(完整版)第七章机器学习
《机器学习》ppt课件完整版
软间隔与正则化
为了处理噪声和异常值, 可以引入软间隔,并通过 正则化参数来平衡间隔最 大化和误分类点的惩罚。
决策树与随机森林
决策树 一种易于理解和实现的分类与回归算法, 通过递归地划分特征空间来构建树形结
构。
随机森林
一种集成学习方法,通过构建多棵决 策树并结合它们的输出来提高模型的
泛化性能。
剪枝
为了避免决策树过拟合,可以采用剪 枝技术来简化树结构,包括预剪枝和 后剪枝。
特征重要性
随机森林可以计算每个特征的重要性 得分,用于特征选择和解释模型。
集成学习方法
Bagging
通过自助采样法(bootstrap sampling)生成多个数据集,然 后对每个数据集训练一个基学习 器,最后将所有基学习器的输出 结合起来。
Boosting
一种迭代式的集成学习方法,每 一轮训练都更加关注前一轮被错 误分类的样本,通过加权调整样 本权重来训练新的基学习器。
01
RNN基本原理
解释RNN的基本结构和工作原理, 包括输入、隐藏状态和输出等。
03
序列到序列模型
阐述序列到序列模型在机器翻译、 语音识别等领域的应用。
02
LSTM与GRU
介绍长短时记忆网络(LSTM)和 门控循环单元(GRU)等RNN改进
模型的结构和原理。
04
注意力机制
介绍注意力机制在RNN中的应用, 提高模型对关键信息的关注度。
正则化 为了解决过拟合问题,可以在损失函数中加入正则化项, 如L1正则化(Lasso回归)和L2正则化(Ridge回归)。
支持向量机(SVM)
01
02
03
二分类问题
SVM最初是为二分类问题 设计的,通过寻找一个超 平面来最大化正负样本之 间的间隔。
第七章 机器学习
(2)机器学习:使计算机能模拟人的学习行为,自动地 通过学习获取知识和技能,不断改善性能,实现自 我完善。机器学习的研究围绕三个方面: ①学习机理的研究:对人类学习机制的研究,即人类 获取知识、技能和抽象概念的天赋能力 ②学习方法的研究:研究人类的学习过程,探索各种 可能的学习方法,建立起独立于具体应用领域的学 习算法 ③面向任务的研究:根据特定任务的要求,建立相应 的学习系统 2 学习系统:是能够在一定程度上实现机器学习的系 统,一个学习系统应具有如下条件和能力: (1)具有适当的学习环境 环境:学习系统进行学习时的信息来源
例 2 花色 (C1, 红桃 ) 花色 (C2, 红桃 ) 花色 (C3, 红桃)花色(C4,红桃)→同花(C1,C2,C3,C4) 规则1:花色(C1,x)花色(C2,x)花色(C3,x)花 色(C4,x)→同花(C1,C2,C3,C4) • 舍弃条件:舍去某些无关子条件 花色(C1,红桃)点数(C1,2) 花色(C2,红桃)点数(C2,4) 花色(C3,红桃)点数(C3,6) 花色(C4,红桃)点数(C4,8) →同花(C1,C2,C3,C4) ∵点数与同花无关,点数舍去,红桃用x代替。 如同规则1
(3)类比归纳 设A,B分别是两类事物的集合 A={a1,a2…} B={b1,b2…} 并设ai,bi总是成对出现的,且当ai有属性P时, bi就有属性Q与之对应,即 P(ai)→Q(bi) i=1,2,3.. 若A,B有一对新元素a’,b’时,由P(a’)→Q(b’)
(4) 逆推理归纳:是一种由结论成立而推出前提以某 种置信度成立的归纳方法,这种方法的模式为 • 若H为真,则H→E必为真,或以置信度cf1成立 • 观察到E成立或以置信度cf2成立 • 则H以某种置信度cf成立 H→E cf1 P(E/H) E cf2 H cf E→H cf’1可按Bayes公式算出 cf’1=P(H/E)=P(E/H)*P(H)/P(E)=cf1*P(H)/P(E) =cf1*cf/cf2 ∴cf=cf1’*cf2/cf1
机器学习课件ppt
逻辑回归通过将输入变量映射到概率 值来工作,然后使用阈值将概率值转 换为二进制类别。它通常用于二元分 类问题,如点击率猜测或敲诈检测。
