《几何图形的初步认识》的初步理解

合集下载

《几何图形初步认识》课件

《几何图形初步认识》课件

几何图形在生活中的应用
建筑学
建筑设计、施工图绘制 等都离不开几何图形。
工程学
机械零件设计、工程结 构分析等需要运用几何
知识。
艺术
雕塑、绘画等艺术形式 中,几何图形也是重要
的创作元素。
日常生活
生活中的许多物品,如 桌子、椅子、门窗等, 都是几何图形的具体应
用。
02
平面几何图形
圆形
总结词
完美的对称性,只有一条对称轴
圆柱体
总结词
由两个平行圆面和一个侧面组成,侧面 是一条弯曲的线段。
VS
详细描述
圆柱体是一个三维图形,由一个顶部的圆 面、一个底部的圆面和一个连接它们的侧 面组成。侧面是一条从顶部圆心到底部圆 心的弯曲线段,其形状类似于一个椭圆。
圆锥体
总结词
有一个圆形底面和一个侧面组成,侧面由一条曲线围绕底面圆心而成。
03
立体几何图形
正方体
总结词
具有六个面,每个面都是正方形,对 角线相等。
详细描述
正方体是一个特殊的长方体,它的六 个面都是正方形,并且所有面的面积 都相等。正方体的对角线长度也相等 ,并且是所有棱长的√3倍。
球体
总结词
所有点距离球心等距,表面积与体积的计算公式。
详细描述
球体是一个三维图形,其中所有点都位于一个中心点(即球 心)的距离相等。球体的表面积和体积有特定的计算公式, 对于半径为r的球体,其表面积S=4πr²,体积V=(4/3)πr³。
《几何图形初步认识》ppt课件
目 录
• 几何图形简介 • 平面几何图形 • 立体几何图形 • 几何图形的性质与特点 • 几何图形的周长、面积和体积计算 • 实践与应用:生活中的几何图形

第四章几何图形初步学情与教材分析

第四章几何图形初步学情与教材分析

第四章几何图形初步本章学情分析与教材分析(一)学情分析“几何图形初步”是初中阶段“图形与几何”领域的第一章,介绍图形与几何的一些最基本的概念和图形.一些最基本的概念,如几何图形、立体图形、平面图形、体、面、线、点等,要在本章中从现实具体物体中抽象、归纳出来,直线、线段、射线、角及有关的概念在本章中得到比较详细的介绍,并被广泛应用于后续的教学中.本章的教学属于初中几何图形知识学习的起始阶段,对于后续相关知识的学习影响深远.学生在小学阶段认识了最简单的几何图形,为本章的“几何图形初步”的学习作好了一些铺垫,本章内容的学习也是后面学习三角形、四边形、圆等相关几何知识的重要基础.其中直线、射线、线段和角都是重要而最基本的几何图形,有关直线、射线、线段和角的概念和性质、表示、画法、计算等,都是重要的几何基础知识,是学习后续图形与几何知识以及其他数学知识的必备基础.因此,本章重点内容是几何与图形的基本概念和线段、角的基本知识,概念的抽象性是教学的主要难点,应该予以重视.(二)教材分析1.核心素养本章的核心是直线、射线、线段和角的概念和性质、表示、画法、计算等.因此本章知识的学习,可以提高学生的数学抽象与几何直观的能力,培养学生的逻辑思维与逻辑推理的能力,体验数形结合的思想.2.本章目标(1)通过从实物和具体模型的抽象,了解几何图形、立体图形与平面图形以及几何体、平面和曲面、直线和曲线、点等概念.(2)能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合体得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象相应的几何体,制作立体模型,在平面图形和立体图形相互转换的过程中,培养空间观念和空间想象力.(3)进一步认识直线、射线、线段的概念,掌握它们的符号表示;掌握基本事实:“两点确定一条直线”、“两点之间,线段最短”,了解它们在生活和生产中的应用;理解两点间距离的意义,能度量两点间的距离;了解平面上两条具有相交与不相交两种位置关系;会比较线段的大小,理解线段的和、差以及线段的中点等概念,会画一条线段等于已知线段.(4)理解角的概念,掌握角的符号表示,会比较角的大小,认识度、分、秒并能进行简单的换算,会计算角的和与差.了解角的平分线、余角、补角的概念,知道补角和余角的性质.(5)初步认识几何图形是描述现实世界的重要工具,初步应用几何图形的知识解决一些简单的实际问题,培养学习图形与几何知识的兴趣,通过交流活动,初步形成积极参与数学活动,主动与他人合作交流的意识.3.课时安排本章教学需13课时,具体分配如下:4.1 几何图形 4课时4.2 直线、射线、线段 3课时4.3 角 4课时4.4 课题学习 1课时章末复习课 1课时4.本章重点本章的重点是几何与图形的基本概念和线段、角的基本知识.5.本章难点概念的抽象性是本章教学的主要难点.。

第七章几何图形的初步认识

第七章几何图形的初步认识

第七章几何图形的初步认识知识回顾1、点,线,面:①图形是由构成的。

②面与面相交得,线与线相交得。

③点动成,线动成,面动成。

2、线:①线段有两个: 。

②将线段向一个方向无限延长就形成了。

只有一个。

③将线段的两端无限延长就形成了。

没有端点。

④经过两点直线(两点确定直线)。

3、比较长短:①两点之间的所有连线中,最短。

②两点之间线段的长度,叫做这两点之间的。

4、角:角的度量与表示:①角由两条具有的射线组成,两条射线的是这个角的顶点。

②一度的是一分,一分的是一秒。

角的比较:①角也可以看成是由一条射线绕着而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做。

始边继续旋转,当他又和始边重合时,所成的角叫做。

④余角:。

⑤补角:。

⑥邻补角:。

⑦从一个角的顶点引出的一条射线,把这个角分成,这条射线叫做这个角的平分线。

⑧同角或等角的相等。

⑨同角或等角的相等。

5、平行:①同一平面内,的两条直线叫做平行线。

②经过直线外一点,有直线与这条直线平行(平行公理)。

③如果两条直线都与第3条直线平行,那么这两条直线(平行线的传递性)。

④相等,两直线平行。

⑤相等,两直线平行。

⑥,两直线平行。

⑦,同位角相等。

⑧两直线平行,。

⑨两直线平行,。

6、垂直:①如果两条直线相交且夹角成,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做。

③平面内,过一点直线与已知直线垂直。

7、垂直平分线(线段的中垂线):一条线段的直线叫垂直平分线。

8、垂直平分线定理:性质定理:在垂直平分线上的点到的距离相等。

判定定理:在这线段的垂直平分线上。

9、角平分线:把一个角叫该角的角平分线。

10、角平分线定理:性质定理:角平分线上的点到相等。

判定定理:在该角的角平分线上。

《认识图形》优秀教案(通用

《认识图形》优秀教案(通用

《认识图形》优秀教案(通用一、教学内容本节课选自教材第3章《几何图形的初步认识》,主要详细内容包括:平面图形的基本概念,图形的分类及性质,以及简单的图形组合与变换。

具体涉及的正多边形有:正三角形、正方形、正五边形和正六边形。

二、教学目标1. 知识与技能:使学生能够识别并描述常见的平面图形,理解其基本性质,并运用到实际问题中。

2. 过程与方法:通过观察、实践和思考,培养学生对图形的感知和认知能力,提高解决问题的策略和方法。

3. 情感态度与价值观:激发学生对几何学的兴趣,培养合作精神和创新意识。

三、教学难点与重点重点:正多边形的识别和性质理解。

难点:图形组合与变换的运用。

四、教具与学具准备教具:图形卡片、多媒体课件。

学具:直尺、圆规、量角器、练习本。

五、教学过程1. 导入(5分钟)通过展示生活中常见的图形,引导学生观察并说出它们的名字,从而引入新课。

2. 基本概念学习(15分钟)(1)教师展示正三角形、正方形、正五边形和正六边形,引导学生观察它们的特征。

(3)教师点评并补充,强调正多边形的对称性和边角关系。

3. 实践活动(15分钟)(1)小组合作,用学具拼出不同的图形。

(2)讨论并分享拼图过程中的发现。

4. 例题讲解(10分钟)例题1:找出下图中哪些图形是正多边形?5. 随堂练习(10分钟)分发练习题,学生独立完成,教师巡回指导。

六、板书设计1. 《认识图形》2. 主要内容:平面图形的基本概念正多边形的性质图形组合与变换3. 例题及解答七、作业设计1. 作业题目:(1)列举生活中的正多边形实例,并说明其性质。

(2)用正三角形、正方形、正五边形和正六边形拼出不同的图形,并画出示意图。

2. 答案:(1)生活中的正多边形实例:桌面、窗户、红绿灯等。

性质:对称性、边角关系等。

(2)拼图示例:略。

八、课后反思及拓展延伸1. 反思:本节课学生对正多边形的性质掌握较好,但在图形组合与变换方面还需加强。

2. 拓展延伸:(1)探索其他类型的正多边形。

七年级数学上册第四章几何图形初步认识4

七年级数学上册第四章几何图形初步认识4

D
C (F) D A C (F)
人教版七年级数学上册第四章几何图形初步认识
A (D)
B (E)
C (F)
(3)∠ABC = ∠DEF
人教版七年级数学上册第四章几何图形初步认识
估计图中∠1与∠2的大小关系,并用适当的方法检验.
2 1
(1)
2
1
(2)
人教版七年级数学上册第四章几何图形初步认识
角的大小与角的两边画出的长短有关吗?
(1)角的大小与角的两边画出的长短没有关系. (2)角张开的程度越小,角度就越小.
人教版七年级数学上册第四章几何图形初步认识
用放大镜看蚂蚁,用放大镜看自己的手,用放大镜看 精致的邮票,用放大镜从太阳光里取火等等,都会得到令 人开心的结果.那么,有没有放大镜放不大的事物呢?
你知道放大镜不能“放大”角的度数的原因吗?
已知O为直线AB上一点,OE平分∠AOC,OF平分 ∠COB, 求∠EOF的大小.
C
E
F
A
O
B
人教版七年级数学上册第四章几何图形初步认识
解:∵ OE平分∠AOC,OF平分∠COB,
∴∠EOC=
1 2
∠AOC
∠COF= 1∠COB (角平分线的定义),
2
∵∠AOB=∠AOC+∠COB=180°
(平角的定义),
∠ABC > ∠DEF
D
70°
B
C
E
30°
F
人教版七年级数学上册第四章几何图形初步认识
比较两个角的大小的方法有三种: • 观察法 • 叠合法 • 度量法
人教版七年级数学上册第四章几何图形初步认识
两个角的大小关系有三种,记作:

