五上 轴对称和平移知识点
北师大版数学五年级上册知识点归纳整理总结
五年级上册知识点第一单元小数除法1、除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
2、除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
3、在小数除法中的发现:①当除数大于1时,商小于被除数。
如:3.5÷5=0.7②当除数小于1时,商大于被除数。
如:3.5÷0.5=74、小数除法的验算方法:①商×除数=被除数(通用) ②被除数÷商=除数5、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。
例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来。
6、循环小数问题:A、小数部分的位数是有限的小数,叫做有限小数。
B、小数部分的位数是无限的小数,叫做无限小数。
C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。
E、用简便方法写循环小数的方法:①只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点。
②例如:只有一个数字循环节的,就在这个数字上面记一个小圆点7、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
被除数不变,除数缩小,商扩大。
③被除数不变,除数缩小,商扩大。
第二单元轴对称和平移轴对称:1.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,那条直线就叫做对称轴。
两图形重合时互相重合的点叫做对应点,也叫对称点。
北师大版数学五年级上册第2单元《轴对称和平移》说课稿(2)
北师大版数学五年级上册第2单元《轴对称和平移》说课稿 (2)一. 教材分析《轴对称和平移》是北师大版数学五年级上册第2单元的一节课程。
本节课主要引导学生认识和理解轴对称和平移的概念,掌握它们的基本性质和运用。
教材通过丰富的实例和实践活动,让学生在操作中感知,体验中理解,应用中提升。
二. 学情分析五年级的学生已经具备了一定的空间观念和几何直观能力,他们对轴对称和平移现象在生活中有所了解。
但学生的认知水平参差不齐,部分学生对概念的理解还比较模糊,需要通过实例和实践活动来加深理解。
三. 说教学目标1.知识与技能:学生能够理解轴对称和平移的概念,掌握它们的基本性质,能够运用轴对称和平移解决实际问题。
2.过程与方法:学生通过观察、操作、交流等活动,培养空间观念和几何直观能力。
3.情感态度与价值观:学生体验数学与生活的密切联系,培养学习数学的兴趣。
四. 说教学重难点1.教学重点:学生能够理解轴对称和平移的概念,掌握它们的基本性质。
2.教学难点:学生能够运用轴对称和平移解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例分析法、小组合作法、实践活动法等。
2.教学手段:多媒体课件、实物模型、学习单、几何画板等。
六. 说教学过程1.导入:通过展示生活中的轴对称和平移现象,引发学生对课题的兴趣,引导学生思考轴对称和平移的特点。
2.新课导入:介绍轴对称和平移的概念,引导学生通过观察、操作、交流等活动,理解轴对称和平移的性质。
3.实例分析:通过分析具体实例,让学生进一步理解轴对称和平移的概念,掌握它们的基本性质。
4.实践活动:学生分组进行实践活动,运用轴对称和平移解决实际问题,培养学生的动手能力和解决实际问题的能力。
5.总结提升:引导学生总结轴对称和平移的性质和运用,巩固所学知识。
七. 说板书设计板书设计要突出轴对称和平移的概念、性质和运用,简洁明了,便于学生理解和记忆。
八. 说教学评价教学评价主要包括过程性评价和终结性评价。
北师大版五年级数学上册知识点
北师大版五年级数学上册知识点北师大版小学数学五年级(上册)知识点第一单元小数除法1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
3.偶数除法的公式可以写成被除数除以几个数的乘积,但除以几个数的乘积时,这个乘法公式必须加括号。
4、在小数除法中的发现:①当除数不为0时,除数大于1时,商小于被除数。
如:3.5÷5=0.7②当除数不为0时,除数小于1时,商大于被除数。
如:3.5÷0.5=75、小数除法的验算方法:①商×除数=被除数(通用) ②被除数÷商=除数6、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。
例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。
7、循环小数:A、小数部分的位数是有限的小数,叫做有限小数。
如,0.37、1.4135等。
B、小数部分的位数是无限的小数,叫做无限小数。
如5.3…7.145145…等。
C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
(如5.3…3.12323… 5.7171…)D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。
(如5.333… 的循环节是3, 4.6767…的循环节是67, 6.9258258…的循环节是258)E、用简便方法写循环小数的方法:①只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点②例如:只有一个数字循环节的,就在这个数字上面记一个小圆点,5.333…写作5.3 ;有两位小数循环的,就在这两位数字上面,记上小圆点,7.4343…写作7.4 3 ;有三位或以上小数循环的,在首位和末位记上小数点,10.732732…写作10.7328、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。
(完整版)五上轴对称和平移知识点
知识要点
1、轴对称图形的意义
如果一个图形沿一条直线对折,直线两侧的部分能够完全重合,这个图形就是轴对称图形,这条直线就是它的对称轴。
2、平移的特点
一个图形整体沿某一直线方向移动一定的距离,这种运动现象叫做平移。
图形平移前后的形状和大小没有变化,只是位置发生变化。