决策树
总结词
决策树是一种监督学习算法,它通过树形结构进行决策和分 类。
详细描写
决策树通过递归地将数据集划分为更小的子集来工作,直到 到达终止条件。每个内部节点表示一个特征的测试,每个分 支表示测试的一个结果,每个叶节点表示一个类标签。
深度学习的应用场景包括图像 辨认、语音辨认、自然语言处 理和推举系统等。
强化学习
01
强化学习是机器学习的一个分支 ,通过让智能体与环境交互来学 习最优的行为策略。
02
强化学习的特点是基于环境的反 馈来不断优化行为,以到达最终
的目标。
常见的强化学习算法包括Qlearning、SARSA和Deep Qnetwork等。
计算机视觉
机器学习在计算机视觉领域的应用包 括图像分类、目标检测、人脸辨认等 。
推举系统
机器学习在推举系统中的应用是通过 分析用户行为和偏好来推举相关的内 容或产品。
语音助手
机器学习在语音助手中的应用是通过 语音辨认和自然语言处理技术来理解 用户意图并作出相应回应。
02
机器学习基础
线性回归
总结词
线性回归是一种通过拟合数据点来猜测连续值的算法。
详细描写
线性回归通过找到最佳拟合直线来猜测因变量的值,该直线基于自变量和因变 量之间的关系。它使用最小二乘法来拟合数据,并输出一个线性方程,可以用 来进行猜测。
逻辑回归
总结词
逻辑回归是一种用于分类问题的算法 ,它将连续的输入变量转换为二进制 的输出变量。
数据清洗
去除特殊值、缺失值和重复数据,确保数据质量。
机器学习精选ppt精选全文
人工神经网络
1 生物神经元及人工神经元的组成2 人工神经网络的模型 2 .1 人工神经元的模型 2 .2 常用的激活转移函数 2 .3 MP模型神经元
1、生物神经元及人工神经元的组成
神经元也称神经细胞,它是生物神经系统的最基本单元,它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突,见图5(a)。
5
监督学习
决策树(简单问题)人工神经网络(大量样本)支持向量机(小样本)
决策树学习
决策树学习 1.什么是决策树 决策树(decision tree)也称判定树,它是由对象的若干属性、属性值和有关决策组成的一棵树。其中的节点为属性(一般为语言变量),分枝为相应的属性值(一般为语言值)。从同一节点出发的各个分枝之间是逻辑“或”关系;根节点为对象的某一个属性;从根节点到每一个叶子节点的所有节点和边,按顺序串连成一条分枝路径,位于同一条分枝路径上的各个“属性-值”对之间是逻辑“与”关系,叶子节点为这个与关系的对应结果,即决策。例如图1就是一棵决策树。其中,A, B, C代表属性,ai, bj, ck代表属性值,dl代表对应的决策。处于同一层的属性(如图中的B, C)可能相同,也可能不相同,所有叶子节点(如图中的dl ,l=1,2,…, 6)所表示的决策中也可能有相同者。
由图1不难看出,一棵决策树上从根节点到每一个叶子节点的分枝路径上的诸“属性-值”对和对应叶子节点的决策,刚好就构成一个产生式规则:诸“属性-值”对的合取构成规则的前提,叶子节点的决策就是规则的结论。例如,图1中从根节点A到叶子节点d2的这一条分枝路径就构成规则:(A= a1)∧(B = b2) => d2而不同分枝路径所表示的规则之间为析取关系。
人工智能机器学习ppt课件
人类的未来生活和工作,还将有机器人参与。机器人的自主学 习,更离不开人脸识别技术。
2015年3月16日,马云在德国参加活动时,为嘉宾演示了一项 “Smile to Pay”的扫脸技术。在网购后的支付认证阶段,通过 扫脸取代传统的密码,实现“刷脸支付”。
机器学习的基本概念
❖ 机器学习的两大学派
✓ 机器学习:人工智能的重要分支 构造具有学习能力的智能系统 知识、推理、学习 手段:统计,逻辑,代数……
阿法狗的核心技术还包括策略网络的训练和蒙 特卡洛树搜索。
内容提要