初步认识几何图形

初步认识几何图形

初步认识几何图形当我们还是孩子的时候,可能就已经开始接触各种简单的几何图形,比如圆形的气球、方形的积木、三角形的三明治。

但几何图形可不仅仅是这些常见的形状,它是一门丰富而有趣的学问,涵盖了我们生活的方方面面。

几何图形,简单来说,就是由点、线、面、体等元素组成的具有一定形状和特征的图形。

它们无处不在,从我们居住的房屋结构,到日常使用的各种物品设计,再到大自然中的奇妙景象,都离不开几何图形的身影。

先来说说点。

点是几何中最基本的元素,它没有大小和形状,只是一个位置的标记。

想象一下在一张白纸上点一个小黑点,那个小黑点就是一个点。

无数个点连接起来,就可以形成线。

线又分为直线和曲线。

直线是笔直的,没有任何弯曲,像我们用直尺画出的线就是直线。

而曲线则是弯曲的,比如圆的周长就是一条曲线。

直线和曲线都有着独特的性质和用途。

比如,在建筑设计中,直线可以给人一种简洁、稳定的感觉;而曲线则常常能带来柔和、优美的视觉效果。

面是由线围成的封闭图形。

常见的面有三角形、四边形、圆形等。

三角形是由三条线段首尾相连组成的,它具有稳定性,在很多建筑结构中都能看到三角形的运用,比如桥梁的支撑结构。

四边形包括平行四边形、长方形、正方形等,它们的性质各不相同。

平行四边形的对边平行且相等,长方形的四个角都是直角,正方形则是特殊的长方形,四条边都相等且四个角都是直角。

圆形是一个非常特殊的图形,它的边缘到中心点的距离始终相等,这种均匀性使得圆形在很多设计中被广泛应用,比如车轮、钟表的表盘等。

体是由面围成的三维图形。

比如正方体、长方体、圆柱体、球体等。

正方体有六个面,每个面都是正方形,且六个面的大小相等。

长方体则相对更常见,我们的书本、冰箱等很多物品都接近长方体的形状。

圆柱体有两个底面和一个侧面,底面是圆形,侧面展开是一个长方形。

球体则是完全圆滑的,像足球、篮球就是球体。

在我们的日常生活中,几何图形的应用随处可见。

家里的家具、电器的外形,大多数都是由各种几何图形组合而成。

几何图形的初步认识

几何图形的初步认识

2.过程与方法:
经历探索点、线、面、体的数学 活动过程中,提高空间想像能力 和抽象思维能力,发展运动变化 的观念.
3.情感态度与价值观:
经历本节课数学活动的过程,养成 主动探索、求知的学习态度,激发学 生对数学的好奇心和求知欲,体验数 学活动中小组合作的重要性.
4.教学的重点、难点:
重点:正确判定围成立体图形的面是 平面还是曲面,探索点、线、面、体 之间的关系是重点. 难点:探索点、线、面、体运动变化 后形成的图形是难点.

象上面学过的长方体、正方体、圆柱、 球、圆锥等这些立体图形,我们称之为几何 体,简称为体。
进一步探索这些立体图形是由什么围成的?学生自己观察,思考,交流得出结论。 体是由面围成的
从上面的长方体中你可以找到哪 些平面图形?
下图是一个长方体的模型,它有 几个面?
面 : 包围着体的是面。 生活中有很多事物都给我们以面的形象比如:
6个面

平静的湖面
化妆镜的镜面
(1)观察物体或情景 ,你看到的上面的两个面与下面的 平面 两个面有什么主要的不同点? (2)试举例生活中哪些物体的面是平的?哪些物体 曲面 的面是曲的?

数学中的平面是无厚薄
篮球的球面
井台的侧面
下图是一个长方体的模型,面和 面相交的地方形成了什么?
12条线
面和面相交的地方是线。
为了实现上述目标,突破重点、分 散难点,根据学生已有的知识基础、 学习经验,教学设计流程如下: 1, 创设情境, 发现新知 2, 观察图片,加深理解
3, 回顾小节,整体感知
4, 深入探究,交流归纳 5, 布置作业,巩固加深
活动1
创设情境,发现新知
从学生已有的经验出发,利用模型给出常见几何体,便于学生 直观感受“体”.

2024年冀教版七年级上册第二章 几何图形的初步认识第二章 几何图形的初步认识

2024年冀教版七年级上册第二章  几何图形的初步认识第二章  几何图形的初步认识

一、单元学习主题本单元是“图形与几何”领域“图形的性质”主题中的“几何图形的初步认识”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段图形与几何领域包括“图形的性质”“图形的变化”和“图形与坐标”三个主题.学生将进一步学习点、线、面、角、三角形、多边形和圆等几何图形,从演绎证明、运动变化、量化分析三个方面研究这些图形的基本性质和相互关系.“图形的性质”是“图形与几何”领域的主要内容,它在义务教育阶段的数学课程中占有重要地位.图形的性质的教学,需要引导学生理解欧几里得平面几何的基本思想,感悟几何体系的基本框架:通过定义确定论证的对象,通过基本事实确定论证的起点,通过证明确定论证的逻辑,通过命题确定论证的结果.要组织学生经历图形分析与比较的过程,引导学生学会关注事物的共性、分辨事物的差异、形成合适的类,会用准确的语言描述研究对象的概念,提升抽象能力,会用数学的眼光观察现实世界;要通过生活中的或者数学中的现实情境,引导学生感悟基本事实的意义,经历几何命题发现和证明的过程,感悟归纳推理过程和演绎推理过程的传递性,增强推理能力,会用数学的思维思考现实世界;要引导学生经历针对图形性质、关系、变化确立几何命题的过程,体会数学命题中条件和结论的表述,感悟数学表达的准确性和严谨性,会借助图形分析问题,形成解决问题的思路,发展模型观念,会用数学的语言表达现实世界.2.本单元教学内容分析冀教版教材七年级上册第二章“几何图形的初步认识”,本章包括八个小节:2.1从生活中认识几何图形;2.2线段、射线、直线;2.3线段长短的比较;2.4线段的和与差;2.5角和角的度量;2.6角大小的比较;2.7角的和与差;2.8平面图形的旋转.“图形的性质”主题通过学习图形的概念,观察图形的特征,经历观察→猜想→验证等过程,以基本图形点、线、面展开研究.认识几何图形,了解线与角、线段与角的有关性质并学会计算,认识平面图形的旋转.本章的基本技能是画一条线段等于已知线段,作一个角等于已知角,作两个角的和与差.能进行角的度数和线段长度的计算.由于是初中几何入门课,要注重对学生良好学习习惯的培养,一般按照“事物或模型→几何图形→文字表示→符号表示”的教学程序,让学生先理解符号或文字所表达的图形及关系,并把它们用图形直观表示出来,化“无形”为“有形”.“图形与几何”教学的一个重要目标是发展学生的空间观念,培养空间想象力,为了达到教学目标,本章教学要重视让学生从事动手操作、观察、想象、交流等活动,为学生提供有意义、有一定挑战性的学习任务,引导学生获得几何图形的知识和有关技能,为后期学习三角形、平行四边形、圆的相关概念、定理的证明以及几何综合问题等内容的教学起到铺垫作用.同时注意,本章中的一些抽象几何概念只要求学生有一些初步直观的认识,一些基本结论、基本事实也仅要求通过观察、思考、探究等活动归纳得出,仅作“说理”和“简单推理”,不要求达到很高的科学严密程度,这为以后教学逐步提高推理要求做了准备.三、单元学情分析本单元内容是冀教版教材数学七年级上册第二章几何图形的初步认识,学生在小学阶段对立体图形和平面图形有了初步的认识,掌握了简单图形的周长、面积、体积的计算方法,初步认识了图形的平移、旋转和轴对称,形成了初步的空间观念和几何直观.这使得本单元的学习之初容易理解,学生的学习兴趣也会很大.但随着学习的深入,对数学的探究意识、数学的抽象能力、推理能力的要求都不断提高.七年级的学生刚从小学过渡到初中,对新知识充满好奇,但还未经历过真正的数学观察、猜想、操作、思考、说理等数学活动,小组合作意识和交流、表达的能力都较弱,所以在教学过程中,要耐心引导,多鼓励学生大胆猜想,勇于表达,初步培养学生积极探索,发现问题,分析问题和解决问题的能力,逐步提高推理能力.本单元难点是对几何问题进行分析并有条理地表达,老师要利用课上多让学生交流,表达,并不断规范,在作业处理中,指出不规范表达的地方,耐心指导学生改正,增强学习信心.四、单元学习目标1.通过对丰富的实物和实例的抽象,进一步认识几何图形,尤其是点、线段、射线、直线和角,并会表示它们,发展学生抽象能力.2.经历观察、测量、画图、折纸等活动,了解点、线段、射线、直线和角的有关性质,初步形成空间观念.3.会比较线段的长短和角的大小,掌握判定线段长短和角大小的方法,发展空间观念和几何直观.4.认识角的度量单位,会进行角的换算.5.会计算线段的和与差、角的和与差,并学会用数学知识解决简单几何问题,培养学生的模型观念、应用意识.6.能使用直尺(无刻度)和圆规作线段和角,培养学生的动手能力.7.通过和角的认识相结合认识平面图形的旋转,提高学生的探究力和想象力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。

