大型深基坑支护施工新技术
浅述建筑工程施工中深基坑支护施工技术
浅述建筑工程施工中深基坑支护施工技术建筑工程施工中,深基坑支护施工技术是十分重要的一个环节。
深基坑支护施工技术是指在建筑工程中,为了施工需要,在施工现场针对深基坑进行支护和保护的技术措施。
这项技术的施工质量和安全保障对整个建筑工程的顺利进行具有至关重要的作用。
下面将从施工中的主要技术措施、重点难点和施工安全等方面对深基坑支护施工技术进行浅述。
一、深基坑支护施工技术主要技术措施1.周边的支护在进行深基坑支护施工前,需要对周边的地基进行支护,以保证施工过程中周边的地基不会塌陷。
常用的周边支护措施有使用钢支撑、土钉墙、挡土墙等。
这些支护措施需要根据不同的地质条件和基坑深度进行合理的选择和设计。
2. 地下连续墙的施工地下连续墙是深基坑支护施工中比较常见的一种支护结构。
在施工中,常用的材料有混凝土和钢筋。
地下连续墙的施工过程需要严格把控钢筋的布置、浇筑的质量和密实度,以及混凝土的配比等关键技术要点。
3. 土工布的使用在深基坑支护施工中,土工布是一种常用的材料。
它可以在地基表层进行加固,以提高地基的稳定性,减小地基的塌陷风险。
土工布的施工需要对材料的选择和使用方法进行合理的设计,以满足不同地质条件下的施工需求。
1. 地质条件的复杂性深基坑支护施工技术在施工中常常面临地质条件复杂的挑战。
地质条件的复杂性会导致基坑支护结构的设计和施工难度增大,需要在施工前认真进行地质勘察和分析,以制定合理的支护措施。
2. 施工安全的保障深基坑支护施工是一项高风险的施工活动,施工中需要严格遵守安全操作规程和标准,确保施工作业人员的人身安全。
也需要对施工现场进行严格的管理和监督,排除施工中可能出现的安全隐患。
3. 施工技术的创新随着科技的不断进步,深基坑支护施工技术也在不断创新和发展。
施工单位需要及时关注新技术的应用,并进行技术改造和提升,以提高施工质量和效率。
1. 制定合理的施工方案在进行深基坑支护施工前,需要制定合理的施工方案,方案中需要包括支护结构的设计、施工工艺流程等内容。
深基坑支护新技术现状及展望
深基坑支护新技术现状及展望随着城市化进程的加速和建筑技术的不断发展,深基坑支护技术成为了工程建设中不可或缺的重要组成部分。
本文将对深基坑支护新技术的现状及展望进行探讨,旨在强调技术创新在推动深基坑支护技术发展中的重要性。
在传统深基坑支护技术方面,如钢板桩、水泥搅拌桩、地下连续墙等,虽然具有一定的支护效果,但仍然存在诸多不足之处,例如施工效率低、成本高、对周围环境影响大等。
因此,开发新型深基坑支护技术势在必行。
近年来,新型深基坑支护技术层出不穷。
其中,盾构法、帷幕法、桩板法、逆作法等具有代表性的新技术得到了广泛应用。
这些新技术的共同点在于注重环境保护、提高施工效率、降低成本等方面,取得了显著的成果。
盾构法是一种应用于地铁、隧道等工程建设中的技术,通过盾构机进行挖掘作业,具有快速、高效、安全等特点。
在深基坑支护中,盾构法能够减小对周围环境的影响,提高施工效率。
然而,盾构法也存在着对地质条件要求较高、一次性投入成本较高等不足之处。
帷幕法是通过在地基周围设置连续的帷幕,以减小地下水渗流对基坑的影响。
该方法具有较好的支护效果,但施工工艺较为复杂,成本较高。
桩板法是一种通过打设桩板来提高地基承载力的支护方法。
该方法具有施工简便、适用范围广等优点,但成本较高,对地质条件要求较高。
逆作法是一种通过在地基表面施工完成后,再开挖基坑进行地下结构施工的方法。
该方法能够减小对周围环境的影响,提高施工效率,但需要较高的技术支持。
在实际应用中,这些新技术取得了不同的效果。
盾构法在地铁建设中应用广泛,逆作法适用于城市中心等对环境要求较高的地区,帷幕法则在大型水利工程中得到了广泛应用。
同时,这些新技术也存在着不同的不足之处,需要在实际应用中加以克服。
展望未来,深基坑支护新技术的发展将更加注重环境保护、施工效率和经济性等方面。
未来研究将进一步新型支护技术的开发和应用,以提高施工效率、降低成本和减小对周围环境的影响。
随着数值模拟技术的发展,计算机辅助设计将为深基坑支护提供更为精确和可靠的技术支持。
建筑深基坑支护工程施工技术研究
建筑深基坑支护工程施工技术研究1. 引言1.1 研究背景建筑深基坑支护工程是指在城市建设中常见的一种大型地下工程,为了确保施工安全和保护周边环境,深基坑支护工程的施工技术显得尤为重要。
随着城市化进程的加快,越来越多的高层建筑和地下设施需要建造,因此深基坑支护工程的需求也在不断增加。
由于施工环境复杂、地质条件多变等因素的影响,深基坑支护工程的施工技术面临着诸多挑战。
研究背景包括了对深基坑支护工程施工技术的重要性和现状进行了分析,明确了深基坑支护工程施工技术研究的紧迫性和必要性。