第七章:机器学习系统 1.机器学习的基本概念 2.机器学习策略与基本结构 3.归纳学习 4.类比学习 5.解释学习 6.神经网络学习 7.知识发现 8.其他
机器学习是人工智能的核心,通过使机器模
拟人类学习行为,智能化地从过去的经历中获 得经验,从而改善其整体性能,重组内在知识 结构,并对未知事件进行准确的推断。机器学 习在科学和工程诸多领域都有着非常广泛的应 用,例如金融分析、数据挖掘、生物信息学、 医学诊断等。生活中常见的一些智能系统也广 泛使用机器学习算法,例如电子商务、手写输 入、邮件过滤等。
归纳学习
❖归纳学习(Induction Learning)
✓ 归纳学习是目前研究得最多的学习方法,其学习目的 是为了获得新概念、构造新规则或发现新理论。
✓ 根据归纳学习有无教师指导,可把它分为 示例学习:给学习者提供某一概念的一组正例和反 例,学习者归纳出一个总的概念描述(规则),并 使这个描述适合于所有的正例,排除所有的反例。 观察发现学习:
✓ 统计机器学习 从大量样本出发,运用统计方法,发现统计规律 有监督学习、无监督学习、半监督学习 问题:分类,聚类,回归
机器学习的基本概念
机器学习(完整版课件)
• 聚类模型评估指标:轮廓系数、CalinskiHarabasz指数等。
模型评估与选择
交叉验证
通过多次划分训练集和验证集来评估模型的性 能。
网格搜索
对不同的超参数组合进行穷举搜索,以找到最 优的模型参数。
随机搜索
在指定的超参数范围内进行随机采样,以找到较好的模型参数。
03
监督学习
线性回归与逻辑回归
励。
马尔可夫决策过程
强化学习任务通常建模为马尔可夫 决策过程(MDP),包括状态、 动作、转移概率和奖励等要素。
值函数与策略函数
强化学习通过估计值函数(状态值 函数或动作值函数)来评估不同行 为的好坏,并根据策略函数来选择 动作。
Q-learning与Sarsa算法
01
Q-learning算法
Q-learning是一种基于值迭代的强化学习算法,通过不断更新Q值表来
线性回归
一种通过最小化预测值与真实值之间的均方误差来拟合数据 的统计方法。它假设因变量和自变量之间存在线性关系,并 通过梯度下降等优化算法求解模型参数。
逻辑回归
一种用于解决二分类问题的广义线性模型。它使用sigmoid 函数将线性回归的输出映射到[0,1]区间,表示样本属于正类 的概率。逻辑回归通过最大似然估计求解模型参数,并使用 交叉熵作为损失函数。
• 嵌入法:在模型训练过程中进行特征选择。
特征选择与特征提取
根据领域知识提取有效特 征。
自定义特征提取
卷积神经网络等。
图像特征提取
词袋模型、TF-IDF等。
文本特征提取
模型评估与选择
分类模型评估指标
准确率、精确率、召回率、F1分数等 。
回归模型评估指标
均方误差、均方根误差、平均绝对误 差等。
机器学习原理及应用练习题答案
第一章机器学习概述1.机器学习研究什么问题,构建一个完整的机器学习算法需要哪些要素?机器学习主要研究如何选择统计学习模型,从大量已有数据中学习特定经验。
构建一个完整的机器学习算法需要三个方面的要素,分别是数据,模型,性能度量准则。
2.可以生成新数据的模型是什么,请举出几个例子可以生成新数据的模型是生成模型,典型的生成模型有朴素贝叶斯分类器、高斯混合模型、隐马尔可夫模型、生成对抗网络等。
3.监督学习、半监督学习和无监督学习是什么,降维和聚类属于哪一种?监督学习是指样本集合中包含标签的机器学习,无监督学习是无标签的机器学习,而半监督学习介于二者之间。
降维和聚类是无监督学习。
4.过拟合和欠拟合会导致什么后果,应该怎样避免?过拟合导致模型泛化能力弱,发生明显的预测错误,往往是由于数据量太少或模型太复杂导致,通过增加训练数据量,对模型进行裁剪,正则化的方式来缓解。
而欠拟合则会导致模型不能对数据进行很好地拟合,通常是由于模型本身不能对训练集进行拟合或者训练迭代次数太少,解决方法是对模型进行改进,设计新的模型重新训练,增加训练过程的迭代次数。