七年级数学上册《图形的初步认识》知识点思维导图与考点梳理

七年级数学上册《图形的初步认识》知识点思维导图与考点梳理

七年级数学上册《图形的初步认识》知识点思维导图与考点梳理1. 我们把实物中抽象的各种图形统称为几何图形。

2.有些几何图形(如长方体.正方体.圆柱.圆锥.球等)的各部分不都在同一平面内,它们是立体图形。

3.有些几何图形(如线段.角.三角形.长方形.圆等)的各部分都在同一平面内,它们是平面图形。

4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5.几何体简称为体。

6.包围着体的是面,面有平的面和曲的面两种。

7.面与面相交的地方形成线,线和线相交的地方是点。

8.点动成面,面动成线,线动成体。

9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

简述为:两点确定一条直线(公理)。

10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。

12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。

简单说成:两点之间,线段最短。

(公理)13.连接两点间的线段的长度,叫做这两点的距离。

14.角∠也是一种基本的几何图形。

15.把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

16.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

17.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。

18.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

19.等角的补角相等,等角的余角相等。

几何图形初步知识点总结

几何图形初步知识点总结

几何图形初步第一节几何图形认识立体图形点、线、面、体欧拉公式几何体的表面积(1)几何体的表面积=侧面积+底面积(上、下底的面积和)(2)常见的几种几何体的表面积的计算公式①圆柱体表面积:2πR2+2πRh (R为圆柱体上下底圆半径,h为圆柱体高)②圆锥体表面积:πr2+nπ(h2+r2)360(r为圆锥体低圆半径,h为其高,n为圆锥侧面展开图中扇形的圆心角)③长方体表面积:2(ab+ah+bh)(a为长方体的长,b为长方体的宽,h为长方体的高)④正方体表面积:6a2 (a为正方体棱长认识平面图形几何体的展开图展开图折叠成几何提体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.截一个几何体(1)截面:用一个平面去截一个几何体,截出的面叫做截面.(2)截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形第二节直线射线线段直线射线线段的表示(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大些字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外直线的性质(1)直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.线段的性质线段公理两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.两点间的距离(1)两点间的距离连接两点间的线段的长度叫两点间的距离.(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离比较线段的长短(1)比较两条线段长短的方法有两种:度量比较法、重合比较法.就结果而言有三种结果:AB>CD、AB=CD、AB<CD.(2)线段的中点:把一条线段分成两条相等的线段的点.(3)线段的和、差、倍、分及计算做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.如图,AC=BC,C为AB中点,AC=12AB,AB=2AC,D 为CB中点,则CD=DB=12CB=14AB,AB =4CD,这就是线段的和、差、倍、分.第三节角一:角钟面角方向角二:角的比较与运算度分秒的换(1)度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.(2)具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.角平分线的定义角的计算(1)角的和差倍分①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB-∠BOC.②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=13∠AOB.(2)度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.(3)度、分、秒的乘除运算.①乘法:度、分、秒分别相乘,结果逢60要进位.②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除.计算器---角的换算三:余角和补角。

七年级上册数学《几何图形初步》知识点整理

七年级上册数学《几何图形初步》知识点整理

几何图形初步一、本节学习指导本节知识点比较简单,都是基础,当看书应该就能理解。

二、知识要点1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形.立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形.比如:正方体、长方体、圆柱等平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

比如:三角形、长方形、圆等2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体。

3、生活中的立体图形4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱.侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点.棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形.棱柱的侧面有可能是长方形,也有可能是平行四边形。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图,如:、物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图.三、经验之谈本节知识比较重要的是我们要对常见的立体图形有个概念性的认识,很多图形在小学就学习过,我们要巩固其相关求法.其次画立体图形的三视图的时候要小心,多在脑子里形成空间想象.。

