⎧⎨-<+⎩的解集为35x ≤<,求b a3、一元一次不等式组213(x 1)x x m ->-⎧⎨<⎩的解集为2x <,求m 的取值范围。

4、不等式组26x x x m-+<-⎧⎨>⎩的解集为4x >,求m 的取值范围B :已知不等式(组)的整数解的个数,求参数的取值范围例4:已知不等式30x a -≤ 的正整数解有三个,1,2,3求a 的取值范围。

40道一元一次不等式组计算及答案

40道一元一次不等式组计算及答案

(1)2X-4秋+2 与X為解集为3秋詬(2)2X-1 > 1与4-2X切解集为无解(3)3X+2 >5 与5-2 羽解集为 1 VX<2(4)X - 1 V 2 与2X+3 >2+X 解集为-1 V X V 3(5)X+3 > 1 与X + 2 (X-1 ) < 解集为-2 V X<(6)2X+1 <3 与X>-3 解集为1>-3(7)2X+5 > 1 与3X+7X <0 解集为 1 冰>2(8)2X-1 >X+1 与X+8 V4X-1 解集为X>3(9)1-2 (X-1) <5与2/ (3X-2) V X+1/2 解集为-1 V 3(10)2X<4+X 与X+2 V4X-1 解集为 1 V X<1(11)2-X > 0 与2/ (5X+1 ) +1 冯/ (2X-1 ) 解集为-1 «V 2(12)1-X V0 与2/ (X-2) V 1 解集为 1 V X V4(13)2-X V3与2-X为解集为2冰> 1(14)2X+10 >-5 与6X-7 羽0 解集为X> 17/6(15)6X+6 >8 与3X+10 V 5 解集为-(3/5) > X>-3(16)6X+6X24 与10X+ (1/2) X V -42 解集为无解(17)24X-20X >4 与8X+4X <24解集为 2 冰> 1(18)9X-5X V 8 与15X+5X >80 解集为无解(19)X+X < 与2X+ (1/2) X > 100 解集为无解(20)2011X-2012X W1 与2013X-2012X 羽解集为 1 秋(21)4X-X > 6 与10X+5X V 15 解集为无解(22)-5X-6X <22 与5X-9X ^24 解集为无解 (23) (1/5)X+ (1/5 ) X > 2/5 与X+10X > 22 解集为X > 2(24)55X+55X V 220 与66X+10X V 38 解集为X V 1/2(25)70X+1 <71 与53X-13X <40 解集为X <1(26)X+1 V 7与X-1 > 10解集为无解(27)5X+5 > 5 与2X+3X > 9 解集为X > 9/5 (28) 85X-5X V 8 与50X+30X V 5 解集为X V 1/16 (29) 2X <14 与6X V 6解集为X V 1(30)15X+15 ^30与6X-8X纽解集为-2冰羽(31)2X 羽60 与4X 冯16 解集为X%0 (32) 35X-27X > 136 与20X+20X V 800 解集为20 > X > 17(33)55X <165 与56X > 112 解集为 2 V X <5(34)20X+18X身6 与2X场解集为X缎(35)59X+X > 600 与55X+35X V 1350 解集为10 V X V 15(36)60X V 120 与5X+5X V 10 解集为X V 1(37)100X V 20X+1200 与2X V 30X+10 解集为X V 5/14 ((38)50X羽00与50X为0 解集为X羽(39)25X > 250 与26X > 26解集为X > 10 (40) 2X > 2与3X V -5解集为无解。

(完整版)一元一次不等式组练习题

(完整版)一元一次不等式组练习题

一元一次不等式组练习题1、解以下不等式组,并把解集在数轴上表示出来2x-1≥0〔2〕4<1-3x<133x +1>03x -2<02、a=x3,b=x2,且a>2>b,那么求x的取值范围。

33、方程组2x+y=5m+6的解为负数,求m的取值范围。

X-2y=-174、假设不等式组x<a无解,求a的取值范围。

3x1>125、当x取哪些整数时,不等式2〔x+2〕<x+5与不等式3(x-2)+9>2x同时成立?7、某工厂现有A种原料290千克,B种原料220千克,方案利用这两种原料生产甲、乙两种产品共40件,生产甲种产品需要A种原料8千克,B种原料4千克,生产乙种产品需要A种原料5千克,B 种原料9千克。

问有几种符合题意的生产方案?8、有长度为3cm,7cm,xcm的三条线段,问,当x为多长时,这三条线段可以围成一个三角形?9、把一批铅笔分给几个小朋友,每人分5支还余2支;每人分6支,那么最后一个小朋友分得的铅笔小于2支,求小朋友人数和铅笔支数。