3、在方格纸上平移图形的方法步骤
(1)找出原图形的关键点(如顶点或端点)
(2)按要求分别描出各关键点平移后的对应点
(3)按原图将各对应点顺次链接。
4、平移图形或物体时,可以一次平移,也可以多次平移,物体的方向都不会发生改变。
5、运用轴对称设计图案的方法
选好基本图形——画出对称轴——画基本图案的对称图形
6、运用平移设计图案的方法
选好基本图案——确定平移格数(或距离)和方向——按平移格数(或距离)和方向进行平移。
北师大版五年级上册数学 第2课时 倍数与因数、轴对称和平移 知识点梳理重点题型练习课件
2. 按要求画一画。 (1)
解析:根据对称轴的特征画对称轴,注意对称轴一 般画成虚线;平移三角形时,要找平移的方向和平 移的距离(格数)来确定关键点的位置。
(2)以虚线为对称轴,画出与下面图形成对称轴的对称 点,然后按照原图形顺次将各顶点的对称点连起来。
(2)用5,7,8,0组成一个三位数,使它既是2和5的 倍数,又是3的倍数。这个三位数最小是 ( 570 ),最大是( 870 )。
解析:同时是2,3,5的倍数的数,个位上的数字是0, 并且各个数位上的数字之和是3的倍数,符合条件的有5, 7,0和7,8,0,所以这个三位数最小是570,最大是 870。
(4)同时是2,3,5的倍数的最小的数是( 30 ),最小 的三位数是( 120 )。
解析:同时是2,3,5的倍数的数个位是0,并且各个数 位上的数字之和是3的倍数,所以最小的数是30;最小 的三位数百位上是1,十位上是2,所以最小的三位数是 120。
(5)小船先向( 右 )平移( 8 )格,再向( 上 )平移 ( 4 )格。
解析:因为该兴趣小组的人数多于30人但不到35人, 所以可能是31人、32人、33人、34人。其中31是质 数,不符合题意,舍去;32=2×16=1×32=4×8, 因数都不是质数,不符合题意,舍去;33=11×3, 34=17×2,因数是质数,所以该兴趣小组有33人 或34人。
4. 傍晚,典典开灯写作业。本来拉一次开关,灯就 亮了,但是他连续拉了5次开关,灯都没有亮,原 来是停电了。请问:来电的时候,灯是亮着的还 是不亮的? 灯是亮着的。
(3)用30个小正方形摆长方形,有哪几种摆法?画一 画,填一填。
(画图略)
30=( 30 )×( 1 )=( 15 )×( 2 ) =( 10 )×( 3 )=( 6 )×( 5 )
期末备考宝典:北师大版数学五上第二单元轴对称和平移知识点 试题(解析版)
北师大版数学五年级上册期末测试题第二单元轴对称和平移班级:____________________ 姓名:____________________轴对称:1.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,那条直线就叫做对称轴。
两图形重合时互相重合的点叫做对应点,也叫对称点。
2.轴对称图形的性质:对应点到对称轴的距离相等,对应点连线垂直于对称轴。
3.轴对称图形具有对称性。
4.轴对称图形的画法:(1)找出所给图形的关键点,如图形的顶点、相交点、端点等;(2)数出或量出图形关键点到对称轴的距离;(3)在对称轴的另一侧找出关键点的对称点;(4)按照所给图形的顺序连接各点,就画出所给图形的轴对称图形。
平移:1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
2.平移的基本性质:(1)平移不改变图形的形状和大小,只改变图形的位置。
(2)经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等。
3.平移图形的画法:(1)确定平移的方向与距离。
(2)将关键点按所需方向平移所需距离。
(3)按原来图形的连接方式依次连接各对应点并标上相应字母。
设计图案的基本方法:平移、对称、旋转。
1.运用旋转设计图案的方法:(1)选好基本图案;(2)根据所选的基本图案确定旋转点;(3)确定旋转度数;(4)依次沿每次旋转后的基本图形的边缘画图。
2.运用对称设计图案的方法:(1)先选好基本图案;(2)依据基本图案的特点定好对称轴;(3)画出基本图形的对称图形一、认真细致,我会选。
(共10题;共30分)1. ( 3分 ) 下列图形中,()的对称轴最少。
A. 长方形B. 正方形C. 圆D. 等边三角形2. ( 3分 ) 下边的图形有()条对称轴。
A. 1B. 2C. 33. ( 3分 ) 下列各种图形中,不是轴对称图形的是( )A. B. C. D.4. ( 3分 ) 等腰三角形的对称轴有条,等边三角形的对称轴有条.( )A. 1,2B. 1,3C. 2,3D. 3,35. ( 3分 ) 下面图形中有四条对称轴图形的是:()A. 平行四边形B. 梯形C. 正方形D. 圆形6. ( 3分 ) 下面图形中,对称轴数量最多的是()。
北师大版5年级数学上册知识点
北师大版5年级数学上册知识点一、小数除法。
1. 除数是整数的小数除法。
- 计算方法:按照整数除法的法则去除,商的小数点要和被除数的小数点对齐。
如果除到被除数的末尾仍有余数,就在余数后面添“0”再继续除。
- 例如:计算12.6÷6,先算12÷6 = 2,再算6÷6=1,结果是2.1。
2. 除数是小数的小数除法。
- 计算方法:先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足);然后按照除数是整数的小数除法进行计算。
- 例如:计算1.26÷0.6,把除数0.6的小数点向右移动一位变成6,被除数1.26的小数点也向右移动一位变成12.6,然后计算12.6÷6 = 2.1。
3. 商的近似值。
- 取商的近似值的方法:一般先除到比需要保留的小数位数多一位,再按照“四舍五入”法取商的近似值。
- 例如:计算12.6÷11,结果是1.14545·s,如果保留两位小数,就看千分位上的5,根据“四舍五入”法,约等于1.15。
4. 循环小数。
- 概念:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
- 例如:3.333·s、5.14545·s都是循环小数。
其中3.333·s的循环节是3,5.14545·s的循环节是45。
- 循环小数的简便写法:写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个小圆点。