七年级上册第四章几何图形初步教材分析文字稿及例题解析含答案

七年级上册第四章几何图形初步教材分析文字稿及例题解析含答案

七年级上册第四章几何图形初步教材分析文字稿及例题解析含答案第四章《几何图形初步》教材分析一、教材分析1.本章地位和作用本章是初中阶段“图形与几何”领域的第一章,是初中几何的起始章节,在前面两个学段研究的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,初步尝试用数学的眼光观察立体图形与平面图形,分析它们之间的关系.并通过对线段和角等一些简单几何图形的再认识,初步接触由实验几何向推理几何的过渡.本章内容是几何知识的重要基础,对后续几何的研究有很重要的意义和作用.(1)内容上:本章分为两部分,第一部分“几何图形”,从观察现实生活中的各种物体抽象出几何图形或几何概念,体会几何图形的抽象性特点和数学的抽象性.第二部分“线段、角”是平面几何中最基础也是最重要的图形,有关线段和角的概念、公理、性质,相关的画法、计算、推理、几何语言与图形语言之间的转化能力,对今后几何研究将起到导向作用.(2)方法上:三种数学语言(文字语言、符号语言、图形语言)的转化贯穿于研究的始终.要学会用分析法、综合法思考解决几何问题,这也是今后解决几何问题的基本方法.(3)思想上:这一章中所涉及到从具体到抽象的思想、把立体图形转化为平面图形的思想、代数方法解决几何问题的思想、数形结合的思想、运动变换的思想、分类讨论的思想、方程的思想以及应用意识的渗透.2.本章研究目标(1)通过从什物和具体模型的抽象,了解几何图形、立体图形与平面图形以及几何体、平面和曲面、直线和曲线、点等概念.(2)能画出从分歧偏向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简朴组合体获得的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图设想响应的几何体,制作立体模型,在平面图形和立体图形相互转换的过程当中,培养空间看法和空间设想力.(3)进一步认识直线、射线、线段的概念,掌握它们的符号透露表现;掌握基本究竟:“两点确定一条直线”、“两点之间,线段最短”,了解它们在生活和出产中的应用;了解两点间距离的意义,能度量两点间的距离;了解平面上两条直线具有相交和不相交两种位置关系;会比较线段的大小;了解线段的和、差及线段中点的概念,会画一条线段等于已知线段.(4)了解角的概念,掌握角的符号透露表现;会比较角的大小;认识度、分、秒,并会举行简朴的换算,会计较角的和与差.了解角的平分线、余角、补角的概念,知道余角和补角的性质.(5)初步认识几何图形是描述现实天下的紧张工具,初步应用几何图形的知识解决一些简朴的实际题目,培养研究图形和几何知识的乐趣,通过交换活动,初步形成积极介入数学活动、自动与他人合作交换的意识.3.本章知识结构图几何图形4.重点、难点重点:(1)几何与图形的基本概念,线段、角的基本知识,图形与几何的知识与客观实际的联系.(2)熟悉一些基本的几何语言,养成优秀的几何作图的气,体会和模仿几何计较的较为规范的书写方式.(3)结合立体图形与平面图形的互相转化的研究,来发展空间观念以及一些重要的概念、性质.难点:(1)概念的抽象性:能由什物形状设想(抽象)出几何图形,由几何图形设想出什物形状.(2)对图形的透露表现方法,对几何语言的认识与运用.(3)根据文字作图的训练,注意到其中可能蕴含的分类讨论等情形.5.本章共16课时,具体分配如下(仅供参考):4.1几何图形4.3角小结点、线、面、体从不同方向看立体图形立体图形展开立体图形线段大小的比较直线、射线、线段两点确定一条直线两点之间、线段最短角的度量角角的大小比较与运算角的平分线平面图形平面图形余角和补角等角的补角相等等角的余角相等4课时3课时5课时2课时2课时4.2直线、射线、线段4.4课题研究二、教学发起1.总体教学建议(1)教学中要注意与小学知识内容的衔接,要在已有的知识基础上教学,避免不适当的重复.【小学要求】:对于一些简朴几何体和平面图形有一些感性的了解,能联合实例了解线段、射线和直线,了解一些几何体和平面图形的基本特征,知道周角、平角,了解周角、平角、钝角、直角、锐角之间的大小关系,能辨认从分歧偏向(前面、侧面、上面)看到的物体的形状图,能认识最简朴的几何体(长方体、正方体和圆柱)的展开图.(2)要善于利用模型、生活什物、图片、多媒体工具演示等要学生充分去体验激发学生乐趣.多从生活中的实物出发,让学生感受到图形普遍存在于我们的周围,运用信息技术工具的展现丰富多彩的图形,进行动态演示.在实践中培养学生研究的兴趣.对于一些抽象的概念、性质等,也可借助实物或多媒体,让学生在探索中逐步理解这些知识.(3)要重视画图技能的培养.应注意要求学生养成良好的惯,画图要认真,图应该画得清楚、干净,并能很好地表现图形之间的位置关系.在画图的过程中,一方面培养学生的绘图技能,同时也培养学生严谨、认真的研究态度,形成良好的个性品质.在这方面老师也应起到良好的示范作用.(4)要重视几何语言的教学.几何图形是“空间与图形”的研究工具,对它的一般描述透露表现是按“几何模型→图形→文字→符号”这类程序举行的.其中,图形是将几何模型第一次抽象后的产品,也是形象、直观的语言;文字语言是对图形的描述、解释与讨论;符号语言则是对文字语言的简化和再次抽象.明显,首先建立的是图形语言,其次是文字语言,再次是符号语言,最后形成的是对于研究工具的三种数学语言的综合描述,有了这类团体认识,三种语言达到融汇贯通的程度,就能基本掌控工具了.要留意概念的定义和性质的表述,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.准确的几何语言应当贯穿课堂、作业、课外题等各个环节,逐步训练学生的几何推理表达.这些不仅是研究好本章的关键,同时对于学好以后各章也是很重要的.(5)在研究中通过对比(如直线、射线、线段)和类比(线段和角)加深理解.(6)注意训练几何推理书写方式,纠正用算术式进行几何计算的惯:【“旧”气】90245【“新”写法】COB11AOB904522【为什么惯要“改”?】体现了图形语言和符号语言的对应;体现了推理的过程;从算术思维到代数思维.(7)要通过立体图形的三视图与展开图发展空间概念(不要过于总结规律).(8)要注重基本概念与性质的教学.例如:①在研究直线、线段、射线的有关概念时,容易出现延长直线或延长射线之类的错误,在用两个大写字母表示射线时,忽视第一个字母表示的是这条射线的顶点.②直线有这样一个紧张性质:经过两点有一条直线,并且只要一条直线.即两点确定一条直线.线段有这样一条紧张性质:两点的所有连线中,线段最短.XXX说成:两点之间,线段最短.这两个性质是研究几何图形的根蒂根基,复时应抓住性质中的枢纽性字眼,不能出现似是而非的错误.③注意线段的中点是指把线段分成相等的两条线段的点;而连结两点间的线段的长度,叫做这两点的距离.这里应特别注意线段与距离的区别,即距离是线段的长度,是一个量;线段则是一种图形,它们之间是不能等同的.④在复角的概念时,应留意了解两种方式来描述,即一种是从一些实际题目中抽象地概括出来,即有公共端点的两条射线组成的图形,叫做角;另一种是用旋转的观点来定义,即一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.角的两种定义都告诉我们这样一些究竟:(1)角有两个特征:一是角有两条射线,二是角的两条射线必需有公共端点,两者缺一不可;(2)由于射线是向一方无限延长的,所以角的双方无所谓长短,即角的大小与它的边的长短无关;(3)当角的大小一旦确定,它的大小就不因图形的位置、图形的放大或缩小而改动.如一个37°的角放在放大或缩小多少倍的放大镜下它仍然是37°不能误以为角的大小也放大或缩小多少倍.另外对角的透露表现方法中,当用三个大写字母来透露表现时,顶点的字母必需写在中央,在角的双方上各取一点,将透露表现这两个点的字母划分写在顶点字母的两旁,两旁的字母不分前后.⑤在研究互为余角和互为补角时,容易混淆这两个概念.常常误以为互为余角的两个角的和等于180°,互为补角的两个角的和等于90°.(9)要准确把握好教学要求总体上说,起始章的教学要求不宜过高,要充分保护学生研究积极性,避免产生畏难情绪,但是基础知识要落实扎实,养成规范的表达分析惯,为后续研究打好基础,因此要注意根据学生具体情况来把握教学要求.①立体图形和平面图形、点线面体的概念要求学生在实际背景中认识、理解这些概念,体会抽象的过程,而不是通过形式化的描述让学生接受概念.②视图的知识对于三视图大部分内容是安排在第29章“视图与投影”中的.在这一章,没有给出严格的三视图的概念,是要求能从一组图形中辨认出是从什么方向看得到的图形,能说出从不同方向看一些最基本的几何体(长方体、正方体、圆柱、圆锥、球)以及它们的简单组合所能得到的图形(对于语言难以表达的,可画出示意图,基本形状正确即可,不做尺寸要求).③展开图的要求教材从展开和折叠两个方面都有要求,且教材中的题中出现正方体表面有图案的情况,这也是中考的一个热点.圆锥的侧面展开图在背面的章节还要再研究,其余的多面体的展开图很少涉及,所以尽可能多做一些练,尽可能在本章中过关.在教学中,能够从看图阐发图形特点举行设想或先动手做再阐发图形,两方面同时举行.正方体的11种展开图,在操作中理解展开和折叠的过程,从不同的分类角度认识展开图.④推理能力的要求教科书是按照“简单说理”“说理”“推理”“用符号表示推理”不同层次分阶段逐步加深安排的.在本章,不仅要求学生通过观察、思考、探究等活动归纳出图形的概念和性质,还要“简单说理”.直线和线段性质的应用、余角和补角的性质的得出等都有简单说理的成分.教学中要注意利用这里“简单说理”的因素,为后面逐步让学生养成言之有据的惯作准备.规范的推理形式,学生虽然一开始接受有些困难,随着教学的深入不断地纠正、强化,学生是可以掌握的,为以后的几何研究起到示范作用.本章中线段的中点、角平分线、互余、互补、同角的余角(补角)相等,等角的余角(补角)相等,要从文、图、式三方面加深理解,并加以应用,要配上适当的练,巩固学生的说理.(10)关于本章作图的要求:①作一条线段等于已知线段②作已知线段的中点③作一个角等于已知角④作一个角的平分线2.各小节教学建议4.1.1立体图形与平面图形知识点1:在实际背景中了解立体图形和平面图形的概念,体会抽象的过程,能举出实例.教学建议:1.理解从模型→图形,就是数学化的过程.2.能够认清N棱柱和N棱锥,圆柱和圆锥,留意“棱”字和“锥”字的写法;能区分棱柱(锥)与圆柱(锥),能区分圆形和球体,不要求但也能够认识棱台或圆台.知识点2:从分歧角度看立体图形获得平面图形.教学建议:简单几何体要求会画图;复杂几何体能想象、辨认、说明即可.知识点3:立体图形的展开图.教学建议:1.对于立体图形展开图,学生首先要分析认清立体图形的空间结构,可以把每个面都标上它的位置名称,在展开后方便分清每个面所达到的位置.正方体的11种展开图,不要肄业生记忆,紧张的是展开和折叠的过程.鼓励学生自己动手尝试.圆锥的侧面展开图在背面圆一章中还能够再研究,其余的多面体的展开图很少涉及,所以尽可能多做一些练,尽可能在本章中过关.2.通过“展开”和“围成”两种途径认识常见几何体的展开图.尽量提供学生动手操作的机会.4.1.2点、线、面、体知识点:能从几何实体中抽象出点、线、面、体;知道“…动成…”.教学建议:这局部学生在小学阶段就有了响应的体验,枢纽是学生能进一步抽象了解这些概念,如对点的认识,它只透露表现一个位置,没有大小,甚至于无法画出来.这里还要说明线分直线和曲线,面分平面和曲面.4.2直线、射线、线段知识点1:三种基本几何图形的概念、表示、作图、性质教学建议:联系:射线、线段是直线的一部分,反向延长射线得到直线,两方延长线段得到直线.区别:名称直线图像透露表现1.直线AB(或直线BA)直线l2.射线线段1.射线AB2.射线l1.线段AB(或线段BA)2.线段a延伸向两端无限延长向一端无限延伸不可延长2可度量1不可度量端点度量不可度量知识点2:几何语言和作图;点和直线教学发起:1.该当学会“过某点”、“点在线上/外”、“相交于某点”、“延长(到某点)”、“在某线上截取”、“连接AB”、“作直线/射线/线段AB”、“有且只要”等说法,并能画出响应的图形.2.学生在书写时可能会出现用小写字母表示点的问题.知识点3:尺规作图:作一条线段等于已知线段;叠合法比较两条线段的长度大小教学发起:要让学生了解为什么在“射线”上截取,在直线或线段上截取行不行.知识点4:线段的中点、N等分点的概念教学建议:1.夸大中点必需在线段上,能够提出探讨性题目“MA=MB,能否断言M就是线段AB的中点?”,能够要学生利用尺规作图举行探讨.2.合理利用中点举行推理.知识点5:线段的和差倍分教学建议:1.注意规范符号语言的书写,要求学生模仿,从现在起必须变算术式为几何语言.2.发起此时不上难题、综合题,目的是先解决“三种语言”的题目,也为后续研究角的计较打好根蒂根基,分散难点.4.3.1角知识点1:角的两种定义方法教学发起:1.通常情况下角的范围是(0,180].2.明确角的分类.3.在第二种定义下,说明角的范围可以进一步扩展到和大于180的角.知识点2:角的三种表示方法教学建议:1.角的表达规范题目.2.书写时尽可能写成简洁的表达形式.知识点3:角的大小、单位制、方位角教学发起:1.度分秒的转换、计算是难点,学生对于60进制的换算还是不太适应.2.一般方位,都统一用“北偏X”或“南偏X”表示;在图中标记角度.4.3.2角的比较与运算知识点1:叠合法比较角度大小;角分线的概念;角度和差倍分的计算教学建议:1.类比“线段”的研究来研究“角”.可以从以下方面作类比:①定义、图形、符号表示②测量:测量工具、测量方法、度量单位③比较大小:两条线段/两个角的大小关系的方法④特殊位置:线段的等分点、角等分线⑤和差倍分运算:感受运算中的推理和方程思想⑥角的作图:感受作图中的方案设计2.典型题:线段同一直线上有n个点,求线段的条数.已知:点C是直线AB上一点,满足已知:平面内有AOB,射线OC满足BOC角平面内有共端点的n条射线,求角的个数.AC1BC2BC1AB,2BC2则点C有两个可能位置:已知:如图,点C在线段AB上,1AOB,O2AC1则射线OC有两个可能位置:已知:如图,射线OC在AOB内部,M,N划分是线段AC,BC中点,OM,ON划分是AOC,BOC平分线,A总有MON1总有XXX.21AOB.2OXXX4.3.3余角和补角知识点:余角和补角的概念和计算教学建议:1.明确这两个概念仅透露表现数量关系、不涉及位置关系;但反过来,特殊的位置关系(垂直、邻补角)则每每会出现两个角互为余角/补角,能够用来计较角的大小.2.可以考虑将性质写成“已知-求证-证明”的形式,让学生初步感受几何中的推理和证明.4.4课题研究制作长方体形状的包装纸盒通过这一研究体会长方体(立体图形)与其侧面展开图(平面图形)之间的关系.教学建议:能够安排与立体图形展开图教学联合举行.第四章几何图形初步小结复1.建立完善的认知结构,体会一些数学思想方法的应用.2.注重渗透数学思想方法:分类讨论思想、方程思想、数形联合思想等等.分类讨论思想例1.两条相交直线与另外一条直线在同一平面内,求它们的交点个数?分析由于题设条件中并没有明确这三条直线的具体位置,所以应分情况讨论.前两条的关系很确定,当画第三条时,会出现分类,或平行于某一条,或相交于同一个点,或相交不在同一个点等三种情况.说明:在过平面上若干点可以画多少条直线,应注意这些点的分情况讨论;或在画其它的图形时,应注意图形的各种可能性.例 2.点A,B,C在统一条直线上,AB=3 cm,BC=1 cm.求AC的长.方程思想在处理有关角的大小,线段大小的计较经常需要通过列方程来解决.例.如果一个角的补角是150°,求这个角的余角.分析若设这个角的大小为x°,则这个角的余角是90°-x,于是由这个角的补角是150°可列出方程求解.数形联合思想例.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF半数,点B落在直线EF 上的点B'处,得折痕EM;将∠AEF半数,点A落在直线EF上的点A'处,得折痕EN,求∠XXX的度数.说明:对于几何中的一些概念、性质及关系,应把几何意义与数量关系结合起来加以认识,达到形与数的统一.三、几个主要知识点1.从分歧偏向看例1.将两个大小完全不异的杯子(如图1-甲)叠放在一起(如图1-乙),则从上往下看图乙,获得的平面图形是()第图1解析:从上面往下看,能够看到上面杯子的底和两杯子的口都是圆形,应用实线透露表现,故选C.例2.图2是一个几何体的什物图,从正面看这个几何体,获得的平面图形是()图2ABCD解析:此几何体由上下两部分组成,从正面看上面的几何体,看到的是一个等腰梯形,从正面看下面的几何体,看到的是一个长方形,再根据上面的几何体放置的位置特征,应选C.2.展开与折叠例3.如图3所示的平面图形中,不可能围成圆锥的是()图3解析:圆锥的展开图是一个圆和一个扇形,D选项中是一个圆和一个三角形,不能围成圆锥,故选D.例4.图4是正方体的展开图,原正方体相对两个面上的数字之和的最小值是图4________.解析:将正方体的展开图折成正方体,能够获得2与6两个面相对,3与4两个面相对,1与5两个面相对,所以相对两个面上的数字之和的最小值是:1+5=6.故填6.3 .线段的性质与计算例5.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是___________.解析:本题是线段性质的实际应用,根据线段的性质直接获得谜底.应填“两点之间,线段最短.”例6.如图5,点C是线段AB上的点,点D是线段BC 的中点,若AB=12,AC=8,则CD=______.解析:由图可知,CB=AB-AC=12-8=4.又因为D是BC的中点,所以CD=BC=2.故填2.4.角度的计算例7.如图6所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A. 20°B. 25°C. 30°D. 70°CA1OD2图512解析:由∠1=40°及平角定义,可求出∠BOC的度数,由角平分线的定义,通过∠BOC=2∠2可求出∠2的度数.因为∠1=40°,所以∠BOC=180°-∠AOC=140°.又由于OD是∠BOC的平分线,所以∠2=B图61XXX∠BOC=70°.故选D.2例8.如图7,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是()A. 125°B. 135°C. 145°D. 155°解析:因为OE⊥AB,所以∠BOE=90°.由于∠BOD=45°,所以∠DOE=45°.所以∠COE=180°-∠DOE=135°.故选B.5.余角与补角例9.(1)已知∠α=20°,则∠α的余角等于度.(2)一个角的补角是36°35′,这个角是.ACO图7EDB解析:(1)由余角定义,∠α的余角为:90°-20°=70°.故填70.。

