第五章自动重合闸
继电保护教材 第五章 自动重合闸
第五章 自动重合闸一、自动重合闸在电力系统中的作用自动重合闸(ZCH )装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。
运行经验表明,架空线路大多数故障是瞬时性的,如:(1)雷击过电压引起绝缘子表面闪络。
(2)大风时的短时碰线。
(3)通过鸟类身体(或树枝)放电。
此时,若保护动——>熄弧——>故障消除——>合断路器——>恢复供电。
手动(停电时间长)效果不显著,自动重合(1”)效果明显。
作用:(P153)(1)对暂时性故障,可迅速恢复供电,从而能提高供电的可靠性。
(2)对两侧电源线路,可提高系统并列运行的稳定性,从而提高线路的输送容量。
(3)可以纠正由于断路器或继电保护误动作引起的误跳闸。
应用:1KV 及以上电压的架空线路或电缆与架空线路的混合线路上,只要装有断路器,一般应装设ZCH (P153,最后一段)。
但是,ZCH 本身不能判断故障是瞬时性的,还是永久性的。
所以若重合于永久性故障时,其不利影响:(1)使电力系统又一次受到故障的冲击;(2)使断路器的工作条件恶化(因为在短时间内连续两次切断短路电流)。
据运行资料统计,ZCH 成功率60~90%,经济效益很高——>广泛应用。
二、对自动重合闸的基本要求对自动重合闸的基本要求::(1)动作迅速。
z u t t t +>,一般0.5”~1.5”。
tu ——故障点去游离,tz ——断路器消弧室及传动机构准备好再次动作。
(2)不允许任意多次重合,即动作次数应符合预先的规定,如一次或两次。
(3)动作后应能自动复归,准备好再次动作。
(4)手动跳闸时不应重合(手动操作或遥控操作)。
(5)手动合闸于故障线路不重合(多属于永久性故障)。
三、三相自动重合闸三相自动重合闸::(一)单侧电源线路的三相一次重合闸单侧电源线路的三相一次重合闸::当线路上故障(单相接地短路、相间短路)——>保护动作跳开三相——>重合闸起动——>合三相:故障是瞬时性的,重合成功;故障是永久性的,保护再次跳开三相,不再重合。
第5章 自动重合闸
5.3 高压输电线路的单相自动重合闸
5.3.2单相自动重合闸的特点
2、动作时限的选择 满足:故障点灭弧和周围介质去游离时间,大于断路器及其操作 机构复归原状准备好再次动作的时间。
此外考虑: (1)两侧不同时限切除故障的可能性; (2)潜供电流对灭弧所产生的影响,图5.13(P161) 根据实测确定灭弧时间,我国电力系统220KV 的线路上为0.6s以 上。
5.2 输电线路的三相一次自动重合闸
2、双侧电源线路重合闸的主要方式
(2)非同期自动重合闸
当重合闸时间不够快,两侧电势功角摆开较快,但冲击电流未超 过规定值,可采用非同期自动重合闸。 (3)检同期自动重合闸 当必须满足同期条件才能重合闸时,需要采用检同期自动重合闸。 具体方法: 1)系统有3个及3个以上联系线路,可以不检同步重合闸;
5.2 输电线路的三相一次自动重合闸
(3)检同期自动重合闸
方法:
2)双回线路,检查另一线路有电流时,可以重合(见图5.2);
5.2 输电线路的三相一次自动重合闸
3)必须检定同步的重合,其步骤:一侧先检无压合闸,另一侧再 同步合闸(图5.3所示) 3、具有同步检定和无电压检定的重合闸 缺陷:检查线 路无压合闸的 一侧,若正常 时误跳,这时 由于对侧并未 动作,线路上 有电压,因而 不能实现重合。
在220KV-500KV 的线路上获得了广泛的应用。110KV不推荐使用 。
5.3 高压输电线路的单相自动重合闸
