章随机向量及其独立性.
概率论与数理统计(第3版)(谢永钦)第3章 随机向量
概率论与数理统计
定义3.7 设X和Y是两个随机变量,如果对于任意实数x和y,事
件{X≤x}与{Y≤y}相互独立,即有P{ X≤x , Y≤y }=P{X≤x}P{Y≤y},则称随 机变量X与Y相互独立。 设F(x,y)为二维随机变量(X,Y)的分布函数, (X,Y)关于X和关于Y的边缘分布 函数分别为FX(x),FY(y),则上式等价于
这正是参数为
的 分布的概率密度。
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
X
X
Y
Y
概率论与数理统计
解: (1)串联情况
X
Y
概率论与数理统计
(2)并联情况
X
Y
感谢聆听 批评指导
概率论与数理统计
二维正态分布 若(X.,Y)的概率密度为
概率论与数理统计
4. n维随机变量
设E是一个随机试验,它的样本空间是=(e).设随机变量
是定义在同一样本空间上的n个随机变量,则称向
量
为n维随机向量或n维随机变量。简记为
设 数
为n维随机变量
是n维随机变量,对于任意实 ,称n元函数
的联合分布函数。
设(X,Y)的一切可能值为(xi,yj),i,j=1,2,… ,且(X,Y)取各对可能值的概率为 P{X=xi,Y=yj}=pij, i,j=1,2,…
称上式为(X,Y)的(联合)概率分布或(联合)分布律.离散型随机变量(X,Y) 的联合分布律可用表3-1表示.
概率论与数理统计
(X,Y)的分布律也可用表格形式表示:
记作
或记为
.
第三章相互独立的随机变量(多维随机变量及其分布)
f X ( x) fY ( y), x, y R,
10:42:20
即 1 , 2 , 1 , 2 ; ), 且已知X与Y
2 2
相互独立, 由于 f ( x , y ),f X ( x ),fY ( y )都是连续函数,
故对于所有的 x , y , f ( x , y ) f X ( x ) fY ( y )成立, 特别地,取 x 1 , y 2 , 则 f ( 1 , 2 ) f X ( 1 ) fY ( 2 ),
求X与 Y的边缘分布函数,并判断X与Y是否相互 独立?
x
y
10:42:20
2
(1 e x )(1 e y ), x 0, y 0, F ( x, y) 解 其它. 0, 1 e x , x 0, F X ( x ) F ( x , ) 其它. 0, 同理 y 1 e , y 0, FY ( y ) F ( , y ) 其它. 0,
则X , Y独立的充分必要条件是 随机向量 ( X ,Y ) 有联合密度 f ( x , y ),且 f ( x , y ) f X ( x ) fY ( y )
在平面上几乎处处成立 .
这里“几乎处处成立”的含义是:在平面上 除去面积为0的集合外,处处成立.
10:42:20
9
下面考察二维正态随机变量的两个分量的 独立性. 由第二节的讨论可知,
10
f ( x, y)
1 2σ1σ 2 1 ρ
2
( X , Y ) ~ N ( 1 , 2 , 1 , 2 ; ),
2 2
1 ( x μ1 ) 2 ( x μ1 )( y μ2 ) ( y μ2 ) 2 exp 2ρ 2 2 2 σ1 σ 2 σ2 2(1 ρ ) σ1
概率论第三章 随机向量
第三章随机向量在实际问题中,除了经常用到一个随机变量的情形外,还常用到多个随机变量的情形.例如,观察炮弹在地面弹着点e的位置,需要用它的横坐标X(e)与纵坐标Y(e)来确定,而横坐标和纵坐标是定义在同一个样本空间Ω={e}={所有可能的弹着点}上的两个随机变量.又如,某钢铁厂炼钢时必须考察炼出的钢e的硬度X(e)、含碳量Y(e)和含硫量Z(e)的情况,它们也是定义在同一个Ω={e}上的三个随机变量.因此,在实用上,有时只用一个随机变量是不够的,要考虑多个随机变量及其相互联系.本章以两个随机变量的情形为代表,讲述多个随机变量的一些基本内容.第一节二维随机向量及其分布1.二维随机向量的定义及其分布函数定义3.1设E是一个随机试验,它的样本空间是Ω={e}.设X(e)与Y(e)是定义在同一样本空间Ω上的两个随机变量,则称(X(e),Y(e))为Ω上的二维随机向量(2-dimensional random vector)或二维随机变量(2-dimensional random variable),简记为(X,Y).类似地定义n维随机向量或n维随机变量(n>2).设E是一个随机试验,它的样本空间是Ω={e},设随机变量X1(e),X2(e),…,X n(e)是定义在同一个样本空间Ω上的n个随机变量,则称向量(X1(e),X2(e),…,X m(e))为Ω上的n维随机向量或n维随机变量.简记为(X1,X2,…,X n).与一维随机变量的情形类似,对于二维随机向量,也通过分布函数来描述其概率分布规律.考虑到两个随机变量的相互关系,我们需要将(X,Y)作为一个整体来进行研究.定义3.2设(X,Y)是二维随机向量,对任意实数x和y,称二元函数F(x,y)=P{X≤x,Y≤y} (3.1)为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数.类似定义n维随机变量(X1,X2,…,X n)的分布函数.设(X1,X2,…,X n)是n维随机变量,对任意实数x1,x2,…,x n,称n元函数F(x1,x2,…,x n)=P{X1≤x1,X2≤x2,…,X n≤x n}为n维随机变量(X1,X2,…,X n)的联合分布函数.我们容易给出分布函数的几何解释.如果把二维随机变量(X,Y)看成是平面上随机点的坐标,那么,分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在直线X=x的左侧和直线Y=y的下方的无穷矩形域内的概率(如图3-1所示).根据以上几何解释借助于图3-2,可以算出随机点(X,Y)落在矩形域{x1<X≤x2,y1<Y ≤y2}内的概率为:P{x1<X≤x2,y1<Y≤y2}=F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,y1). (3.2)图3-1 图3-2容易证明,分布函数F (x ,y )具有以下基本性质:(1) F (x ,y )是变量x 和y 的不减函数,即对于任意固定的y ,当x 2>x 1时,F (x 2,y )≥F (x 1,y );对于任意固定的x ,当y 2>y 1时,F (x ,y 2)≥F (x ,y 1).(2) 0≤F (x ,y )≤1,且对于任意固定的y ,F (-∞,y )=0,对于任意固定的x ,F (x ,-∞)=0,F (-∞,-∞)=0,F (+∞,+∞)=1. (3) F (x ,y )关于x 和y 是右连续的,即F (x ,y )=F (x +0,y ),F (x ,y )=F (x ,y +0).(4) 对于任意(x 1,y 1),(x 2,y 2),x 1<x 2,y 1<y 2,下述不等式成立:F (x 2,y 2)-F (x 2,y 1)-F (x 1,y 2)+F (x 1,y 1)≥0.与一维随机变量一样,经常讨论的二维随机变量有两种类型:离散型与连续型.2.二维离散型随机变量 定义3.3 若二维随机变量(X ,Y )的所有可能取值是有限对或可列无穷多对,则称(X ,Y )为二维离散型随机变量.设二维离散型随机变量(X ,Y )的一切可能取值为(x i ,y j )i ,j =1,2,…,且(X ,Y )取各对可能值的概率为P {X =x i ,Y =y i }=p ij ,i ,j =1,2,…. (3.3)称式(3.3)为(X ,Y )的(联合)概率分布或(联合)分布律,离散型随机变量(X ,Y )的联合分布律可用表3-1表示.表3-1由概率的定义可知p ij 具有如下性质: (1) 非负性:p ij ≥0(i ,j =1,2,…); (2) 规范性:∑ji ijp,=1.离散型随机变量X 和Y 的联合分布函数为F (x ,y )=P {X ≤x ,Y ≤y }=∑∑≤≤x x yy iji j p, (3.4)其中和式是对一切满足x i ≤x ,y j ≤y 的i ,j 来求和的.例3.1 设二维离散型随机变量(X ,Y )的分布律如表3-2所示:求P {X >1,Y ≥3}及P {X =1}.解 P {X >1,Y ≥3}=P {X =2,Y =3}+P {X =2,Y =4}+P {X =3,Y =3}+P {X =3,Y =4}=0.3;P {X =1}=P {X =1,Y =1}+P {X =1,Y =2}+P {X =1,Y =3}+P {X =1,Y =4}=0.2.例3.2 设随机变量X 在1,2,3,4四个整数中等可能地取值,另一个随机变量Y 在1~X 中等可能地取一整数值,试求(X ,Y )的分布律.解 由乘法公式容易求得(X ,Y )的分布律,易知{X =i ,Y =j }的取值情况是:i =1,2,3,4,j 取不大于i 的正整数,且P {X =i ,Y =j }=P {Y =j |X =i }P {X =i }=i 1·41,i =1,2,3,4,j ≤i . 于是(X ,Y )的分布律为表3-33.二维连续型随机变量定义3.4 设随机变量(X ,Y )的分布函数为F (x ,y ),如果存在一个非负可积函数f (x ,y ),使得对任意实数x ,y ,有F (x ,y )=P {X ≤x ,Y ≤y }=⎰⎰∞-∞-x yv u v u f ,),(d d (3.5)则称(X ,Y )为二维连续型随机变量,称f (x ,y )为(X ,Y )的联合分布密度或概率密度. 