(完整)第二章几何图形的初步认识

(完整)第二章几何图形的初步认识

七年级数学·上新课标[冀教]第二章几何图形的初步认识1.通过对丰富的实物和实例的抽象,进一步认识几何图形,尤其是点、线段、射线、直线和角,并会表示它们.2.经历观察、测量、画图、折纸等活动,了解上述图形的有关性质,发展空间观念.3.会比较线段的长短和角的大小,能估计线段的长短和角的大小.4.认识角的度量单位,会进行角的换算.5.会计算线段和角的和与差,能使用直尺和圆规作线段和角.6.与角的认识相结合认识平面图形的旋转.7.了解一些数学基本事实,掌握相关的图形关系,增强空间观念和几何直观.1.通过各种几何图形的抽象过程和图形性质及图形关系的发现和确认,进一步发展学生的数学基本思想,并在这样的活动过程中,使学生积累数学活动经验.2.通过本章的数学活动过程,培养学生发现问题、提出问题、分析问题、解决问题的能力.1.培养学生观察、操作、探究图形性质等合作意识.2.培养学生在发现问题、解决问题过程中的创新精神.本章的基本知识是:认识几何图形,了解线与角、线段与角的有关性质并学会计算,认识平面图形的旋转.本章的基本技能是:画一条线段等于已知线段,画出两条线段的和或差,作一个角等于已知角,作两个角的和或差,能进行角的度数和线段长度的计算.本章的基本数学思想是:几何图形生成过程中运用的抽象思想,图形关系发现和确认过程中运用的推理思想等.本章内容的呈现方式及特点:在本章,空间观念、几何直观、推理能力、应用意识和创新意识这些核心概念的培养与发展,是教材设计的主导思想.加强发现和提出问题、分析和解决问题的能力的培养,是本章教材设计的又一重要指导思想.【重点】1.点、线段、射线、直线和角的有关性质.2.比较线段和角的大小,按照相关要求作简单的线段和角.【难点】1.角的定义和计算.2.利用直尺和圆规按要求作线段和角.1.现实中的几何实例与教学中的几何对象是具体和抽象、特殊和一般的关系,在实际教学中,如何引导学生从具体的实例中抽象出事物的一般性,是教学中的一个难点,这方面的处理是否得当直接关系到学生能否准确地理解数学中的各种几何概念.2.几何量的度量是几何中基础而重要的问题,是培养学生准确的几何观念的重要内容.教师通过让学生使用直尺、三角板、量角器和圆规等常用的数学工具,培养学生严谨的科学态度和基本的使用工具的能力,对于学生在日常生活中使用其他工具解决实际问题也很有帮助.3.几何知识应该在几何的实际背景中讲授.本章内容包含了大量的生活实例,有利于学生克服数学中抽象而形式化的困难,对学生准确理解并掌握几何概念以及它们的一些简单性质十分有利.2.1从生活中认识几何图形1课时2.2点和线1课时2.3线段的长短1课时2.4线段的和与差1课时2.5角以及角的度量1课时2.6角的大小1课时2.7角的和与差1课时2.8平面图形的旋转1课时回顾与反思1课时2.1从生活中认识几何图形1.进一步认识常见的几何图形,并能用自己的语言描述它们的特征.2.体会点、线、面是几何图形的基本要素.进一步经历几何图形的抽象过程.培养学生从具体到抽象的思想方法.【重点】从实物背景中得到几何图形的特征.【难点】在小学的基础上进一步增强对几何图形的抽象认识.【教师准备】多媒体课件.【学生准备】立体图形的实物.导入一:从北京天坛主体建筑物的外观上看,它是由不同形状和大小的几何体构成的吗?[设计意图]主题图是北京天坛的照片,它可以看作是由不同形状、不同大小、不同位置的几何体组成的.用此图导入可以比较好地帮助学生从生活中去认识几何图形的特征.导入二:物体的构成包含多种元素,几何图形也是如此.以长方体为例,我们来分析一下几何图形的构成元素.(1)观察长方体模型,如图所示,它有几个面?面与面相交的地方形成了几条线?棱与棱相交形成了几个顶点?(2)拿出三棱柱模型让学生思考以上问题.(3)你能说出构成几何图形的元素包含哪些吗?学生思考交流,师生共同总结:几何图形的构成元素包括点、线、面.[设计意图]引导学生在已有知识的基础上,通过主动地观察、思考,体会几何图形是由点、线、面构成的,从构成元素的角度把握几何体的特征,从而引入点、线、面的概念.1.观察图片,思考下列问题:(1)如果用一个“形状”来描述地球或月球,你会用什么图形来概括?预设:圆、椭圆等.(2)如果用一个“形状”来描述上图中的学具,你会用什么图形来概括?预设:长方形、正方形、六边形等.[设计意图]本问题不要求学生给出比较准确的答案,主要通过情境问题帮助学生体验从几何图形的角度观察生活中的物体.2.几何图形对于各种物体,如果不考虑它们的颜色、材料和质量等,而只关注它们的形状(如方的、圆的等)、大小(如长度、面积、体积等)和它们之间的位置关系(如垂直、平行、相交等),就得到几何图形.图形的形状、大小和它们之间的位置关系是几何研究的主要内容.活动2做一做——深化对几何图形的认识1.出示教材第63页问题及图片,让学生自主尝试连线.[设计意图]帮助学生体会实物与几何图形之间的对应关系,为下一步学习做铺垫.2.如图所示,请你把每个平面图形的名称写在它的下面.[处理方式](1)让学生自主填写.(2)思考:几何图形包括哪两种?总结:几何图形包括立体图形(几何体)和平面图形.像正方体、长方体、棱柱、圆柱、圆锥、球等,它们都是立体图形.像线段、直线、三角形、长方形、梯形、六边形、圆等,它们都是平面图形.活动3几何体的基本要素观察以下几何体:1.几何体的面:可以看到,几何体都是由面围成的.如:长方体有六个面,这些面都是平的;圆柱有三个面,两个底面是平的,一个侧面是曲的;球有一个面,是曲的.2.几何体的线:(1)长方体中,面与面交接(相交)的地方形成线.这样的线有几条?是直的还是曲的?(12条直线)(2)在圆柱中,两个底面与侧面交接(相交)的地方形成线.这样的线有几条?是直的还是曲的?(2条曲线)3.几何体的点:在长方体中,线与线交接(相交)的地方形成点.这样的点有几个?(8个)总结:包围着几何体的是面,面与面相交形成线,线与线相交形成点.点、线、面是几何图形的基本要素.[知识拓展]立体图形与平面图形是两类不同的图形,但它们相互联系,立体图形上的某部分就是平面图形,立体图形是由平面图形组成的.几何图形{立体图形:一个图形的各个部分不都在同一个平面上平面图形:一个图形的各部分都在同一个平面上1.下面各组图形都是平面图形的是()A.三角形、圆、球、圆锥B.点、线、面、体C.角、三角形、长方形、圆D.点、相交线、线段、正方体解析:A中球和圆锥是立体图形;B中体是立体图形;D中正方体是立体图形.故选C.2.如图所示,把梯形绕虚线旋转一周形成一个几何体,与它相似的物体是()A.课桌B.灯泡C.篮球D.水桶解析:一个直角梯形绕垂直于底边的腰所在直线旋转一周后成为圆台.答案合适的为D.故选D.3.下列四种说法:①平面上的线都是直线;②曲面上的线都是曲线;③两条直线相交只能得到一个交点;④两个平面相交只能得到一条交线.其中不正确的有()A.4个B.3个C.2个D.1个解析:解答本题时注意:不可认为曲面上的线都是曲线,如圆柱的母线就是曲面上的直线,故②错误;平面上也有曲线,故①错误;③④正确.故选C.2.1从生活中认识几何图形活动1观察与思考——认识几何图形活动2做一做——深化对几何图形的认识活动3几何体的基本要素一、教材作业【必做题】教材第64页练习第1,2题.【选做题】教材第65页习题A组第2题.二、课后作业【基础巩固】1.下列物体中与足球形状类似的是()A.易拉罐B.电脑显示器C.烟囱D.西瓜2.下列有六个面的几何体的个数是()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱.A.1B.2C.3D.43.天空中的流星划过后留下的光线,给我们以什么样的形象()A.点B.线C.面D.体4.对于棱柱与圆柱,围成的面中有曲面的是,有平面的是,面与面相交的线中有曲线的是,只有直线的是.5.由生活中的物体抽象出几何图形,在后面的横线上填出对应的几何体的名称.(1)足球;(2)电视机;(3)漏斗;(4)砖块;(5)纸箱;(6)铁棒.【能力提升】6.如图所示的陀螺是由下列哪两个几何体组合而成的()A.长方体和圆锥B.长方体和三棱锥C.圆柱和三棱锥D.圆柱和圆锥7.在如图所示的几何体中,由三个面围成的几何体有()A.1个B.2个C.3个D.4个8.下列判断正确的有()①正方体是棱柱,长方体不是棱柱;②正方体是棱柱,长方体也是棱柱;③正方体是柱体,圆柱也是柱体;④正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个9.滚动的保龄球的轨迹是一条直线,说明了;雨刷滑过汽车的车窗得到一个扇面,说明了;将一个长方形绕一边旋转得到圆柱,说明了.10.如图所示,至少找出下列几何体的四个共同点.【拓展探究】11.一个多面体,若顶点数是4,面数为4,则棱数应为.12.用6根相同长度的木棒在空间中最多可搭成个正三角形.【答案与解析】1.D(解析:西瓜和足球都类似于球.故选D.)2.C(解析:长方体有6个面,圆柱有3个面,四棱柱有6个面,正方体有6个面,三棱柱有5个面,故有六个面的有3个.)3.B(解析:天空中的流星划过后留下的光线,给我们以线的形象.)4.圆柱棱柱和圆柱圆柱棱柱(解析:圆柱由两个平面和一个曲面围成,相交的线为两条曲线;棱柱由几个长方形与两个多边形围成,相交的线均为直线.)5.(1)球(2)长方体(3)圆锥(4)长方体(5)长方体(6)圆柱6.D(解析:上面是圆柱,下面是圆锥.)7.C(解析:除三棱锥外都是由三个面围成的.)8.B(解析:正方体和长方体都是四棱柱,棱柱和圆柱都是柱体,所以本题中②③正确.)9.点动成线线动成面面动成体10.解:(1)侧面都有长方形;(2)底面都是多边形;(3)每个面都是平的;(4)都是柱体;(5)经过每个顶点都有三条棱等.11.6(解析:这是一个四面体,即三棱锥,棱数为6.)12.4(解析:用6根火柴棒搭成正四面体,四个面都是正三角形,一共有4个.)认识几何体和认识几何图形不是一个难点,难点是从几何图形中抽象出几何体.为了突破这个教学难点,本课时在教学的过程中,遵循学生的认知规律,采取了步步诱导的教学策略,帮助学生在思考过程中,从点、线、面三个层次加深了对几何体的认识.在教学的过程中,过于依赖教材的素材,没有对课内的教材进行适度拓展.在探讨几何体的组成时,可以选取学生身边熟悉的事物,比如黑板、课桌等,这样更能形象地帮助学生认识几何体的组成.练习(教材第64页)1.解:这个几何体有8个面,18条棱,12个顶点.2.球六棱柱圆锥三棱柱圆柱习题(教材第64页)A组1.解:第一个几何体是三棱柱,平面图形有三角形(2个)、长方形(3个);第二个几何体是圆柱,平面图形有圆(2个);第三个几何体是圆锥,平面图形有圆(1个);第四个几何体是长方体,平面图形有长方形(6个).(画图略)3.解:第一个几何体有4个面,6条线,4个点;第二个几何体有6个面,12条线,8个点;第三个几何体有9个面,16条线,9个点.B组1.解:第一个物体可以看做是由几个圆柱构成的;第二个物体可以看做是球;第三个物体可以看做是由圆柱和圆锥构成的;第四个物体可以看做是圆锥.2.解:第一个图片表示点动成线,第二个图片表示线动成面,第三个图片表示面动成体.常见的立体图形我们生活在三维的世界中,身边有各种各样的物体.我们要善于观察身边的事物,认识立体图形.生活中的立体图形有柱体、锥体、球体.