例如5.14545·s = 5.14̇5。
二、轴对称和平移。
1. 轴对称图形。
- 概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
- 对称轴的画法:找出轴对称图形的一组对称点,连接对称点,作这条线段的垂直平分线,这条垂直平分线就是对称轴。
西师大版五年级数学上册第二单元 图形的平移、旋转与轴对称 教案1、图形的平移
1、图形的平移◆教学内容教材25-28页“图形的平移”例1、例2和“练习六”的相关内容。
◆教材提示本课内容是在学生已经具有一定的关于平移的生活经验的基础上进行教学的。
本节课的知识点有如下几点:知识点一:将图形沿水平或垂直方向平移。
知识点二:按给定的距离画平移后的图形。
知识点三:利用平移的方法进行图形的变换。
学生在以前的学习中,已经认识了一些简单的平面图形。
在三年级时,也学习过简单的平移知识,感知了平移现象,但这些只停留在对生活现象的感知上,没有理解平移的内涵。
所以,本节内容的教学要注意以下几点:第一:在教学图形沿水平或垂直方向平移时,先将学生的思维放在平移的方向和距离上,让学生在实际操作中掌握图形平移的方法。
第二:在注意引导学生抓住图形的关键点进行平移,平移后的图形与原图形状、大小不变。
第三:较复杂的图形平移过程,可通过演示等方法,让学生理解图形平移的过程,掌握平移的方法。
在教学中,要重点关注学生对于平移文向、距离的掌握情况,要让学生明白平移的方法,并掌握操作要求。
◆教学目标知识与技能:通过具体实例进一步认识图形的平移变换,理解的平移的概念,探索它的基本性质。
过程与方法:在动手操作的过程中,探索判断图形平移的距离的方法,感受到平移不改变图形的形状、大小,只改变图形的位置。
情感、态度和价值观:了解平移在现实生活中的应用,体会到数学与实际生活的密切联系,体会学习数学的乐趣和认识新的数学知识和方法的价值。
◆重点、难点重点掌握平移的方法,能在方格纸上把简单的图形按要求进行平移。
难点根据平移前后的图形,正确判断平移的距离。
◆教学准备教师准备:课件。
学生准备:方格纸、学具盒(装有长方形、正方形、平行四边形、梯形等)◆教学过程(一)新课导入课件出示24页情境图。
1.引导学生观察情境图,并说一说从图中获得了哪些信息?学生回答预设:生1:从图中可以看出,电梯在上下平移运动。
生2:图中有个风车,我知道风车叶片的运动是旋转。
北师大版五年级上册数学知识点汇总
北师大版五年级上册数学知识点汇总北师大版五年级上册数学知识点汇总第一单元小数除法1、除数是整数的小数除法计算法则:按照整数除法的法则去除,商的小数点要和被除数的小数点对齐。
如果除到被除数的末尾仍有余数,就在余数后面添再继续除。
2、除数是小数的小数除法计算法则:先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用补足),然后按照除数是整数的小数除法进行计算。
3、在小数除法中的发现:①当除数大于1时,商小于被除数。
例如:3.5÷5=0.7②当除数小于1时,商大于被除数。
例如:3.5÷0.5=74、小数除法的验算方法:①商×除数=被除数(通用)②被除数÷商=除数5、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。
例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。
6、循环小数问题:A、小数部分的位数是有限的小数,叫做有限小数。
例如,0.37、1.4135等。
B、小数部分的位数是无限的小数,叫做无限小数。
例如5.3… 7.…等。
C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
例如5.3… 3.… 5.7171…D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。
例如5.333…的循环节是3,4.6767…的循环节是67,6.xxxxxxx…的循环节是258.7、用简便方法写循环小数的方法:只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点。
只有一个数字循环节的,就在这个数字上面记一个小圆点。
有两位小数循环的,就在这两位数字上面,记上小圆点。
有三位或以上小数循环的,在首位和末位记上小圆点。
8、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
最新北师大版数学五年级上册各单元知识点归纳总结
最新北师大版数学五年级上册知识点归纳总结第一单元小数除法1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
3、连除的算式可以写成被除数除以几个数的积,但除以几个数的积时,必须给这个相乘的式子加上小括号。
4、在小数除法中的发现:①当除数不为0时,除数大于1时,商小于被除数。
如:3.5÷5=0.7②当除数不为0时,除数小于1时,商大于被除数。
如:3.5÷0.5=7当除数不为0时,除数等于1时,商等于被除数。
如:3.5÷1=3.55、小数除法的验算方法:①商×除数=被除数(通用) ②被除数÷商=除数6、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。
例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。
7、循环小数:A、小数部分的位数是有限的小数,叫做有限小数。
如,0.37、1.4135等。
新课标第一网B、小数部分的位数是无限的小数,叫做无限小数。
如5.3…7.145145…等。
C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
(如5.3… 3.12323… 5.7171…)D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。
(如5.333…的循环节是3, 4.6767…的循环节是67, 6.9258258…的循环节是258)E、用简便方法写循环小数的方法:①只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点②例如:只有一个数字循环节的,就在这个数字上面记一个小圆点,5.333…写作 5.3 ;有两位小数循环的,就在这两位数字上面,记上小圆点,7.4343…写作7.4 3 ;有三位或以上小数循环的,在首位和末位记上小数点,10.732732…写作10.7328、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。