5.什么是正则化,L1正则化与L2正则化有什么区别?正则化是一种抑制模型复杂度的方法。
L1正则化能够以较大概率获得稀疏解,起到特征选择的作用,并且可能得到不止一个最优解。
L2正则化相比前者获得稀疏解的概率小的多,但得到的解更加平滑。
第二章逻辑回归与最大熵模型1.逻辑回归模型解决(B )A.回归问题B.分类问题C.聚类问题D.推理问题2.逻辑回归属于(B )回归A.概率性线性B.概率性非线性C.非概率性线性D.非概率性非线性3.逻辑回归不能实现(D )A.二分类B.多分类C.分类预测D.非线性回归4.下列关于最大熵模型的表述错误的是(B )A.最大熵模型是基于熵值越大模型越稳定的假设B.最大熵模型使用最大熵原理中一般意义上的熵建模以此缩小模型假设空间C.通过定义最大熵模型的参数可以实现与多分类逻辑回归相同的作用D.最大熵模型是一种分类算法5.下列关于模型评价指标的表述错误的是(C )A.准确率、精确率、召回率以及AUC均是建立在混淆矩阵的基础上B.在样本不平衡的条件下准确率并不能作为很好的指标来衡量结果C.准确率表示所有被预测为正的样本中实际为正的样本的概率D.一般来说,置信度阈值越高,召回率越低,而精确率越高6.简述逻辑回归的原理。
第七章 机器学习
解释过程
从实例中抽象出一般 性的知识的归纳过程
实例空间
规划过程
规则空间
向系统提供的示 教例子的集合
从实例空间中选择新的实例, 对刚刚归纳出的规则做进一 步的验证和修改
事务所具有的各 种规律的集合
7.3.1 归纳学习的模式和规则
例:学习“同花”概念
实例空间:{(2, 梅花), (3, 梅花), (5, 梅花), (J, 梅花), (K, 梅花)} 规则空间:描述一手牌的全部谓词表达式的集合 符号:SUIT(花色),RANK(点数) 常量:梅花,方块,A,1,2… 规则:SUIT(c1,x)∧SUIT(c2,x)∧SUIT(c3,x)∧SUIT(c4,x) ->同花 (c1,c2,c3,c4)
基尼值度量的)纯度的加权和。属性a的基尼指数定义如下:
我们在属性集合A中选择划分属性的时候,就选择使得划分后基尼指数最小的属性作为最 优划分属性。CART就是用基尼指数来选择划分属性的。
7.4.1 决策树和决策树构造算法
决策树的学习过程
✓ 信息熵 “信息熵”是度量样本纯度最常用的一种指标。所谓样本纯度,相反而言之就是凌乱
02 机器学习的主要 策略与基本结构
7.2.1 机器学习的发展史
机器学习的主要策略
按照学习中使用推理的多少,机器学习所采用的策略大体上可分为4种 机械学习:记忆学习方法,即把新的知识存储起来,供需要时检索调用,而不需要计算
和推理。 示教学习:外界输入知识与内部知识的表达不完全一致,系统在接受外部知识时需要推
7.3.1 归纳学习的模式和规则
执行过程描述
首先由施教者给实例空间提供一些初始示教例子,由于示教例子在形式上往往和 规则形式不同,因此需要对这些例子进行转换,解释为规则空间接受的形式。然后利用 解释后的例子搜索规则空间,由于一般情况下不能一次就从规则空间中搜索到要求的规 则,因此还要寻找一些新的示教例子,这个过程就是选择例子。程序会选择对搜索规则 空间最有用的例子,对这些示教例子重复上述循环。如此循环多次,直到找到所要求的 例子。
机器学习-教学设计
第七章机器学习教学内容:机器学习是继专家系统之后人工智能应用的又一重要研究领域。
本章主要介绍机器学习的有关知识及其主要的几种学习方法,并介绍了知识发现的相关内容。
教学重点:机器学习的基本结构、类比学习、神经学习、知识发现教学难点:学习系统的结构,知识发现的处理过程,教学方法:课堂教学为主。
注意结合学生已学的内容。
及时提问、收集学生学习情况,多实用具体实例来加以说明,注意难易结合,将课程讲述得较为浅显易懂。
教学要求:重点掌握类比学习和知识发现,掌握机器学习的发展史和神经学习,了解解释学习、归纳学习,一般了解机械学习。
