低压电网中有关电动机的接地保护问题.doc

低压电网中有关电动机的接地保护问题.doc
低压电网中有关电动机的接地保护问题.doc

低压电网中有关电动机的接地保护问题-

根据国标GB50055-93规定,低压交流电动机应装设接地故障保护,并规定接地故障保护应符合现行国标《低压配电设计规范》中规定。当电动机短路保护器件满足接地故障保护要求时,应采用短路保护兼作接地保护。在《低压配电设计规范》中规定:当配电线路采用熔断器作短路保护时,对于中性点直接接地网络,如果被保护线路末端发生单相接地短路时,其短路电流值不小于熔体额定电流的4倍。当用自动开关作短路保护时,其短路电流不应小于自动开关瞬时或短延时过电流脱扣器整定电流的1.5倍。

对于低压供电系统按其接地方式可分为:TN-C、TN-C-S、TN-S、TT及IT系统,在工厂配电最常用的为TN-C、TN-S系统,而近年来尤以TN-S系统在石油化工企业中应用最为广泛。

当供电线路末端发生单相接地短路时,短路电流与系统、变压器及线路的正序、负序、零序阻抗的大小有关。变压器的零序阻抗与其接线形式有很大关系,Yy接线变压器零序阻抗远远大于Dy接线变压器的零序阻抗。在系统阻抗和变压器阻抗一定的情况下,短路电流与配电线路的阻抗有关,即线路越长,导线截面越小则导线阻抗越大,相应短路电流越小。一方面我们希望短路电流小而减小接地故障造成的损失,而另一方面我们也希望故障电流大而易于检测,迅速切除故障。虽然采用高阻接地系统可以把接地故障电流限制得很小,使系统能够带故障运行而提高供电系统的可靠性,但因其故障电流很小,对保护报警设备要求较高,而很少在石油化工企业中应用。

在石油化工企业中,为了提高线路末端单相接地故障电流

而能满足保护需求,通常做法是除了电动机外壳以扁钢接地外,对于电动机回路采用3+1芯电缆供电,有时甚至采用四芯等截面电缆以降低线路的零序阻抗。

下面就TN-S系统内对于低压电动机的单相接地保护在一具体工程中的设定,谈一点体会。例如,某系统容量SX=100MV A;变压器:160kV A,Dy11,Ud=6%,Pd=14.5kW.

低压系统采用BFC式低压抽屉柜配电,由于该变电所为化工罐区变电所,负荷分散,而且距离远近不同,电动机功率也相差甚大,现选两条典型回路进行分析说明:①距配电室280m远装有75kW电动机回路;②距配电室280m远,装有2.2kW电动机回路。

(1)电缆的选择:

(2)保护设定:

2.2kW电动机:

单相接地短路电流/断路器瞬时脱扣器整定电流=0.09/0.126=0.714<1.5

75kW电动机:

线路末端发生单相接地短路时,可从熔断器特性曲线上查得:熔断器在10s内熔断。

可以看出两者均满足规范要求,但是由于所选用的是抽屉柜,需用自动空气断路器实现抽屉柜带电不能开门的连锁要求,而且为了操作方便,我们对于上述2.2kW电动机回路选用熔断器加空气断路器加接触器回路方案,由NT熔断器作为短路保护。考虑到对于上述75kW回路虽然采用熔断器作为短路保护能够满足规范要求,但如果线路末端发生单相接地短路,短路电流不是很大,熔断器熔断时间过长,不利于安全运行,我们采用限流

电力系统接地分类

电力系统接地分类详解 电力系统接地分类详解 在电力系统中,接地是用来保护人身及电力、电子设备安全的重要措施。通常我们将接地分为工作接地、系统接地、防雷接地、保护接地,用他们来保护不同的对象,这几种接地形式从目的上来说是没有什么区别的,均是通过接地接地导体将过电压产生的过电流通过接地装置导入大地,从而实现保护的目的。现代工厂在接地上都要求形成一张严密的网,而所有的被保护对象都挂在这个安全的接地网上,但不同的接地都需要从接地装置处的等电位点连接。 对于防雷接地,主要是通过将雷电产生的雷击电流通过接地网这一有效途径引入大地,从而对建筑物起到保护作用。一般有两种避雷方式供选择,其一是避雷针接地,其二是采用法拉第笼方式接地。它们是两种不同的防雷模式,它们在防雷原理上有显著的区别。避雷针的原理是空中拦截闪电、使雷电通过自身放电,从而保护建筑物免受雷击,避雷针的保护范围是从地面算起的以避雷针高度为滚球半径的弧线下的面积,对于法拉第笼,它认为避雷针的范围很小,而且在避雷针保护的空间内仍有电磁感应作用,而且避雷针附近是强的电磁感应区,有很大的电位梯度,在它周围有陡的跨步电压存在,在这一范围内的人们有生命危险,鉴于种种观点,现在的防雷接地系统中法拉第笼占有重要地位。实验证明,一个封闭的金属壳体是全屏蔽的,在雷电流通过时,是沿着壳体的外表面流入大地,而在壳体的内部没有感应电动势及磁通,即雷电流没有对内部的设备产生干扰效应。而法拉第笼下部的环状接地环、等电位均压网也避免了人在此等电位环境中被雷击的危险。 采用保护接地是当前低压电力网中的一种行之有效的安全保护措施。通常有两种做法,即接地保护和接零保护。将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接是电气工作的一个重点,也就是我们通常说的接地。将电气设备和用电装置的金属外壳与系统零线相接叫做接零。由于电力系统中采用保护接地,是我们对用电设备、金属结构及电子等设备采取的接地保护措施,这样就可以避免电器设备漏电、线路破损或绝缘老化漏电等漏电事故造成