按定义,概率密度f (x ,y )具有如下性质: (1) f (x ,y )≥0 (-∞<x ,y <+∞); (2)⎰⎰+∞∞-+∞∞-v u v u f d d ),(=1;(3) 若f (x ,y )在点(x ,y )处连续,则有yx y x F ∂∂∂),(2=f (x ,y );(4) 设G 为xOy 平面上的任一区域,随机点(X ,Y )落在G 内的概率为P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(. (3.6)在几何上,z =f (x ,y )表示空间一曲面,介于它和xOy 平面的空间区域的立体体积等于1,P {(X ,Y )∈G }的值等于以G 为底,以曲面z =f (x ,y )为顶的曲顶柱体体积. 与一维随机变量相似,有如下常用的二维均匀分布和二维正态分布.设G 是平面上的有界区域,其面积为A ,若二维随机变量(X ,Y )具有概率密度f (x ,y )=⎪⎩⎪⎨⎧∈.,0),(,1其他Gy x A则称(X ,Y )在G 上服从均匀分布.类似设G 为空间上的有界区域,其体积为A ,若三维随机变量(X ,Y ,Z )具有概率密度f (x ,y ,z )=⎪⎩⎪⎨⎧∈.,0,),,(,1其他G z y x A ,则称(X ,Y ,Z )在G 上服从均匀分布.设二维随机变量(X ,Y )具有分布密度f (x ,y )=,121])())((2)([)1(212222221212121221σμσσμμρσμρρσσ-+-------y y x x eπ-∞<x <+∞,-∞<y <+∞,其中μ1,μ2,σ1,σ2,ρ均为常数,且σ1>0,σ2>0,-1<ρ<1,则称(X ,Y )为具有参数μ1,μ2,σ1,σ2,ρ的二维正态随机变量,记作:(X ,Y )~N (μ1,μ2,σ12,σ22,ρ).例3.3 设(X ,Y )在圆域x 2+y 2≤4上服从均匀分布,求 (1) (X ,Y )的概率密度; (2) P {0<X <1,0<Y <1}.解 (1) 圆域x 2+y 2≤4的面积A =4π,故(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧≤+.,0,4,4122其他y x π(2) G 为不等式0<x <1,0<y <1所确定的区域,所以P {0<X <1,0<Y <1}=11011(,)d d d d .44Gf x y x y x y ππ==⎰⎰⎰⎰例3.4 设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)32(其他y x k y x e(1) 确定常数k ;(2)求(X ,Y )的分布函数;(3)求P {X <Y }.解 (1)由性质有⎰⎰⎰⎰-∞+∞+-+∞∞-+∞∞-=0)32(),(y x k y x y x f y x d d e d d=⎰⎰+∞+∞--032y x ky x d e d e=+∞-+∞-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-03023121y xk e e =k /6=1. 于是,k =6.(2) 由定义有F (x ,y )=⎰⎰∞-∞-y xv u v u f d d ),(⎪⎩⎪⎨⎧>>--==⎰⎰--+-.,0.0,0),1)(1(60032)32(其他y xy x v u x y v u e e d d e (3) P {X <Y }=(,)d d (,)d d Dx yf x y x y f x y x y <=⎰⎰⎰⎰=.52)1(362300)32(=-=⎥⎦⎤⎢⎣⎡⎰⎰⎰+∞--+∞+-y y x y y y y x d e e d d e 0例3.5 设(X ,Y )~N (0,0,σ2,σ2,0),求P {X <Y }. 解 易知f (x ,y )=2222221σπσy x +-e (-∞<x ,y <+∞),所以P {X <Y }=.212222y x yx y x d d e π⎰⎰<+-σσ.引进极坐标x =r cos θ, y =r sin θ,则P {X <Y }=.212122245402=-∞+⎰⎰θσσd d e πππr r r第二节 边缘分布二维随机变量(X ,Y )作为一个整体,它具有分布函数F (x ,y ).而X 和Y 也都是随机变量,它们各自也具有分布函数.将它们分别记为F X (x )和F Y (y ),依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数(Marginal distribution function ).边缘分布函数可以由(X ,Y )的分布函数F (x ,y )来确定,事实上F X (x )=P {X ≤x }=P {X ≤x ,Y <+∞}=F (x ,+∞), (3.7) F Y (y )=P {Y ≤y }=P {X <+∞,Y ≤y }=F (+∞,y ). (3.8)下面分别讨论二维离散型随机变量与连续型随机变量的边缘分布. 1.二维离散型随机变量的边缘分布设(X ,Y )是二维离散型随机变量,其分布律为:P {X =x i ,Y =y j }=p ij ,i ,j =1,2,….于是,有边缘分布函数F X (x )=F (x ,+∞)=∑∑≤x x jiji p.由此可知,X 的分布律为:P {X =x i }=ijj p∑,i =1,2,…, (3.9)称其为(X ,Y )关于X 的边缘分布律.同理,称(X ,Y )关于Y 的边缘分布律为:P {Y =y j }=ijip∑,j =1,2,…. (3.10)例3.6 设袋中有4个白球及5个红球,现从其中随机地抽取两次,每次取一个,定义随机变量X ,Y 如下:X =⎩⎨⎧;1第一次摸出红球第一次摸出白球,,0, Y =⎩⎨⎧.1第二次摸出红球第二次摸出白球,,0,写出下列两种试验的随机变量(X ,Y )的联合分布与边缘分布. (1) 有放回摸球;(2) 无放回摸球.解 (1)采取有放回摸球时,(X ,Y )的联合分布与边缘分布由表3-4给出.表3-4(2) 采取无放回摸球时,(X ,Y )的联合分布与边缘分布由表3-5给出.表3-5在上例的表中,中间部分是(X ,Y )的联合分布律,而边缘部分是X 和Y 的边缘分布律,它们由联合分布经同一行或同一列的和而得到,“边缘”二字即由上表的外貌得来.显然,离散型二维随机变量的边缘分布律也是离散的.另外,例3.6的(1)和(2)中的X 和Y 的边缘分布是相同的,但它们的联合分布却完全不同.由此可见,联合分布不能由边缘分布惟一确定,也就是说,二维随机变量的性质不能由它的两个分量的个别性质来确定.此外,还必须考虑它们之间的联系.这进一步说明了多维随机变量的作用.在什么情况下,二维随机变量的联合分布可由两个随机变量的边缘分布确定,这是第四节的内容.2.二维连续型随机变量的边缘分布设(X ,Y )是二维连续型随机变量,其概率密度为f (x ,y ),由F X (x )=F (x ,+∞)=⎰⎰∞-+∞∞-⎥⎦⎤⎢⎣⎡xx y y x f d d ),(知,X 是一个连续型随机变量,且其概率密度为f X (x )=⎰+∞∞-=.),()(y y x f xx F X d d d (3.11) 同样,Y 也是一个连续型随机变量,其概率密度为f Y (y )=⎰+∞∞-=.),()(x y x f yy F Y d d d (3.12) 分别称f X (x ),f Y (y )为(X ,Y )关于X 和关于Y 的边缘分布密度或边缘概率密度.例3.7 设随机变量X 和Y 具有联合概率密度f (x ,y )=⎩⎨⎧≤≤.,0.,62其他x y x求边缘概率密度f X (x ),f Y (y ).解f X (x )=⎪⎩⎪⎨⎧≤≤-==⎰⎰∞+∞-.,0,10),(66),(22其他x x x x x dy y y x f df Y (y )=⎰⎰∞+∞⎪⎩⎪⎨⎧≤≤-==-d d .,0,10),(66),(其他y yy y y x x y x f 例3.8 求二维正态随机变量的边缘概率密度. 解 f X (x )=⎰+∞∞-,),(y y x f d ,由于,)())((2)(212122112221212222σμρσμρσμσσμμρσμ--⎥⎦⎤⎢⎣⎡---=----x x y y x y 于是f X (x )=y x y x d eeπ-⎰∞+∞⎥⎦⎤⎢⎣⎡--------211222121)1(212)(221121σμρσμρσμρσσ令t =⎪⎪⎭⎫ ⎝⎛----1122211σμρσμρx y , 则有f X (x )=2121221212)(122)(12121σμσμσσ--∞+∞----=⎰x t x t e πd ee π, -∞<x <∞.同理f Y (y )=22222)(221σμσ--y e π,-∞<y <∞.我们看到二维正态分布的两个边缘分布都是一维正态分布,并且都不依赖于ρ,亦即对于给定的μ1,μ2,σ1,σ2,不同的ρ对应不同的二维正态分布,它们的边缘分布却都是一样的.这一事实表明,对于连续型随机变量来说,单由关于X 和关于Y 的边缘分布,一般来说也是不能确定X 和Y 的联合分布的.第三节 条件分布由条件概率的定义,我们可以定义多维随机变量的条件分布.下面分别讨论二维离散型和二维连续型随机变量的条件分布.1.二维离散型随机变量的条件分布律定义3.5 设(X ,Y ) 是二维离散型随机变量,对于固定的j ,若P {Y =y j }>0,则称P {X =x i |Y =y j }=P {X =x i ,Y =y j }/P {Y =y j },i =1,2,…,为在Y =y j 条件下随机变量X 的条件分布律(Conditional distribution ). 同样,对于固定的i ,若P {X =x i }>0,则称P {Y =y j |X =x i }=P {X =x i ,Y =y j }/P {X =x i },j =1,2,…,为在X =x i 条件下随机变量Y 的条件分布律.