通过对研究背景的分析,可以更好地认识到深基坑支护工程施工技术研究的意义和价值,为后续研究工作的开展提供了重要参考依据。
1.2 研究意义建筑深基坑支护工程施工技术研究的研究意义在于探索适合不同地质条件的深基坑支护工程施工技术,提高施工效率并保障施工安全。
深基坑支护工程是现代城市建设中不可或缺的一环,其施工质量直接关系到周边环境和市民生活质量。
通过研究深基坑支护工程施工技术,可以有效解决建筑工程中存在的难点和矛盾,提高工程施工质量和效率,减少施工延期和事故发生的可能性。
深基坑支护工程的研究也有利于推动建筑行业的发展,促进新技术的应用和推广,推动建筑行业向高质量、高效率、安全可持续发展的方向迈进。
深基坑支护工程施工技术的研究意义重大,对于提升建筑行业整体水平和城市建设质量具有重要的推动作用。
1.3 研究目的建筑深基坑支护工程施工技术研究的研究目的是为了提高深基坑支护工程施工的效率、安全性和质量。
通过深入研究基坑支护工程的施工技术,探索新的支护结构设计方案、施工工艺控制方法、安全管理措施以及监测与控制手段,从而为工程建设提供更科学、更先进的技术支持。
通过系统总结与分析现有的深基坑支护工程施工技术和经验,探讨存在的问题和挑战,并提出解决方案和改进意见,促进深基坑支护工程施工技术的创新与进步。
最终,旨在为推动建筑深基坑工程领域的发展,实现工程建设的可持续发展做出贡献。
深基坑支护施工方案(1)
深基坑支护施工方案(1)
深基坑的支护施工在城市建设中起着至关重要的作用。
深基坑的支护工程不仅涉及到土木工程、结构工程等多个学科领域的知识,还需要综合运用各种先进技术与施工经验。
本文将介绍深基坑支护的施工方案,包括支护体系的构建、支护材料的选择、监测与验收等内容。
1. 深基坑支护体系的构建
深基坑的支护体系一般由支护结构和支护材料组成。
支护结构包括支撑结构、封土墙和辅助设施等。
支护材料主要包括钢支撑、混凝土、玻璃钢、岩土等。
在施工过程中,需要根据基坑的不同地质条件和深度,采用合适的支护体系构建方案。
2. 支护材料的选择
在选择支护材料时,需要结合基坑的深度、周围环境、施工工艺等多方面因素进行考虑。
钢支撑适用于深基坑支护的主要原因在于其稳定性好,施工速度快,适用范围广等特点。
混凝土具有抗压强度高、耐久性好等特点,适合用于较大规模深基坑的支护。
岩土支护具有强度高、适应性强等特点,适用于复杂地质条件下的基坑支护。
3. 监测与验收
在深基坑支护施工过程中,需要进行支护结构的监测与验收。
监测工作主要包括支撑结构的变形监测、土体应力的监测等。
验收工作主要包括支撑结构的质量验收、支护材料的优质验收等。
综上所述,深基坑支护施工方案需要综合考虑支护体系的构建、支护材料的选择、监测与验收等方面,以确保基坑支护工程的安全与稳定。
在实际施工中,需要根据具体情况做出灵活调整,提高工程的质量和效率。
深基坑开挖施工技术创新
深基坑开挖施工技术创新深基坑开挖施工技术一直是建筑行业的重要课题之一。
随着城市建设的发展,越来越多的高层建筑、地下综合体和地铁等工程需要深基坑的开挖和支护。
本文将探讨当前深基坑开挖施工技术的发展状况以及对未来的展望。
一、深基坑开挖施工技术的发展历程自上世纪70年代后期,我国开始建造高层建筑,深基坑开挖施工技术逐渐引入。
而早期的开挖施工技术大多采用人工开挖为主,工期长、成本高且安全隐患较大。
到了90年代初,随着技术的进步,深基坑开挖机械化程度逐渐提高,人工开挖的比例逐渐减少,施工效率得到了明显提高。
二、国内外先进的深基坑开挖施工技术目前,国内外在深基坑开挖施工技术方面有许多创新和突破。
例如,在机械化开挖方面,大型挖掘机的应用使得开挖工作更加高效、快速。
同时,出现了多功能机械化开挖设备,可以进行同时进行开挖、支护和搬运工作,大大提高了施工效率。
此外,开挖施工技术方面的创新也包括无人化操作、远程监控等。
借助现代化的通信技术和传感器技术,可以实现对基坑开挖的全过程远程监控,确保施工的安全性和准确性。
三、深基坑开挖施工技术创新的挑战与机遇在深基坑开挖施工技术的创新中,仍然存在一些挑战。
首先,深基坑开挖面临的环境条件复杂,例如软土、高水位等,这些因素对施工技术的要求相对较高。
其次,施工中需要考虑到对周边建筑物和地下管线的影响,确保施工过程中的安全和稳定。
然而,深基坑开挖施工技术的创新也带来了巨大的机遇。
随着城市建设的加速推进,深基坑开挖和支护需求持续增长。
这不仅为施工企业提供了商机,也促使了技术创新的不断推进与迭代。
四、未来深基坑开挖施工技术的展望未来,随着科技的不断发展和创新,深基坑开挖施工技术将更加智能化、高效化。
一方面,人工智能、无人机等新技术的应用将使得施工过程更加自动化和智能化,提高施工效率和质量。
另一方面,新型材料和新技术的应用将增强支护结构的稳定性和耐久性。
总结深基坑开挖施工技术的创新是建筑行业发展的必然趋势。
新技术、新材料、新工艺的应用