华北网等电网接地铜网敷设标准

华北电网等电位接地网敷设原则 1总的要求 1.1根据“国家电网公司十八项电网重大反事故措施(试行)继电保护专业重点实施要求”制定华北电网等电位电网敷设原则。 1.2在新建、改建工程中严格按照本原则执行,敷设等电位接地网。 1.3对已经运行未敷设等电位接地网变电站,应逐步加以改造,并实施。 1.4本原则由华北电网有限公司调度通信中心解释。 2敷设等电位电网原则 2.1华北电网装有微机型继电保护及安全自动装置的110kV及以上变电站或发电厂均应敷设等电位接地网。 2.2应在主控室、保护室、敷设二次电缆的沟道、开关场的就地端子箱及保护用结合滤波器等处,使用截面不小于100 mm2的裸铜排(缆)敷设与主接地网紧密连接的等电位接地网(可参见附图1-1站区等电位接地网示意图)。 2.3分散布置的保护就地站、通信室与集控室之间,应使用截面不少于100 mm2的、紧密与厂、站主接地网相连接的铜排(缆)将保护就地站与集控室的等电位接地网可靠连接。 2.4等电位接地网宜采用铜排方式。

3等电位电网安装方式 3.1 控制室、保护室内等电位电网安装方式 3.1.1原则要求 3.1.1.1在主控室、保护室柜屏下层的电缆室、电缆沟内,按柜屏布置的方向敷设100 mm2的专用铜排(缆),将该专用铜排(缆)首末端连接(目字结构),形成保护室内的等电位接地网。 3.1.1.2保护室内的等电位接地网必须用至少4根以上、截面不小于50mm2的铜排(缆)与厂、站的主接地网在电缆入口处一点连接,这四根铜排(铜缆)取自目字结构等电位网与主接地网靠近的位置。 3.1.1.3控制室、保护小室电缆入口处二次电缆沟道内敷设的接地铜排(缆)通过截面不小于100mm2的铜排(缆)与主控室、保护室内等电位接地网就近联通。 3.1.2施工要求: 3.1.2.1铜排与铜排的连接采用放热焊接。。 3.1.2.2控制室、保护室内等电位接地网采用专用支架固定。 3.1.2.3控制室、保护室下方是电缆夹层:支架固定在第一层桥架与结构梁之间的桥架立柱上,约在梁下100mm高出第一层桥架100mm处(可参见附图4-1)。支架固定采用钨极氩弧焊固定。

《电力系统分析》试题

《电力系统分析》试题 一、选择题 1.采用分裂导线的目的是(A) A.减小电抗 B.增大电抗 C.减小电纳 D.增大电阻 2.下列故障形式中对称的短路故障为( C ) A.单相接地短路 B.两相短路 C.三相短路 D.两相接地短路 3.简单系统静态稳定判据为(A) A.>0 B.<0 C.=0 D.都不对 4.应用等面积定则分析简单电力系统暂态稳定性,系统稳定的条件是( C )A.整步功率系数大于零 B.整步功率系数小于零 C.最大减速面积大于加速面积 D.最大减速面积小于加速面积 5.频率的一次调整是(A) A.由发电机组的调速系统完成的 B.由发电机组的调频系统完成的 C.由负荷的频率特性完成的 D.由无功补偿设备完成的 6.系统备用容量中,哪种可能不需要( A) A.负荷备用 B.国民经济备用 C.事故备用 D.检修备用

7.电力系统中一级负荷、二级负荷和三级负荷的划分依据是用户对供电的(A)A.可靠性要求 B.经济性要求 C.灵活性要求 D.优质性要求 9.中性点不接地系统发生单相接地短路时,非故障相电压升高至(A) A.线电压 B.1.5倍相电压 C.1.5倍线电压 D.倍相电压 10.P-σ曲线被称为( D ) A.耗量特性曲线 B.负荷曲线 C.正弦电压曲线 D.功角曲线 11.顺调压是指( B ) A.高峰负荷时,电压调高,低谷负荷时,电压调低 B.高峰负荷时,允许电压偏低,低谷负荷时,允许电压偏高 C.高峰负荷,低谷负荷,电压均调高 D.高峰负荷,低谷负荷,电压均调低 12.潮流方程是( D ) A.线性方程组 B.微分方程组 C.线性方程 D.非线性方程组 13.分析简单电力系统的暂态稳定主要应用( B ) A.等耗量微增率原则 B.等面积定则 C.小干扰法 D.对称分量法 14.电力线路等值参数中消耗有功功率的是(A) A.电阻 B.电感 C.电纳 D.电容