例3.9 已知(X ,Y )的联合分布律如表3-6所示求:(1) 在Y =1的条件下,X 的条件分布律; (2) 在X =2的条件下,Y 的条件分布律.解 (1) 由联合分布律表可知边缘分布律.于是P {X =1|Y =1}=4825/41=12/25; P {X =2|Y =1}=4825/81=6/25;P {X =3|Y =1}=4825/121=4/25; P {X =4|Y =1}=4825/161=3/25. 即,在Y =1的条件下X 的条件分布律为 表3-7(2) 同理可求得在X =2的条件下Y 的条件分布律为表3-8 例3.10 一射手进行射击,击中的概率为p (0<p <1),射击到击中目标两次为止.记X 表示首次击中目标时的射击次数,Y 表示射击的总次数.试求X ,Y 的联合分布律与条件分布律.解 依题意,X =m ,Y =n 表示前m -1次不中,第m 次击中,接着又n -1-m 次不中,第n 次击中.因各次射击是独立的,故X ,Y 的联合分布律为P {X =m ,Y =n }=p 2(1-p )n -2, m =1,2,…,n -1, n =2,3…. 又因P {X =m }={}∑∑∞+=∞+=--===1122)1(,m n m n n p p n Y m X P=∑∞+=--122)1(m n n p p=p (1-p )m -1, m =1,2,…;P {Y =n }=(n -1)p 2(1-p )n -2, n =2,3,…,因此,所求的条件分布律为当n =2,3,…时,P {X =m |Y =n }={}{},11,-====n n Y P n Y m X P m =1,2,…,n -1;当m =1,2,…时,P {Y =n |X =m }={}{}1)1(,---====m n p p n Y P n Y m X P , n =m +1,m +2,…. 2.二维连续型随机变量的条件分布 对于连续型随机变量(X ,Y ),因为P{X =x ,Y =y }=0,所以不能直接由定义3.5来定义条件分布,但是对于任意的ε>0,如果P {y -ε<Y ≤y +ε}>0,则可以考虑P {X ≤x |y -ε<Y ≤y +ε}={}{}.,εεεε+≤<-+≤<-≤y Y y P y y y x X P如果上述条件概率当ε→0+时的极限存在,自然可以将此极限值定义为在Y =y 条件下X 的条件分布.定义3.6 设对于任何固定的正数ε,P {y -ε<Y ≤y +ε}>0,若{}{}{}εεεεεεεε+≤<-+≤<-≤=+≤<-≤++→→y Y y P y Y y x X P y Y y x X P ,lim lim 0存在,则称此极限为在Y =y 的条件下X 的条件分布函数,记作P {X ≤x |Y =y }或F X |Y (x |y ).设二维连续型随机变量(X ,Y )的分布函数为F (x ,y ),分布密度函数为f (x ,y ),且f (x ,y )和边缘分布密度函数f Y (y )连续,f Y (y )>0,则不难验证,在Y =y 的条件下X 的条件分布函数为F X |Y (x |y )=(,)d .()xY f u y u f y -∞⎰若记f X |Y (x |y )为在Y =y 的条件下X 的条件分布密度,则f X |Y (x |y )=f (x ,y )/f Y (y ).类似地,若边缘分布密度函数f X (x )连续,f X (x )>0,则在X =x 的条件下Y 的条件分布函数为F Y |X (y |x )=⎰∞-yX v x f v x f d )(),(. 若记f Y |X (y |x )为在X =x 的条件下Y 的条件分布密度,则f Y |X (y |x )=)(),(x f y x f X .例3.11 设(X ,Y )~N (0,0,1,1,ρ),求f X |Y (x |y )与f Y |X (y |x ). 解 易知f (x ,y )=)1(222222121ρρρ-+---y xy x eπ(-∞<x ,y <+∞),所以f X |Y (x |y )=)1(2222)1(21)(),(ρρρ----=y x Y x f y x f eπ ;f Y |X (y |x )=)1(2222)1(21)(),(ρρρ----=x y X x f y x f eπ .例3.12 设随机变量X ~U (0,1),当观察到X =x (0<x <1)时,Y ~U (x ,1),求Y 的概率密度f Y (y ).解 按题意,X 具有概率密度f X (x )=⎩⎨⎧<<.,010,1其他x类似地,对于任意给定的值x (0<x <1),在X =x 的条件下,Y 的条件概率密度f Y |X (y |x )=⎪⎩⎪⎨⎧<<-.,0,1,11其他y x x因此,X 和Y 的联合概率密度为f (x ,y )=f Y |X (y |x )f X (x )=⎪⎩⎪⎨⎧<<<-.,0,10,11其他y x x于是,得关于Y 的边缘概率密度为f Y (y )=⎰⎰∞+∞-⎪⎩⎪⎨⎧<<--=-=.,0,10),1ln(11),(0其他y y y x x x y x f d d第四节 随机变量的独立性我们在前面已经知道,随机事件的独立性在概率的计算中起着很大的作用.下面我们介绍随机变量的独立性,它在概率论和数理统计的研究中占有十分重要的地位.定义3.7 设X 和Y 为两个随机变量,若对于任意的x 和y 有P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },则称X 和Y 是相互独立(Mutually independent )的.若二维随机变量(X ,Y )的分布函数为F (x ,y ),其边缘分布函数分别为F X (x )和F Y (y ),则上述独立性条件等价于对所有x 和y 有F (x ,y )=F X (x )F Y (y ). (3.13)对于二维离散型随机变量,上述独立性条件等价于对于(X ,Y )的任何可能取的值(x i ,y j )有P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }. (3.14)对于二维连续型随机变量,独立性条件的等价形式是对一切x 和y 有f (x ,y )=f X (x )f Y (y ), (3.15)这里,f (x ,y )为(X ,Y )的概率密度函数,而f X (x )和f Y (y )分别是边缘概率密度函数.如在例3.6中,(1)有放回摸球时,X 与Y 是相互独立的;而(2)无放回摸球时,X 与Y 不是相互独立的.例3.13 设(X ,Y )在圆域x 2+y 2≤1上服从均匀分布,问X 和Y 是否相互独立? 解 (X ,Y )的联合分布密度为f (x ,y )=⎪⎩⎪⎨⎧≤+.,0,1,122其他y x π由此可得f X (x )=11,(,)0,.x f x y dy +∞-∞-≤≤=⎪⎩⎰其他 f Y (y )=⎪⎩⎪⎨⎧≤≤--=⎰∞+∞-.,0,11,12),(2其他y y x y x f πd可见在圆域x 2+y 2≤1上,f (x ,y )≠f X (x )f Y (y ),故X 和Y 不相互独立.例3.14 设X 和Y 分别表示两个元件的寿命(单位:小时),又设X 与Y 相互独立,且它们的概率密度分别为f X (x )=⎩⎨⎧>-.,0,0,其他x x e ; f Y (y )=⎩⎨⎧>-.,0,0,其他y y e求X 和Y 的联合概率密度f (x ,y ).解 由X 和Y 相互独立可知f (x ,y )=f X (x )f Y (y )=⎩⎨⎧>>+-.,0,0,0,)(其他y x y x e第五节两个随机变量的函数的分布下面讨论两个随机变量函数的分布问题,就是已知二维随机变量(X ,Y )的分布律或密度函数,求Z =ϕ(X ,Y )的分布律或密度函数问题.1.二维离散型随机变量函数的分布律设(X ,Y )为二维离散型随机变量,则函数Z =ϕ(X ,Y )仍然是离散型随机变量.从下面两例可知,离散型随机变量函数的分布律是不难获得的.例3.15 设(X ,Y )的分布律为求Z =X +Y 和Z =XY 的分布律.解 先列出下表表3-10从表中看出Z =X +Y 可能取值为-2,0,1,3,4,且P {Z =-2}=P {X +Y =-2}=P {X =-1,Y =-1}=5/20; P {Z =0}=P {X +Y =0}=P {X =-1,Y =1}=2/20;P {Z =1}=P {X +Y =1}=P {X =-1,Y =2}+P {X =2,Y =-1}=6/20+3/20=9/20;P {Z =3}=P {X +Y =3}=P {X =2,Y =1}=3/20; P {Z =4}=P {X +Y =4}=P {X =2,Y =2}=1/20.于是Z =X +Y 的分布律为表3-11同理可得,Z =XY 的分布律为表3-12例3.16 设X ,Y 相互独立,且分别服从参数为λ1与λ2的泊松分布,求证Z =X +Y 服从参数为λ1+λ2的泊松分布.证 Z 的可能取值为0,1,2,…,Z 的分布律为P {Z =k }=P {X +Y =k }={}{}∑=-==ki i k Y P i X P 0=k ki k i k i k i )(!1)!(!21)(01212121λλλλλλλλ+=-+-=---∑e e e ,k =0,1,2,…. 所以Z 服从参数为λ1+λ2的泊松分布.本例说明,若X ,Y 相互独立,且X ~π(λ1),Y ~π(λ2),则X +Y ~π(λ1+λ2).这种性质称为分布的可加性,泊松分布是一个可加性分布.类似地可以证明二项分布也是一个可加性分布,即若X ,Y 相互独立,且X ~B (n 1,p ),Y ~B (n 2,p ),则X +Y ~B (n 1+n 2,p ).2.二维连续型随机变量函数的分布设(X ,Y )为二维连续型随机变量,若其函数Z =ϕ (X ,Y )仍然是连续型随机变量,则存在密度函数f Z (z ).