机器学习的定义和发展历史教学内容:本小节主要介绍了机器学习的定义以及其发展的过程,为后面的进一步学习打下基础。
教学重点:机器学习的定义教学难点:对定义的准确把握和理解教学方法:通过举例引入机器学习的定义,在讲述发展历史时,简介各阶段的具体产物,让学生有较为具体的感受和体会。
教学要求:重点掌握机器学习的定义,了解机器学习的发展史。
7.1.1 机器学习的定义1.机器学习的基本概念:按照人工智能大师西蒙的观点,学习就是系统在不断重复的工作中对本身能力的增强或者改进,使得系统在下一次执行同样任务或类似任务时,会比现在做得更好或效率更高。
2.机器学习的定义机器学习是研究如何使用机器来模拟人类学习活动的一门学科。
稍为严格的提法是:机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问。
举例:列举1959年美国的塞缪尔设计的一下棋程序,由这一事件引出关于机器学习的概念的相关讨论。
提问:讨论关于机器学习的各种概念的提出以及其区别。
7.1.2机器学习的发展史机器学习是人工智能应用研究较为重要的分支,它的发展过程大体上可分为4个时期:1.第一阶段是在50年代中叶到60年代中叶,属于热烈时期。
在这个时期,所研究的是“没有知识”的学习,即“无知”学习;其研究目标是各类自组织系统和自适应系统;指导本阶段研究的理论基础是早在40年代就开始研究的神经网络模型。
机器学习ppt课件
最优策略求解
通过动态规划、蒙特卡洛方法或时间差分方 法等求解最优策略。
迁移学习应用场景及挑战
领域适应(Domain Adaptation)
将在一个领域(源领域)学到的知识迁移到另一个领域(目标领域)。
多任务学习(Multi-Task Learning)
多个相关任务共享知识,提高学习效率。
迁移学习应用场景及挑战
常见降维算法
主成分分析(PCA)、线性判别分析(LDA)、t分布邻域嵌入算法(t-SNE)等。
应用场景
图像处理、文本挖掘、生物信息学等。
异常检测
异常检测概念
识别出数据集中与大多数数据不同的离群点或 异常点。
常见异常检测算法
基于统计的方法、基于距离的方法、基于密度 的方法等。
应用场景
信用卡欺诈检测、网络入侵检测、医疗诊断等。
交叉验证
使用K折交叉验证等方法评估模型稳定性。
可视化展示
绘制ROC曲线、混淆矩阵等图表展示评估结果。
模型对比
将不同模型的结果进行对比分析,选择最优模型。
挑战与未来发展趋势
01
数据挑战
处理大规模、高维度、非结构化等 数据问题。
应用挑战
将机器学习技术应用到更多领域, 解决实际问题。
03
02
算法挑战
研究更加高效、稳定的算法模型, 提高泛化能力。
未来趋势
结合深度学习、强化学习等技术, 推动人工智能领域的发展。
04
THANKS
感谢观看
优化算法(如SGD、Adam、RMSprop等) 及其超参数调整
05 强化学习与迁移 学习
强化学习基本原理
智能体(Agent)与环境(Environment)…
人工智能机器学习 ppt课件
阿法狗走的是通用学习的道路。它的估值函数,
不是专家攻关捣哧出来的。它的作者只是搭了一个 基本的框架(一个多层的神经网络),除了围棋最 基本的规则外,没有任何先验知识。你可以把它想 象成一个新生儿的大脑,一张白纸。然后,直接用 人类高手对局的3000万个局面训练它,自动调节它 的神经网络参数,让它的行为和人类高手接近。这 样,阿法狗就具有了基本的棋感,看到一个局面大 致就能知道好还是不好。
✓ 统计机器学习 从大量样本出发,运用统计方法,发现统计规律 有监督学习、无监督学习、半监督学习 问题:分类,聚类,回归
机器学习的基本概念
❖ 机器学习的定义
✓ 西蒙(Simon,1983):学习就是系统中的适应性变化, 这种变化使系统在重复同样工作或类似工作时,能够 做得更好。
✓ 明斯基(Minsky,1985):学习是在人们头脑里(心理 内部)有用的变化。
❖ 学习系统的基本结构
环境
学习
知识库
执行