第五章全线速动保护

第五章输电线路保护的全线速动保护 《电力系统继电保护及安全自动装置技术规程》规定 一、110~220kV中性点直接接地电力网中的线路保护,符合下列条件之一时,应装设一套全线速动保护 1.根据系统稳定要求有必要时; 2.线路发生三相短路,如使发电厂厂用母线电压低于允许值(一般约为70%额定电压),且其他保护不能无时限和有选择地切除短路时; 3.如电力网的某些主要线路采用全线速动保护后,不仅改善本线路保护性能,而且能够改善整个电网保护的性能。 二、对220kV线路,符合下列条件之一时,可装设二套全线速动保护。 (一)根据系统稳定要求; (二)复杂网络中,后备保护整定配合有困难时。 对于220kV以上电压等级线路,应按下列原则实现主保护双重化: 1.设置两套完整、独立的全线速动主保护; 2.两套主保护的交流电流、电压回路和直流电源彼此独立; 3.每一套主保护对全线路内发生的各种类型故障(包括单相接地、相间短路、两相接地、三相短路、非全相运行故障及转移故障等),均能无时限动作切除故障; 4.每套主保护应有独立选相功能,实现分相跳闸和三相跳闸; 5.断路器有两组跳闸线圈,每套主保护分别起动一组跳闸线圈; 6.两套主保护分别使用独立的远方信号传输设备。若保护采用专用收发信机,其中至少有一个通道完全独立,另一个可与通信复用。如采用复用载波机,两套主保护应分别采用两台不同的载波机。 三、对于330~500kV线路,应装设两套完整、独立的全线速动保护。接地短路后备保护可装设阶段式或反时限零序电流保护,亦可采用接地距离保护并辅之以阶段式或反时限零序电流保护。相间短路后备保护可装设阶段式距离保护。 500kV线路的后备保护应按下列原则配置 1.线路保护采用近后备方式。 2.每条线路都应配置能反应线路各种类型故障的后备保护。当双重化的每套主保护都有完善的后备保护时,可不再另设后备保护。只要其中一套主保护无后备,则应再设一套完整的独立的后备保护。 3.对相间短路,后备保护宜采用阶段式距离保护。 4.对接地短路,应装设接地距离保护并辅以阶段式或反时限零序电流保护;对中长线路,若零序电流保护能满足要求时,也可只装设阶段式零序电流保护。接地后备保护应保证在接地电阻不大于300Ω时,能可靠地有选择性地切除故障。 5.正常运行方式下,保护安装处短路,电流速断保护的灵敏系数在1.2以上时,还可装设电流速断保护作为辅助保护。 第一节输电线路的纵联差动保护 一、概述 超高压输电电网要求继电保护快速动作。继电保护的快速动作可以减轻故障元件的损坏程度,提高线路故障后自动重合闸的成功率,特别是有利于故障后电力系统的稳定性。在近几十年,我国继电保护工作者为提高保护的动作速度作了很大努力,取得显著成效,其中对电力系统影响最大的是反映故障分量的超高速继电保护原理的应用。

低压电网用电设备保护接零安全须知实用版

YF-ED-J6745 可按资料类型定义编号 低压电网用电设备保护接零安全须知实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

低压电网用电设备保护接零安全 须知实用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 防止用电设备(以下简称电器)金属外壳 因故障带电,造成接触电器的人员发生触电事 故,可采用的方法之一是将电器的金属外壳与 大地或电力系统的零线做电气连接,分别叫保 护接地或保护接零。笔者发现许多初、中级电 工对保护接地与保护接零的选用、保护接零与 保护接地的特点、保护接零应注意的问题等不 是很清楚,有的还存在误区,导致在施工、维 修时存在大量安全隐患。为确保用电安全,就 接地电网用电设备防触电,采取保护接零应注

意的安全问题介绍如下。 一、防电器外壳带电采用保护接零的优 点防电器外壳带电,若采用保护接地,在接地电阻RG符合要求不大于4欧姆的条件下,如果电器外壳带上220V的电压,则保护接地回路,短路电流I=U/(R0+RG)=220/(4+4) =27.5(A),其中R0是变压器中性点的接地电阻叫工作接地电阻。为了保证保护设备可靠的动作,接地短路电流不小于自动开关整定电流的1.25倍或为容丝熔断电流的3倍,因此,上式中的短路电流仅能保证断开整定电流不超过27.5/1.25、即22A的自动开关,或27.5/3、即9.2A的熔断器,如果保护设备的额定电流值大于上述值,保护设备就不能迅速、可靠的动作。此时,电器设备外壳上将长期存在对地电