5.3.3 输电线路自适应单相重合闸的概念
能自动识别故障的性质,在永久故障时不重合的重合
闸称之为自适应重合闸。 参考文献【3】
5.4 高压输电线路的综合重合闸简介
在线路上设计自动重合闸装置时,将单相重合闸和三相重合闸综 合在一起,当发生单相接地故障时,采用单相重合闸方式工作; 当发生相间短路时,采用三相重合闸方式工作。综合考虑这两种 重合闸方式的装置称为综合重合闸装置。
第5章 自动重合闸(输电线路)
习题
在下图所示35KV单电源网络中,已知:各线路均装有过电流保护,动作 时限依次为t1=1s、t2=2s、t3=3s,在线路AB的3DL处采用重合闸前加速 方式,其加速用无选择电流速断的动作时间为0.1s,重合闸动作后即将 此速断保护退出工作,所有断路器采用统一型式的少油式断路器,其合 闸时间th.DL=0.12s,跳闸时间tt.DL=0.06s以及三相一次重合闸时间为
采用条件: 110kV及以下电压级环网,①最严重情况( 1800 ),最大
周期分量冲击电流与额定电流的比值不超过表1;
②在非同步合闸后所产生的振荡过程中,对重要负荷的影响较小
5.3双侧电源线路的三相一次自动重合闸
(三)检查另一回路电流的重合闸
在没有其他旁路联系的双回线路上,如图5.2所示 因为当另一回线路上有电流时,即表示两侧电源仍保持联系,一 般是同步的,因此可以重合闸。采用这种重合方式的优点是电流检定 比同步检定简单。
保护1 跳闸
保护2 跳闸
DL1 重合
t
tzch=tbh.2+tDL.2-tDL.1+tu
5.4自动重合闸与继电保护的配合
自动重合闸与继电保护配合的主要方式有两种: 一、自动重合闸前加速保护动作(前加速) 二、自动重合闸后加速保护动作(后加速)
5.4自动重合闸与继电保护的配合
一、自动重合闸前加速 保护动作
第5章 自动重合闸
学习要求
1、掌握自动重合闸的作用以及对自动重合闸的基本要求;
2、通过典型装置,了解自动重合闸的基本构成元件; 3、掌握双侧电源送电线路的重合闸方式;
4、掌握自动重合闸与继电保护的配合方式及其特点。
第5章 自动重合闸
5.1自动重合闸的作用及其基本要求 5.2单侧电源线路的三相一次自动重合闸 5.3双侧电源线路的三相一次自动重合闸 5.4重合闸动作时限的选择原则 5.5自动重合闸与继电保护的配合 5.6综合自动重合闸
第5章 自动重合闸
5.1.2对自动重合闸装臵的基本要求
4、动作后自动复归 自动重合闸装臵动作后应能自动复归,准备好下次再动作。 对于10kV及以下电压级别的线路,如无人值班时也可采用 手动复归方式。 5、用不对应原则启动 一般自动重合闸可采用控制开关位臵与断路器位臵不对应原 则启动重合闸装臵,对综合自动重合闸,宜采用不对应原 则和保护同时启动。 6、与继电保护相配合 自动重合闸能与继电保护相配合,在重合闸前或重合闸后加 速继电保护动作,以便更好地与继电保护装臵相配合,加 速故障切除时间,提高供电的可靠性。
5.1.1自动重合闸的作用
电力系统的故障中,输电线路的故障占绝大部分,大都 是“暂时性”的故障 ,在线路被继电保护迅速动作控制断路 器,如果把断开的线路断路器重新合上,就能够恢复正常的 供电。自动重合闸成功率(60%-90%)。此外,还有“永久性 故障”, “永久性故障”在线路被断开之后,它们仍然是存 在的,即使合上电源,也不能恢复正常供电。 因此,在电力系统中采用了自动重合闸装臵(AAR), 即是当断路器由继电保护动作或其它非人工操作而跳闸后, 能够自动控制断路器重新合闸的一种装臵。
障也可采用自动重合闸装置。 • 根据自动重合闸运行的经验可知,线路自动重合闸的配置和选择应根