新技术、新材料、新工艺的应用
本工程在施工过程中,主要应用了以下新技术、新材料和新工艺:
1.深基坑支护技术,本工程在基坑支护过程中将采用桩墙- 内支撑支护技术和土钉墙支护技术。
2.高强钢筋和预应力混凝土技术,本工程在钢筋工程中将采用新Ⅲ级钢筋、冷轧带肋钢筋和高效预应力混凝土技术。
3.粗直径钢筋连接技术,本工程在钢筋连接时采用锥螺纹连接技术。
4.新型模板和脚手架应用技术,本工程在模板工程时将采用竹胶板和可拆卸大模板,在脚手架工程中将采用整体爬架。
5.新型建筑防水和塑料管应用技术,本工程在防水工程将采用 PVC 卷材防水和聚氨酯涂膜防水;本工程在安装工程中将采用PVC 、PPR 等硬聚氯乙烯管材。
6.计算机应用和管理技术,本工程将 WORD、EXCEL、AUTOCAD 等应用软件广泛应用在项目管理过程中。
深基坑支护新技术现状及展望共3篇
深基坑支护新技术现状及展望共3篇深基坑支护新技术现状及展望1随着经济、城市化的发展,越来越多的高层建筑、地下工程和地下交通隧道等大型土木工程的建设,对深基坑支护技术也提出了更高的要求。
近年来,随着科学技术的不断进步,深基坑支护技术的应用和发展也呈现出了新的趋势。
一、传统支护技术目前,深基坑支护的传统方式主要有钢支撑、钻孔桩、土钉墙、混凝土结构、地下连续墙等。
钢支撑是一种常用的支护方式,具有结构稳定且适应性强的优点,但是存在着安全隐患、腐蚀易、施工难度大等缺陷。
钻孔桩是通过深钻井、灌注土工硬化材料等方式支撑,具有设计自由度大和施工便利的特点,但是成本较高,施工难度大。
土钉墙是将支撑力传递到周围土壤而不必考虑砌体墙上的加载,但是其挖土量较大,对原地基影响较大,需要进行大量的土方作业。
混凝土结构的支护方式是以框架结构为主,其强度高且施工方便,但是其成本较高。
地下连续墙是一种较新的支护方式,其结构安全性较高且施工方便,但是其成本较大。
二、新型支护技术为了解决传统支护技术存在的问题,目前新型支护技术开始逐渐应用于深基坑支护领域。
1.超高强混凝土技术超高强混凝土技术具有抗震、防火、抗渗、抗氯离子侵蚀等方面的优势,同时具有施工周期短、成本低、施工方便等一系列优势。
由于超高强混凝土的强度远高于传统混凝土,可以在保证强度的同时减少深基坑施工过程中的支撑厚度,因此相比传统混凝土结构,其施工效率也得到了大幅提升。
2.复合支护技术复合支护技术是在传统支护技术的基础上,增加了增强材料,主要包括钢纤维、碳纤维、玻璃纤维等,以增加支撑结构的强度和稳定性。
与传统的单一支护材料不同,复合支护技术可以针对具体的施工环境和设计要求,选择不同的增强材料,以实现最佳的支撑效果。
此外,复合支护技术还具有施工便利、减少挖掘量、降低成本等优点。
3.预应力锚杆技术预应力锚杆技术是通过在锚杆中施加预应力,使锚杆产生自锁的效果,提高锚杆的钻进深度和承载力,同时降低对周边土体的影响。
超深基坑三轴搅拌桩内插混凝土板桩加两层内撑支护新技术
t h e s h e e t p i l e i s a d j u s t e d a c c o r d i n g t o t h e s u p p o l f s u r f a c e f o r c e , S O a s t o m a k e t h e t h r e e a x i s m i x i n g p i l e a n d c o n c r e t e p i l e c o mb i n e d a s o n e w a t e r s e a l i n g s u p p o r t i n g . T h e i f r s t p h a s e o f t h e n o t r h s i d e o f t h e p r o j e c t a d o p t s
超深基坑三轴搅拌桩内 插混凝土板桩加两层 内 撑支护新技术
陈 钧 颐 , 李红 兵 ’ , 封 桂 泰 。 赵 春 潮 2
( 1 . 泰兴 市 第一 建筑安 装 工程 有限公 司 , 江苏 泰州 2 2 5 4 0 0: 2 . 中兴建设 有 限公 司 。 江 苏 泰 州 2 2 5 4 0 0)
间距 . 使三 轴搅拌桩 与混凝 土板桩合 为一体 支护止水 . 北侧 有一期 工程 地 下支护桩 采取钢板 桩临时 支档和 管井辅助 降 水 , 先 分层破 碎挖 除一期 工 程筏板 以上 支护桩 , 待 钢板桩 施工 完毕后 , 再跳格挖 除筏 板 以下 支护
桩. 并 及 时 用 灰 土 回 填 、内 支撑 采 用 分 区段 分 层 线 割 拆 除 与换 撑 。 关 键词 : 深 基坑 ; 三 轴 搅 拌 桩 ;预 应 力 混 凝 土 板 桩 ;环 向 内 支 撑 ; 内支 撑 线 割 拆 除 与 换 撑
大型深基坑支护施工新技术和优秀案例全面分享,值得收藏!