低压电力系统的保护接地分析 李荣根

低压电力系统的保护接地分析李荣根 摘要:接地在电气技术上具有很高的重要性、普遍性和复杂性。各种系统均有 多种复杂的接地要求,而且是与系统紧密联系的组成部分。 关键词:接地:保护;低压电力系统; 从功能性接地和非功能性接地两方面解析了接地的作用及保护原理,说明了 防止电击措施有多种,等电位联结只是其中使用最广泛、方便和经济的一种。 一、低压系统接地分类 低压系统接地分为TN、TT和IT。第一种代表变压器中性点接地(工作接地)方式,第二种代表用电设备外壳接地方式。T-直接接地;I-不接地;N-外壳与中性点金属连接;第一种决定电力系统的工作接地方式,第二种决定了设备的保 护接地方式。高压系统只是说工作接地包含有效接地和非有效接地,而低压系统 不仅表明电源侧工作接地,同时还表明了用户侧的保护接地。由于低压系统有中 性线引出,因此,在分析计算时需考虑接地电流和接零电流,两者大小可能不一样。高压系统的电气设备金属外壳都要求直接接地,低压系统设备金属外壳实质 上也是要求直接接地。那么外壳接地是不是就能起到保护作用呢?回答是否定的,只有满足一定的条件才是安全的。根据《交流电气装置的接地设计规范》推荐: 短时间(15 s)内体重50 kg的人承受的最大交流电流有效值是Ib=116/t(mA),体重70 kg的人承受的最大交流电流有效值是Ib=157/t(mA)。长时间内作用在人身上的电压小于50 V(通过电流30 mA)是安全的。出现接地故障时人体是否 安全,小电流接地系统按照长时间接触验算。大电流接地系统按照短时间接触验算。 1.保护接地。为电气安全,将系统、装置或设备的一点或多点接地。 2.接地电压。电气设备发生接地故障时,其接地部分与大地零电位点之间的 电位差称之为接地电压。 3.转移电压。接地故障电流流过接地系统时,由一端与该接地系统连接的金 属导体传递的接地系统对参考地之间的电位差。 4.接触电压。接地故障电流通过接地装置时,地表面形成电位分布,设备垂 直距离2 m和地面水平距离1 m处之间的电位差。此处1 m处容易误导,设备往 往距离其接地装置相当远,用接地线连接的设备外壳电位与接地装置一样,虽然 人距离设备水平距离1 m,实际人与设备外壳的电位差应是人与接地装置之间的 电位差,绝不是1 m的电位差。 5.跨步电压。接地故障电流通过接地装置在地面水平距离为1 m的两点之间 的电位差。人体能够承受的电压不仅与电流还与人体电阻有关,人体电阻变化范 围很大,我国采用1.5 kΩ作为参考值,人体单脚接地等效金属圆盘电阻3ρ。 二、高压配电装置接地 由于开关站和变电所的进线电源一般是10 kV及以上的高压,亦有可能出现 接地故障,所以有必要简单介绍高压配电装置的接地。高压电力系统的接地分为 有效接地和非有效接地。非有效接地系统向1 kV以下低压装置供电的高压配电装 置的保护接地电阻R≤50/I且不应大于4Ω,高压配电装置金属外壳的对地电压不 得超过50 V。接触电压和跨步电压小于接地电压,自然满足安全性要求。非有效 接地系统单相接地故障电流是线路电容电流,数值较小,所以一般容易做到。有 效接地系统向1 kV以下低压装置供电的高压配电装置的保护接地电阻R≤2 000/I。故障时接地电压允许值可达2 000 V,切除故障时间0.4 s,应该考虑均压措施。利

电力系统中性点接地方式分类、特征及应用

电力系统中性点接地方式分类、特征及应用 摘要:供电系统的中性点接地方式涉及电网的安全运行,供电可靠性,过电压和绝缘的配合,继电保护,接地设计等多个因素,而且对通信和电子设备的电子干扰、人身安全等方面有重要影响。目前供配电系统的接地方式主要有中性点不接地、中性点直接接地、中性点经电阻接地和中性点经消弧线圈接地四种,本文对这四种中性点接地方式进行了分类、分析与比较,并针对发展中城市配电系统中接地变的应用进行分析和建议。 关键词:中性点接地系统接地变 电力系统中性点接地方式是指电力系统中的发电机和变压器的中性点与地的连接方式。可以分为大接地电流系统和小接地电流系统,前者即中性点直接接地电流系统,后者又分为中性点不接地系统和中性点经消弧线圈或电阻接地系统。 1.大接地电流系统 大接地电流系统,即将中性点直接接地。该系统运行中若发生一相接地故障时,就形成单相接地短路,线路上将流过很大的短路电流,使线路保护装置迅速动作,断路器跳闸切除故障。大电流接地系统在发生单相接地故障时,中性点电位仍为零,非故障相对地电压基本不变,这是它的最大优点。因此在这种系统中的输电设备绝缘水平只需按电网的相电压考虑,较为经济。此外,该系统单相接地故障时,不会产生间歇性电弧引起的过电压,不会因此而导致设备损坏。大接地电流系统不装设绝缘监察装置。 中性点直接接地系统缺点也很多,首先是发生单相接地故障时,不允许电网继续运行,防止短路电流造成较大的损失,因此可靠性不如小接地电流系统。其次中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。中性点直接接地系统单相接地故障时产生的接地电流较大,对通讯系统的干扰影响也大,特别是当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 2.小接地电流系统 小电流接地系统,即中性点不接地或经消弧线圈或电阻接地系统。小接地电

电力系统中电气设备的接地问题

龙源期刊网 https://www.360docs.net/doc/1717203388.html, 电力系统中电气设备的接地问题 作者:陈亮 来源:《装饰装修天地》2015年第04期 摘要:电气设备的任何部分与大地(土壤)间作良好的电气连接称为接地。接地是确保电气设备正常工作和安全防护的重要措施之一。其工作原理和结构表明其参考电位并非工程中的接地,不能用简单的处理方法将其一概作统一接地,如果接地不当,会产生问题。解决工程上的问题应考虑现场实际情况,措施的异同会直接影响安装和使用。 关键词:接地;类型;作用;检查;安全 一、接地的作用 我们往往只知道接地可防止人身遭受电击,其实接地除了这一作用外,还可以防止设备和线路遭受损坏、预防火灾、防止雷击、防止静电损害和保证电力系统的正常运行。 1.防止电击 人体阻抗和所处环境的状况有极大的关系,环境越潮湿,人体的阻抗越低,也越容易遭受电击。例如,自装过交流收音机的人几乎都受到过电击,但几乎都能摆脱电源,因为此时人所处的环境干燥,皮肤也较干燥。接地是防止电击的一种有效的方法。电气设备通过接地装置接地后,使电气设备的电位接近地电位。 2.保证电力系统的正常运行 电力系统的接地,又称工作接地,一般在变电站或变电所对中性点进行接地。工作接地的接地电阻要求很小,对大型的变电站要求有一个接地网,保证接地电阻小而且可靠。工作接地的目的是使电网的中性点与地之间的电位接近于零。低压配电系统无法避免相线碰壳或相线断裂后碰地,如果中性点对地绝缘,就会使其他两相的对地电压升高到3 倍的相电压,其结果可能把工作电压为220的电气设备烧坏。 3.防止雷击和静电的危害 雷电发生时,除了直接雷外,还会生产感应雷,感应雷又分为静电感应雷和电磁感应雷。所有防雷措施中最主要的方法是接地。 二、接地的类型 1.工作接地