❖ 影响学习系统设计的要素
✓ 环境:环境向系统提供信息的水平(一般化程度)和 质量(正确性)
✓ 知识库:表达能力,易于推理,容易修改,知识表示 易于扩展。
内容提要
第七章:机器学习系统 1.机器学习的基本概念 2.机器学习策略与基本结构 3.归纳学习 4.类比学习 5.解释学习 6.神经网络学习 7.知识发现 8.其他
Artificial Intelligence (AI)
第七章:机器 学习
内容提要
第七章:机器学习系统 1.机器学习的基本概念 2.机器学习策略与基本结构 3.归纳学习 4.类比学习 5.解释学习 6.神经网络学习 7.知识发现 8.其他
阿法狗通过神经网络学习所有高水平围棋 棋谱,大概是历史上有的20万个左右职业棋谱, 从而获得了在盘面上如何落子的直觉。
(完整版)第七章机器学习
第七章机器学习7-1 什么是学习和机器学习?为什么要研究机器学习?按照人工智能大师西蒙的观点,学习就是系统在不断重复的工作中对本身能力的增强或者改进,使得系统在下一次执行同样任务或类似任务时,会比现在做得更好或效率更高。
机器学习是研究如何使用机器来模拟人类学习活动的一门学科,是机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问。
这里所说的“机器”,指的就是计算机。
现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。
7-2 试述机器学习系统的基本结构,并说明各部分的作用。
环境向系统的学习部分提供某些信息,学习部分利用这些信息修改知识库,以增进系统执行部分完成任务的效能,执行部分根据知识库完成任务,同时把获得的信息反馈给学习部分。
影响学习系统设计的最重要的因素是环境向系统提供的信息。
更具体地说是信息的质量。
7-3 试解释机械学习的模式。
机械学习有哪些重要问题需要加以研究?机械学习是最简单的机器学习方法。
机械学习就是记忆,即把新的知识存储起来,供需要时检索调用,而不需要计算和推理。
是最基本的学习过程。
任何学习系统都必须记住它们获取的知识。
在机械学习系统中,知识的获取是以较为稳定和直接的方式进行的,不需要系统进行过多的加工。
要研究的问题:(1) 存储组织信息只有当检索一个项目的时间比重新计算一个项目的时间短时,机械学习才有意义,检索的越快,其意义也就越大。
因此,采用适当的存储方式,使检索速度尽可能地快,是机械学习中的重要问题。
(2) 环境的稳定性与存储信息的适用性问题机械学习基础的一个重要假定是在某一时刻存储的信息必须适用于后来的情况(3) 存储与计算之间的权衡如果检索一个数据比重新计算一个数据所花的时间还要多,那么机械学习就失去了意义。
7-4 试说明归纳学习的模式和学习方法。
归纳是一种从个别到一般,从部分到整体的推理行为。
归纳学习的一般模式为:给定:观察陈述(事实)F,假定的初始归纳断言(可能为空),及背景知识求:归纳断言(假设)H,能重言蕴涵或弱蕴涵观察陈述,并满足背景知识。
第七章机器学习
例如:通过观察发现,两个孪生兄弟都有相同的身高、体重、
相貌, 都喜欢唱歌、跳舞,且喜欢吃相同的食物,而且发现其中 一人喜欢画山水画,虽然我们没有看到另一个也喜欢画山水画,
但我们很容易联想到另一个“也喜欢画山水画”,这就是联想归
纳。 由于联想归纳是一种主观不充分置信推理,因而经归纳得出 的结论 可能会有错误。
S为所有条件中的L值在概念分层树上最近
的共同祖先,这是一种从个别推论总体的方法。
形成闭合区域
CTX [ L a] K CTX [ L b] K CTX [ L S ] K
L为具有线性关系的描述项,a,b是其特殊 值。S表示[a,b]范围内的值。
将常量转化成变量
根据西蒙的学习定义,可建立起上图所示的简单学习模型。 环境——向系统的学习部分提供信息; 学习——利用信息修改知识库,以增进系统执行部分完成任 务的效能; 知识库——存放指导执行部分动作的一般原则; 执行——根据知识库完成任务,并把所获信息反馈学习部分。