据不同系统结构、实际运行条件和规程要求具体确定。一般选择自动
重合闸类型可按下述条件进行。
2、自动重闸的配置原则
1)110kV及以下电压的系统单侧电源线路一般采用三相一次重合闸装臵; 2)220kV、110kV及以下双电源线路用合适方式的三相重合闸能满足系统稳 定和运行要求时可采用三相自动重合闸装臵。 3)220kV线路采用各种方式三相自动重合闸不能满足系统稳定和运行要求 时,采用综合重合闸装臵; 4)330~500kV线路,一般情况下应装设综合重合闸装臵; 5)在带有分支的线路上使用单相重合闸时,分支线侧是否采用单相重合闸, 应根据有无分支电源,以及电源大小和负荷大小确定; 6)双电源220kV及以上电压等级的单回路联络线,适合采用单相重合闸; 主要的110kV双电源回路联络线,采用单相重合闸对电网安全运行效果 显著时,可采用单相重合闸。
第5章 自动重合闸
重合闸 起动
t ZCH
一次合闸 脉冲元件
(放电)
与 执行元件
控制开关KK
(3)一次合闸脉冲元件 保证重合闸装置只重合一次 控制开关KK对一次合闸脉冲元件放电的作用 是为了防止手动跳闸和手动合闸时重合闸进行重合
重合闸 起动
t ZCH
一次合闸 脉冲元件
(放电)
与 执行元件
控制开关KK
(4)执行元件 启动合闸回路和信号回路,还可与保护配 合,实现重合闸后加速保护。
进行自动重合。
使用条件 • 线路两侧均装有全线瞬时动作的保护 • 有快速动作的断路器,如快速空气断路器 • 冲击电流未超过允许值
冲击电流周期分量的估算
2E I sin Z 2
当非同步重合闸时,冲击电流周期分量不应超过下表数值 机组类型 汽轮发电机 水轮发电机 有阻尼回路 允许值 0.65IN/X”d 0.6IN/X”d
适用范围:35kV以下由发电厂或重要变电站引出 的直配线路上。
2.重合闸后加速保护
ARD 1
QF1
k
ARD 2
QF2
ARD 3
QF3
ARD 4
QF4
优点: 第一次跳闸时有选择性的; 永久性故障能快速切除,有利于系统并联 运行的稳定性; 使用中不受网络结构和负荷条件的限制。
2.重合闸后加速保护
无阻尼回路
0.65IN/X’d
0.84IN/X”d IN/XT
同步调相机 电力变压器
(2)非同期重合闸
不考虑系统是否同步而进行自动重合闸的 方式 使用条件:冲击电流未超过允许值 继电保护要考虑系统振荡对它的影响,并 采取必要的措施
(3)检查双回线另一回线电流的重合闸方式
第5章自动重合闸
ቤተ መጻሕፍቲ ባይዱ2
线路自动重合闸
线路自动重合闸装置
装置组成
包括重合闸启动元件、重合闸时间元件、一次合闸脉冲元件和执行元件等。
工作原理
当线路发生故障时,保护动作使断路器跳闸,自动重合闸装置经短时间间隔后使 断路器重新合上。若重合于永久性故障,保护装置再次动作将断路器断开。
线路自动重合闸控制逻辑
控制方式
分为三相一次重合闸、单相一次重合闸 、综合重合闸和停用重合闸四种方式。
作用
提高电力系统的暂态稳定性,减少停电时间,降低因瞬时故障造成的停电损失 。
工作原理与分类
工作原理
自动重合闸通过检测线路电压、电流等电气量来判断故障性 质,如果是瞬时性故障,则在断路器跳闸后经过一定延时自 动重合;如果是永久性故障,则不重合或重合后再次跳闸。
分类
根据重合闸的动作方式,可分为三相一次重合闸、单相重合 闸和综合重合闸三种。其中,三相一次重合闸适用于简单线 路,单相重合闸适用于单相接地故障较多的系统,综合重合 闸则结合了前两者的优点。
闭锁逻辑