柱体分为圆柱和棱柱,其中圆柱是由两个底面和一个侧面围成的,如图(2)所示,它的底面是两个大小相等且互相平行的圆面,侧面是一个曲面.棱柱是由两个底面和几个侧面围成的,它的底面是两个大小和形状都相同且互相平行的多边形,侧面是n个长方形,一个棱柱的底面是几边形,这个棱柱就是几棱柱.如:底面是三角形的棱柱叫做三棱柱,如图(6)所示;底面是四边形的棱柱叫做四棱柱,如图(1)所示.锥体分为圆锥和棱锥,其中圆锥是由一个底面和一个侧面围成的,它的底面是一个圆,侧面是一个曲面,如图(4)所示;棱锥是由一个底面和几个侧面围成的,它的底面是一个多边形,侧面是有一个公共顶点的三角形,一个棱锥的底面是几边形,这个棱锥就叫做几棱锥,如图(7)所示的棱锥是三棱锥,如图(5)所示的棱锥是四棱锥.球体是由一个曲面围成的封闭的几何体.球体的特征是球体表面上任意一点到球心的距离都相等,如图(3)所示的立体图形是球体.2.2点和线1.了解点、线段、射线、直线的概念.2.掌握点、线段、射线和直线的表示方法.3.理解并掌握“两点可以确定一条直线”这个基本事实.1.通过实际情境感知点和线,认识点、线段、射线和直线这些几何图形.2.通过观察和画图了解线段、射线和直线的关系及其表示方法.3.通过观察和操作,理解并掌握“两点可以确定一条直线”这个基本事实.1.培养学生乐于思考,敢于创新的精神.2.通过多姿多彩的活动,培养学生的创新意识和发散思维.【重点】点、线段、射线、直线的概念和表示方法.【难点】“两点可以确定一条直线”的基本事实.【教师准备】多媒体课件.【学生准备】复习上一节的知识.导入一:同学们见过这种电子显示屏吧?你知道显示屏上的数字和图形是由什么基本要素构成的吗?[设计意图]通过生活情境,帮助学生感受“点”在几何图形中的作用.导入二:如图所示,用7根火柴棒可以摆出图中的“8”.你能去掉其中的若干根火柴棒,摆出0~9中其他的9个数字吗?这种用7条线段构成的数字称为“7画字”,它可以用在计算器或电梯的楼层显示屏上.[设计意图]教师组织学生交流各自的答案.本题呈现了点、线段在生活和科技中的应用,使学生体会数学与现实世界的密切联系.1.出示课本图2 - 2 - 1,请在图上找出表示石刻园、展览中心、花卉园、茶餐厅和健身区的点,并用笔加重描出这个公园的边界线.[设计意图]体会和感受点和线的关系,为深入理解几何上的点和线做认知准备.2.请指出图中平面图形的顶点和边,立体图形的顶点和棱.[处理方式]先让学生说出两个平面图形的顶点和边,初步让学生从几何的角度认识点和线的关系,随后让学生说出两个立体图形中点和棱的关系,可以让学生用笔描的方式画出一些点和棱.3.点和线的关系的初步描述点的形象随处可见,如地图上用来表示城市位置的点,绘画中表示天空中星星的点,几何图形中表示顶点的点等等.点运动的轨迹是线.活动2线段、射线和直线思路一1.线段及其表示方法线段的直观形象是拉直的一段线.如跳高的横杆、直尺的边沿、一段铁轨等,都给我们以线段的形象.点和线段的表示方法如图所示.位于线段AB两端的点A,B,叫做这条线段的端点.2.射线及其表示如图所示,将线段AB沿AB方向(或BA方向)无限延伸所形成的图形叫做射线.点A(或点B)叫做射线的端点.3.直线及其表示方法如图所示,将线段AB沿这条线段向两方无限延伸所形成的图形叫做直线.[知识拓展]直线、射线、线段的联系和区别:名称图形表示方法端点延伸性度量线段线段a线段AB线段BA2个不能延伸可度量射线射线OA1个向一方无限延伸不可度量直线直线l直线AB直线BA无端点向两个方向无限延伸不可度量思路二问题:在数学里,我们常用字母表示图形.一个点可以用一个大写字母表示,如“·”这个点可以表示成点A,那么一条线段、一条射线、一条直线又该怎样表示呢?请同学们自主学习线段、射线、直线的表述方法.(阅读教材第66,67页)[处理方式]学生自主学习,用自己的语言总结叙述线段、射线、直线的表示方法,教师补充并借助多媒体讲解.(1)线段的图形及表示方法:用两个端点的大写字母来表示,或用一个小写字母表示,可以写成:线段AB;线段BA;线段a.(2)射线的图形及表示方法:用它的端点和射线上的另一点来表示,可以写成:射线AB.注意:这两个字母的排列顺序不能互相交换,表示端点的字母必须写在另一个字母的前面,同时也不能用一个小写字母表示.(3)直线的图形及表示方法:用直线上的两个点来表示或用一个小写字母来表示,可以写成:直线AB;直线BA;直线l.提问:生活中有哪些物体可以近似地看作线段、射线、直线?学生讨论后举例,如:吃饭的筷子、铅笔给我们线段的形象;手电筒、激光笔射出的光线都给我们以射线的形象;高速路上的白色实线等给我们直线的形象.[设计意图]让学生充分交流,丰富线段、射线、直线的生活背景,进一步巩固所学的线段、射线、直线的知识,使学生感受现实生活中含有大量的数学信息,提高学习兴趣,培养学生分析问题、解决问题的能力.活动3两点确定一条直线1.点与直线的关系平面内的一点P与直线l可能有怎样的位置关系?请画出图形,并用相应的语言说明.在同一个平面内,给定一个点与一条直线,它们的位置关系有两种情况.(1)第一种情况:点P在直线l上(直线l经过点P)(2)第二种情况:点P在直线l外(直线l不经过点P)[处理方式]可以交给学生交流完成,然后强调:因为直线具有无限延长性,所以已知一个点在直线上,就可以断定不存在另一种情况.也就是说,一个点在平面内,要么在直线上,要么不在直线上,二者必居其一.2.过直线外一点的直线提问:(1)过一个点A可以画几条直线?(2)过两点A,B可以画几条直线?(3)如果将一个细木条固定在墙上,至少需要几个钉子?它的依据是什么?提示:过一个已知点可画无数条直线,过两个已知点可以画出直线,但只能画一条直线.[处理方式]引导学生动手画图,自主思考,相互讨论,描述从操作中所发现的结论,与学生共同总结直线的性质,并板书“经过两点有且只有一条直线”.注意:(1)“有”表示存在性,“仅有”表示唯一性.(2)这个性质还可以说成“两点确定一条直线”.[设计意图]学生通过动手画图,培养几何作图能力,并在作图过程中发现直线的某些性质.[知识拓展](1)线段无粗细之分,有两个端点.理解线段的概念要掌握它的三个特征:直的、有两个端点、可以度量.(2)射线:将线段向一个方向无限延长就形成了射线.手电筒、探照灯等射出来的光线可以近似地看做射线.(3)射线的特点:直的、有一个端点、向一方无限延伸.(4)直线的特点:直的、没有端点、向两方无限延伸.将线段向两个方向无限延伸就形成了直线.(5)经过两点有且只有一条直线可以简述为:两点确定一条直线.“有且只有”中的“有”表示存在性,“只有”表示唯一性,“确定”与“有且只有”的意义相同.1.线段、射线、直线的概念.2.线段、射线、直线的表示方法.3.直线的性质:经过两点有且只有一条直线,可以简述为两点确定一条直线.1.图中直线PQ、射线AB、线段MN能相交的是()解析:根据直线可向两方无限延伸,射线可向一方无限延伸,线段有两个端点解答.只有D 选项射线AB与直线PQ能够相交.故选D.2.用一个钉子把一根细木条钉在墙上,木条能绕着钉子转动,这表明;用两个钉子把细木条钉在墙上,就能固定细木条,这表明.解析:用一个钉子把一根细木条钉在墙上,木条能绕着钉子转动,说明过一点有无数条直线;用两个钉子把细木条钉在墙上,就能固定细木条,说明两点确定一条直线.答案:过一点有无数条直线两点确定一条直线3.如图所示,四点A,B,C,D,按照下列语句画出图形:(1)画直线AB;(2)画射线BD;(3)线段AC和线段DB相交于点O.解:如图所示.2.2点和线活动1点与线活动2线段、射线和直线活动3两点确定一条直线经过两点有且只有一条直线一、教材作业【必做题】教材第68页练习.【选做题】教材第68页习题A组第3题.二、课后作业【基础巩固】1.下列说法正确的是()A.直线CD和直线DC是一条直线B.射线CD和射线DC是一条射线C.线段CD和线段DC是两条线段D.直线CD和直线a不能是同一条直线2.下列说法正确的有();④直线、射线、①直线是射线长度的2倍;②线段为直线的一部分;③射线为直线长度的12线段中,线段最短.A.4个B.3个C.2个D.1个3.同一平面内三条直线最多有m个交点,最少有n个交点,则m+n等于()A.2B.3C.4D.54.已知平面内的四个点A,B,C,D,过其中两个点画直线可以画出几条?画图说明.【能力提升】5.如图所示,能读出的线段共有()A.8条B.10条C.6条D.以上都错6.下列说法中错误的是()A.经过一点的直线可以有无数条B.经过两点的直线只有一条C.一条直线只能用一个字母表示D.线段CD和线段DC是同一条线段7.如图所示,点A,B,C,D在同一直线上,那么这条直线上共有线段()A.3条B.4条C.5条D.6条【拓展探究】8.一根绳子弯曲成如图(1)所示的形状.当用剪刀像图(2)那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图(3)那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再继续剪(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1B.4n+2C.4n+3D.4n+59.一条直线将平面分成两部分,两条直线最多将平面分成四个部分,那么三条直线将平面最多分成几部分?四条直线将平面最多分成几部分?n条直线呢?10.如图所示.(1)点A,B,C在直线l上,则直线l上共有几条线段?(2)如果直线l上有5个点,则直线l上共有几条线段?(3)如果直线l上有100个点,则直线l上共有几条线段?(4)如果直线l上有n个点,则直线l上共有几条线段?【答案与解析】1.A(解析:直线CD和直线DC都是由C,D这两点确定的,根据两点确定一条直线可知,这两条直线是同一条直线.故选A.)2.D(解析:没有真正体会直线、射线的延伸性,这种延伸性决定了直线、射线无长度,不能比较长短,所以①③④是错误的.故选D.)3.B(解析:三条直线的位置关系有三种情况:三条直线互相平行,此时没有交点;三条直线交于一点;三条直线交于两点;三条直线交于三点.所以m=3,n=0,所以m+n=3.故选B.)4.解:由于题目没有说明已知的四个点是否在一条直线上,所以应分类讨论.(1)当四个点A,B,C,D在同一直线上时,只可以画出一条直线,如图(1)所示;(2)当四个点A,B,C,D中有三个点在同一直线上时,可以画出4条直线,如图(2)所示;(3)当四个点A,B,C,D中任意的三个点都不在同一直线上时,可以画出6条直线,如图(3)所示.5.A(解析:以A为顶点的线段有4条,以B为顶点的线段有4条,以C为顶点的线段有4条,以D 为顶点的线段有4条,共16条,由于每条线段都被统计了2次,所以线段共有8条.)6.C(解析:一条直线可以用一个小写字母表示,也可以用两个大写字母表示.)7.D(解析:这条直线上有线段AB,AC,AD,BC,BD,CD,共六条.)8.A(解析:每剪一刀,相当于在一条直线上增加了4个点,剪n次就相当于在这个绳子上增加4n 个点.故选A.)9.解:三条直线将平面最多分成7个部分,四条直线将平面最多分成11个部分,n条直线将平面+1]个部分.最多分成[n(n+1)2条.10.解:(1)3条.(2)10条.(3)4950条.(4)n(n - 1)2。