2.影响学习系统设计的要素 影响学习系统设计的最重要因素是环 境向系统提供的信息,或者更具体地 说是信息的质量。 知识库是影响学习系统设计的第二个 因素。知识的表示有特征向量、一阶 逻辑语句、产生式规则、语义网络和 框架等多种形式。
2.机械学习的主要问题
– 存储组织信息:要采用适当的存储方式,使
检索速度尽可能地快。
– 环境的稳定性与存储信息的适用性问题: 机械学习系统必须保证所保存的信息适应于 外界环境变化的需要。
–存储与计算之间的权衡:对于机械学习来说 很重要的一点是它不能降低系统的效率。
7.4 归纳学习
归纳学习(induction learning)是应用归纳推理进行学习的一种方法。 根据归纳学习有无教师指导,可把它分为示例学习和观察与发现学习。 环境提供的 – 信息是关于实际例子的输入与输出描述; • 输入数据、输出结果规定了一个特殊的知识原则(特殊知识); • 学习元从这些特殊知识中假设和归纳出一般性知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章机器学习
7-1 什么是学习和机器学习?为什么要研究机器学习?
按照人工智能大师西蒙的观点,学习就是系统在不断重复的工作中对本身能力的增强或者改进,使得系统在下一次执行同样任务或类似任务时,会比现在做得更好或效率更高。
机器学习是研究如何使用机器来模拟人类学习活动的一门学科,是机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问。
这里所说的“机器”,指的就是计算机。
现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。
7-2 试述机器学习系统的基本结构,并说明各部分的作用。
环境向系统的学习部分提供某些信息,学习部分利用这些信息修改知识库,以增进系统执行部分完成任务的效能,执行部分根据知识库完成任务,同时把获得的信息反馈给学习部分。
影响学习系统设计的最重要的因素是环境向系统提供的信息。
更具体地说是信息的质量。
7-3 试解释机械学习的模式。
机械学习有哪些重要问题需要加以研究?
机械学习是最简单的机器学习方法。
机械学习就是记忆,即把新的知识存储起来,供需要时检索调用,而不需要计算和推理。
是最基本的学习过程。
任何学习系统都必须记住它们获取的知识。
在机械学习系统中,知识的获取是以较为稳定和直接的方式进行的,不需要系统进行过多的加工。
要研究的问题:
(1) 存储组织信息
只有当检索一个项目的时间比重新计算一个项目的时间短时,机械学习才有意义,检索的越快,其意义也就越大。
因此,采用适当的存储方式,使检索速度尽可能地快,是机械学习中
的重要问题。
(2) 环境的稳定性与存储信息的适用性问题
机械学习基础的一个重要假定是在某一时刻存储的信息必须适用于后来的情况
(3) 存储与计算之间的权衡
如果检索一个数据比重新计算一个数据所花的时间还要多,那么机械学习就失去了意义。
7-4 试说明归纳学习的模式和学习方法。
归纳是一种从个别到一般,从部分到整体的推理行为。
归纳学习的一般模式为:
给定:观察陈述(事实)F,假定的初始归纳断言(可能为空),及背景知识
求:归纳断言(假设)H,能重言蕴涵或弱蕴涵观察陈述,并满足背景知识。
学习方法
(1) 示例学习
它属于有师学习,是通过从环境中取得若干与某概念有关的例子,经归纳得出一般性概念的一种学习方法。
示例学习就是要从这些特殊知识中归纳出适用于更大范围的一般性知识,它将覆盖所有的正例并排除所有反例。
(2) 观察发现学习
它属于无师学习,其目标是确定一个定律或理论的一般性描述,刻画观察集,指定某类对象的性质。
它分为观察学习与机器发现两种,前者用于对事例进行聚类,形成概念描述,后者用于发现规律,产生定律或规则。
7-5 什么是类比学习?其推理和学习过程为何?