电力系统分析-试题第二套

第二套 一、判断题 1、分析电力系统并列运行稳定性时,不必考虑负序电流分量的影响。() 2、任何不对称短路情况下,短路电流中都包含有零序分量。() 3、发电机中性点经小电阻接地可以提高和改善电力系统两相短路和三相短路时并列运行的暂态稳定性。() 4、无限大电源供电情况下突然发生三相短路时,短路电流中的周期分量不衰减, 非周期分量也不衰减。() 5、中性点直接接地系统中,发生儿率最多且危害最大的是单相接地短路。() 6、三相短路达到稳定状态时,短路电流中的非周期分量已衰减到零,不对称短 路达到稳定状态时,短路电流中的负序和零序分量也将衰减到零。() 7、短路电流在最恶劣短路情况下的最大瞬时值称为短路冲击电流。() 8、在不计发电机定子绕组电阻的情况下,机端短路时稳态短路电流为纯有功性质。() 9、三相系统中的基频交流分量变换到系统中仍为基频交流分量。() 10、不对称短路时,短路点负序电压最高,发电机机端正序电压最高。() 二、选择题 1、短路电流最大有效值出现在()。 A短路发生后约半个周期时B、短路发生瞬间;C、短路发生后约1/4周期时。 2、利用对称分量法分析计算电力系统不对称故障时,应选()相作为分析计算的基本相。 A、故障相; B、特殊相; C、A相。 3、关于不对称短路时短路电流中的各种电流分量,下述说法中正确的是 ()。 A、短路电流中除正序分量外,其它分量都将逐渐衰减到零; B、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都不会衰减: C、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都将从短路瞬间的起始值衰减 到其稳态值。 4、不管电力系统发生什么类型的不对称短路,短路电流中一定存在()。

电力系统接地讲解知识

电力系统的中性点接地有三种方式: 有效接地系统(又称大电流接地系统) 小电流接地系统(包含不接地和经消弧线圈接地) 经电阻接地系统(含小电阻、中电阻和高电阻) 大电流接地系统 用于110kV及以上系统及。该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。 作为220kV枢纽变电站的主变必须并列运行。其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV系统零序保护的方向性和稳定性。主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。 作为220kV负荷变电站的主变必须分列运行。此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。所有主变不能相220kV系统提供零序电流,110kV 侧零序阻抗稳定。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV侧中性点通过间隙接地。110kV侧中性点必须全部直接接地。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。所以主变110kV 侧中性点通过间隙接地,并且不再加装间隙保护。 0.4kV系统均采用大电流接地运行。对于Y/Y0接线的变压器,零序阻抗很大。虽然接入的负荷多为单相负荷,由于每个负荷较小,并不一定会造成三相负荷电流严重不一致(中性点电流小于额定电流的25%),不会造成三相电压严重不平衡。但当线路出现对地短路时,短路电流较小,往往不能使断路器(空气开关)跳开或熔断器熔断,致使事故扩大,许多情况下形成火灾。此时应在变压器中性点引线处加装过流保护,跳开高压侧断路器。显然这是比较复杂的。 使用△/Y0接线的变压器,可以克服这一缺点。但充油变压器的分接开关制作比较困难,尤

2019国家电网电力系统分析笔试题2

2019国家电网电力系统分析笔试题2 湖北国家电网招聘笔试即将来临,接下来就要耐心等待招聘笔试的公告发布啦!对于没有笔试经验的同学来说一定是没有头绪的,中公国企小编在这里整理了有关湖北国家电网招聘笔试的各类习题,大家可以来参考一下,满满的都是干货哦!试题内容/详情如下: ★何谓潜供电流?它对重合闸有何影响?如何防止? 【中公解析】 当故障线路故障相自两侧切除后,非故障相与断开相之间存在的电容耦合和电感耦合,继续向故障相提供的电流称为潜供电流。由于潜供电流存在,对故障点灭弧产生影响,使短路时弧光通道去游离受到严重阻碍,而自动重合闸只有在故障点电弧熄灭且绝。 缘强度恢复以后才有可能重合成功。潜供电流值较大时,故障点熄弧时间较长,将使重合闸重合失败。 为了减小潜供电流,提高重合闸重合成功率,一方面可采取减小潜供电流的 措施:如对500kV中长线路高压并联电抗器中性点加小电抗、短时在线路两侧投入快速单相接地开关等措施;另一方面可采用实测熄弧时间来整定重合闸时间。 ★什么叫电力系统理论线损和管理线损? 【中公解析】 理论线损是在输送和分配电能过程中无法避免的损失,是由当时电力网的负荷情况和供电设备的参数决定的,这部分损失可以通过理论计算得出。管理线损是电力网实际运行中的其他损失和各种不明损失。例如由于用户电能表有误差,使电能表的读数偏小;对用户电能表的读数漏抄、错算,带电设备绝缘不良而漏电,以及无电能表用电和窃电等所损失的电量。 ★什么叫自然功率? 【中公解析】 运行中的输电线路既能产生无功功率(由于分布电容)又消耗无功功率(由于串联阻抗)。当线路中输送某一数值的有功功率时,线路上的这两种无功功率恰好能相互平衡,这个有功功率的数值叫做线路的"自然功率"或"波阻抗功率"。