大型深基坑支护施工新技术和优秀案例全面分享,值得收藏!一、基坑工程技术的发展历程第一阶段:上一世纪80年代末到90年代末,研究、探索阶段。
第二阶段:新世纪初的十多年,发展阶段。
1、两个阶段的标志1)第一阶段:2000年前后基坑工程的国家行业标准和地方标准的颁布。
2)第二阶段:2009年《建筑基坑工程监测技术规范》GB5049 7)的颁布、一批相关的规范全面修订。
2、基坑工程设计理念的改变1)早期:设计往往以满足地下工程施工为主。
或以经验为主;或以理论为主。
2)现今:满足环境保护已成为设计施工的基本出发点。
理论和经验相结合。
3、基坑设计方法1)极限平衡法:卜鲁姆法、盾恩法、相当梁法等;2)弹性支点法:解决变形分析问题;3)有限元法:平面、空间;土体与结构共同作用;考虑土的弹塑性等4、对基坑稳定性的认识基坑事故主要是岩土类型的破坏形式。
整体滑动稳定性、抗隆起稳定性等在软土中尤其重视。
二、基坑工程的新型支护结构常用的基坑支护结构1)土体加固类:放坡、土钉墙、重力式水泥土墙等。
2)支挡、拉锚式围护墙:排桩、地下连续墙。
3)支锚体系:拉锚式,内支撑。
围护墙支锚体系:拉锚和锚杆1、复合土钉墙1)土钉支护结构的优点:施工方便、设备简单、经济效益显著等。
2)土钉支护结构的主要问题:适用有一定限制,仅适用于非软土场地。
土钉支护结构的主要问题1)软土地区:稳定性2)复合土钉墙:采用水泥土搅拌桩、预应力锚杆、微型桩等的一类或几类结构与土钉墙复合而成的支护结构。
3)软土地区的应用:以水泥土搅拌桩、微型桩等“超前支护”,4)解决:隔水性;土体的自立性(加大自立高度和持续时间、提高稳定性)。
5)非软土地区的应用:通过微型桩、预应力锚杆等对限制土体的位移。
预应力锚杆复合土钉墙,加大预应力可使位移减少40%~50%。
使其适应的基坑开挖深度有所增加。
复合土钉墙使开挖深度有所增加(12~15m)。
6)复合土钉墙结构设计中应注意的问题:可计入复合体的共同作用,但复合体的作用不可过高估计。
基础工程施工新技术(3篇)
第1篇一、地基处理技术1. 预压加固技术:通过在地基表面施加预压应力,使地基土体产生压缩,从而提高地基的承载力和稳定性。
该技术适用于软土地基、膨胀土地基等。
2. 碾压加固技术:利用振动、静压等方式对地基土体进行压实,提高地基的密实度和强度。
该技术适用于填土地基、砂土地基等。
3. 灌浆加固技术:将水泥浆、化学浆液等注入地基土体中,与土体反应形成凝胶体,提高地基的承载力和稳定性。
该技术适用于深层地基加固。
二、桩基础施工技术1. 混凝土预制桩施工技术:采用工厂化生产预制桩,现场快速安装,提高施工效率。
该技术适用于桩径较大、施工场地受限的工程。
2. 钻孔灌注桩施工技术:通过钻孔、清孔、灌注混凝土等工序完成桩基施工。
该技术适用于地质条件复杂、桩径较小的工程。
3. 钢筋笼焊接技术:采用自动化焊接设备进行钢筋笼焊接,提高焊接质量和效率。
该技术适用于大型、深基坑工程。
三、基坑支护技术1. 深层搅拌支护技术:通过搅拌桩将地基土体与水泥浆液混合,形成具有较高强度的土-浆混合体,用于基坑支护。
该技术适用于软土地基、膨胀土地基等。
2. 钢板桩支护技术:利用钢板桩围护基坑,形成封闭的围护结构,提高基坑的稳定性。
该技术适用于深基坑、地下水位较高的工程。
3. 地下连续墙施工技术:通过连续浇筑混凝土形成连续的墙体,用于基坑支护和隔水。
该技术适用于大型、深基坑工程。
四、施工设备技术1. 旋挖钻机:具有高效、环保、适应性强等特点,适用于各种地质条件的桩基施工。
2. 振动锤:用于深层搅拌、钢板桩施工等,提高施工效率。
3. 全地面起重机:适用于大型、深基坑工程的吊装作业。
总之,基础工程施工新技术的发展为建筑行业带来了诸多便利,提高了工程质量和施工效率。
在实际施工过程中,应根据工程特点、地质条件等因素选择合适的技术和设备,确保工程顺利进行。
同时,要不断加强技术创新,推动建筑行业持续发展。
第2篇随着我国经济的快速发展和城市化进程的加快,基础工程施工技术也在不断进步和创新。
深基坑支护
.
3
1.1.1 深基坑工程
深基坑是指开挖深度超过5m的基坑、或深度未达到5m 但地质情况和周围环境较复杂的基坑。
----------建设部《建筑工程预防坍塌事故若干规 定》
环境较复杂
.
9
③时空效应 时间效应:
基坑支护结构的变形和周边地层的变形随 时间推移而发展。
空间效应:
基坑支护结构的变形和周边地层的变形因
开挖的空间尺度、开挖后的坑底暴露面积而
不同。
.
10
“时空效应”的应用
a.经过理论分析和大量工程实践,提出
“分层、分块、对称、平衡、限时” 土方开 挖原则。
b.改变了很多常规的结构设计和施工理念, 如:混凝土结构的分段施工(施工缝的设置)、 钢筋连接接头的错位要求等。
→ 优化的解析法(仍只能求解力,无法计算变形)
→ 弹性基床系数法(解决了力和变形的计算问题)
→ 平面有限元法(解决了土和结构的共同工作)
→ 空间有限元法(解决了结构的空间作用)
考虑土的弹塑性的分析(更准确地反映土体的变形)
→ 基坑工程监测和反分析(实现信息化设计和施工)
→ 基坑工程的风险分析和设计(实现预测和预控)
③ 特点
施工不扰动邻近土体,不会产生邻近地面下沉、 道路裂损及地下设施移位等危害。
止水好,强度可靠,适合于各种土层
所需工期较其他工法短。在一般地质条件下, 为地下连续墙的三分之一。
.
35
(4) 组合式挡墙 2)灌注桩与水泥土桩结合
适用范围: 软弱地层, 挖深≤12m
.