类比是一种很有用和很有效的推理方法,它能清晰,简洁地描述对象间的相似性,是人类认识世界的一种重要方法。
类比推理的目的是从源域S中,选出与目标域T最近似的问题及其求解方法,解决当前问题,或者建立起目标域中已有命题间的联系,形成新知识。
类比学习就是通过类比,即通过对相似事物加以比较所进行的一种学习。
类比推理过程如下:
(1) 回忆与联想
通过回忆与联想在源域S中找出与目标域T相似的情况。
(2) 选择
从找出的相似情况中,选出与目标域T最相似的情况及其有关知识。
(3) 建立对应关系
在源域S与目标域T之间建立相似元素的对应关系,并建立起相应的映射。
(4) 转换
把S中的有关知识引到T中来,从而建立起求解当前问题的方法或者学习到关于T的新知识。
类比学习过程主要包括:
(1) 输入一组已经条件(已解决问题)和一组未完全确定的条件(新问题)
(2) 按照某种相似性的定义,寻找两者可类比的对应关系
(3) 根据相似变换的方法,建立从已解决问题到新问题的映射,以获得待求解问题所需的新知识。
(4) 对通过类比推理得到的关于新问题的知识进行校验。
验证正确的知识存入知识库中,暂时无法验证的知识作为参考性知识,置于数据库中。
7-6 试述解释学习的基本原理、学习形式和功能。
7-7 试比较说明符号系统和连接机制在机器学习中的主要思想。
7-8 用C语言编写一套计算机程序,用于执行BP学习算法。
7-9 试应用神经网络模型优化求解销售员旅行问题。
7-10 考虑一个具有阶梯型阈值函数的神经网络,假设
(1) 用一常数乘所有的权值和阈值;
(2) 用一常数加于所有权值和阈值。
试说明网络性能是否会变化?
(1) 不会
(2) 会
7-11 增大权值是否能够使BP学习变慢?
是
7-12 什么是知识发现?知识发现与数据挖掘有何关系?
根据费亚德的定义,数据库中的知识发现是从大量数据中辨识出有效的,新颖的,潜在有用的,并可被理解的模式的高级处理过程。
数据挖掘是知识发现中的一个步骤,它主要是利用某些特定的知识发现算法,在一定的运算效率内,从数据中发现出有关的知识。
7-13 试说明知识发现的处理过程。
费亚德的知识发现过程包括
(1) 数据选择
根据用户需求从数据库中提取与知识发现相关的数据
(2) 数据预处理
检查数据的完整性与数据的一致性,对噪音数据进行处理,对丢失的数据利用统计方法进行填补,进行发掘数据库
(3) 数据变换
利用聚类分析和判别分析,从发掘数据库里选择数据
(4) 数据挖掘
(5) 知识评价
对所获得的规则进行价值评定,以决定所得到的规则是否存入基础知识库
知识发现的全过程,可进一步归纳为三个步骤,即数据挖掘预处理,数据挖掘,数据挖掘后处理。
7-14 有哪几种比较常用的知识发现方法?试略加介绍。
常用的知识发现方法有
(1) 统计方法
统计方法是从事物外在数量上的表现去推断事物可能的规律性,包括传统方法,模糊集,支持向量机,粗糙集
(2) 机器学习方法
包括规则归纳,决策树,范例推理,贝叶斯信念网络,科学发现,遗传算法
(3) 神经计算方法
常用的有多层感知器,反向传播网络,自适应映射网络
(4) 可视化方法
使用有效的可视化界面,可以快速,高效地与大量数据打交道,以发现其中隐藏的特征,关系,模式和趋势
7-15 知识发现的应用领域有哪些?试展望知识发现的发展和应用前景。
(1) 金融业
数据清理,金融市场分析和预测,账户分类,银行担保和信用评估
(2) 保险业
通过对索赔者的资料与索赔历史数据模式进行比较,以判定用户的索赔是否合理
(3) 制造业
零部件故障诊断,资源优化,生产过程分析
(4) 市场和零售业
销售预测,库存需求,零售点选择和价格分析
(5) 医疗业
数据清理,预测医疗保健费用
(6) 司法
案件调查,诈骗检测,洗钱认证,犯罪组织分析
(7) 工程与科学
工程与科学数据分析。