上海 解析几何综合测试题附答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简解:将问题转化为圆心到抛物线一上的动点的最小值
4.若圆 与抛物线 有两个公共点。则实数 为.
4.答案: 或
简解:将圆 与抛物线 联立,消去 ,
得
要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根。
或 解之
5.若曲线 与直线 +3有两个不同的公共点,则实数k的取值范围是.
5.答案:
(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2)当 =λ 时,求λ的最大值.
(17题图)(18题图)
18.(满分10分)在平面直角坐标系xOy中,抛物线 上异于坐标原点O的两不同动点A、B满足 (如上图).
(Ⅰ)求 得重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ) 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
20.(满分12分)设A、B是椭圆 上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.
(Ⅰ)确定 的取值范围,并求直线AB的方程;
(Ⅱ)试判断是否存在这样的 ,使得A、B、C、D四点在同一ห้องสมุดไป่ตู้圆上?并说明理由.
解析几何综合题
1. 是椭圆 的左、右焦点,点 在椭圆上运动,则 的最大值是.
4.若圆 与抛物线 有两个公共点。则实数 的范围为.
5.若曲线 与直线 +3有两个不同的公共点,则实数k的取值范围是.
6.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4)、B(0,-2),则圆C的方程为____________.
7.经过两圆(x+3)2+y2=13和x+2(y+3)2=37的交点,且圆心在直线x-y-4=0上的圆的方程为____________
11.到两定点A(0,0),B(3,4)距离之和为5的点的轨迹是()
A.椭圆B.AB所在直线
C.线段ABD.无轨迹
12.若点(x,y)在椭圆4x2+y2=4上,则 的最小值为()
A.1B.-1
C.- D.以上都不对
13已知F1(-3,0)、F2(3,0)是椭圆 + =1的两个焦点,P是椭圆上的点,当∠F1PF2= 时,△F1PF2的面积最大,则有()
(m2+n2)y2-6ny+9-3m2=0.
令Δ<0得m2+n2<3.
又m、n不同时为零,
∴0<m2+n2<3.
由0<m2+n2<3,可知|n|< ,|m|< ,
再由椭圆方程a= ,b= 可知公共点有2个.
3.P是抛物线y2=x上的动点,Q是圆(x-3)2+y2=1的动点,则|PQ|的最小值
为.
3.答案: -1
(y0>0),作两条直线分别交抛物线于A(x1,y1)、B(x2,y2).
(1)求该抛物线上纵坐标为 的点到其焦点F的距离;
(2)当PA与PB的斜率存在且倾斜角互补时,求 的值,并证明直线AB的斜率是非零常数.
16.(满分10分)如下图,O为坐标原点,直线l在x轴和y轴上的截距分别是a和b(a>0,b≠0),且交抛物线y2=2px(p>0)于M(x1,y1),N(x2,y2)两点.
∴由垂径定理得圆心在y=-3这条直线上.
又已知圆心在直线2x-y-7=0上,
(1)证明: + = ;(2)当a=2p时,求∠MON的大小.
(15题图)(16题图)
17.(满分10分)已知椭圆C的方程为 + =1(a>b>0),双曲线 - =1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1,又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B.(如下图)
A.m=12,n=3B.m=24,n=6
C.m=6,n= D.m=12,n=6
14.P为双曲线C上一点,F1、F2是双曲线C的两个焦点,过双曲线C的一个焦点F1作∠F1PF2的平分线的垂线,设垂足为Q,则Q点的轨迹是( ) 12.
A.直线B.圆C.椭圆D.双曲线
三、解答题
15.(满分10分)如下图,过抛物线y2=2px(p>0)上一定点P(x0,y0)
1. 是椭圆 的左、右焦点,点 在椭圆上运动,则 的最大值是.
2.若直线mx+ny-3=0与圆x2+y2=3没有公共点,则m、n满足的关系式为____________;
以(m,n)为点P的坐标,过点P的一条直线与椭圆 + =1的公共点有_______个.
3.P是抛物线y2=x上的动点,Q是圆(x-3)2+y2=1的动点,则|PQ|的最小值为.
19.(满分12分)抛物线y2=4px(p>0)的准线与x轴交于M点,过点M作直线l交抛物线于A、B两点.
(1)若线段AB的垂直平分线交x轴于N(x0,0),求证:x0>3p;
(2)若直线l的斜率依次为p,p2,p3,…,线段AB的垂直平分线与x轴的交点依次为N1,N2,N3,…,当0<p<1时,求 + +…+ 的值.
8.双曲线x2-y2=1的左焦点为F,点P为左支下半支上任意一点(异于顶点),则直线PF的斜率的变化范围是___________.
9.已知A(0,7)、B(0,-7)、C(12,2),以C为一个焦点作过A、B的椭圆,椭圆的另一个焦点F的轨迹方程是___________.
10.设P1( , )、P2(- ,- ),M是双曲线y= 上位于第一象限的点,对于命题①|MP2|-|MP1|=2 ;②以线段MP1为直径的圆与圆x2+y2=2相切;③存在常数b,使得M到直线y=-x+b的距离等于 |MP1|.其中所有正确命题的序号是____________.
1答案:4
简解: ≤
2.若直线mx+ny-3=0与圆x2+y2=3没有公共点,则m、n满足的关系式为____________;以(m,n)为点P的坐标,过点P的一条直线与椭圆 + =1的公共点有____________个.
2答案:0<m2+n2<3;2
简解:将直线mx+ny-3=0变形代入圆方程x2+y2=3,消去x,得
简解:将曲线 转化为 时考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线 平行的直线与双曲线的位置关系。
6.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4)、B(0,-2),则圆C的方程为____________.
6.答案:(x-2)2+(y+3)2=5 5.