施工新技术课件 6.《深基坑支护技术》二.设计
当 pak 0 时,应取 pak 0
0
ak
K a,i
tan2 45o
i
2
K p,i
tan2 45o
i
2
二、支护结构的设计
0
(一)支护结构的荷载
1、土压力
1)水土合算的土层
ak
第i层土中计算点:
土中竖向应力标准值:
pk
ak ac k, j
(3.4.2-5)
ppk (σpk up )Kp,i 2ci K p,i up (3.4.2-6)
ua、up ——分别为支护结构外侧、内侧计算点的水压力
二、支护结构的设计
0
(一)支护结构的荷载
2、水压力
静止地下水的水压力: ak
ua w hwa
pk
up w hwp
w ——地下水重度(取10 kN/m3);
控制条件不符合时,应增加挡土构件的嵌固长度,或取Psk = Epk时的分布土反力。(即土反力上限不应超过土的被动土压力)
二、支护结构的设计
(二)支挡式结构分析
2、支挡式结构的受力计算 2)支点反力(Fh)的确定:
Fh = kR (vR- vR0 ) + Ph (4.1.8)
d
ak a h
.
s0
Fh——挡土结构计算宽度内的弹性支点水平反力(kN);
b0 = 0.9(1.5d + 0.5) (桩径d≤1m)
b0 = 0.9(d + 1)
(桩径d>1m)
当:b0>排桩间距时,取b0 =排桩间距。
二、支护结构的设计
(二)支挡式结构分析
深基坑支护新技术现状及展望
深基坑支护新技术现状及展望摘要:在时代的发展进程中,为了提高土地的利用率,城市规划建设中加强了地下空间的设计和施工,相较于传统的工程建设,深基坑规模扩大的同时,它的深度等参数也有着一定的提升,与此同时,支护结构在深基坑中的应用也愈发需要技术创新和发展,以进一步适应深基坑的规模和深度,确保施工中的安全性和稳定性。
深基坑支护新技术是在原有的技术上进行优化的,根据深基坑的实际情况采取更具技术优势的支护体系,做到支护新技术与深基坑的有效融合。
本篇文章通过对深基坑的主要支护体系进行阐述,分析深基坑支护新技术的应用要点,并且就深基坑支护新技术的现状问题进行说明,从而探讨深基坑支护新技术的未来发展。
关键词:深基坑;支护新技术;未来发展;引言深基坑工程是当前建筑施工的重要组成部分,尤其是对于带有地下室或者地下商场的建筑来说,对于基坑的安全性有着较高的要求,通过对相关案例的分析来看,深基坑坍塌等问题较为严重,而且与工程的连续性息息相关,需要采取合理的支护结构,为它的土方开挖以及地基处理等工作提供相应的保障。
深基坑支护具有一定的综合性,它属于临时支护体系,需要根据深基坑的具体参数进行设计,同时考虑到水文地质等方面的影响。
在深基坑支护新技术的应用中,需要对它的步骤以及实际情况进行了解,避免对主体结构等方面的破坏,有关人员可以就此进行具体的研究。
1、深基坑支护中的主要结构1.1钢桩支护结构钢桩支护结构是当前深基坑施工中采取的主要方式,它可以分为工字钢桩和钢板桩两种方式。
首先,工字钢桩支护结构在应用中具有较强的稳定性,它主要是采用大型的工字钢作为支护架设的原材料,按照预先的尺寸要求将其沿着设计边线打入到地下,根据深基坑的技术要求对钢桩的间距进行设置,也可以采用打桩机的方式确保深度的有效性。
在工字钢桩支护体系结构的施工建设中,需要注意它的整体强度,由于它的施工噪声较大,有关人员需要注意施工工序上的设计,同时根据深基坑的特点设置锚杆以及腰梁。
深基坑支护施工方案
深基坑支护施工方案一、工程概况本工程是一座深基坑支护工程,用于建设一个地下商业综合体。
基坑深度为20m,面积为1000平方米。
二、地质勘察根据地质勘察报告显示,该基坑区域地质条件较为复杂,地下水位较高,存在一定的地下水渗流。
地质层次上主要包括上部松散层和下部硬岩层。
三、基坑支护方案1.削土与侧墙支护为保证施工的安全性和稳定性,首先需要进行削土,将基坑周围的土方削除,以减轻支护结构负荷。
削土深度为基坑深度的1.5倍。
在削土的同时,需要进行侧墙支护。
由于地下水位较高,我们将采用粉土搅拌桩+钢板桩的组合形式进行侧墙支护。
钢板桩的长度根据地下水位和土壤条件确定,一般为12~15m。
搅拌桩的直径为600mm,桩间距为800mm。
2.地下排水系统为控制基坑内的地下水位,需要设置地下排水系统。
我们将设置水平排水带和垂直排水井。
水平排水带可采用高效突水泵进行抽水。
排水带设置在基坑周边,与钢板桩顶部平行,深度为削土深度的1.2倍。
垂直排水井设置在基坑内,井深为基坑深度的1.5~2倍。
井内安装抽水泵,以控制基坑内的地下水位。
3.支护结构基坑支护结构将采用钢支撑+预应力锚杆的组合形式。
钢支撑将设置在侧墙顶部,以提供水平支撑和抵抗土压力。
支撑材料为钢板,厚度为10mm,长度为基坑宽度的1.2倍。
预应力锚杆将设置在侧墙底部和底板部分,以提供纵向支撑和抵抗下沉力。
锚杆直径为32mm,间距为1.5m。
四、施工组织1.措施为确保施工的顺利进行,需要采取以下措施:(1)地下水排泄及处理措施:在地下水位较高且渗流较大的区域,采用高效突水泵进行排水,同时对排出的水进行处理。
(2)安全防护措施:为保护施工人员和周边环境的安全,需要设置防护网和警示标志。
2.施工步骤(1)基坑削土:按设计要求进行削土,同时进行侧墙支护的施工。
(2)地下排水系统施工:先施工水平排水带,再施工垂直排水井。