在某些情况下,如手动分 闸、断路器拒动等,重合 闸应被闭锁,以避免对系 统造成更大冲击。
变压器自动重合闸操作过程
操作前准备
确认重合闸装置已投入,检查相关保护及自动装置状态正常。
操作步骤
当发生故障时,保护动作跳开断路器,重合闸装置启动并经延时后出口,使断路器重新合 闸。若重合成功,则恢复系统正常运行;若重合不成功,则根据保护动作情况采取相应措 施。
注意事项
在操作过程中,需要注意检查发电机组的故障类型、重合闸装置的状态以及电网的运行情况等因素, 以确保重合闸操作的正确性和安全性。
05
自动重合闸与继电保护配合
第五章 输电线路的自动重合闸
单侧电源线路的三相重合闸要带有时限, 因为在断路器跳闸后,要使故障点的电弧 熄灭并使周围介质恢复绝缘强度是需要一 定时间的,必须在这个时间以后进行合闸 才有可能成功;在断路器动作跳闸后,其 触头周围绝缘强度的恢复以及消弧室重新 充满油需要一定的时间。
在双侧电源的送电线路上实现重合闸时,与单电源 线路上的三相自动重合闸相比还必须考虑如下的 特点: (1)时间的配合。 (2)同期问题。当线路上发生故障跳闸以后,线 路两侧电源之间的电势角会摆开,有可能失去同 步。这时,后合闸一侧的断路器在进行重合闸时, 应考虑两侧电源是否同步,以及是否允许非同步 合闸的问题。
第五节 自动重合闸与继电保护 的配合
在电力系统中,自动重合闸与继电保护配 合的方式有两种,即自动重合闸前加速保 护动作和自动重合闸后加速保护动作。
A
1QF
AR D
k1 B
2QF
k2
C
3QF
k3
D
重合闸前加速保护动作的原理图
前加速的优点是,能快速切除瞬时性故障,使瞬 时性故障来不及发展成为永久性故障,而且使用 的设备少,只需一套ARD自动重合闸装置;其缺 点是,重合于永久性故障时,再次切除故障的时 间会延长,装有重合闸线路的断路器的动作次数 较多,而且若此断路器的重合闸拒动,就会扩大 停电范围,甚至在最后一级线路上发生故障,也 可能造成全网络停电。 前加速保护主要用于35kv以下由发电厂或重要 变电所引出的直配线路上,以便快速切除故障, 保护母线电压。
第二节 三相自动重合闸
三相重合闸:不论在输、配线上发生单相短路 还是相间短路时,继电保护装置均将线路三相 断路器同时断开,然后启动自动重合闸同时合 三相断路器的方式。若故障为暂时性故障,则 重合闸成功;否则保护再次动作,跳三相断路 器。这时,重合闸是否再重合要视情况而定。 目前,一般只允许重合闸动作一次,称为三相 一次自动重合闸装置。特殊情况下,可采用三 相二次自动重合闸装置。 三相重合闸结构相对比较简单,保护出口可直 接动作控制断路器,保护之间互为后备的性能 较好。
第五章自动重合闸
同步检定和无电压检定重合闸的配置
▪重
5.2.3 重合闸时限的整定原则
▪ 现代电力系统广泛使用的重合闸都不区分故障是瞬 时性质还是永久性质的,对于瞬时性故障,必须等 待故障点的故障消除、绝缘强度恢复后才有可能重 合成功。
▪ 按以上原则确定的最小时间,称为最小重合闸时间。 ▪ 实际使用的重合闸时间必须大于这个时间,根据重
• 凡是选用简单的三相重合闸能满足要求的线路, 都应当选用三相重合闸。
• 当发生单相接地短路时,如果使用三相重合闸不 能满足稳定要求,会出现大面积停电或重要用户 停电,应当选用单相或综合重合闸。
5.2 输电线路的三相一次自动重合闸
5.2.1 单侧电源线路的三相一次自动重合闸 ▪ 三相一次重合闸的跳、合闸方式:
第五章自动重合闸
自动重合闸的作用 “瞬时性”与“永久性”故障
▪ 瞬时性故障:
• 被继电保护断开后故障自行消失,若此时把断开的线路 断路器再合上,就能够恢复正常的供电。