北师大版五年级数学上册第2单元 《轴对称和平移》 知识点单元义+经典例题(含解析) (1)
一、知识梳理知识点一:轴对称再认识1. 认识轴对称图形及其对称轴判断一个图形是不是轴对称图形,关键是看沿一条直线对折后,这条直线两边的部分是否完全重合。
2.画轴对称图形的方法(1)确定关键点;(2)找出关键点的对称点;(3)顺次连接各对称点。
知识点二:平移1.图形平移的画法:(1)找出关键点;(2)按指定方向和格数平移关键点;(3)连接各点。
2. 欣赏与设计-运用轴对称或平移设计图案利用平移、轴对称设计图案时,可以只用一种方法,也可以两种都用。
平移图形时,注意方向和距离;画轴对称图形时,先找到对称点,再连线。
二、精练精讲考点 1轴对称再认识【例1】(2019春•南丰县期中)猜一猜,选一选.能剪出的是⑥号,能剪出的是②号.【思路分析】根据轴对称图形的特征,画出、的对称轴,对称轴左边部分与哪个图形相吻合就是哪个图形剪出的.【规范解答】解:可知能剪出的是⑥号,能剪出的是②号.故答案为:⑥,②.【名师点评】此题是考查轴对称图形的特征.轴对称的两个图形,必定是全等图形.1.(2018秋•高碑店市期末)明明和亮亮合作画一张轴对称图形,明明画出了轴对称图形的左半边(如图),亮亮要沿着虚线画出轴对称图形的右半边,应是数字2019.【思路分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,依次即可求解.【规范解答】解:亮亮要沿着虚线画出轴对称图形的右半边,应是数字2019.故答案为:2019.【名师点评】考查了轴对称,性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.2.先画出下面图形的所有对称轴,再数一数分别有几条.1条;4条;1条;1条.【思路分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而可以画出它们的对称轴.【规范解答】解:故答案为:1,4,1,1.【名师点评】此题考查了根据轴对称图形定义画出轴对称图形的对称轴的方法.3.(2019秋•西安期中)如图,等边三角形网格中,已有两个小等边三角形被涂黑,请将图中其余小等边三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.【思路分析】因为如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,据此解答.【规范解答】解:解答如下答:使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【名师点评】此题是考查了轴对称图形的意义.考点 2平移【例2】图中圆的位置发生了什么变化?(1)从位置A向上平移4个方格到位置B,再向右平移4个方格到位置C.(2)从位置C向右平移6个方格到位置D,再向下平移4个方格到位置E(3)从位置A先向上平移1个方格,再向右平移7个方格或先向右平移7个方格,再向上平移1个方格到位置F.【思路分析】(1)B在A的上边,相距4格,即从位置A向上平移4个方格到位置B;C在B的右边,相距4格,即B向右平移4个方格到位置C.(2)D在C的右边,相距6格,即从位置C向右平移6个方格到位置D;E在D的下边,相距4格,即D向下平移4个方格到位置E.(3)A先上向(或右)平移1格(或7格),再向右(或上)平移7格(或1格)到F的位置.【规范解答】解:如图(1)从位置A向上平移4个方格到位置B,再向右平移4个方格到位置C.(2)从位置C向右平移6个方格到位置D,再向下平移4个方格到位置E(3)从位置A先向上平移1个方格,再向右平移7个方格或先向右平移7个.方格,再向上平移1个方格到位置F.故答案为:上,4,右,4;右,6,下,4;上,1,右,7,右,7,上,1.【名师点评】图形平移注意三要素:即原位置、平移方向、平移距离.1.(2018春•端州区月考)细心观察,完成填空.(1)向上平移了2格.(2)向左平移了4格.(3)向右平移了6格.【思路分析】(1)根据平移的特征,两个三角形形状、方向相同,实线三角形与虚线三角形对应点相距2格,根据箭头的指向可知原三角形向上平移了2格.(2)同理,实线三角形与虚线三角形对应点相距4格,根据箭头的指向可知原三角形向左平移了4格.(3)同理,实线三角形与虚线三角形对应点相距4格,根据箭头的指向可知原三角形向右平移了6格.【规范解答】解:如图(1)向上平移了2格.(2)向左平移了4格.(3)向右平移了6格.故答案为:上,3;左,4;右,6.【名师点评】图形平移注意三要素:即原位置、平移方向、平移距离.2.(2018春•湛江期末)帆船图向上平移了6格.【思路分析】根据图中两只“帆船”对应部分间的格数及箭头的指向即可确定平移的方程和格数.【规范解答】解:如图帆船图向上平移了6格.故答案为:上,6.【名师点评】图形平移注意三要素:即原位置、平移方向、平移距离.3.(2018秋•雁塔区期中)如图,方格纸上的轴对称图形沿对称轴被分成了左右两部分,如何平移右半部分把它们拼成一个完整的轴对称图形?把右半部分先向左(或上)平移4格,再向上(或左)平移4格.【思路分析】根据平移的特征,把右图先向左平移4格,再向上平移4格或先向上平移4格,再向左平移4格,即可组成一个对称图形.【规范解答】解:如图方格纸上的轴对称图形沿对称轴被分成了左右两部分,如何平移右半部分把它们拼成一个完整的轴对称图形?把右半部分先向左(或上)平移4格,再向上(或左)平移4格.故答案为:左(或上),4,上(或左),4.【名师点评】在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.关键:平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置).三、巩固提升1.如图的图形中,对称轴条数最多的是()A.B.C.D.【思路分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行判断.