(3)支护结构施工:先施工钢支撑,再施工预应力锚杆。
3.施工进度根据施工的实际情况,计划总工期为60天。
深基坑支护施工方案(5)
深基坑支护施工方案(5)深基坑工程是城市建设中常见的一项工程,通常用于地下车库、地铁站等建筑物的施工。
深基坑在执行过程中,需要进行支护工作以确保施工过程中的安全性和稳定性。
本文将针对深基坑支护施工方案进行探讨。
1. 地质勘察与分析在进行深基坑支护工程前,必须对场地的地质情况进行详细勘察与分析。
在得到相关数据后,需结合设计要求及技术要求,确定支护设施的类型和施工方案。
2. 支护结构设计根据地质勘察的结果,制定适当的支护结构设计方案。
支护结构主要包括土方支撑结构和混凝土支撑结构,根据实际情况选择合适的支护方式。
3. 施工工艺流程3.1 地面支撑首先进行地面支撑,根据设计要求采用合适的支撑方式。
常见的地面支撑方式包括预应力锚杆支护、钢支撑支护等。
3.2 桩基施工根据设计方案进行桩基施工,确保桩基的合理布置和质量。
3.3 基坑开挖进行基坑开挖时,要采取合理的开挖方式,确保基坑开挖过程中的安全性和稳定性。
3.4 支护结构施工根据设计方案进行支护结构施工,保证支护结构的稳定性和承载能力。
4. 施工中的风险控制在深基坑支护施工过程中,存在各种风险,如地质灾害、施工安全事故等。
必须严格按照设计方案执行,配合相关监测设备对施工过程进行实时监控,及时发现并处理潜在的安全隐患。
5. 施工质量验收在支护工程完成后,需要进行施工质量验收。
验收内容包括支护结构的稳定性、承载能力等方面,确保支护工程的质量符合相关标准要求。
通过以上深基坑支护施工方案的介绍,可以看出在进行深基坑支护施工时,地质勘察、支护结构设计、施工工艺流程、风险控制以及施工质量验收等环节都至关重要,只有严格按照规范要求进行施工,才能确保支护工程的安全、稳定和质量。
超深基坑承压水层支护结构施工工法
超深基坑承压水层支护结构施工工法
基坑防水是指采取一系列防水措施,避免地下水渗入基坑。
常见的防
水方法包括:选用高质量的防水材料,如聚氯乙烯薄膜、高分子防水涂料等;采用土工合成材料进行土壤防水;设置排水系统,包括排水沟、排水
孔等;采用地下连续墙结构进行一次性防水等。
基坑降水是指在基坑施工中,需要将地下水抽出,降低地下水位。
基
坑降水主要包括临时抽水和永久降水两种方法。
临时抽水常用的方法有:
井点降水法、井壁式降水法和井干式降水法等。
永久降水一般采用的方法有:抽水井、井干和水密封法等。
基坑加固是指在基坑施工前,对周边的建筑物和地下构筑物进行加固,确保施工安全。
常用的基坑加固方法包括:钢筋混凝土桩、预应力锚索、
土钉墙、喷射混凝土墙等。
支护结构是指在基坑施工过程中,设置支撑结构,支撑周边土层和降
低地下水的压力,避免基坑倒塌。
常见的支护结构有:悬挂式支护、撑拱
式支护、切土桩支护、拱形支护、桩-土拱联合支护等。
施工工法的选择要根据具体的基坑条件和施工要求而定。
在实际施工中,需要进行现场勘探和结构设计,选择适合的施工工法,并进行相应的
安全措施,确保施工的安全性和可靠性。
三项基坑支护新技术综述
2 0 1 7年 3月
低 温 建 筑 技 术
L O W T E MP E R A T U R E A R C H I T E C T U R E E C T HN O L OG Y 9 7
DO I : 1 0 . 1 3 9 0 5 / j . c n k i . d w j z . 2 0 1 7 w i l l b e t o o l o n g .T h e j e t g r o u i t n g m i x i n g s t i f f e n i n g p i l e c a n b e u s e d t o s o l v e t h e a n c h o r i n g f o r c e
Ab s t r a c t : I n r e c e n t y e a r s,mo r e a n d mo r e n e w t e c h n i q u e s i n f o u n d a t i o n e x c a v a t i o n s u p p o t r s p r i n g
三 项 基 坑 支 护新 技术 综 述
朱 明星
( 华南理工大学土木 与交通学院 . 广州 5 1 0 6 4 1 )
【 摘
要 】着重介绍 3 项基坑支护新技术 , 即装 配式预应 力鱼腹 梁钢支撑 系统 、 旋喷搅 拌加劲 桩锚 固技术 和
等厚度水泥土搅拌墙技术 。装配式预应力鱼腹 梁钢 支撑技术是 针对 大跨度基 坑 , 若 采用传 统钢支撑 其长 度会过 长的缺陷而提出的 ; 旋 喷搅 拌加劲桩 锚固技术是 针对 锚杆在 软弱土层 中锚 固力不足 的问题而提 出的 ; 等厚 度水泥 土搅拌墙技术是 由常规水泥土搅拌桩发展而来 的一项 新型截 水帷幕 技术 , 可用 于解 决嵌 岩隔水 问题和超 深基坑 ( 3 0— 6 0 m) 的地 下水控制 问题 。
超长线性深基坑绿色装配式支护技术应用
超长线性深基坑绿色装配式支护技术应用济南市城乡规划编制研究中心山东济南250000摘要:在深基坑施工过程中,传统土钉墙是目前应用非常广泛的边坡支护技术。