浅谈电力系统中的接地和接零

编号:AQ-JS-09073 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 浅谈电力系统中的接地和接零Discussion on grounding and zero connection in power system

浅谈电力系统中的接地和接零 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 在电力系统中,由于电气装置绝缘老化、磨损或被过电压击穿等原因,都会使原来不带电的部分(如金属底座、金属外壳、金属框架等)带电,或者使原来带低压电的部分带上高压电,这些意外的不正常带电将会引起电气设备损坏和人身触电伤亡事故。为了避免这类事故的发生,通常采取保护接地和保护接零的防护措施。下面就谈谈有关保护接地和保护接零的问题。 一、保护接地 保护接地是指将电气装置正常情况下不带电的金属部分与接地装置连接起来,以防止该部分在故障情况下突然带电而造成对人体的伤害。 1、保护接地的作用及其局限性 在电源中性点不接地的系统中,如果电气设备金属外壳不接地,当设备带电部分某处绝缘损坏碰壳时,外壳就带电,其电位与设备

带电部分的电位相同。由于线路与大地之间存在电容,或者线路某处绝缘不好,当人体触及带电的设备外壳时,接地电流将全部流经人体,显然这是十分危险的。 采取保护接地后,接地电流将同时沿着接地体与人体两条途径流过。因为人体电阻比保护接地电阻大得多,所以流过人体的电流就很小,绝大部分电流从接地体流过(分流作用),从而可以避免或减轻触电的伤害。 从电压角度来说,采取保护接地后,故障情况下带电金属外壳的对地电压等于接地电流与接地电阻的乘积,其数值比相电压要小得多。接地电阻越小,外壳对地电压越低。当人体触及带电外壳时,人体承受的电压(即接触电压)最大为外壳对地电压(人体离接地体20m以外),一般均小于外壳对地电压。 从以上分析得知,保护接地是通过限制带电外壳对地电压(控制接地电阻的大小)或减小通过人体的电流来达到保障人身安全的目的。 在电源中性点直接接地的系统中,保护接地有一定的局限性。

电力系统接地保护

接地保护 一、中性点直接接地系统的零序电流保护 中性点直接接地系统发生接地短路时产生很大的短路电流,要求继电保护必须及时动作切除故障,保证设备和系统的安全。 (一)接地短路特点及零序电流测量 1.接地短路特点 电力系统发生接地故障,包括单相接地故障和两相接地故障,在三相中出现大小相等、相位相同的零序电压和零序电流。对于中 性点直接接地系统,零序电流具有以下特点: (1)零序电流通过系统接地中性点和短路故障点形成短路通路,因此零序电流通过变压器接地中性点构成回路; (2)零序电流的大小不仅与中性点接地变压器的多少、分布有关,而且与系统运行方式有关; (3)线路零序电流的大小与短路故障位置有关,短路点越靠近保护安装地点,零序电流数值越大,零序电流的大小与短路故障位置的关系如图3-14所示。 另外注意,接地故障点的零序电压最高。 根据以上零序电流的特点,可以构成中性点直接接地系统的线路零序电流保护。 2.变压器中性点接地考虑 考虑变压器中性点接地的多少、分布时,应使电网中对应零序电流的网络尽可能保持不变或变化较小,以保证零序电流保护有较稳定的保护区和灵敏度,同时防止单相接地故障时非故障相出现危险过电压。 3.零序电压和零序电流测量 接地短路时三相的零序电压大小相等、相位相同,根据序分量的概念有C B A U U U U ? ???++=03。通常采用三个单相式电压互感器或三相五柱式电压互感器取得零序电压,如3-11所示。图中m 、n 端子输出为零序电压

TV C B A TV mm n U U U U n U 03)(1? ? ???=++= (3-14) 式中 TV n ——电压互感器一相变比。 接地短路时三相的零序电流大小相等、相位相同,根据序分量的概念有 C B A I I I I ????++=03。 通常通过零序电流滤过器测量零序电流,如图3-12(a)所示。流人电流继电器的电流为 TA C B A TA m n I I I I n I 03)(1? ????=++= (3-15) 式中 TA n ——电流互感器变比。 对于采用电缆的线路,零序电流还可以通过零序电流互感器获得,如图3-12(b )所示。TA0为零序电流互感器。

单点接地和多点接地剖析

有三种基本的信号接地方式:浮地、单点接地、多点接地。 1 浮地目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。缺点:容易出现静电积累引起强烈的静电放电。折衷方案:接入泄放电阻。 2 单点接地方式:线路中只有一个物理点被定义为接地参考点,凡需要接地均接于此。缺点:不适宜用于高频场合。 3 多点接地方式:凡需要接地的点都直接连到距它最近的接地平面上,以便使接地线长度为最短。缺点:维护较麻烦。 4 混合接地按需要选用单点及多点接地。 PCB中的大面积敷铜接地其实就是多点接地所以单面Pcb也可以实现多点接地 多层PCB大多为高速电路地层的增加可以有效提高PCB的电磁兼容性是提高信号抗干扰的基本手段,同样由于电源层和底层和不同信号层的相互隔离减轻了PCB的布通率也增加了信号间的干扰。 在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流会影响小功率电路的正常工作。另外,最敏感的电路要放在A点,这点电位是最稳定的。解决这个问题的方法是并联单点接地。但是,并联单点接地需要较多的导线,实践中可以采用串联、并联混合接地。