• 由雷电引起的绝缘子表面闪络,大风引起的碰线,通过 鸟类以及树枝等物掉落在导线上引起的短路等
▪ 永久性故障:
• 被断开以后依然存在的故障 • 线路倒杆,断线,绝缘子击穿或损坏等引起的故障
▪ 变压器内部故障多数是永久性故障,因此,变压器 的瓦斯保护和差动保护动作后不重合,仅当后备保 护动作时起动重合闸。
自动重合闸的分类
线路重合闸的方式选择
▪ 对一个具体的线路,究竟使用何种重合闸方 式,要结合系统的稳定性分析,选取对系统 稳定最有利的重合方式。一般说来,有
• 对于没有特殊要求的单电源线路,一般采用三相 重合闸。
▪ 当线路发生故障,两侧断路器跳闸以后,检定线路无电压一侧的重合闸 首先动作,使断路器投入。如果重合不成功,则断路器再次跳闸。此时, 由于线路另一侧没有电压,同步检定继电器不动作,因此,该侧重合闸 根本不起动。如果重合成功,则另一侧在检定同步之后,再投入断路器, 线路即恢复正常工作。
自动重合闸
3.检查同步和检查无电压重合闸(图5-7)
检查无电压一侧先动作(同步检定也要投入) 检查同步一侧后动作(无电压检定决不能投入
TJJ
TJJ
四.重合闸和继电保护的配合
1. 重合闸前加速保护(图5-11) 特点:能快速切除瞬时性故障、提高 重合闸成功率;首次动作无选择性,断 路器工作条件加重。适合35KV以下(10kv) 发电厂和变电站的直配线路。
3.对自动重合闸的基本要求
(1)采用控制开关位置和断路器位置不对应 起动 (手动跳闸、保护跳闸、误动跳闸) (2) 一次重合闸只应动作一次 (永久性故障,第二次跳闸后不再重合) (3) 手动合闸保护随即跳闸,重合闸不 应动作。 二.单侧电源线路三相一次重合闸
二.单侧电源线路三相一次重合闸
三.双侧电源线路重合闸的方式
第五章 自动重合闸
一.自动重合闸概述 1.自动重合闸在电力系统中的作用 输电线路故障大多是瞬时性的,采用在断路 器跳闸后自动重新合闸的装置。可提高供 电可靠性和电力系统并列运行稳定性。 (1KV以上有断路器的线路) 2.自动重合闸的分类 三相和综合(单相、三相)重合闸; 一次和多次; 单侧图5-16)
对非全相运 行中仍然能 正确工作的 保护接N端 子; 对非全相运 行中可能误 动的保护接 M 端子,重 合闸起动后 将其闭锁。
四.重合闸和继电保护的配合
2. 重合闸后加速保护(图5-12) 特点:保护首次动作可能有延时,但能快 速切除永久性故障;首次动作有选择性, 不扩大停电范围;适合 35KV 及以上网络 及重要负荷供电的线路。
五.单相和综合重合闸
第五章输电线路的自动重合闸
正常工作时:QF处于合闸位置,SA1处于“合闸后”位置, 其触点SA121-23接通,SA2处于合闸位置,电容C经电阻R4而 充满电压,电容C两端电压等于电源电压,信号灯HL亮。
线路短路,保护动作时:QF跳闸,QF3-4打开,QF1-2闭合 →KM1起动→ KT线圈得电→ 其触点KT延时闭合→ 电容C 向KM线圈放电→ KM动作K。M动作后KM1-2打开→信号灯 HL灭;KM3-4、KM5-6闭合→KO得电→ QF合闸。 ✓ 若合闸成功,所有继电器复位,电容C经10~15s再次充满 电压,准备再次动作;
根据重合闸控制断路器相数的不同分类:单相重合闸、 三相重合闸、综合重合闸和分相重合闸。
第二节 三相自动重合闸
三相重合闸: 不论在输、配线上发生单相短路还是相间