简解:∵圆C与y轴交于A(0,-4),B(0,-2),
4.若圆 与抛物线 有两个公共点。则实数 为.
4.答案: 或
简解:将圆 与抛物线 联立,消去 ,
得
要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根。
或 解之
5.若曲线 与直线 +3有两个不同的公共点,则实数k的取值范围是.
5.答案:
(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2)当 =λ 时,求λ的最大值.
(17题图)(18题图)
18.(满分10分)在平面直角坐标系xOy中,抛物线 上异于坐标原点O的两不同动点A、B满足 (如上图).
(Ⅰ)求 得重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ) 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
20.(满分12分)设A、B是椭圆 上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.
(Ⅰ)确定 的取值范围,并求直线AB的方程;
(Ⅱ)试判断是否存在这样的 ,使得A、B、C、D四点在同一ห้องสมุดไป่ตู้圆上?并说明理由.
解析几何综合题
1. 是椭圆 的左、右焦点,点 在椭圆上运动,则 的最大值是.
4.若圆 与抛物线 有两个公共点。则实数 的范围为.
5.若曲线 与直线 +3有两个不同的公共点,则实数k的取值范围是.
6.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4)、B(0,-2),则圆C的方程为____________.
7.经过两圆(x+3)2+y2=13和x+2(y+3)2=37的交点,且圆心在直线x-y-4=0上的圆的方程为____________
11.到两定点A(0,0),B(3,4)距离之和为5的点的轨迹是()
A.椭圆B.AB所在直线
C.线段ABD.无轨迹
12.若点(x,y)在椭圆4x2+y2=4上,则 的最小值为()
A.1B.-1
C.- D.以上都不对
13已知F1(-3,0)、F2(3,0)是椭圆 + =1的两个焦点,P是椭圆上的点,当∠F1PF2= 时,△F1PF2的面积最大,则有()
(m2+n2)y2-6ny+9-3m2=0.
令Δ<0得m2+n2<3.
又m、n不同时为零,
∴0<m2+n2<3.
由0<m2+n2<3,可知|n|< ,|m|< ,
再由椭圆方程a= ,b= 可知公共点有2个.
3.P是抛物线y2=x上的动点,Q是圆(x-3)2+y2=1的动点,则|PQ|的最小值
为.
3.答案: -1
(y0>0),作两条直线分别交抛物线于A(x1,y1)、B(x2,y2).
(1)求该抛物线上纵坐标为 的点到其焦点F的距离;
(2)当PA与PB的斜率存在且倾斜角互补时,求 的值,并证明直线AB的斜率是非零常数.
16.(满分10分)如下图,O为坐标原点,直线l在x轴和y轴上的截距分别是a和b(a>0,b≠0),且交抛物线y2=2px(p>0)于M(x1,y1),N(x2,y2)两点.
∴由垂径定理得圆心在y=-3这条直线上.
又已知圆心在直线2x-y-7=0上,
(1)证明: + = ;(2)当a=2p时,求∠MON的大小.
(15题图)(16题图)
17.(满分10分)已知椭圆C的方程为 + =1(a>b>0),双曲线 - =1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1,又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B.(如下图)
A.m=12,n=3B.m=24,n=6
C.m=6,n= D.m=12,n=6
14.P为双曲线C上一点,F1、F2是双曲线C的两个焦点,过双曲线C的一个焦点F1作∠F1PF2的平分线的垂线,设垂足为Q,则Q点的轨迹是( ) 12.
A.直线B.圆C.椭圆D.双曲线
三、解答题
15.(满分10分)如下图,过抛物线y2=2px(p>0)上一定点P(x0,y0)
1. 是椭圆 的左、右焦点,点 在椭圆上运动,则 的最大值是.
2.若直线mx+ny-3=0与圆x2+y2=3没有公共点,则m、n满足的关系式为____________;
以(m,n)为点P的坐标,过点P的一条直线与椭圆 + =1的公共点有_______个.
3.P是抛物线y2=x上的动点,Q是圆(x-3)2+y2=1的动点,则|PQ|的最小值为.
19.(满分12分)抛物线y2=4px(p>0)的准线与x轴交于M点,过点M作直线l交抛物线于A、B两点.
(1)若线段AB的垂直平分线交x轴于N(x0,0),求证:x0>3p;
(2)若直线l的斜率依次为p,p2,p3,…,线段AB的垂直平分线与x轴的交点依次为N1,N2,N3,…,当0<p<1时,求 + +…+ 的值.
8.双曲线x2-y2=1的左焦点为F,点P为左支下半支上任意一点(异于顶点),则直线PF的斜率的变化范围是___________.
9.已知A(0,7)、B(0,-7)、C(12,2),以C为一个焦点作过A、B的椭圆,椭圆的另一个焦点F的轨迹方程是___________.
10.设P1( , )、P2(- ,- ),M是双曲线y= 上位于第一象限的点,对于命题①|MP2|-|MP1|=2 ;②以线段MP1为直径的圆与圆x2+y2=2相切;③存在常数b,使得M到直线y=-x+b的距离等于 |MP1|.其中所有正确命题的序号是____________.
1答案:4
简解: ≤
2.若直线mx+ny-3=0与圆x2+y2=3没有公共点,则m、n满足的关系式为____________;以(m,n)为点P的坐标,过点P的一条直线与椭圆 + =1的公共点有____________个.
2答案:0<m2+n2<3;2
简解:将直线mx+ny-3=0变形代入圆方程x2+y2=3,消去x,得
简解:将曲线 转化为 时考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线 平行的直线与双曲线的位置关系。
6.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4)、B(0,-2),则圆C的方程为____________.
6.答案:(x-2)2+(y+3)2=5 5.
简解:∵圆C与y轴交于A(0,-4),B(0,-2),