求密度函数f Z (z )的一般方法如下:首先求出Z = ϕ(X ,Y )的分布函数F Z (z )=P {Z ≤z }=P { ϕ(X ,Y )≤z }=P {(X ,Y )∈G }=⎰⎰Gv u v u f d d ),(,其中f (x ,y )是密度函数,G ={(x ,y )|ϕ(x ,y )≤z }.其次是利用分布函数与密度函数的关系,对分布函数求导,就可得到密度函数f Z (z ). 下面讨论两个具体的随机变量函数的分布. (1) Z =X +Y 的分布设(X ,Y )的概率密度为f (x ,y ),则Z =X +Y 的分布函数为F Z (z )=P {Z ≤z }=(,)d d ,x y zf x y x y +≤⎰⎰,这里积分区域G :x +y ≤z 是直线x +y =z 左下方的半平面,化成累次积分得F Z (z )=(,)d d z y f x y x y +∞--∞-∞⎡⎤⎢⎥⎣⎦⎰⎰.固定z 和y ,对积分(,)d z yf x y x --∞⎰作变量变换,令x =u -y ,得(,)d (,)d z yzf x y x f u y y u --∞-∞=-⎰⎰.于是F Z (z )=(,)d d (,)d .zz --f u y y u y f u y y dy u +∞+∞∞∞-∞-∞⎡⎤-=-⎢⎥⎣⎦⎰⎰⎰⎰由概率密度的定义,即得Z 的概率密度为f Z (z )=(,)d f z y y y +∞-∞-⎰. (3.16)由X ,Y 的对称性,f Z (z )又可写成f Z (z )=(,)d f x z x x ∞-∞-⎰. (3.17)这样,我们得到了两个随机变量和的概率密度的一般公式.特别地,当X 和Y 相互独立时,设(X ,Y )关于X ,Y 的边缘概率密度分别为f X (x ),f Y (y ),则有f Z (z )=()()d X Y f z y f y y +∞-∞-⎰; (3.18) f Z (z )=()()d X Y f x f z x x +∞-∞-⎰. (3.19)这两个公式称为卷积(Convolution )公式,记为f X *f Y ,即f X *f Y =()()d ()()d X Y X Y f z y f y y f x f z x x +∞+∞-∞-∞-=-⎰⎰.例3.17 设X 和Y 是两个相互独立的随机变量,它们都服从N (0,1)分布,求Z =X +Y 的概率分布密度.解 由题设知X ,Y 的分布密度分别为f X (x )=2221x -e π, -∞<x <+∞,f Y (y )=2221y -e π, -∞<y <+∞.由卷积公式知f Z (z )=x x x x z f x f zx z x z x Y X d e eπd ee πd ⎰⎰⎰∞+∞------∞+∞--∞+∞-==-2222)2(42)(22121)()(.设t =2zx -,得 f Z (z )=44422222121z z t z t --∞+∞---===⎰eππe 2π1d e e π,即Z 服从N (0,2)分布.一般,设X ,Y 相互独立且X ~N (u 1,σ12),Y ~N (u 2,σ22),由公式(3.19)经过计算知Z=X+Y 仍然服从正态分布,且有Z ~N (u 1+u 2,σ12+σ22).这个结论还能推广到n 个独立正态随机变量之和的情况,即若X i ~N (u i ,σi 2)(i =1,2,…,n ),且它们相互独立,则它们的和Z =X 1+X 2+…+X n 仍然服从正态分布,且有Z ~N (∑∑=21,i ni i u σ).更一般地,可以证明有限个相互独立的正态随机变量的线性组合仍服从正态分布. 例3.18 设X 和Y 是两个相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;其他,0,10,1x f Y (y )=⎩⎨⎧>-.,0,0,其他e y y 求随机变量Z=X+Y 的分布密度.解 X ,Y 相互独立,所以由卷积公式知f Z (z )=.)()(⎰+∞∞--x x z f x f Y X d .由题设可知f X (x )f Y (y )只有当0≤x ≤1,y >0,即当0≤x ≤1且z -x >0时才不等于零.现在所求的积分变量为x ,z 当作参数,当积分变量满足x 的不等式组0≤x ≤1 x <z 时,被积函数f X (x )f Y (z -x )≠0.下面针对参数z 的不同取值范围来计算积分.当z <0时,上述不等式组无解,故f X (x )f Y (z -x )=0.当0≤z ≤1时,不等式组的解为0≤x ≤z .当z >1时,不等式组的解为0≤x ≤1.所以f Z (z )=()01()0e d 1e ,01,e d e (e 1),1,0,.z z x z z x z x z x z ------⎧=-≤≤⎪⎪=->⎨⎪⎪⎩⎰⎰其他, (2) Z =X/Y 的分布设(X ,Y )的概率密度为f (x ,y ),则Z =X /Y 的分布函数为FZ (z )=P {Z ≤z }=P {X /Y ≤z }=/(,)d d x y zf x y x y ≤⎰⎰.令u =y ,v =x /y ,即x =uv ,y =u .这一变换的雅可比(Jacobi )行列式为J =1uv =-u . 于是,代入上式得F Z (z )=(,)d d (,)d d zv zf uv u J u v f uv u u u v +∞-∞-∞≤⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰.这就是说,随机变量Z 的密度函数为f Z (z )=⎰+∞∞-.),(u u u zu f d (3.20)特别地,当X 和Y 独立时,有f Z (z )=⎰+∞∞-u u u f zu f Y X d )()(, (3.21)其中f X (x ),f Y (y )分别为(X ,Y )关于X 和关于Y 的边缘概率密度.例3.19 设X 和Y 相互独立,均服从N (0,1)分布,求Z =X /Y 的密度函数f Z (z ). 解 由3.21式有f Z (z )=u u u u u f zu f z u Y X d e πd ⎰⎰∞+∞-∞+∞-+-=2)1(2221)()(=)1(11202)1(22z u u z u +=⎰∞++-πd e π, -∞<z <+∞.例3.20 设X ,Y 分别表示两只不同型号的灯泡的寿命,X ,Y 相互独立,它们的概率密度依次为f (x )=⎩⎨⎧>-;,0,0,其他x x eg (y )=⎩⎨⎧>-.,0,0,22其他y y e求Z =X/Y 的概率密度函数.解 当z >0时,Z 的概率密度为f Z (z )=⎰⎰+∞+∞+---+==02)2(2)2(222z y y y y y z y yz d e d e e ; 当z ≤0时,f Z (z )=0.于是f Z (z )=⎪⎩⎪⎨⎧≤>+.0,0,0,)2(22z z z .(3) M =max(X ,Y )及N =min (X ,Y )的分布设X ,Y 相互独立,且它们分别有分布函数F X (x )与F Y (y ).求X ,Y 的最大值,最小值:M =max(X ,Y ),N =min(X ,Y )的分布函数F M (z ),F N (z ).由于M =max(X ,Y )不大于z 等价于X 和Y 都不大于z ,故P {M ≤z }=P {X ≤z ,Y ≤z },又由于X 和Y 相互独立,得F M (z )=P {M ≤z }=P {X ≤z ,Y ≤z }=P {X ≤z }·P {Y ≤z }=F X (z )·F Y (z ). (3.22) 类似地,可得N =min(X ,Y )的分布函数为F N (z)=P {N ≤z }=1-P {N >z }=1-P {X >z ,Y >z }=1-P {X >z }·P {Y >z }=1-(1-F X (z ))(1-F Y (z )). (3.23)以上结果容易推广到n 个相互独立的随机变量的情况.设X 1,X 2,…,X n 是n 个相互独立的随机变量,它们的分布函数分别为F Xi (x i )(i =1,2,…,n ),则M =max(X 1,X 2,…,X n )及N =min(X 1,X 2,…,X n )的分布函数分别为F M (z )=F X 1(z )F X 2(z )…F Xn (z ); (3.24)F N (z )=1-[1-F X 1(z )][1-F X 2(z )]…[1-F Xn (z )]. (3.25)特别,当X 1,X 2,…,X n 是相互独立且有相同分布函数F (x )时,有F M (z )=(F (z ))n , (3.26) F N (z )=1- [1-F (z )]n . (3.27)例3.21 设X ,Y 相互独立,且都服从参数为1的指数分布,求Z =max{X ,Y }的密度函数.解 设X ,Y 的分布函数为F (x ),则F (x )=⎩⎨⎧<≥--.0,0,0,1x x x e由于Z 的分布函数为F Z (z )=P {Z ≤z }=P {X ≤z ,Y ≤z }=P {X ≤z }P {Y ≤z }=[F (z )]2,所以,Z 的密度函数为f Z (z )=F ′Z (z )=2F (z )F ′(z )=⎩⎨⎧<≥---.0,0,0),1(2z z z z e e下面再举一个由两个随机变量的分布函数求两随机变量函数的密度函数的一般例子. 例3.22 设X ,Y 相互独立,且都服从N (0,σ2),求Z =22Y X +的密度函数.解 先求分布函数F Z (z )=P {Z ≤z }=P {22Y X +≤z }.当z ≤0时,F Z (z )=0;当z >0时,F Z (z )=P {22Y X +≤z }=y x y x zy x d d e π222222221σσ+-≤+⎰⎰.