短路时,继电保护装置均将线路三相断路器同 时断开,然后启动自动重合闸同时合三相断路 器的方式。若故障为暂时性故障,则重合闸成 功;否则保护再次动作,跳三相断路器。这时, 重合闸是否再重合要视情况而定。目前,一般 只允许重合闸动作一次,称为三相一次自动重 合闸装置。特殊情况下,可采用三相二次自动 重合闸装置。
4、自动重合闸可以纠正因断路器本身机构 不良或继电保护误动作而引起的误跳闸。
二. 对自动重合闸的要求
根据生产的需要和运行经验,对线路的自动重合 闸装置,提出了如下基本要求。
1、手动跳闸时不应重合 2、手动合闸于故障线路时自动重合闸不重合 3、用不对应原则启动 4、 动作迅速 5.不允许任意多次重合 6.动作后应能自动复归 7.能与继电保护动作配合 8 .双侧电源实现重合闸时,应考虑合闸时两侧电源
1、可大大提高供电的可靠性,在线路上发生暂 时性故障时,迅速恢复供电,减少线路停电的次 数,这对单侧电源的单回线路尤为显著;
第五章自动重合闸
第五章:自动重合闸1.自动重合闸的作用:解决瞬时性故障,尽快恢复供电。
在电力系统输电线路上,采用自动重合闸的作用(优点)可归纳如下:1、可大大提高供电的可靠性,在线路上发生暂时性故障时,迅速恢复供电,减少线路停电的次数,这对单侧电源的单回线路尤为显著;2、在高压输电线路上采用重合闸,还可以提高电力系统并列运行的稳定性,还可以提高传输容量; 3. 对断路器本身由于机构不良或继电保护误动作而引起的误跳闸,也能起纠正的作用。
不利:(1)使电力系统再一次受到故障的冲击,对超高压系统还可能降低并列运行的稳定性。
(2)使断路器的工作条件变得更加恶劣。
对自动重合闸的要求:(1)在下列情况下希望重合闸重合时,重合闸不应动作:①由值班人员手动操作或通过遥控装置将断路器断开时;②手动投入断路器,由于线路上有故障,而随即被继电保护将其断开时。
③当断路器处于不正常状态而不允许实现重合闸时。
(2)当断路器由继电保护动作或其他原因而跳闸后,重合闸均应动作,使断路器重新合闸。
(3)自动重合闸装置的动作次数应符合预先的规定。
(4)自动重合闸在动作后,一般应能自动复归,准备好下一次再动作。
(5)自动重合闸装置的合闸时间应能整定,并有可能在重合闸以前或重合闸以后加速继电保护的动作,以便更好地与继电保护相配合,加速故障的切除。
(6)双侧电源的线路上实现重合闸时,应考虑合闸时两侧电源间的同步问题,并满足所提出的要求。
采用重合闸的目的:其一是保证并列运行系统的稳定性;其二是尽快恢复瞬时故障元件的供电,从而自动恢复整个系统的正常运行。
2自动重合闸分类:●根据重合闸控制的断路器所接通或断开的电力元件的不同,可将重合闸分为线路重合闸,变压器重合闸和母线重合闸等。
●根据合闸次数不同,可将重合闸分为多次重合闸和一次重合闸。
多次重合闸一般使用在配电网中与分段器配合,自动隔离故障区段,是配电自动化的的重要组成部分。
而一次重合闸主要用于输电线路,提高系统的稳定性。
第五章自动重合闸
在检定线路无电压方式的重合闸一侧,断路器正常情况下误跳闸,由于对侧 并未动作,因而不能实现重合,为解决这个问题,在检定无电压一侧也同时 投入同步检定继电器,两者触点并联工作。 在使用同步检定的另一侧,无电压检定是绝对不允许同时投入的。避免两端 同时以检无压方式起动重合闸,而可能导致非同步重合闸。
Relay protection,copyright Zhang Jingjing I-9
压一般利用结合电容器或断路器的电容式套管来抽取。
ΔU = 2U sin δ 2
& ΔU
& U
& U
&′ U
&′ U
& Φ Σ
δ
图 5.6 同步检定继电器 的电压相量图
Relay protection,copyright Zhang Jingjing