传统土钉墙是在边坡上施作土钉加固土体以及为坡面提供水平抗力,并在边坡坡面上挂钢筋网喷射混凝土以达到稳定坡面的目的。
笔者结合工程经验,总结了深基坑支护技术的优劣,并指出组合型基坑支护具有较好的发展前景。
结合以往工程经验进行了综合研究,最终决定采用一种绿色装配式深基坑支护GRF 系统,并对该支护系统采用有限元法进行分析,给出了参考设计方法。
计算及实用结果表明,该支护系统对复杂地质条件适应强,施工方便快捷,而且具有绿色环保、可回收等优点。
关键词:超长线结构;深基坑支护随着中国经济的增长、科技的进步、城市化进程的加速,对地下空间资源的开发利用及改造已成为社会发展的重要战略之一。
地下空间开发的规模越来越大,对深基坑支护技术的要求也越来越高,基坑不断向“深大近”方向发展已成为必然趋势。
为了保证复杂环境下基坑施工、主体地下结构和基坑周边环境的安全,践行绿色环保施工、建设生态文明社会的发展理念,对基坑侧壁、周边土体、周围环境的支挡、加固及保护措施的要求就越来越高,为此,深基坑开挖与支护引起了各方面的广泛重视,新的技术、方法、工艺也随之不断涌现。
一、深基坑支护新技术发展深基坑支护技术在岩土工程领域是一个实践性很强而又富有变化的课题,近些年来随着建设规模的扩大和地下空间资源的改造、利用,深基坑支护技术在原有的基础上有了很大的发展和突破,并在工程实践中得以广泛应用。
1、复合土钉墙。
复合土钉支护技术可根据土层特性、基坑深度、周边条件的限制以及工程需要进行灵活的有机结合,适用范围较广,方便设计施工,可大大缩短建设工期,降低工程造价。
随着材料和技术的不断更新,及其在冻土、湿陷性黄土、膨胀土、盐渍土等特殊土地区的应用研究,复合土钉墙在中国建筑工程领域具有良好的发展前景,必将在工程中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大型深基坑支护施工新技术一、基坑工程技术的发展历程第一阶段:上一世纪80年代末到90年代末,研究、探索阶段。
第二阶段:新世纪初的十多年,发展阶段。
1、两个阶段的标志1)第一阶段:2000年前后基坑工程的国家行业标准和地方标准的颁布。
2)第二阶段:2009年《建筑基坑工程监测技术规范》GB50497)的颁布、一批相关的规范全面修订。
2、基坑工程设计理念的改变1)早期:设计往往以满足地下工程施工为主。
或以经验为主;或以理论为主。
2)现今:满足环境保护已成为设计施工的基本出发点。
理论和经验相结合。
3、基坑设计方法1)极限平衡法:卜鲁姆法、盾恩法、相当梁法等;2)弹性支点法:解决变形分析问题;3)有限元法:平面、空间;土体与结构共同作用;考虑土的弹塑性等4、对基坑稳定性的认识基坑事故主要是岩土类型的破坏形式。
整体滑动稳定性、抗隆起稳定性等在软土中尤其重视。
二、基坑工程的新型支护结构常用的基坑支护结构1)土体加固类:放坡、土钉墙、重力式水泥土墙等。
2)支挡、拉锚式围护墙:排桩、地下连续墙。
3)支锚体系:拉锚式,内支撑。
围护墙支锚体系:拉锚和锚杆1、复合土钉墙1)土钉支护结构的优点:施工方便、设备简单、经济效益显著等。
2)土钉支护结构的主要问题:适用有一定限制,仅适用于非软土场地。
土钉支护结构的主要问题1)软土地区:稳定性2)复合土钉墙:采用水泥土搅拌桩、预应力锚杆、微型桩等的一类或几类结构与土钉墙复合而成的支护结构。
3)软土地区的应用:以水泥土搅拌桩、微型桩等“超前支护”,4)解决:隔水性;土体的自立性(加大自立高度和持续时间、提高稳定性)。
5)非软土地区的应用:通过微型桩、预应力锚杆等对限制土体的位移。
预应力锚杆复合土钉墙,加大预应力可使位移减少40%~50%。
使其适应的基坑开挖深度有所增加。
复合土钉墙使开挖深度有所增加(12~15m)。
6)复合土钉墙结构设计中应注意的问题:可计入复合体的共同作用,但复合体的作用不可过高估计。
7)原位土层、土钉对结构稳定性的贡献:应占有主要的份额。
2、双排桩结构双排桩结构:由前、后两排支护桩和梁连接成的刚架及冠梁组成的支挡式结构。
双排桩结构的特点1)结构:有较大的侧向刚度,无需支撑或拉锚2)施工:适应性广、工艺简单、与土方开挖无交叉作业、施工工期短等。
双排桩的设计嵌固稳定性验算:以结构前后排桩与桩间土的整体分析,但嵌固段被动土的抗力作用在总抵抗力矩中占主要部分。
刚架结构受力分析1)前、后排桩的受力前排受压;后排受拉,并引起前、后排桩竖向位移和桩身弯矩。
2)前、后排桩之间土体:考虑其的反力与变形关系(桩间土看作水平向单向压缩体,按压缩模量确定刚度系数)考虑开挖后应力释放引起的初始压力(按桩间土自重占滑动体自重的比值确定)3)桩顶梁3、型钢水泥土搅拌墙1)型钢水泥土搅拌墙:由水泥土墙和内插的型钢组成的复合支护结构。
2)特点:支护性能好、造价低、环保(型钢可回收)等。
我国于2010年颁布了《型钢水泥土搅拌墙技术规程》JGJ/T199 ,标志了该技术已较为成熟。
型钢和水泥土作用1)型钢:作为挡土结构。
2)水泥土:作为截水帷幕。
型钢水泥土搅拌墙的工作特性1)墙体变位较小时:水泥土对提高墙体的刚度有相当贡献。
2)墙体的抗弯承载力验算:不应考虑水泥土的作用。
3)型钢间水泥土的受剪:包括型钢间水泥土的错动受剪和最弱截面处的局部受剪。
4)型钢水泥土搅拌墙的桩身强度是目前工程中矛盾比较集中的问题。
5)设计要求:一般强度为1.0MPa左右,甚至更高。