图3-3作极坐标变换x =r cos θ,y =r sin θ(0≤r ≤z ,0≤θ<2π)(如图3-3),于是有F Z (z )=2222220022121σσθσz zr r r ---=⎰⎰ed ed ππ.故得所求Z 的密度函数为f Z (z )=F ′Z (z )=⎪⎩⎪⎨⎧≤>-.0,0,0,2222z z z z σσe 此分布称为瑞利分布(Rayleigh ),它很有用.例如,炮弹着点的坐标为(X ,Y ),设横向偏差X ~N (0,σ2),纵向偏差Y ~N (0,σ2),X ,Y 相互独立,那么弹着点到原点的距离D 便服从瑞利分布,瑞利分布还在噪声、海浪等理论中得到应用.小 结对一维随机变量的概念加以扩充,就得多维随机变量,我们着重讨论二维随机变量. 1.二维随机变量(X ,Y )的分布函数:F (x ,y )=P {X ≤x ,Y ≤y },-∞<x <∞,-∞<y <∞.(1) 离散型随机变量(X ,Y )定义分布律:P {X =x i ,Y =y j }=p ij , i ,j =1,2,…,1,=∑ji ijp.(2) 连续型随机变量(X ,Y )定义概率密度f (x ,y )(f (x ,y )≥0):F (x ,y )=⎰⎰∞-∞-y xy x y x f d d ),(,对任意x,y .一般,我们都是利用分布律或概率密度(不是利用分布函数)来描述和研究二维随机变量的.2.二维随机变量的分布律与概率密度的性质与一维的类似.特别,对于二维连续型随机变量,有公式P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(.其中,G 是平面上的某区域,这一公式常用来求随机变量的不等式成立的概率,例如:P {Y ≤X }=P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(.其中G 为半平面y ≤x .3.研究二维随机变量(X ,Y )时,除了讨论上述一维随机变量类似的内容外,还讨论了以下新的内容:边缘分布、条件分布、随机变量的独立性等.(1) 对(X ,Y )而言,由(X ,Y )的分布可以确定关于X 、关于Y 的边缘分布.反之,由X 和Y 的边缘分布一般是不能确定(X ,Y )的分布的.只有当X ,Y 相互独立时,由两边缘分布能确定(X ,Y )分布.(2) 随机变量的独立性是随机事件独立性的扩充.我们也常利用问题的实际意义去判断两个随机变量的独立性.例如,若X ,Y 分别表示两个工厂生产的显像管的寿命,则可以认为X ,Y 是相互独立的.(3) 讨论了Z =X +Y ,Z =X/Y ,M =max(X ,Y ),N =min(X ,Y )的分布的求法.(设(X ,Y )分布已知);这是很有用的.4.本章在进行各种问题的计算时,例如,在求边缘概率密度,求条件概率密度,求Z =X +Y的概率密度或在计算概率P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(时,要用到二重积分,或用到二元函数固定其中一个变量对另一个变量的积分.此时千万要搞清楚积分变量的变化范围.题目做错,往往是由于在积分运算时,将有关的积分区间或积分区域搞错了.在做题时,画出有关函数的积分域的图形,对于正确确定积分上下限肯定是有帮助的.另外,所求得的边缘密度、条件密度或Z =X +Y 的密度,往往是分段函数,正确写出分段函数的表达式当然是必须的.重要术语及主题二维随机变量(X ,Y ) (X ,Y )的分布函数 离散型随机变量(X ,Y )的分布律 连续型随机变量(X ,Y )的概率密度 离散型随机变量(X ,Y )的边缘分布律 连续型随机变量(X ,Y )的边缘概率密度条件分布函数 条件分布律条件概率密度 两个随机变量X ,Y 的独立性 Z =X +Y 的概率密度 Z =X /Y 的概率密度 M =max(X ,Y ),N =min(X ,Y )的概率密度习 题 三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤-.,0,0,10),2(8.4其他x y x x y求边缘概率密度.9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度.10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度.11.设随机变量(X ,Y )的概率密度为 f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立?(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立?14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e (1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4只,求其中没有一只寿命小于180的概率.17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i=0,1,2,….18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.20.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.21 21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?(1998研考)22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布. (2001研考)24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫ ⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ). (2002研考)25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.(2006研考)26. 设二维随机变量(X ,Y )的概率分布为+Y .求:(1) a ,b ,c 的值;(2) Z 的概率分布;(3) P {X =Z }. (2006研考)。
3.4 随机变量的独立性
第2页
3.4 随机变量独立性
可以证明如下结论: (1)若 (X,Y)是连续型r.v ,则上述独立性的定义等价于:
对任意的 x, y, 有
f ( x , y ) f X ( x ) fY ( y )
第6页
3.4 随机变量独立性
例3.4.1
1.
P( X P( X P( X P( X
X ,Y 具有分布律右图,则:
1, Y 0) 1 6 P( X 1) P(Y 0) 2, Y 0) 1 6 P( X 2) P(Y 0) 1, Y 1) 2 6 P( X 1) P(Y 1) 2, Y 1) 2 6 P( X 2) P(Y 1)
p ij p i p j
离散型随机变量的联合分布列等于其边缘分布列的乘积
P { X x i | Y y j } p i , , P { Y y j | X x i } p j
任一变量的条件分布列等于其边缘分布列
要判断 X 和 Y 不独立,只需找到 X, Y 的一对取值(xi,yj),使得 P{X xi , Y y j } P{X xi }P{Y y j }.
P( X1 x1i1 )
i2 ,i3 ,in
P( X1 x1i1 , X 2 x2i2 ,, X n xnin )
P( X1 x1i1 , X 2 x2i2 )
f X1 ( x1 )
i3 ,i4 ,in
P( X1 x1i1 , X 2 x2i2 ,, X n xnin )
概率论和数理统计(第三学期)第4章随机向量
φ(x,y)=φξ(x) ·φη(y)
证明
x, y x• y
Fx, y x y u,vdudv
x
y
u
v
dudv
x
u
du
y
v
dv
F x• F y
i 1
例1 一袋中有五件产品,其中两件次品,三件正
品,从袋中任意依次取出两件,分别采用有放回与不 放回两种方式进行抽样检查,规定随机变量
=10,,
第1次取出次品 第1次取出正品
=10,,
第2次取出次品 第2次取出正品
则(ξ,η)的联合分布律如下(并可求得边缘分布律):
表1 有放回抽样的分布律
pij η
或η的概率分布称为它的边缘分布。
定义2:随机向量(ξ,η)分量ξ、η的分布函数称为(ξ,η)
关于ξ、η的边缘分布函数。
设(ξ,η)的分布函数为F(x,y) ,则(ξ,η)关于ξ的边 缘分布函数为
F x P x P{ x, } Fx,
同F理y F , y
由上述可知,Fξ(x)、Fη(y)由F(x,y)唯一确 定,但其逆并不一定成立。
(4)对任意两点(x1,y1) 、(x2,y2) ,若x1≤x2, y1≤y2,则 F(x2,y2)- F(x2,y1) - F(x1,y2)+ F(x1,y1) ≥0
§4.2 二维离散型随机向量
定义 若随机向量(ξ,η) 所有可能取值是有限对或
可列多对(xi,yj)(i,j=1,2, …),则称(ξ,η)是二 维离散型随机变量;
我们可以证明:
概率论与数理统计第3章随机向量
解 (1)根据概率密度函数性质(2)知
f (x, y)dxdy
Ce(3x4 y) dxdy C e3xdx e4y dy C 1
00
0
0
12
从而 C 1
12
(2)由定义3.3.1知
xy
F(x, y)
f (u,v)dudv
(1 e3x )(1 e4y ), x 0, y 0,
3
7
7
1
3.4.1 二维离散型随机向量的边缘分布
(2) 采取无放回摸球时,与(1)的解法相同,(X,Y)的 联合分布与边缘分布由表3.4给出.