【规范解答】解:A、有1条对称轴;B、有3条对称轴;C、有5条对称轴;D、有8条对称轴;故选:D.【名师点评】解答此题的主要依据是:轴对称图形的概念及特征和对称轴的条数.2.(2020春•英山县期末)如图所示的标志中,是轴对称图形的有()A.1个B.2个C.3个D.4个【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【规范解答】解:根据轴对称图形的意义可知:选项A、B、D都是轴对称图形,而C不是轴对称图形;故选:C.【名师点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.3.(2020•石阡县)下列交通标志图案中,不是轴对称图形的是()A.B.C.D.【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;由此解答即可.【规范解答】解:下列交通标志图案中,不是轴对称图形的是;故选:B.【名师点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.4.(2020•安新县)下列现象中,属于平移现象的的是()A.滑冰B.乘坐电梯C.猎豹奔跑D.荡秋千【思路分析】旋转就是围绕着一个中心转动,运动方向发生改变;平移就是直直地移动,移动过程中只改变图形的位置,而不改变图形的形状、大小和方向,据此解答即可.【规范解答】解:根据分析,乘坐电梯属于平移现象,滑冰、猎豹奔跑都不确定,荡秋千属于旋转;故选:B.【名师点评】本题是考查平移的意义.平移不改变图形的形状和大小,只是位置发生变化.5.(2020•古冶区)火车在铁轨上运动,车轮的运动是()A.旋转B.平移C.轴对称D.既平移又旋转【思路分析】根据旋转的意义,把一个图形绕着某一点转动一个角度的图形变换叫做旋转;根据平移的意义,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动.【规范解答】解:火车在铁轨上运动时,车厢的运动是平移,车轮的运动是旋转.故选:A.【名师点评】本题是考查图形的旋转、平移的意义.旋转与平移的相同点:位置发生变化,大小不变,形状不变,都在一个平面内.不同点:平移,运动方向不变.旋转,围绕一个点或轴,做圆周运动.6.(2020春•桃江县期末)如图,欢欢在对折的纸上剪去一个小圆和一个三角形,打开后是()A.B.C.【思路分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【规范解答】解:根据分析可得,欢欢在对折的纸上剪去一个小圆和一个三角形,打开后是;其它选项都是错误的,因为三角形的形状与题干中的三角形不对应.故选:A.【名师点评】此题主要考查轴对称图形意义的灵活运用.7.一辆汽车的车牌在水中的倒影如图,则该车牌的号码是MT7936.【思路分析】此题属于水面对称,实际景物与水中的景物关于水面对称,其特征是上、下方向相反,根据这一特征即可解答.【规范解答】解:如下图所示.所以一辆汽车的车牌在水中的倒影如图,则该车牌的号码是MT7936.故答案为:MT7936.【名师点评】镜面对称是景物左、右方向相反,水面对称是上、下方向相反.8.如图哪些图形是轴对称图形?在下面的括号里画“√”,不是的画“×”.【思路分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的对称轴.根据轴对称图形的定义,找出并画出轴对称图形的对称轴即可.【规范解答】解:【名师点评】此题考查了根据轴对称图形定义画出轴对称图形的对称轴的方法.9.(2020•陇县)等腰梯形有1条对称轴.【思路分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可进行判断.【规范解答】解:由轴对称图形的意义可知:等腰梯形有1条对称轴.故答案为:1.【名师点评】此题主要考查轴对称图形的意义.10.(2020春•连云区校级期中)长方形有2条对称轴,正十边形有10条对称轴.【思路分析】长方形有2条对称轴,即过对边中点的直线;正十边形有10条对称轴,即过边中点的直线,对角线所在的直线.【规范解答】解:如图长方形有2条对称轴,正十边形有10条对称轴.故答案为:2,10.【名师点评】此题是考查确定轴对称图形对称轴的条数及位置.关键是轴对称图形的意义及图形的特征.11.(2020春•浑源县期末)等边三角形有3条对称轴,正方形有4条对称轴.【思路分析】根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,这条直线就是它的一条对称轴,据此即可确定这两个图形的对称轴条数.【规范解答】解:等边三角形有3条对称轴;正方形有4条对称轴.故答案为:3;4.【名师点评】此题主要考查轴对称图形的定义以及对称轴的条数的确定方法.12.(2019秋•永城市期中)先向上平移5格,又向右平移6格.【思路分析】根据平面图中的箭头和方格图可知,箭头是先向上平移5格,再向右平移6格,据此即可填空.【规范解答】解:先向上平移5格,又向右平移6格.故答案为:上,5,右,6.【名师点评】此题考查了简单图形平移,找到关键点,进行关键点的平移,向什么方向平移,平移多少是解决此题的关键.13.(2019秋•定西期中)平移后的图形与原图形相比较,只改变位置,不改变形状和大小.【思路分析】平移是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,但位置不同.【规范解答】解:平移后的图形与原图形相比较,只改变位置,不改变形状和大小;故答案为:位置,形状,大小.【名师点评】本题考查了平移的性质,属于基础题,要熟记.14.(2018秋•醴陵市期末)如图,由图A到图B是向右平移了6格,由图B到图C是向下平移了2格.【思路分析】根据图中两图的相对距离及箭头指向即可确定平移的方向和距离,所以图A到图B是向右平移了6格,由图B到图C是向下平移了2格;由此解答即可.【规范解答】解:如图,由图A到图B是向右平移了6格,由图B到图C是向下平移了2格.故答案为:右,6,下,2.【名师点评】作图形平移要注意三要素:即原位置、平移方向、平移距离.15.(2020春•徐水区期末)所有的梯形都不是轴对称图形.×.(判断对错)【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【规范解答】解:根据轴对称图形的意义可知:所有的梯形都不是轴对称图形,说法错误,只有等腰梯形是轴对称图形;故答案为:×.