一元一次不等式组练习题之一1x2x24一、填空:1、不等式组3的解集为12xx232、假设m<n,那么不等式组x m1的解集是x n2x a3.假设不等式组2x11无解,那么a的取值范围是.34.方程组2x ky4有正数解,那么k的取值范围是.x2y05.假设关于x的不等式组x6x1的解集为x4,那么m的取值范围是.54x m06.不等式x7x23的解集为.二、选择题:7、假设关于x的不等式组1x2有解,那么m的范围是〔〕x mA.m2B.m2C.m1D.1m2x 28、不等式组 x.0 的解集是( )C.0x1D.2x1x1x y 3 )9、如果关于x 、y 的方程组2y 的解是负数,那么a 的取值范围是(x a2A.-4<a<5B.a>5C.a<-4D.无解三、解答题10、解以下不等式组,并在数轴上表示解集。

x43x2x 22x17x 23x 4x332x123⑴12x⑶⑷31⑵1x5x26x1x51x15x33x22211、方程组2x y 5m6的解为负数,求m 的取值范围.x 2y1712、代数式2x1的值小于3且大于0,求x 的取值范围.313、求同时满足 23x2x8和1x2x 1的整数解2314、某校今年冬季烧煤取暖时间为 4个月.如果每月比方案多烧 5吨煤,那么取暖用煤总量将超过100吨;如果每月比方案少烧 5吨煤,那么取暖用煤总量缺乏 68吨.该校方案每月烧煤多少吨?15、某班学生完成一项工作,原方案每人做 4只,但由于其中 10人另有任务未能参加这项工作,其余 学生每人做6只,结果仍没能完成此工作,假设以该班人数为未知数列方程,求此不等式解集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




首页
x-a>0 中考预测题)已知不等式组 b-2x>0
2 012
的解集是
-1<x<1,则(a+b)
=________. x> a x-a>0 【解析】解 得 b x< . b-2x>0, 2
集是-1<x<3,所以只有 B 符合题意.
【解答】(1)A (2)B
上一页
下一页
中考典例精析
2x+1>x-5 (1)(2011 ·天津) 解不等式组 4x≤3x+2
首页
,并把解集在数轴上
表示出来. 5x-9<3 x-1 (2)(2011·新疆)解不等式组 ,并将解集在数轴上表 3 1 1- x≤ x-1 2 2 示出来.
,并把解集在数轴上表示出来.
答案:1≤x<4
,并求出不等式组的整数解.
答案:原不等式组的解集为1<x≤3 整数解为2,3
上一页
下一页




首页
6.为打造“书香校园”,某学校计划用不超过1 900本科技类书籍和 1 620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中
型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科
珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,
圆珠笔每支1.5元,则其中签字笔购买了________支. 【解析】设签字笔购买了x支,则圆珠笔购买了(15-x)支,由题
意得26<2x+1.5(15-x)<27,解得7<x<9,∵x取正整数,∴x=8.
【答案】8
上一页
下一页

12.(2012
考点知识精讲
首页
第10讲
考点知识精讲
一元一次不等式组
中考典例精析 举一反三
考点训练
上一页
下一页
考点知识精讲
考点一 一元一次不等式组的有关概念
首页
一元一次不等式 合 1.定义类似于方程组,把几个含有相同未知数的_______________
起来,就组成了一个一元一次不等式组.
公共部分 叫做由它们所组成的不等式组 2.解集几个不等式的解集的________
上一页
下一页
中考典例精析
方法总结:
首页
解一元一次不等式时,当两边同乘(或除以)一个负数时,不等号的
方向一定要改变.
上一页
下一页
中考典例精析
首页
(2011·铜仁)为鼓励学生参加体育锻炼,学生计划拿出不超过3 200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3∶2,单
价和为160元.
(1)篮球和排球的单价分别为多少元? (2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于 11个,有哪几种购买方案? 【点拨】本题考查一元一次不等式组的应用.
的解集. 考点二 一元一次不等式组的解法
解集 ,再 1.解不等式组一般先分别求出不等式组中各个不等式的_____
公共部分 求出它们的 _________(一般方法是在数轴上把每个不等式的解集表示出来
解集 ,由图形得出公共部分),就得到不等式组的 _____.
上一页
下一页
考点知识精讲
<b ) :
不等式组 x<a x<b x>a x>b x>a x<b x<a x>b 在数轴上表示 口 诀 小小取小 解 集



首页
【解析】数轴上表示的解集为-2<x≤3. 【答案】B
上一页
下一页




首页
1 1 2x+2>2x-4 3.(2011·潍坊)不等式组 3x-1≤x 2 2 上表示正确的是( )
的解集在数轴
上一页
下一页




首页
1 1 3 【解析】解不等式 2x+ > x-4 得 x>-3,解不等式 2 2 2 1 x- ≤x 得 x≤1,∴不等式组的解集是-3<x≤1,故选 A. 2
,的解集在数轴上表示
上一页
下一页