表3.4
Y X
0
1 P{Y=yj} p j
01Biblioteka 2277
2
1
7
7
4
3
7
7
P{X=xi} pi
4 7 3 7
1
3.4.2 二维连续型随机向量的边缘分布
设(X,Y)是二维连续型随机向量,其概率密度为f(x,y),
由
FX (x) F(x,)
x
f (x,y)dydx
知,X是一个连续型随机变量,且其概率密度为
f X (x)
dFX (x) dx
f (x,y)dy.
(3.4.5)
同样,Y也是一个连续型随机变量,其概率密度为
fY ( y)
= dFY(y)
dy
f (x,y)dx.
(3.4.6)
(X ,Y )
~
N (1,
2
,
2 1
,
2 2
,
)
称(X,Y)为二维正态随机向量.
3.4 边缘分布
1 二维离散型随机向量的边缘分布 2 二维连续型随机向量的边缘分布
第三章 随机向量及其独立性
联合分布律的性 质 ≥ 0, i, j = 1,2,L (1) p .
ij
(2)∑pi j = 1.
i, j
第三章
随机向量及其独立性
二维离散型随机向量的联合分布律全面 地反映了向量(X,Y)的取值及其概率规律 的取值及其概率规律. 地反映了向量 的取值及其概率规律 而单个随机变量X,Y也具有自己的概率 也具有自己的概率 而单个随机变量 分布. 分布 那么要问:二者之间有什么关系呢 那么要问 二者之间有什么关系呢? 二者之间有什么关系呢
第三章
随机向量及其独立性
实例2 实例
在平面坐标系中, 在平面坐标系中,一门大炮向目标发射 一发炮弹. 一发炮弹 炮弹落点位置由它的横坐标X和纵坐标 炮弹落点位置由它的横坐标 和纵坐标Y 和纵坐标 来确定. 来确定 X,Y 都是随机变量,称(X,Y )是二维随机 都是随机变量, 是二维随机 向量. 向量
第三章
随机向量及其独立性
二 离 型 机 量 设 维 散 随 向 (X,Y)的 有 所 可 取 值 (xi , yj ), i = 1,2,L j = 1,2,L 能 的 为 , .
记 pij = P{X = xi ,Y = yj }, i = 1,2,L j = 1,2,L , .
的联合分布律, 称上式为随机向量 ( X,Y ) 的联合分布律,也 称为概率分布. 称为概率分布 若随机向量 ( X,Y ) 的的概率分布的规律 性不强,或者不能用上式表示时, 性不强,或者不能用上式表示时,还可以用 表格的形式表示如下. 表格的形式表示如下
F(x1, x2,L xn ) = P{X1 ≤ x1, X2 ≤ x2,L Xn ≤ xn} , ,
x1 , x 2 , L , x n 为任意实数
【学习课件】第三章概率论与数理统计
解 确定随机变量的取值:
及F(2,2).
p i j P Xi,Yj
F ( x , y) = P { X x , Y y}
{ P X { X i , Y i } j } { Y { X j } i } { Y j } pij
P Y j|X iP X i
xi x yjy
为 X, Y的 分 布 函 数 , 或 X与 Y的 联 合 分 布 函 数 。
X x ,Y y X x Y y
几 何 意 义 : 分 布 函 数 Fx0,y0表 示 随 机 点 X,Y落 在 区 域
x,y,xx0,yy0
中 的 概 率 。 如 图 阴 影 部 分 所 示 :
y
x0, y0
X=xi ,Y y j
P X=xi
pij , j=1, 2, pi
为给定条件X xi时,Y的条件概率分布律。
3、条件概率分布律
给定条件Yyj时,X的条件概率分布律记作:
X|Yyj
P X=xi |Yyj
pij ,i= 1, 2, pj
X |Y yj
P X |Y y j
x1
p1 j
X , Y ~P X=xi, Y=y j pij , i, j=1, 2,
则称 P X=xi | Y y j
P X=xi ,Y y j P Y=y j
pij , i=1, 2, p j
为给定条件Y y j时,X的条件概率分布律;
P Y=y j | X=xi
P
= limPX x,Y y lim Fx, y
y
y
0, x 0; =x2, 0 x 1;
1, 1 x.
FYy PY yPX ,Y y
= limPX x,Y y limFx, y
第三章相互独立的随机变量(多维随机变量及其分布)
10:42:20
19
例5 设(X,Y)在圆域D={(x, y)| x2+y2r 2}上服从均匀 分布. (1) 求X与Y的边缘密度,判断X与Y是否相互独立. 2 r2 r 2 2 ( 2)求P 8 X Y 4 . 2 y 解 1 / r , ( x , y ) D , x2+y2=r 2
即 1 2σ1σ 2 1 2 2 σ1 1 ρ 1 , 2 σ 2
从而 0.
综上,对于二维正态随 机变量( X , Y ), X和Y相互独立的充分必要条 件是
0.
10:42:20
12
例3
甲乙两人约定中午12时30分在某地会面. 如果甲来到的时间在 12:15 到 12:45 之间是均匀 分布 . 乙独立地到达 , 而且到达时间在 12:00到 13:00之间是均匀分布. 求先到的人等待另一人到达的时间不超过 5 分钟的概率; 又甲先到的概率是多少? 解: 设X为甲到达时刻,Y为乙到达时刻. 以12时 为起点0,以分为单位.
d c
o
a
b
x
10:42:20
17
f X ( x)
f ( x , y )dy
d
y
当 a x b时,
d
1 1 f X ( x) dy . c ( b a )(d c ) ba 1 , a x b , f X ( x) b - a 0, 其它.
222121??????????nyx??????????????????????????????????????????????22222121212122212121exp121yyxxyxf??则若0????????????????????????????????????????222221212121exp21yxyxf??????????????????????????????????????22222212112exp212exp21yx????ryxyfxfyx????即即x与y相互独立
大学概率论第三章----随机向量
大学概率论第三章----随机向量第三章 随机向量第一节 二维随机向量及其分布1、二维随机向量及其分布函数定义1:设E 是一个随机试验,它的样本空间是{}e Ω=.设X(e)与Y(e)是定义在同一样本空间Ω上的两个随机变量,则称(X(e),Y(e))为Ω上的二维随机向量或二维随机变量。
简记为(X,Y).定义2:设(X,Y)是二维随机向量,对于任意实数x,y ,称二元函数 F(x,y)=P{X ≦x ,Y ≦y}为二维随机向量(X,Y)的分布函数或联合分布函数。
(X,Y)的分布函数满足如下基本性质: (1)F(x,y)是变量x,y 的不减函数. (2)0≦F(x,y)≦1,(,)0y F y -∞=对于任意的 ,(,)0x F x -∞=对于任意的(,)0(,)1F F -∞-∞=+∞+∞=,(3)(,), (,)(0,)(,)(,0)F x y x y F x y F x y F x y F x y =+=+关于是右连续的,即, 1122121222211211(4)(,)(,),, (,)(,)(,)(,)0x y x y x x y y F x y F x y F x y F x y <<--+≥对于任意和,有2、二维离散型随机变量定义3:若二维随机向量(X,Y)的所有可能取值是有限对或无限可列多对,则称(X,Y) 为二维离散型随机向量。
设(X,Y)的一切可能值为(,) , ,1,2,i j X Y i j =L ,且(X,Y)取各对可能值的概率为,(,), ,1,2,i j i j P X Y P i j ==L(1) 非负性:,0, ,1,2,i j P i j ≥=L ;,(2)1ij i jp =∑规范性:, (,){,}i i ijx x y yX Y F x y P X x Y Y p ≤≤=≤≤=∑∑离散型随机变量的联合分布函数为定义4:{,}(,1,2,...)(,)ij P X x Y Y p i j X Y X Y ≤≤==称为二维离散型随机变量的概率分布或分布律,或随机变量和的联合分布律。
第二章 随机向量
例2.3.3 Σ 0 x 的分量之间存在线性关系(以 概率1)。 在实际问题中,有时|Σ|=0,其原因是指标之间存在 着线性关系,如某一指标是其他一些指标的汇总值, 这在一般数据报表中是常出现的。我们通常可以通 过删去“多余”指标的办法来确保|Σ|≠0。因此,我 们总假定 Σ>0并不失一般性,这样可保证Σ−1存在, 从而可使数学问题得以简化。
随机向量 x ( x1, x2 , , x p )的数学期望
随机矩阵X的数学期望的性质
(1)设a为常数,则
E(aX)=aE(X) (2)设A,B,C为常数矩阵,则 E(AXB+C)=AE(X)B+C 特别地,对于随机向量x,有 E(Ax)=AE(x) (3)设X1,X2,⋯,Xn为n个同阶的随机矩阵,则 E(X1+X2+⋯+ Xn)=E(X1)+E(X2)+⋯+E(Xn)
协差阵的性质
(1)协差阵是非负定阵,即Σ≥0。 推论 若|Σ|≠0,则Σ>0。 (2)设A为常数矩阵,b为常数向量,则 V Ax b AV x A 当p=1时,上述等式就是我们熟知的如下等式: V ax b a 2V x