【名师点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.16.(2020春•蓬溪县期末)不是轴对称图形.√(判断对错)【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【规范解答】解:不是轴对称图形;故答案为:√.【名师点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.17.(2020•惠来县)长方形有2条对称轴,正方形有4条对称轴,半圆有无数条对称轴.错误(判断对错)【思路分析】根据轴对称图形的定义,分别找出题干中的图形的所有对称轴条数,即可进行判断.【规范解答】解:长方形有2条对称轴;正方形有4条对称轴;半圆只有1条对称轴;所以原题说法错误.故答案为:错误.【名师点评】此题考查了利用轴对称图形的定义确定轴对称图形的对称轴的条数的灵活应用.18.(2018秋•新蔡县校级月考)电梯的运动时平移现象.√.(判断对错)【思路分析】根据平移的含义可知,图形的平移只改变图形的位置,而不改变图形的形状和大小,据此选择即可.【规范解答】解:据分析可知:电梯的升降属于平移现象,故原题说法正确;故答案为:√.【名师点评】本题考查了平移的定义,应注意理解和应用.19.(2018春•盐都区期中)荡秋千是平移现象.×(判断对错)【思路分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动!旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【规范解答】解:根据平移和旋转的意义可知:荡秋千是旋转运动,所以本题说法错误;故答案为:×.【名师点评】此题是对平移与旋转理解及在实际当中的运用.20.小妍和爸爸准备去图书馆,出门时,在镜子中看到的钟面如左图:回来时,在镜子中看到的钟面如右图.算一算,小研和爸爸出去了多长时间?【思路分析】根据镜面对称的特征,镜中的景物与实际景物上下前后方向一致,左右方向相反,大小不变,且关于镜面对称.小妍和爸爸去图书馆出门的实际时刻是下午2时,回来时,实际时刻是下午5时30分,用小妍和爸爸回来时的时刻减出门时的时刻就是小研和爸爸出的时间.【规范解答】解:如图出门时刻:下午2:00回来时刻:下午5:305时30分﹣2时=3时30分答:小研和爸爸出去了3小时30分.【名师点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反,镜中与实际景物大小不变.21.下图中的三角形是从哪张对折后的纸上剪下来的?在()里填上序号.【思路分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.因为①的对称轴在折痕,所以如果按①剪下来,得到的是等腰三角形,符合要求.【规范解答】解:根据轴对称图形可知,图中的三角形是①对折后的纸上剪下来的.故答案为:①.【名师点评】本题考查了轴对称图形的意义.解题的关键是掌握轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.22.(2018秋•福田区期末)太极图在中国传统文化中含义深邃.其形状为阴阳两鱼互纠在一起,象征两级和合.照样子在空白圆里画一个.【思路分析】作这个圆的直径,再以两个半径的中点为圆心,以大圆半径的为半径,在圆直径的两旁各画一半圆,然后再画上“鱼眼”,涂色即可.【规范解答】解:太极图在中国传统文化中含义深邃.其形状为阴阳两鱼互纠在一起,象征两级和合.照样子在空白圆里画一个:【名师点评】此题是作图题,关键是掌握画法.23.(2019•岳阳模拟)画如图图形的对称轴【思路分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可确定这个图形的对称轴的条数及位置.据此画出即可.【规范解答】解:【名师点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数及位置的灵活应用.24.(2014秋•上饶县月考)根据对称轴画出给定图形的轴对称图形.【思路分析】据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出图形的关键对称点,连结即可.【规范解答】解:作图如下:【名师点评】此题是考查作轴对称图形.关键是确定对称点(对应点)的位置.25.涂一涂.①把图形向右平移7格后得到的图形涂上颜色.②把图形向右平移7格后得到的图形涂上颜色.【思路分析】根据平移图形的特征,看哪个虚线图形与这个图形的各对应点相距7格,涂上颜色即可.【规范解答】解:【名师点评】解决本题的关键是查清两图的对应点相距的格数.26.把图1向右平移5格.画出图2的另一半,使它成为轴对称图形.【思路分析】根据平移图形的特征,把图1的各顶点分别向右各平移5格,再依次连结各点即可得到向右平移5格后的图形;根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的左边画出右图的关键对称点,连结即可.【规范解答】解:根据题意画图如下:【名师点评】本题是考查作平移后的图形、轴对称图形.平移作图要注意:①方向;②距离.整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动;求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点.后依次连结各特征点即可.27.(2018秋•青龙县期末)如图所示的是由小正方形组成的L形图形,请你用两种不同的方法在图中添画一个小正方形,使它称为轴对称图形,并分别画出它的对称轴.【思路分析】轴对称图形定义:如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,折痕所在的直线叫做对称轴.即可在图中添画一个小正方形,使它称为轴对称图形,并画出它的对称轴.【规范解答】解:如图所示的是由小正方形组成的L形图形,用两种不同的方法在图中添画一个小正方形,使它称为轴对称图形,并分别画出它的对称轴(蓝色部分为所画的正方形,红色虚线是对称轴):【名师点评】解答此题的关键是轴对称图形的意义或特征.28.按要求在下面画出三组图形的对称轴.每组各由两个圆组成.