将电路按照特性分组,相互之间不易发生干扰的电路放在同一组,相互之间容易发生干扰的电路放在不同的组。每个组内采用串联单点接地,获得最简单的地线结构,不同组的接地采用并联单点接地,避免相互之间干扰。 这个方法的关键:绝不要使功率相差很大的电路或噪声电平相差很大的电路共用一段地线。 这些不同的地仅能在通过一点连接起来。

为了减小地线电感,在高频电路和数字电路中经常使用多点接地。在多点接地系统中,每个电路就近接到低阻抗的地线面上,如机箱。电路的接地线要尽量短,以减小电感。在频率很高的系统中,通常接地线要控制在几毫米的范围内。 多点接地时容易产生公共阻抗耦合问题。在低频的场合,通过单点接地可以解决这个问题。但在高频时,只能通过减小地线阻抗(减小公共阻抗)来解决。由于趋肤效应,电流仅在导体表面流动,因此增加导体的厚度并不能减小导体的电阻。在导体表面镀银能够降低导体的电阻。 通常1MHz以下时,可以用单点接地;10MHz以上时,可以用多点接地,在1MHz和10MHz之间时,可如果最长的接地线不超过波长的1/20,可以用单点接地,否则用多点接地。

电力系统中性点接地方式

电力系统中性点接地方式简述 电力系统中性点是指星形连接的变压器或发电机的中性点。 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。 电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。 电力系统中性点接地方式主要是技术问题,但也是经济问题。在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。 简言之,电力系统的中性点接地方式是一个系统工程问题。 接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与大地作良好的电气连接称为接地。 根据接地的目的不同,分为工作接地和保护接地。 工作接地是指为运行需要而将电力系统或设备的某一点接地。如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。 保护接地是指为防止人身触电事故而将电气设备的某一点接地。如将电气设备的金属外壳接地、互感器二次线圈接地等。 接地方式主要有2种,即直接接地系统和不接地系统。 1.中性点直接接地系统

中性点直接接地系统——又称大电流系统;适于110kV以上的供电系统,380V以下低压系统。直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。 随着电力系统电压等级的增高和系统容量增大,设备绝缘费用所占比重也越来越大。中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。所以,110kV及以上系统均采用中性点直接接地方式。对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。 对于高压系统,如110kV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受√ 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资大大增加;另外110kV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在110kV以上供电系统,多采用中性点直接接地系统。 在低压380/220V系统中,有许多单相用电设备,如果中性点不接地运行,则发生单相接地后,有可能未接地的相电压会升高,因过电压烧毁家用电器,从安全性考虑,必须采用中性点直接接地系统,将中性点牢牢接地。 1kV以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 中性点直接接地系统的优点:发生单相接地时,其它两完好相对地电压不会升高,因此可降低绝缘费用,保证安全。

接地变压器的作用

接地变压器的作用 我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果; 1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2),由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路; 3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。为了解决这样的办法.接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。 另外接地变有电磁特性,对正序、负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。 该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。接地变的工作状态,由于很多接地变只提供中性点接地小电阻,而不需带负载。所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,当电网发生故障时,只在短时间内通过故障电流,中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变只在接地故障至故障线路零序保护动作切除故障线路这段时间内起作用,其中性点接地电阻和接地变才会通过IR= (U为系统相电压,R1为中性点接地电阻,R2为接地故障回路附加电阻)的零序电路。根据上述分析,接地变的运行特点是;长时空载,短时过载。 总之,接地变是人为的制造一个中性点,用来连接接地电阻。当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作。 变电站内现在一般采用的接地变压器有两个用途,1.供给变电站使用的低压交流电源,2.在10kV侧形成人为的中性点,同消弧线圈相结合,用于10kV发生接地时补偿接地电容电流,消除接地点电弧,其原理如下: - 1 -

接地保护系统

一、建筑工程供电系统 建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面内容就是对各种供电系统做一个扼要的介绍。 (一)工程供电的基本方式 根据IEC规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT、TN和IT系统,分述如下。(1)TT方式供电系统 TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,如图1所示。这种供电系统的特点如下。 图1 TT方式供电系统 1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT系统难以推广。 3)TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。

现在有的建筑单位是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图2所示。 图2 带专用保护线的TT方式供电系统 图中点画线框内是施工用电总配电箱,把新增加的专用保护线PE线和工作零线N分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT系统适用于接地保护占很分散的地方。(2)TN方式供电系统 这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。它的特点如下。 1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT系统的5.3倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2)TN系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT系统优点多。TN系统根据其保护零线是否与工作零线分开而划分为TN-C和 TN-S等两种。 (3)TN-C方式供电系统 它是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示,如图3所示。这种供电系统的特点如下。