首页
x+1≥-1 【解析】解不等式组1 x<1 2
D.
【答案】D
,得-2≤x<2,故选
上一页
下一页

范围是( )



首页
7.(2010中考变式题)如果点P(m,1-2m)在第四象限,那么m的取值
1 A.0<m< 2 C.m<0
1 B.- <m<0 2 1 D.m> 2
上一页
下一页




x>2 的不等式组 x>m
首页
10. (2010 中考变式题)若关于 x
的解集
是 x>2,则 m 的取值范围是________.
【解析】根据大大取大,得m≤2.
【答案】m≤2
上一页
下一页




首页
11.(2010中考变式题)某班级从文化用品市场购买了签字笔和圆
m>0 【解析】由题意得 1-2m<0
1 ,解得 m> . 2
【答案】D
上一页
下一页




首页
8.(2012中考预测题)大运会期间北京球迷一行56人从旅馆乘出
租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆
车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的 车未坐满;若全部安排B队的车,每辆坐4人,车不够,每辆坐5人,
首页
利用列不等式组解决问题的方法步骤与列一元一次方程组解应用题
的步骤类似,不同的是后者寻求的是等量关系,列出的是等式,前者寻求
的是不等量关系,列出的是不等式,解不等式组所得的结果通常为解集, 根据题意需从解集中找出符合条件的答案.
在列不等式时,“不超过”“不多于”等用“≤”连接,“至少
”“不少于”等用“≥”连接.
答案:A
5 B.m< 3
上一页
下一页

x-3≥0 3.不等式组x <3 2
A.9 B.12



)
首页
的所有整数解之和是( C.13 D.15
答案:B
x-3 x-2 ≤4 4.解不等式组1+2x > x -1 3
2x-1>1 5.解不等式组 x -1 x-2≤ 2
首页
解得 25<n≤28. 而 n 是整数,所以其取值为 26,27,28,对应 36-n 的值为 10,9,8, 所以共有三种购买方案: ①购买篮球 26 个,排球 10 个;②购买篮球 27 个,排球 9 个;③购买 篮球 28 个,排球 8 个.
上一页
下一页
中考典例精析
方法总结:
首页
列一元一次不等式组解决实际问题时,往往要根据题意求出不等式组
2 所以不等式组的解集是- <x≤4,∴最小整数解为 x=0. 3
【答案】B
上一页
下一页

5. (2012



首页
x+2y=4m 中考预测题)已知 2x+y=2m+1
, 且-1<x-y<0,
则 m 的取值范围是( 1 A.-1<m<- 2 1 B.0<m< 2 C.0<m<1 1 D. <m<1 2
上一页
下一页
考点知识精讲
首页
【点拨】不等式组的每个不等式解集的公共部分即为不等式组的解 集,在数轴上表示解集时,注意“●”表示包括这个点,“○”表示不包 括这个点.(1)由 2x-4<0 得 x<2,由 x+1≥0 得 x≥-1,所以不等式
2x-4<0 组 x+1≥0
的解集是-1≤x<2.故选 A.(2)由数轴知不等式组的解
不变,只是表示在数轴上需要注意区分实心点和空心圆圈的使用.
考点三 一元一次不等式组的特殊解
一元一次不等式组的特殊解主要是指整数解、非负整数解、负整数 解等. 不等式组的特殊解,包含在它的解集中.因此,解决此类问题的关键 是先求出不等式组的解集,然后求其特殊解.
上一页
下一页
考点知识精讲
考点四 一元一次不等式组的应用
上一页
下一页
考点知识精讲
2x-4<0, (1)(2011·大连)不等式组 x+1≥0
首页
的解集是(
)
A.-1≤x<2 B.-1<x≤2 C.-1≤x≤2 D.-1<x<2 (2)(2011·武汉)如图所示,数轴上表示的是某不等式组的解集, 则这个不等式组可能是( )
x+1>0 A. x-3>0 x+1<0 C. x-3>0 x+1>0 B. 3-x>0 x+1<0 D. 3-x>0
有的车未坐满,则A队有出租车(
A.11辆 C .9 辆 B.10辆 D .8 辆
)
上一页
下一页




首页
【解析】设 A 队有车 x 辆,则 B 队有车(x+3)辆,由题
5x<56 意得, 6x>56 4x+3<56 且 5x+3>56
,解不等式组取正整
数得 x=10.
首页
2.两个一元一次不等式所组成的不等式组的解集情况见下表(其中a
x <a _________ x >b _________
大大取大
大小小大中间 _________ a <x <b 找 大大小小无解 _________ 无解
相关文档
最新文档