I-10
第五章 自动重合闸
六、重合闸动作时限的选择原则Operating time setting
δ 2E I = sin , E为两侧发电机电动势, 可取1.05U N, 冲击电流周期分量估算式: Z∑ 2 δ为两侧电动势角差, Z ∑为系统两侧电动势间总 阻抗。
Relay protection,copyright Zhang Jingjing I-3
第五章 自动重合闸 I的计算值不应超过下列 数值: 0.65 对于汽轮发电机: IN ; I≤ ′ X′ d
Relay protection,copyright Zhang Jingjing I-11
第五章 自动重合闸
2、双侧电源线路的三相重合闸 tARD=tpr.2+tQF.2-tpr.1-tQF.1+tu. tpr.1为本侧保护(保护1)动作时间, 断路器动作时间tQF.1 ,对侧保护(保 护2)动作时间tpr.2 ,断路器动作时间tQF.2 ,故障点灭弧及周围介质去游离 时间tu 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据运行经验,采用1s左右。
5.2 输电线路的三相一次自动重合闸
2、双侧电源线路的三相重合闸
除上述要求外,还须考虑时间配合,按最不利情况考虑: 本侧先跳,对侧后跳。
t pr2
t Q F2
5.2 输电线路的三相一次自动重合闸
二、单侧电源线路的三相一次重合闸
重合闸 起动
重合闸 时间
一次合闸 脉冲
手动跳闸后闭锁 手动跳闸后加速
与
合闸
信号
后加速 保护
1.重合闸起动 当断路器由继电保护动作跳闸或其他非手动原因而跳闸
后重合闸均应起动。
5.2 输电线路的三相一次自动重合闸
三、双侧电源线路三相一次重合闸
ABC
ABC
M
M
M
• 潜供电流的存在会使熄弧时间变长。因此单相重合闸的 动作时间必须考虑它的影响。
• 单相重合闸的动作时间都是由实测试验确定的,一般应 比三相重合闸的动作时间长。
5.3 单相自动重合闸
(三)保护装置、选相元件与重合闸的配合关系
≥1
单相重合闸过程中,纵向不对称出现负序和零序分量,使得本线路或其 它元件的保护可能误动,应在单相重合闸动作时予以闭锁或整定动作时 限躲开单相重合闸的周期。
5.4 综合重合闸
综合重合闸是指当发生单相接地故障时,采用 单相重合闸方式,而当发生相间短路时,采用三相 重合闸方式。
工作方式: 综合重合闸、单相重合闸、三相重合闸、停用。
5.2 输电线路的三相一次自动重合闸
一、三相自动重合闸
三相一次重合闸方式就是不论在输电线路上发 生单相接地短路还是相间短路,继电保护装置均将 线路三相断路器断开,然后重合闸起动,将三相断 路器一起合上。若故障为瞬时性故障,则重合成功; 若故障为永久性故障,则继电保护将再次将断路器 三相断开,不再重合。
✓ 对于永久性故障,两侧保护动作,断路器断开, 线路失去电压,检无压侧重合闸先进行重合。重 合不成功,保护再次动作,跳开断路器不再重合, 另一侧的检同期重合闸不起动。
5.2 输电线路的三相一次自动重合闸
四、重合闸动作时限的整定原则
1. 单侧电源线路的三相重合闸
– 故障点电弧熄灭、绝缘恢复; – 断路器触头周围绝缘强度的恢复及消弧室重新充满油,
5.1 自动重合闸的作用及基本要求
三、自动重合闸的分类
• 根据重合闸控制断路器所接通或断开的电力元件不 同可分为:线路重合闸、变压器重合闸和母线重合 闸等。
• 根据重合闸控制断路器连续跳闸次数的不同可分为: 多次重合闸和一次重合闸。
• 根据重合闸控制断路器相数的不同可分为:单相重 合闸、三相重合闸、和综合重合闸。