《几何图形初步》全章知识讲解

《几何图形初步》全章知识讲解

《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩主(正)视图----------从正面看几何体的三视图左视图----------------从左边看俯视图----------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线。

新冀教版数学七年级上册第二章几何图形的初步认识 小结与复习

新冀教版数学七年级上册第二章几何图形的初步认识 小结与复习

考点三 线段的相关计算
例3 在直线a上任取一点A,截取AB=16 cm,再截取 AC=40 cm,求AB的中点D与AC的中点E之间的距离.
[解析] 题中没有指明点C的具体位置,故应该分两种 情况进行分析,从而求得DE的长.
解:(1)如图,因为AB=16 cm,AC=40 cm,
点D,E分别是AB,AC的中点, 所以AD=1/2AB=8 cm,AE=1/2AC=20 cm, 所以DE=AE-AD=20-8=12(cm);
6.如图,D是线段AB的中点, E是线段BC的中 点,BE=1/5AC=2 cm,则线段DE的长为 5cm 点A,O,E在同一直线上,∠AOB=40°, ∠EOD=25°,OD平分∠COE.
(2)如图,因为AB=16 cm,AC=40 cm,
点D,E分别是AB,AC的中点, 所以AD=1/2AB=8 cm,AE=1/2AC=20 cm, 所以DE=AE+AD=20+8=28(cm);
针对训练
5.点A,B,C 在同一条直线上,AB=3 cm, BC=1cm.则AC的长是 2cm或4cm .
射线只有一个端点,以点 A,B,C,D 为端点的 射线分别有 2 条,由图可知共有 8 条射线;直线只有 1 条.
针对训练
3.如图,图中共有___6_____个角.
4.乘火车从A站出发,沿途经过3个车站方可到达B站, 那么A,B两站之间需要安排____2_0___种不同的车票.
[解析] 如图,从A到B共有AC, AD,AE,AB,CD,CE,CB, DE,DB,EB10条线段,因为两站之间,出发点不同, 车票就不同,如A到C与C到A不同,故应有20种车票.
(1)角是有公共端点的两条射线所组成的图形.这个 公共端点叫做角的顶点,两条射线叫做角的边. (2)角可以看做一条射线绕着端点旋转到另一个位置所 形成的图形. 2.角的表示方法

初中数学:几何图形的初步认识

初中数学:几何图形的初步认识

2.2线段2.2.1性质(1)线段公理:两点之间的所有连线中,线段最短; (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离;(3)线段的中点到两端点的距离相等;(4)线段的大小关系和它们的长度的大小关系是一致的; (5)线段的比较:①目测法;②叠合法;③度量法。

2.2.2中点点M 把线段AB 分成相等的两条相等的线段AM 与BM ,点M 叫做线段AB 的中点。

(下图) (1)M 是线段AB 的中点;(2)AM=BM=0.5AB (或者AB=2AM=2BM )。

2.3直线(1)直线公理:经过两个点有且只有一条直线; (2)过一点的直线有无数条; (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小;(4)直线上有无穷多个点;(5)两条不同的直线至多有一个公共点。

2.4射线(1)射线是向一个方面无限延伸的,一个端点,不可度量,不能比较大小; (2)射线上有无穷多个点;三、几何图形的初步认识1 几何图形的组成2 平面图形线:面和面相交的地方是线,分为直线和曲线;面:包围着体的是面,分为平面和曲面;体:几何体也简称体。