6)实际情况:往往难以达到设计要求。
7)取芯检测:28d强度值一般在0.4MPa左右。
如何确定水泥土搅拌墙的桩身强度?1)工程实际:鲜有因强度较低而造成破坏的事例;2)理论分析:要求水泥土28d抗压强度为0.5MPa左右;3)规范建议:采用不小于0.5MPa较为适宜。
三、深基坑工程施工新设备和新工艺施工中新设备和新工艺:地下连续墙、混凝土咬合桩排桩、超深多轴水泥土搅拌桩(SMW工法)、水泥土搅拌连续墙(TRD工法)、超大型环形支撑体系、十字钢支撑双向复加预应力技术、混凝土支撑的绳(链)锯切割法、锚杆的回收技术等。
1、地下连续墙成槽机械和工艺常用的成槽机械铣削式成槽机——最大成槽深度可达150m,墙体厚度可达2.5m。
槽壁稳定粉土、粉砂土等易坍塌土层的技术措施:①“夹心”地下连续墙(水泥土搅拌桩保护槽壁);②改良泥浆性能。
2、灌注桩施工新技术旋挖钻孔灌注桩1)旋挖成孔:通过桶状斗式钻头回转切削土体。
2)装土外运:直接将土装入钻斗,提升卸土。
3)泥浆护壁:易坍塌土层——采用静态泥浆护壁泥浆排量仅传统工艺的1/4~1/5)。
4)不易坍塌土层:可采用干式或清水钻进工艺(无需泥浆护壁)。
钻孔咬合灌注桩由间隔布置的混凝土素桩和配筋桩相互咬合,形成的“桩墙”。
1)咬合方法:旋挖钻机成孔、冲抓钻成孔、全套管成孔等。
2)性能:与间隔式灌注桩排桩相比:截水性能良好、不需附加的截水帷幕。
与地下连续墙相比:功能基本相同,但施工简便、造价低廉。
素桩和配筋桩1)素桩的混凝土:(超缓凝)初凝时间不小于40~70h;3d强度不大于3MPa;8d强度不小于C15。
2)配筋灌注桩:素桩混凝土初凝阶段施工,咬合素桩。
全套管成孔1)适用:除用于咬合桩外,还可用于:淤泥、流砂、地下水富集等。
2)不良地层;城市建筑物密集或有地下障碍的地区。
3、型钢水泥土搅拌墙施工工艺多轴柱列式水泥土搅拌墙:SMW工法(Soil Mixing Wall)1)搅拌桩施工机械:三轴(四轴或五轴)搅拌桩机械;桩径650~1000mm,最大深度可达60m。
2)型钢拔出机械:液压式拔桩机3)关于水泥土水灰比的讨论:我国规范建议水泥掺量高达20%左右;水灰比为1.5~2.0,砂砾土中为1.2~2.0。
高水灰比的不必要性:对水泥土强度并无益处;大量原土被置换,施工中难以实现(实际施工中往往出现涌土时便停止注浆);置换排出的土为水泥含量较高的废土,造成污染。
基于水泥土强度0.5MPa可满足要求的前提1)建议:水泥掺量取15%~18%;水灰比取0.8~1.0。
改用震动插入型钢的方法。
2)日本有关资料:水泥掺量15%左右,水灰比0.8~1.0之间。
型钢插入型钢插入时间1)规范规定:水泥土搅拌后30min内插入;2)工程经验;水泥土搅拌后1~2h内插入,并无影响。
3)振动插入对型钢与水泥土的粘结力的影响:在搅拌桩施工后1~2h内(水泥初凝前),振动插入型钢不会影响粘结力。
水泥土搅拌连续墙日本称TRD工法(Trench Cutting Re-mixing Deep Wall)特点:与多轴柱列式水泥土搅拌墙相比:成墙连续;表面平整;深度大。
搅拌连续墙施工机械1)成墙:采用链锯式搅拌刀具。
2)成墙深:刀具用销栓连接,深度可达数十米。
3)高度小:整体高低仅10m左右。
4)施工工艺:主机所带的链锯式搅拌刀具沉入地基土中并沿刀架移动,作往复运动,并在深度方向灌入水泥浆液,与土体搅拌、混合成墙。
四、逆作法和利用“时空效应”的开挖技术1、地下结构的逆作法建造1)逆作法:地下工程由上向下施工的方法。
2)特别适用:超深地下结构、环境保护要求高。
3)优点:①以主体结构作为“支撑”,刚度大,基坑变形较小;②无需支撑,大大节约资源、降低能耗;③可实现上、下结构同步施工,不同程度缩短工期;④地下结构顶板较早形成,施工现场布置方便。
逆作的几种方法1)上下结构是否同步施工2)平面区域是否全部逆作施工3)顶板以下结构是否采用逆作4)围护结构是否兼作主体结构外墙逆作法的土方开挖2、软土地区利用“时空效应”的开挖技术1)软土地区土的特点:含水率高、强度低,在开挖时有很大的流变性。
开挖易引起基坑过大变形,甚至危及周边环境。
2)基坑工程的“时空效应”:基坑支护结构的变形和周边地层的变形:随时间推移而发展;因开挖的空间尺度、坑底暴露面积而不同。
这在软土地基的条件下尤为突出。
3)利用“时空效应”的开挖技术:“分层、分块、对称、平衡、限时”。
超大深基坑中,分块开挖是最基本的措施。
1)分块开挖典型方式之一:超长线性基坑采用分段分层开挖方法,及时设置支撑、施工垫层。
在前区段的基础底板完成后进行后续区段的开挖。
形成线性的流水作业。
2)分块开挖典型方式之二:无内支撑的大面积基坑利用后浇带进行分块施工,在前一区块基础底板施工完成后进行后一区块的土方开挖。
各块之间可采用跳仓施工法以加快进度。
3)分块开挖典型方式之三:大面积采用内支撑的深基坑采用分层盆式开挖或分层岛式开挖的方式。
分层盆式开挖示例分层盆式开挖示例——竖向分层盆式开挖[标签:标题]分层盆式开挖示例——平面分块开挖五、结语1、我国基坑工程的新技术、新工艺、新设备不断涌现。
2、地下工程规模将向大面积、超深度方向发展:需要基坑工程技术的不断提升和创新。
3、基坑工程地域性、复杂性、综合性和不可预见性的特点:需要在设计与施工中给予加倍重视和精心。
页脚内容31。