双侧电源送电线路重合闸的特点 – 时间的配合:考虑两侧保护可能以不同的时 限断开两侧断路器。 – 同期问题:重合时两侧系统是否同步的问题 以及是否允许非同步合闸的问题。
5.2 输电线路的三相一次自动重合闸
(5)具有同步检定和无压检定的重合闸
K
1QF
+
U<
无压
KRC
+
同步
U-U
2QF
无压 KRC
+
U<
tu
tpr1 tQF1
t ARD
0
本侧
跳闸
对侧 跳闸
本侧 t 重合
双侧电源线路重合闸动作时限配合示意图
tARD tpr2 tQF2 tpr1tQF1 tu
5.2 输电线路的三相一次自动重合闸
五、重合闸与继电保护的配合 1. 重合闸前加速保护(简称为“前加速”)
I
I
I
A t I ARD
Btቤተ መጻሕፍቲ ባይዱ
Ct
同步
+
U-U
1QF—检无压侧,同时投入同步检定继电器。 2QF—检同期侧,无电压检定是绝对不允许同时投入。 两侧的投入方式可以利用连结片定期轮换。
线路发生故障保护和重合闸的动作情况
✓ 对于瞬时性故障,两侧保护动作,断路器断开, 线路失去电压,检无压侧重合闸先进行重合。重 合成功,另一侧同步检定继电器在两侧电源符合 同步条件后再进行重合,恢复正常供电;
1
2
3
• 优点 – 快速切除瞬时性故障,提高重合闸成功率; – 所用设备少。
5.2 输电线路的三相一次自动重合闸
五、重合闸与继电保护的配合
1. 重合闸前加速保护(简称为“前加速”)
I
I
A t I ARD
Bt
主要用于
35KV
I Ct
以下的网络
1
2
3
• 缺点 – 重合于永久性故障时,再次切除故障的时间可能很长; – 装ARD的断路器动作次数很多; – 若断路器或ARD拒动,将扩大停电范围。
• 可以纠正由于断路器或继电保护误动作引起的误跳闸。
5.1 自动重合闸的作用及基本要求
重合于永久性故障的不利影响
• 使电力系统又一次受到故障的冲击; • 使断路器的工作条件恶化(因为在短时间内连续两次切断
短路电流)。
3KV及以上电压的架空线路或电缆与架空线路 的混合线路上,只要装有断路器,一般应装设自动 重合闸。
5.3 单相自动重合闸
(二)动作时限
(1)故障点熄弧及周围介质去游离,断路器恢复时间; (2)两侧选相元件与保护以不同时限切除故障的可能性; (3)潜供电流对灭弧的影响。
当线路故障相自两侧断开后,由于非故障相与断开相 之间存在着静电(通过电容)和电磁(通过互感)的联系, 虽然短路电流已被切断,但故障点弧光通道中仍有一定数值 的电流流过,此电流即称为潜供电流。
5.2 输电线路的三相一次自动重合闸
2. 重合闸后加速保护(简称为“后加速”)
ARD
K ARD ARD
ARD
BH
BH BH
BH
1
2
3
4
• 优点 – 第一次跳闸时有选择性的; – 再次切除故障的时间加快,有利于系统并联运行的稳 定性。
• 缺点 – 第一次动作可能带有时限。
5.3 单相自动重合闸
单相重合闸就是指线路上发生单相接地故障时, 保护动作只跳开故障相的断路器,然后进行单相重 合。若故障为瞬时性的,则重合后便恢复三相供电; 若故障为永久性的,而系统又不允许长期非全相运 行时,则保护动作跳开三相断路器,不再重合。
第五章 自动重合闸
主讲教师:王艳
电自教研室
5.1 自动重合闸的作用及基本要求
自动重合闸装置是将因故障跳开后的断路器 按需要自动投入的一种自动装置。 一、自动重合闸的作用
• 对于瞬时性故障,可迅速恢复供电,从而能提高供电的 可靠性。
• 对双侧电源的线路,可提高系统并列运行的稳定性,从 而提高线路的输送容量。