(1)只有一条对称轴.(2)只有两条对称轴.(3)有无数条对称轴.【思路分析】(1)画出半径不相等的不同圆心的两个圆;(2)画出半径相等的不同圆心的两个圆;(3)画出半径不相等的同圆心的两个圆.【规范解答】解:(1)如图所示:(2)如图所示:(3)如图所示:【名师点评】本题考查了作轴对称图形的对称轴,确定轴对称图形的关键的正确确定图形的对称轴.29.一只钟的对面有一面镜子,镜子里的钟表如下图,镜子里的钟表是1:30分,那么钟表上正确的时间是几时?钟表上现在时间是几时?【思路分析】因为镜子中的影像与实际的物像左右相反,如果镜子里的钟表是1:30分,那么分针位置是一样的,指在“6”上,时针应指在“10”H和“11”的中间.即:钟表上正确的时间是10:30,【规范解答】解:在镜子里看到的图象刚好是轴对称图象,镜子里的钟表是1:30分,所以钟表上正确的时间是10:30分.钟表上现在时间是10:30分.答:钟表上正确的时间是10:30分,钟表上现在时间是10:30分.【名师点评】此题考查了镜面对称在现实生活中的应用.30.画一画请你在下面的方格图中设计一个具有对称美的图形.一定要漂亮哦!【思路分析】在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫轴对称图形,这条直线叫做这个图形的对称轴,由此即可解决问题.【规范解答】解:紧扣轴对称图形的定义,可绘制出具有对称美的图形如右图所示.【名师点评】抓住轴对称图形的特点,即可解决此类问题.。
北师大版五年级数学上册第二单元 轴对称和平移 知识点汇总
1. 轴对称图形的意义:
把一个图形沿着一条直线对折后,折痕两侧的部分能够完全重合,这个图形就叫作轴对称图形,折痕所在的直线叫作对称轴。
2. 轴对称图形的特点:
轴对称图形沿着对称轴对折后,折痕两侧的部分能够完全重合,折痕两侧的对称点(或线段)能够完全重合。对称点到对称轴的距离相等。
3. 画轴对称图形的方法:
三、欣赏与设计
1. 复杂、美丽的图案可以用一个简单的图案通过平移或轴对称得到。
2. 利用平移或轴对称在方格纸上设计简单图案的方法:
(1)画出或选择一个基本图案。
(2)确定图案变化的方式;平移要确定好方向和平移的格数;轴对称要确定好对称轴,选好关键点(或关键线段)。
(3)画出要设计的图案。
重点提示:
有的轴对称图形的对称轴不止一条。
可以根据该图形上某个点或某条线段平移的方向和距离来判断。
3. 在方格纸上画平移图形的方法:
(1)找出所给图形的关键点(或关键线段)。
(2)按要求平移相应的格数并描出各对应点(或对应线段)。
(3)把对应点(或对应线段)按所给图形的形状连接起来。
4. 画出平移后的图形只是位置发生了变化,大小和形状不变。
利用平移或轴对称设计图案时,要选准基本图案。平移要确定好平移的格数和方向;轴对称要确定好对称轴,选好关键点(或关键线段)。
易错题:
判断:小猴子是轴对称图形。(√)
错因分析:小猴子是一个动物,不是平面图形,只能 Nhomakorabea是对称。
答案:✕
知识巧记:
关键点,选关键,
点轴距离数格算。
细心找准对称点,
有序连点图形现。
重点提示:
在解决图形平移的问题中,平移几格并不是指原图形与平移后的图形之间相距几格,而是指图形的关键点平移了几格。
北师大版小学数学五年级上册知识点总结
北师大版小学数学五年级(上册)知识点第一单元小数除法1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
3、连除的算式可以写成被除数除以几个数的积,但除以几个数的积时,必须给这个相乘的式子加上小括号。
4、在小数除法中的发现:①当除数不为0时,除数大于1时,商小于被除数。
如:3.5÷5=0.7②当除数不为0时,除数小于1时,商大于被除数。
如:3.5÷0.5=7当除数不为0时,除数等于1时,商等于被除数。
如:3.5÷1=3.55、小数除法的验算方法:①商×除数=被除数(通用) ②被除数÷商=除数6、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。
例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。
7、循环小数:A、小数部分的位数是有限的小数,叫做有限小数。
如,0.37、1.4135等。
B、小数部分的位数是无限的小数,叫做无限小数。
如5.3…7.145145…等。
C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
(如5.3… 3.12323… 5.7171…)D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。
(如 5.333…的循环节是3, 4.6767…的循环节是67, 6.9258258…的循环节是258)E、用简便方法写循环小数的方法:①只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点②例如:只有一个数字循环节的,就在这个数字上面记一个小圆点,5.333…写作5.3 ;有两位小数循环的,就在这两位数字上面,记上小圆点,7.4343…写作7.4 3 ;有三位或以上小数循环的,在首位和末位记上小数点,10.732732…写作10.7328、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。
西师大版五年级数学上册第二单元 图形的平移、旋转与轴对称 教案3、轴对称图形
3、轴对称图形◆教学内容教材33-36页“轴对称图形”和“练习八”的相关内容。
◆教材提示《轴对称图形》这部分内容共安排了3个例题,1个课堂活动和练习八,本节课的知识点有如下几点:知识点一:认识轴对称图形,了解什么是对称轴。
知识点二:能画出一个轴对称图形的对称轴。
知识点三:能利用对称轴,画出图形的另一半,使这个图形成为轴对称图形。
根据本节内容的编排特点,可以从以下几个方面来展开教学:第一:充分利用学生已有的轴对称图形知识经验,并结合方格图,利用数方格等方法来判断某一图形是不是轴对称图形,并指导学生说出判断的依据。
第二:注重教材所呈现的主题图,通过让学生观察主题图,感受轴对称图形的特点,理解掌握轴对称图形。
第三:加强操作活动,通过让学生折一折,画一画,寻找对应点等方法,感受轴对称图形的特点,理解对称轴。