例2.3.2
x和y的协方差矩阵与y和x的协差阵互为转置关系,即有 Cov x, y Cov y , x 若Cov(x,y)=0,则称x和y不相关。 两个独立的随机向量必然不相关,但两个不相关的随机向量 未必独立。 x=y时的协差阵Cov(x,x)称为x的协差阵,记作V(x),即 V x E x E x x E x V x1 Cov x1 , x2 Cov x1 , x p Cov x2 , x1 V x2 Cov x2 , x p Cov x p , x1 Cov x p , x2 V xp V(x)亦记作Σ=(σij),其中σij=Cov(xi,xj)。
高等数学3.4 随机变量的独立性与条件分布
2 3/15 3/15
0 1
(2) 由( X , Y ) 的联合分布律知 X 的边缘分布为 X P 0 1/15 1 10/15
由条件分布定义可知
P Y = 0 X = 0 = P Y = 1 X = 0 = P Y = 2 X = 0 =
P X = 0 , Y = 0 P X = 0 P X = 0 , Y = 1 P X = 0 P X = 0 , Y = 2 P X = 0
Y P
1 1/2
2 1/9 +α
3 1/18 +β
若X 与 Y 相互独立, 则有 1 = P X = 1, Y = 2 = P X= 1 9 1 1 = ( + ) 3 9 1 = P X = 1, Y= 3 = P X =1 18 1 1 = ( + ) 3 18
Y P = 2
dt
=
同理
x R
fY ( y ) =
( y 2 )2 exp , 2 2 2 2 2 1
y R
若 = 0 , 则对于任意实数 x 与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 因此 X 与 Y 是相互独立的 . 反之, 若 X 与Y 相互独立, 则对于任意实数 x与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 若取 x = 1 , y = 2 , 则有
1 2
2
2 2 ( x ) ( x ) 2 2 1 1 + 2 2 1 1
y 2 ( x 1 ) x 1 1 = 2 2 1 2 1 2(1 ) 2
2
所以( X , Y )关于X的边缘密度为
《概率论与数理统计》教学大纲
《概率论与数理统计》教学大纲教学目的概率论与数理统计是研究随机现象数量规律、统计规律的学科,在高等学校教学计划中是重要的基础理论课。
概率论与数理统计作为现代数学的重要组成部分,不仅理论严谨,而且应用极其广泛。
由于它的介入,改变了经济、金融和管理科学传统的研究方式,是经济、管理中数量分析的基础,是经济管理工作者不可缺少的有力工具。
通过本课程的教学,使学生初步掌握处理随机现象和抽样数据的基本理论和方法,为解决有关实际问题以及后继课程的学习打下良好的基础。
考虑到初学者往往对一些重要的概率统计概念的实质的领会感到困难,以及概率统计应用性很强的特点,在讲授本课程时,以介绍基本概念、基本理论和方法为主,尽量使用较少的数学知识,避免过于数学化的论证,但仍保持系统的严谨性。
在讲授内容的同时,应配备一定数量的习题,以培养学生的基本技能。
预备知识高等数学、线性代数等知识教材指定教材:【1】《概率论与数理统计》参考书目:【1】《概率论与数理统计学习指导与习题全解》教学基本内容第一章事件与概率第一节样本空间与随机事件第二节频率、古典概率及几何概率第三节概率的公理化定义与性质第四节条件概率与独立性第五节全概率公式与贝叶斯公式本章教学要求:1.了解随机现象、样本空间的概念。
理解随机事件的概念,掌握事件之间关系与运算。
2.了解频率稳定性的概念。
掌握古典概型及概率的计算方法。
掌握几何概率及其计算方法。
3.理解概率的公理化定义的必要性和三条基本性质。
掌握概率的五条性质,并熟练应用。
4.理解条件概率及事件独立性的概念,掌握用事件的独立性进行概率的计算。
理解伯努利概型,掌握独立重复试验中有关事件概率的计算方法。
5.会熟练运用概率的乘法公式、全概率公式及贝叶斯公式进行事件概率的计算。
第二章随机变量及其分布第一节随机变量及其分布函数第二节散型随机变量及其分布第三节连续性随机变量及其分布第四节随机变量函数的分布本章教学要求:1.了解随机变量的概念,理解分布函数的概念和性质。
概率论与数理统计第3章
y
(2)
{Y X } {( X ,Y ) G },
YX
G
O
P{Y X } P{( X ,Y ) G }
x
f ( x , y ) d x d y
G
0
( 2 x y ) d x y 2e d y
1 . 3
2e ( 2 x y ) , f ( x, y) 0,
(2)
p
i j
ij
1
二维离散型随机向量的联合分布函数为
xi x y j y
p
13
例1
一袋中装有2只白球 则( X , Y )的联合概率分布为 和3只黑球,进行有放 回取球 Y 0 1
X 0 1
1 第一次取出白球 X 0 第一次取出黑球 1 第二次取出白球 Y 0 第二次取出黑球
Y 的边缘概率密度.
25
3 x 3 e x0 边缘密度函数为 例6 求随机向量 (X,Y)的边缘分布函数和边缘密度函数, ( x) f X ( x ) FX x0 已知其联合分布函数为 0
故 F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y1 ) F ( x1 , y2 ) 0.
9
三、边缘分布函数
( X , Y )为二维随机向量, 联合分布函数为F ( x, y)
X和Y分别也是随机变量 X , Y的分布函数分别记为 FX ( x)和FY ( y) FX ( x) P{ X x} P{ X x, Y } lim F ( x , y ) F ( x , )
4
二、联合分布函数的性质
设 ( X , Y ) 是二维随机向量, 对于任意实数 x , y , 二元函数 : F ( x , y ) P{( X x ) (Y y )} P { X x , Y y } 称为二维随机向量 ( X , Y ) 的分布函数, 或称为随 机变量X 和 Y 的联合分布函数.
第三章 随机向量
第三章 随机向量在有些随机现象中,每次试验的结果需同时用多个指标来描述,如炮弹的弹着点的平面坐标,飞机的重心在空中的位置需三个坐标来确定,等等。
我们称由n 个随机变量1ξ,2ξ,n ξ, 构成的向量ξ=()n ξξξ,,,21 为n 维随机向量。
为简单起见,本节着重研究二维随机向量。
§1 二维随机向量及其分布函数定义 设()ηξ,是二维随机变量,对任意实数y x ,,称二元函数()()y x P y x F ≤≤=ηξ,,为二维随机变量()ηξ,的联合分布函数。
由定义可以知道,对于任意b a <,d c <,有()d c b a P ≤<≤<ηξ,()()()()c a F c b F d a F d b F ,,,,+--=与一维随机变量的分布函数相类似,二维随机变量()ηξ,的联合分布函数),(y x F 有以下几个性质:(1)()1,0≤≤y x F(2)()y x F ,关于变量x 或y 单调增加; (3)()y x F ,关于变量x 或y 都是右连续的;(4)()0,=∞-y F ,()0,=-∞x F ,()0,=-∞∞-F ,()1,=+∞∞+F ;由于二维随机变量的每一个分量都是一维随机变量,从而它们有各自的分布函数()()x P x F ≤=ξξ和()()y P x F ≤=ηη,称为分量ξ和η的边缘分布函数。
由定义可以得到()()x P x F ≤=ξξ()()y x F x P y ,lim ,+∞→=+∞<≤=ηξ()+∞=,x F ,R x ∈类似,()y F η()y F ,∞+=,R y ∈例 设二维随机变量()ηξ,的联合分布函数为()⎩⎨⎧>>+--=-----其它00,01,y x e e e y x F xy y x y x λ 称这分布为二维指数分布,其中参数0≥λ。
利用上面所给公式,容易求得关于随机变量ξ和η的边缘分布函数分别为:()=x F ξ()+∞,x F ⎩⎨⎧≤>-=-001x x e x ()=y F η()y F ,∞+⎩⎨⎧≤>-=-0001y y e y 它们都是一维指数分布函数,且与参数λ无关。
概率论第三章-随机向量的独立性
f X ( x) =
1 e 2π σ 1
−
( x − µ 1 )2
2 2σ 1
fY ( y ) =
2π σ 2
1
−
( y − µ 2 )2
2 2σ 2
e
X~ N(µ1,σ12 ) , (
Y~ N(µ2,σ22 ) (
二维正态随机向量( 二维正态随机向量(X,Y)的两个分量独立的充要条件是 )
ρ= 0
P {X ≤ a , X ≤ b} = P {X ≤ a}P { X ≤ b}
对所有实数对(a, b) 均成立. 对所有实数对( 均成立. 随机事件{ 有下述关系: 2) 随机事件{ X≤a } 与{︱X︱ ≤a } 有下述关系:
{X
从而
≤ a} = {− a ≤ X ≤ a} ⊂ {X ≤ a}
P{ X ≤ a , X ≤ a } = P{ X ≤ a }
维随机变量X 相互独立, 维随机变量 例如3维随机变量 1 ,X2 ,X3 相互独立,则 X12 , X22 , X32 也相互独立 相互独立. X1 +X2与X3也相互独立 相互独立. sinX1 与X3也相互独立. 相互独立.