AMBAOBABtAB2.5直线、射线、线段2.5.1比较2.5.2表示(1)一个点可以用一个大写字母表示,如点A ;(2)一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l 、或者直线 AB ;(3)一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面), 如射线l 、射线AB ;(4)一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l 、线段 AB 。

2.6角 2.6.1定义(1)有公共端点的两条射线组成的图形叫做角; (2)两条射线的公共端点叫做这个角的顶点; (3)这两条射线叫做这个角的边;或:角也可以看成是一条射线绕着它的端点旋转而成的。

2.6.2分类(1)锐角:小于90°的角叫做锐角; (2)直角:90°的角叫做直角;(3)钝角:大于90°,小于180°的角叫做钝角;(4)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角, 平角的度数为180°;(5)周角:终边继续旋转,当它又和始边重合时,所形成的角叫做周角;周角的度数为360°。

七年级上册数学几何图形初步认识的知识点

七年级上册数学几何图形初步认识的知识点

七年级上册数学几何图形初步认识的知识点七年级上册数学几何图形初步认识的知识点初一(七年级)上册数学知识点:几何图形初步是由数学网整理的,供大家参考,下面来看一下初一(七年级)上册数学知识点:几何图形初步吧!本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。

通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。

在此基础上,认识一些简单的平面图形直线、射线、线段和角。

一、目标与要求1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。

2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。

3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。

二、知识框架三、重点从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点;正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点;画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质两点之间,线段最短是另一个重点。

四、难点立体图形与平面图形之间的转化是难点;探索点、线、面、体运动变化后形成的图形是难点;画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。

五、知识点、概念总结1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。

从实物中抽象出的各种图形统称为几何图形。

有些几何图形的各部分不在同一平面内,叫做立体图形。

有些几何图形的各部分都在同一平面内,叫做平面图形。

几何图形初步基础知识详解

几何图形初步基础知识详解

几何图形初步目录一、几何图形二、直线、射线、线段三、角四、《几何图形初步》全章复习与巩固一、几何图形基础知识讲解【学习目标】1.理解几何图形的概念,并能对具体图形进行识别或判断;2.掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力;3.理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.【要点梳理】要点一、几何图形1.定义:把从实物中抽象出的各种图形统称为几何图形.要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等.2.分类:几何图形包括立体图形和平面图形(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体,圆柱,圆锥,球等.(2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形.要点诠释:(1)常见的立体图形有两种分类方法:(2)常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等.(3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系.要点二、从不同方向看从不同的方向看立体图形,往往会得到不同形状的平面图形.一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.要点三、简单立体图形的展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点四、点、线、面、体长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.A.题目典型易错,重思路分析—“渔、鱼”兼得!按照★到★★★★标注难度。

小学三年级数学几何的初步认识知识点

小学三年级数学几何的初步认识知识点

小学三年级数学几何的初步认识知识点
一、点、线、面的认识
- 点是没有长度、宽度和高度的,只有位置的,用一个点表示。

- 线是由无数个点连在一起形成的,线没有宽度,只有长度。

- 面是由无数个线连接成的,有长度和宽度,是平面上的东西。

二、基本图形的认识
1. 正方形
- 正方形是四边相等且都是直角的四边形,有四个顶点和四条边。

- 它的特点是四条边长相等,四个角都是直角。

2. 矩形
- 矩形是四边相等且都是直角的四边形,有四个顶点和四条边。

- 它的特点是对角线相等,相邻的两个角互补(相加为180度)。

3. 三角形
- 三角形是有三条边和三个顶点的图形。

- 三角形按边的长短和角的大小分类有不同的名称,例如等边三角形、等腰三角形、直角三角形等。

4. 圆形
- 圆形是一个没有边的图形,只有一个圆弧和一个圆心。

- 圆的直径是通过圆心并且两端在圆上的一条线段,而圆的半径是从圆心到圆上的一点。

三、位置的认识
- 上、下、左、右是平面上常用的位置词。

- 上面指的是靠近顶部的方向,下面指的是靠近底部的方向,左边指的是靠近左侧的方向,右边指的是靠近右侧的方向。

四、图形的分类
- 图形可以按照有无轴对称和角度多少进行分类。

- 轴对称是指图形可以绕着某条线对折后两边重合,称为轴对称图形。

- 角度多少可以将图形分为直角图形、锐角图形和钝角图形。

以上是小学三年级数学几何的初步认识知识点。

通过学习这些基本知识,可以帮助孩子们更好地理解数学几何的概念,为进一步的学习打下坚实的基础。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20101021《几何图形的初步认识》的初步理解
————张老师
在宇宙的空间存在着千姿百态,丰富多彩的图形,这些图形与我们的生活息息相关,了解和掌握这些图形的特性,对我们了解宇宙空间,更好地生活和生产是大有帮助的.《几何的初步认识》这一章的内容为我们认识一些常见的图形提供了一个良好的平台.见议同学们在学习中注意以下几点:
一、了解生活中的空间图形
上图(1)—(8)是我们所熟悉的空间图形,也叫做立体图形,
图(1)叫做圆锥,它是
由一个底面为圆和一个侧面组成的,多么象我国北方草原上牧民们的居住的蒙古包,冰凉爽口的冰激凌最常用的一
种包装就是它;图(2)
叫做棱锥,价值连城的
珠宝钻石就是这种样子;图(3)叫做圆柱,它是由两个底面大小一样的圆和一个侧面组成的,我们每天刷牙用的牙杯假如没有把柄,外加一个圆形的盖子,它就变成了圆柱;图(4)这不就是篮球吗?不错,它是在几何中叫做球;图(5)叫做长方体,许多建筑物的造型都采用了它;图(6)叫做正方体,它比长方体美观多了,其用途当然也更广泛了,你看那魔方就是由27个小正方体组成的正方体;图(7)叫做棱柱,它有棱有角,多象那晶莹剔透的水晶啊!图(8)叫做圆台,它是由上下两个大小不一的圆和一个侧面组成的,你看把它作为椅子坐在上面多稳当啊!图(8)称做棱台,它是由上下两个大小不一的多边形和若干个侧面组成的,大型建筑物的底座大多采用此结构,显得特别雄伟而庄重。

上述图(1)、(2)统称为锥体,(3)、(5)、(6)、(7)统称为柱体,(8),(9)统称为台体。

你有没有发现锥、柱、台分别有何共同点?
二、了解空间图形与平面图形的关系
许多空间图形是由平面图形的旋转或折叠而成的,同时,也有许多空间图形可以展开成平面图形,当然也有些是不能这样做,象球就不可能展开成平面图形.
1.常见可由平面图形旋转而成的空间图形:
(1)圆柱可由长方形绕它的一条边旋转一周而成;
(2)圆锥可由直角三角形绕它的一条直角边旋转一周而成; (3)球是半圆绕它的直径旋转一周而成; (4)圆台是直角梯形绕直角腰旋转一周而成;
请同学们探讨一下:如图(10)旋转一周所成的图形是什么形状?你能把它画出来吗?
2.常见可用平面图形折叠而成的空间图形:
(1)圆锥的侧面可由扇形围成; (2)圆柱的侧面可由长方形围成;
(3)正方体可由六个相同的正方形按一定的排列次序所组成的图形折叠而成;
请同学们探讨一下:○1下列图形中,能折叠成棱柱的是( )
图(10) (B)
(C)
(D)
图(3) 图(4) 图(6) 图(5) 图(8) 图(7) 图(9) 图(2)

2将下图的正方体展开为一个“十”字平面图形,则右边的四个图形中是左边的正
方体展开的是( )
三、会从三种角度观察空间图形
对于一个空间图形,我们常常从它的正面、左面和上面进行观看,此时所看到的平面图形叫做视图,视图是空间图形转化为平面图形常用的方法之一。

如图(11)是一个玻璃做的正方体,粗线表示一根嵌在正方体内的铁丝,从它的正面我们所看到的平面图形是一个正方形,它的两边带有粗线的铁丝,这个正方形就是该正方体从正面所看到的视图;从它的左面所看到的平面图形也是正方形,图中的粗线是铁丝,这个图形就是从左边所看到的视图;从它的上面看到的平面图形也是正方形,粗线是铁丝,这个图形就是从上面所看到的视图.同一个空间图形的视图与观看的角度有关,与图形摆放的位置也有关。

请同学们先想一想:用若干个小正方体木块组成一个几何体,使得从正面看的视图和从上面看的视图如下图所示,所需小正方体木块的最少数目和最多数
目分别是多少?然后看下面的分析: 由从上面看到的视图可见,从下往上数,第一层
应有7块;综合从正面看的视图,第二层至少有2块,至多有6块; 第三层至少有1块,至多3块,故所需木块至少10块,至多16块.
四、了解用一个平面截一个几何体所得截面的图形
用平面去截几何体,截面是一个平面图形,该图形除了与几何体的形状有关外,还与平面所截方向和角度有关.例如:一个圆柱,当用平面平行于圆柱底面去截时,所得的截面是圆;当平面倾斜时,所得截面椭圆形;当平面垂直于圆柱底面时,所得截面是长方形,除此之外还可以截出其他图形.
请同学们想一想:用平面截正方体时,所得多边形可能有哪几种形状? 五、了解生活中的平面图形
生活中除了许多空间图形外,还有许多平面图形,象正方形,长方形,三角形,梯形,圆等都是我们日常生活中常见的图形,值得关注是许多优美典雅而又看起来十分复杂的图案大多是由这些简单的图形巧妙组合而成,因此了解这些图形的特性是非常必要的,它们就是我们在三年的初中阶段里所要学习的内容之一.
六、了解点、线、面之间的关系
任何一个几何体都是由面组成的,而面有平面和曲面,平面可以看作是无数多条的直线密密麻麻“挤”在一起组成的,或者是一条直线平移(或旋转)形成的;曲面可以看作是曲线旋转形成的;不论是直线和是曲线,它们都可以看作是无数多个点按一定的方向“挤”在一起形成的。

因此,点是组成千姿百态几何图形最基本的图形。

(A)

● ○
(B)
(A)


(C)
○ ● ● ○
(D)
(11)
从正面看
从左边看
从上面看 从正面看
从上面看。

相关文档
最新文档