电力系统接地故障与处理分析

电力系统接地故障与处理分析 发表时间:2018-08-17T10:15:26.937Z 来源:《电力设备》2018年第15期作者:李晓宏[导读] 摘要:改革开放以来,随着国家的不断发展,社会城市化进程的不断加快,人民生活水平的日益提升,我国电力需求量逐年增加,这就进一步加大了我国电力系统的压力。 (内蒙古霍煤鸿骏铝电有限责任公司电力分公司内蒙古通辽 029200)摘要:改革开放以来,随着国家的不断发展,社会城市化进程的不断加快,人民生活水平的日益提升,我国电力需求量逐年增加,这就进一步加大了我国电力系统的压力。电力系统与人们的日常生活息息相关,一旦出现故障,不但会影响系统的正常运转,还会进一步干扰正常的生产生活,甚至埋下巨大的安全隐患。因此,如何查明并处理电力系统接地故障,是目前需要解决的一个问题。本文就主要介绍 了电力系统接地故障的原因与处理措施,希望可以提供一些参考,进一步推动我国电力行业的发展。 关键词:电力系统;接地故障;处理分析 1 电力系统接地故障的原因判断 1.1 常见故障问题 在电阻性单点接地的情况下,导致接地电阻值逐步降低甚至低于直流系统预定值。此时电力系统绝缘监测装置发出报警信号,为保证接地故障诊断的准确性,可运用绝缘检测仪对支路接地进行检查,并结合故障范围排除接地故障。在多点经高阻接地条件卜,电力系统总接地电阻会逐渐下降甚至低于电力系统预定值,此时电力系统绝缘检测装置发出报警信号,应对不同支路接地电阻进行详细检测,对比分析电阻值情况,以确保接地故障排查的可靠性。电力系统运行中多分支接地故障往往与多个电源点存在密切联系,导致正负电源出现接地故障,且断开一条支路后其他支路仍存在接地故障。为保证接地故障排查的整体效果,检查人员应从整个电力系统入手解列直流系统,循序渐进排查故障点,以确保电力系统接地故障得到妥善解决。 1.2 气候原因 发电厂直流系统中造成接地故障的主要原因与影响因素进行分析,其中最常见的就是气候的原因。通常情况下,恶劣的天气很容易造成直流系统接地故障的产生。在发电厂厂工程的施工过程中如果出现了发电厂内部的设备密封出现问题,就会在工作中出现渗水的现象,如果发生了霜雪更或者渗透的现象就会导致直流系统的节抵扣与导线的文职出现严重的腐蚀。时间一长,腐蚀的部位就会影响发电厂系统的正常运行。 1.3 野生动物原因 在电力系统的运行中的发电厂直流系统中的接线盒需要长期的暴露在外面。所以长时间就会受到多种动物的伤害,这一装置有没有专门的人员看守,因此在野外的环境中会被老鼠不断的啃食。被破坏的接线盒就会将电缆暴露在外面,还会影响发电厂直流接地系统的正常运行。根据相关统计,我国目前很多的很多的发电厂中直流系统的接地故障都是受到动物的伤害。所以,相关部门的管理人员需要制定相关的预防方案,减少这一系统中接地故障的发生概率。 1.4 开关使用发生变形 火力发电厂电力系统接地中,由于全封闭开关的小木柜体在系统运行中开关频率较高,导致其出现严重的变形情况,使得开关柜体产生接地电流,导致接地故障。部分开关把手的设置不规范,固定部位与开关部位之问并未进行绝缘保护,开关变形促使电流与金属导体相互接触,导致电力系统接地故障。 2 电力系统接地故障防护措施 2.1 严格做好日常检查 为有效防范火力发电厂电力系统接地故障,电力工作者应严格做好日常检查工作,确保三相变电的电流与电压保持正常状态,定期做好电源电流值输出的检查工作,确认满足相关标准值范围,并密切监测电力系统运行状态,确认运行中无噪音。不同模块输出电流应保持正常流向,尤其是正负极对接电流绝缘处理应规范,以免埋卜故障隐患。电力检查人员应随时检查通讯设备的功能,发现问题及行处理。定期检查充电模块的供电监控系统运行状态,准确记录检测结果,并以充电模块相关检查为充电电流与电压工况检查提供可靠数据支持,从而保证火力发电厂电力系统日常检查的规范性和有效性,降低电力系统接地故障的发生几率。 2.2 及时查找故障原因 2.2.1 利用绝缘监测装置判断 在安装设备时通常会直接将绝缘监测装置安装在直流母线上。当其处于止常运行状态下时,绝缘监测装置会以数字的形式显示出母线电压,并对直流系统正极和负极母线绝缘情况、母线的运行情况实时监测,并对接地故障进行报告。当前微机选线型直流绝缘监测装置在变电站中应用较为广泛,其不仅能够实时监测直流系统,而且能够对直流系统止负极和支路的对地绝缘状况等信息进行直接测量。应用绝缘监测装置时,在不切断直流同路负荷的情况下即能够寻找故障点。但当平衡桥电阻和切换电阻参数等设计中存在不合理情况时,直流系统止负极对地电压波动会较大,部分时候一点接地还会有误动作发生。 2.2.2 拉回路法进行判断 在电力系统的运行中对于发电厂的直流系统接地故障的查找方法有很多中,这些问题中最常见的就是拉回路法。这种方法的优势就是操作比较的简单,在实际的工作中应用比较的普遍。使用这一方法需要注意的是:第一,需要将照明的回路电源与操作回路的电源进行切断。这样可以保证工作人员的安全,然后在对发电厂中的直流系统进行注意的检查。在这一过程中需要工作人员具备专业的知识与技能。只有具有丰富知识的技术人员才可以在较短的时间内找到故障的主要问题,并及早的解决问题。 2.2.3 便携式定位装置检测法判断 与上述的两种方法相比较,便携式定位装置检测的方法具有的优势就是,使用效率更高,具有更多的优势。因为这种方法的使用可以利用先进的技术方法,便于更快的找到故障的问题,还不用将回路电源进行切断。这是便携式定位装置检测方法的优势,这在发电厂系统的故障检测中具有重要的作用。有利于可持续发展目标的实现,该可以从根本上解决故障问题。对发电厂直流系统的正常运行起到保障的作用。 2.3 有效维护监控系统设备

相关文档
最新文档