◆教学目标知识与技能:1. 通过折纸的方法探究判断轴对称图形的方法,能正确找出轴对称图形的对称轴。
2、能根据轴对称图形的特点,画出轴对称图形的另一半,使之成为轴对称图形。
过程与方法:在观察、操作等活动中,逐步理解掌握轴对称图形的特点,了解什么是轴对称图形的对称轴。
情感、态度和价值观:在探究新知的活动中,感受对称美,培养审美意识,激发学生学数学、爱数学的情感。
◆重点、难点重点认识并理解轴对称图形的特点,能准确判断哪些图形是轴对称图形,会找出轴对称图形的对称轴,难点能根据轴对称图形的特征,画出图形的另一半。
◆教学准备教师准备:多媒体课件。
学生准备:用硬纸片剪正方形、等腰梯形、平行四边形、等边三角形等。
◆教学过程一、新课导入课件出示下面几幅图:1.同学们请看,上面这几幅图只有原图形的一半,你能猜出图中画的是什么?学生观察后回答:蜻蜓、蝴蝶、雪花2.同学们是根据什么来猜的呢?学生思考后回答:回答预测:蜻蜓、蝴蝶和雪花都是轴对称图形,也就是说这几幅图形右半部分和左半部分是一样的,所以可以想象得出这几幅图原来的样子。
北师大版小学数学五年级(上册)知识点
北师大版小学数学五年级(上册)知识点第一单元小数除法1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
3、连除的算式可以写成被除数除以几个数的积,但除以几个数的积时,必须给这个相乘的式子加上小括号。
4、在小数除法中的发现:①当除数不为0时,除数大于1时,商小于被除数。
如:3.5÷5=0.7②当除数不为0时,除数小于1时,商大于被除数。
如:3.5÷0.5=7当除数不为0时,除数等于1时,商等于被除数。
如:3.5÷1=3.55、小数除法的验算方法:①商×除数=被除数(通用) ②被除数÷商=除数6、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。
例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。
7、循环小数:A、小数部分的位数是有限的小数,叫做有限小数。
如,0.37、1.4135等。
B、小数部分的位数是无限的小数,叫做无限小数。
如5.3…7.145145…等。
C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
(如5.3… 3.12323… 5.7171…)D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。
(如5.333…的循环节是3, 4.6767…的循环节是67, 6.9258258…的循环节是258)E、用简便方法写循环小数的方法:①只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点②例如:只有一个数字循环节的,就在这个数字上面记一个小圆点,5.333…写作 5.3 ;有两位小数循环的,就在这两位数字上面,记上小圆点,7.4343…写作7.4 3 ;有三位或以上小数循环的,在首位和末位记上小数点,10.732732…写作10.7328、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。
北师大版五年级数学上册第二单元 轴对称和平移《平移》说课稿
《平移》说课稿各位领导、各位同仁:大家好!今天,我说课的内容是北师大版教科书五年级上册第二单元《轴对称和平移》第三课时《平移》。
下面,我将从以下七个方面进行说课。
一、说教材分析“图形的平移”是五年级上册的第二单元第三课时内容(教材第25—26页)内容。
本节课主要教学生在方格纸上把一个简单图形沿水平和竖直方向各平移一次,平移到指定位置。
这部分的教学内容是学生在三年级下册,学习了在方格纸上把简单的图形沿水平方向或垂直方向平移,初步体会了平移的特征的基础上,进一步探索图形的平移。
通过本课的学习,有利于学生从运动的角度加深对平面图形的认识,发展空间观念,为今后进一步探究平移知识打下基础。
鉴于以上对教材的理解和把握,结合课标要求,根据我班学生实际,特制定如下学习目标:目标1:通过观察、操作等活动,在方格纸上进一步认识图形的平移,并能总结出平移运动的特点。
目标2:学生能在方格纸上将简单图形进行平移。
学习重点:能按要求画出简单的平面图形平移后的图形;会根据平移前后的图形判断平移的方向和距离。
学习难点:如何通过数格子定点的方法画出平移后的图形。
教、学具准备:本节课的教具准备是课件。
二、说学情分析学生在三年级下册已经初步学习了将一些简单的图形沿水平方向或垂直方向平移,而本课要求学生动手在方格纸上画出平移后的图形,然后判断图形平移前后的方向和距离。
因此,对于我班的大部分学生来说,本节课的内容相对较为简单,学生学习起来也比较容易。
三、说教学模式鉴于以上学情分析及本课在数学中的地位,我确定了以教师为主导,学生为主体的课堂教学模式。
在课堂的全过程中,教师的作用是引导和点拨,所有的问题都由学生独立、合作完成。
四、说教学设计根据以上对教材的分析、对学情的分析以及对教学模式设计,本节课我设计以下几个教学环节。
环节一:导入。
我采用的是复习引入,通过复习三年级上册“平移与旋转”知识,学生对生活中的平移现象并不陌生。
为了帮助学生回忆准确的数学概念,在教学中运用多媒体直观动感的优势,先引导学生观察物体的运动,进一步建立这种运动的具体感性认识,并让学生回忆知识建构过程,再过渡到运用数学语言正确表达平移运动的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识要点
1、轴对称图形的意义
如果一个图形沿一条直线对折,直线两侧的部分能够完全重合,这个图形就是轴对称图形,这条直线就是它的对称轴。
2、平移的特点
一个图形整体沿某一直线方向移动一定的距离,这种运动现象叫做平移。
图形平移前后的形状和大小没有变化,只是位置发生变化。
3、在方格纸上平移图形的方法步骤
(1)找出原图形的关键点(如顶点或端点)
(2)按要求分别描出各关键点平移后的对应点
(3)按原图将各对应点顺次链接。
4、平移图形或物体时,可以一次平移,也可以多次平移,物体的方向都不会发生改变。
5、运用轴对称设计图案的方法
选好基本图形——画出对称轴——画基本图案的对称图形
6、运用平移设计图案的方法
选好基本图案——确定平移格数(或距离)和方向——按平移格数(或距离)和方向进行平移。