X1 +X2与X1 -X2 不一定相互独立. 不一定相互独立
随机变量的独立性本质上 是事件的独立性
FX ( x) FY ( y )
∀ i, j
1) 对于离散型的随机变量,X与Y相互独立的充要条件为:
P{ X = xi , Y = y j } = P{ X = xi } ⋅ P {Y = y j }
2) 对于连续型的随机变量, X与Y相互独立的充要条件为:
f ( x , y ) = f X ( x) fY ( y ) 几乎处处成立。
第二章-随机向量
二、协方差矩阵
协方差定义为
Cov x, y E x E x y E y
若Cov(x,y)=0,则称x和y不相关。 两个独立的随机变量必然不相关,但两个不相关的
两个子向量之间的协差阵。熟悉这四块子矩阵的含
义很有益处。
协差阵的性质
(1)协差阵是非负定阵,即Σ≥0。 推论 若|Σ|≠0,则Σ>0。 (2)设A为常数矩阵,b为常数向量,则
V Ax b AV x A
(1) f (x1,
, xp ) 0,对一切实数x1,
,
x
;
p
(2)
f (x1,
, xp ) d x1
d xp 1。
四、边缘分布
设x是p维随机向量,由它的q(<p) 个分量组成的向量
x不(1妨)的设分x布1称为x1x,的关, xq于,x(1则)的对边连缘续分型布的。分布,有
三、多元概率密度函数
一元的情形:
F(a) a f xd x,
f x dFx
dx
多元的情形:
F(a1,
,ap)
a1
ap
f
( x1,
, xp ) d x1
d xp
f (x1,
,
xp)
x1
p x p
F (x1,
, xp )
多元密度f (x1, ⋯,xp)的性质:
随机向量
一、多元概率分布
一个向量,若它的分量都是随机变量,则称之为随 机向量。
随机向量独立性检验的研究
分地把握随机向量的独立性 , 一个很 自然的想法就是对随机 向量进行独立性检验.
1 常见 的独 立性检 验方法 的特点分 析
目前 , 二 维 随 机 向 量 (X, 的 独 立 性 检 验 已 有 不 少 的 研 究 , 见 的 方 法 有 P asn相 关 检 验 、 对 Y) 常 er o
/n 1、
假设( =( ,: 足一个二维随机向量,叩 E 0) , 9 两两独立, 且甜= + 1 ), ~ ( 一 其中
0 <P < 1 = ( ,2 , )~ v[ 1 , = ( 7 )其 中 叩 [ ,] o,] 叩 叩 ,。 , 7 ~ 0 1. 首 先给 f下 面 2个引 理 : { j 引 理 1 沿 用上 述记 号 , 则有 证 明 由 述 定义 可 知 :
徐 文 青
( 南工程 学 院 数理 科 学 系 , 南 郑 州 4 19 ) 河 河 5 1 1
摘 要: 现有 的二维随机 向量 ( Y 独 立性 检验方法都 v- 设 和 y相互独立 为原假设进行检验 , X, ) .t z ̄ 具有保护原假设 的倾
向, 即更容 易得到接 受 “两个 变量 相 互 独 立 ”的结 论.在 “ 个 变量 不 相 互 独 立 ”为 原 假 设 的基 础 上 , 用 分 布 函数 的 两 利 K l o oo 距 离构 建 了一种检 验方法 , om grv 使得 能够控 制将“ 和 y不独 立” 错判 成“ 和 y 相互独立”的概率. 据模 拟表明 , 方 数 该
第 3期
徐 文青 : 随机 向量独立性检 验的研究
・ 5・ 6
∞ 1+( ) 1∞ 叩 1= 1一 , 2= 1+( ) . 1一
对于任意的实数 , 由全概率公式可求出 的边缘分布 , : 即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章
随机向量及其独立性
联合分布和边缘分布的关系
由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
F ( x, y ) P ( X x, Y y )
若将( X , Y )看成是平面上随机点的 坐标,
则分布函数 F ( x , y ) 在点( x , y ) 处的函数值就 是随机点落在以点 ( x , y )为顶点的左下方 无穷矩形区域内的概率 .
y
( x, y)
{ X x,Y y}
x y
第三章
随机向量及其独立性
(3) 对于x 和y,F(x, y)都是右连续的,即对 任意的实数x0和y0,均有
x x0 y y0
lim F ( x , y ) F ( x0 , y )
lim F ( x , y ) F ( x , y0 )
第三章
随机向量及其独立性
FX ( x) P( X x)
P( X x ) P ( X x, Y ) F ( x,) FX ( x )
( X , Y )关于 X的边缘分布函数 .
第三章
随机向量及其独立性
已知 ( X , Y ) 的分布 , 如何确定 Y 的分布 ?
F ( x, y ) P ( X x, Y y ) ,
第三章
随机向量及其独立性
(2) 0 F ( x, y ) 1, 且
对于任意固定的 y ,
F ( , y ) lim F ( x , y ) 0
x
对于任意固定的 x ,
F ( x ,) lim F ( x , y ) 0
y
F ( ,) lim F ( x , y ) 1
o
x
第三章
随机向量及其独立性
2. 分布函数的性质
(1) F ( x , y ) 是变量 x 和 y 的不减函数 .
对于任意固定的y , 当 x2 x1 时, F ( x2 , y ) F ( x1 , y ),
对于任意固定的 x ,当y2 y1时, F ( x , y2 ) F ( x , y1 ).
P ( X 1 x1 , X 2 x2 , , X n xn ) P ( X 1 x1 ) P ( X 2 x2 ) P ( X n xn )
则称 X 1 , X 2 , , X n 是相互独立的 .
第三章
随机向量及其独立性
如果对任何 n, X 1 , X 2 , , X n 相互独立 ,
FY ( y) P(Y y)
P(Y y ) P ( X , Y y ) F (, y ) FY ( y)
( X , Y )关于 Y的边缘分布函数 .
第三章
随机向量及其独立性
二、相互独立的随机变量
定义1.1 如果对任何实数 x, y,
事件{ X x }与{Y y }独立,
第三章
随机向量及其独立性
实例1 为了研究某一地区 6 岁
儿童的发育状况,对这一地区 的儿童进行抽查. 对这一地区的每一个6 岁儿童 都能观测到他的身高H和体重W, 身高H和体重W 都是随机变量, 则 (H, W )是二维随机向量.
第三章
随机向量及其独立性
实例2
在平面坐标系中,一门大炮向目标发射 一发炮弹.
就称随机变量序列 { X j } { X 1 , X 2 ,, X n ,}
相互独立 . 此时称{Xj}是独立序列.
第三独立性
从本讲起,我们开始第三章的学习. 它是第二章内容的推广.
一维随机变量及其分布
n 维随机变量及其分布
第三章
随机向量及其独立性
§ 3.1 随机向量及其联合分布
到现在为止,我们只讨论了一维随机变量 及其分布. 但有些随机现象用一个随机变量来 描述还不够,而需要用几个随机变量来描述.
说明
二维随机变量 ( X, Y ) 的性质不仅与 X 、Y 有关,而且还依赖于这两个随机变量 的相互关系.
第三章
随机向量及其独立性
一般地, 若X1, X2, …,Xn都是随机变量, 则称 X = (X1, X2, …,Xn) 为n维随机向量, 简称随机向量.
第三章
随机向量及其独立性
对随机事件 A, B , A1,A2, 以后用 ,An,
炮弹落点位置由它的横坐标X和纵坐标Y 来确定. X,Y 都是随机变量,称(X,Y )是二维随机 向量.
第三章
随机向量及其独立性
实例3
在三维空间中,飞机的重心 在空中的位置是由三个随机变量 (三个坐标X,Y,Z )来确定的. X,Y,Z 都是随机变量,则称(X,Y,Z )是三 维随机向量.
第三章
随机向量及其独立性
3. 二维随机向量的边缘分布函数
分别称X的分布函数 FX ( x ), Y的分布函数 FY ( y )为( X , Y )关于X和关于Y的边缘分布函数 .
第三章
随机向量及其独立性
已知 ( X , Y ) 的分布 , 如何确定 X 的分布 ?
F ( x, y ) P ( X x, Y y ) ,
两个随机变量相互独立时,它们的联合 分布函数等于两个边缘分布函数的乘积.
在两个随机变量相互独立的情况下,由 边缘分布可以唯一确定联合分布.
第三章
随机向量及其独立性
下面将两个随机变量相互独立的定义推广 到多个随机变量的情况. 定义1.2 设X 1 , X 2 , , X n, 是随机变量 .
(1)若对于所有的 x1 , x2 , , xn 有
{ A, B}表示AB,
{ A1,A2, ,An }表示 Ai .
i 1 n
第三章
随机向量及其独立性
一、二维随机向量及其 联合概率分布函数
1. 对于随机向量(X,Y),称
F ( x, y ) P ( X x, Y y )
为(X,Y)的联合概率分布函数,简称联合分布.
第三章
随机向量及其独立性