ansys学习教程2_08非线性分析入门

合集下载

ANSYS教程,非线性结构分析过程

ANSYS教程,非线性结构分析过程

ANSYS教程,非线性结构分析过程尽管非线性分析比线性分析变得更加复杂,但处理基本相同。

只是在非线形分析的适当过程中,添加了需要的非线形特性。

非线性结构分析的基本分析过程也主要由建模、加载并求解和观察结果组成。

下面来讲解其主要步骤和各个选项的处理方法。

建模这一步对线性和非线性分析都是必需的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实(或对数)应变表示。

加载求解在建立好有限元模型之后,将进入ANSYS求解器(GUI:Main Menu | Solution),并根据分析的问题指定新的分析类型(ANTYPE)。

求解问题的非线性特性在ANSYS中是通过指定不同的分析选项和控制选项来定义的。

非线性分析不同于线性分析之处在于,它通常要求执行多荷载步增量和平衡迭代。

下面就详细讲解一下进行非线性结构分析需要定义的各个求解选项、分析选项和控制选项是如何设置的,以及他们的意义是什么。

求解控制对于一些基本的非线性问题的分析选项,可以通过ANSYS提供的求解控制对话框中的选项设置来完成。

选择菜单路径:Main Menu | Solution | Analysis Type | Sol’n Controls,将弹出求解控制(Solution Controls)对话框,如下图所示。

从图中可以看出该对话框主要包括5个选项卡:基本选项(Basic)、瞬态选项(Transient)、求解选项(Sol’n Options)、非线性选项(Nonlinear)和高级非线性选项(Advanced NL)。

如果开始一项新的分析,在设置分析类型和非线性选项时,选择“Large Displacement Static”选项(不是所有的非线性分析都支持大变形)。

如果想要重新启动一个失败的非线性分析,则选择“Restart Current Analysis”选项。

选中下面的“Calculate prestress effects”单选按钮用于有预应力的模态分析时的预应力计算,具体内容见模态分析部分。

ANSYS非线性分析

ANSYS非线性分析
Load Load
t1
t2 “Time”
t1
t2
“Time”
新施加的载荷在载荷步的开始从
零渐变到载荷步结束时的全值
在下一个载荷步载荷保持其值不变
非线性分析技术
ANSYS非线性分析
载荷历史的管理(续):
载荷 载荷 重新施加 删除
t1
t2
“时间” 时间”
t1
t2
“时间” 时间”
当重新定义载荷时,其值从前 一个载荷步结束时开始渐变
1.0 2.0
外载
“时间"
非线性分析技术
ANSYS非线性分析
• ANSYS 在一个载荷步内的所有子步线性插值载荷 • 对简单常值载荷必须用多载荷步来定义载荷历史
载荷 L3 L4 L2 L1
LS1 LS2 LS3 LS4
t1
t2
t3
t4
“时间” 时间”
非线性分析技术
ANSYS非线性分析
• 理解ANSYS如何管理多载荷步分析的载荷历史
– ||{R}|| 残差的矢量范数 (范数是减少矢量到一个标量值的算子 范数是减少矢量到一个标量值的算子) 范数是减少矢量到一个标量值的算子 • 残差的L1 范数 残差的 : ||{R}||1 = Σ|Ri| • 残差的 (SRSS) 范数 : 残差的L2 ||{R}||2 = (ΣR2i)1/2 Σ • 残差的无限范数 : ||{R}||∞ = max(|Ri|) – (εR Rref) 是力收敛准则 ε • εR 容差因子 Rref是参考力值 容差因子, – Rref可以是所施加力和反力的范数 ||{F}|| (自动缩放准则到载荷 可以是所施加力和反力的范数, 自动缩放准则到载荷 幅值) 幅值
– 考虑几何非线性 – 管理非线性求解中产生的大量数据 – 指定所用求解器 – 设定重启动控制 – 定义收敛容差 – 控制平衡方程的数目 – 增强求解收敛 – 当不收敛时控制程序的行为

应用ANSYS实现几何非线性分析方法

应用ANSYS实现几何非线性分析方法

应用ANSYS实现几何非线性分析方法摘要:本文简要介绍了用ANSYS对杆系结构进行非线性分析时应当注意的问题及方法。

通过Williams双杆体系这个算例来介绍几何非线性全过程分析,表明ANSYS软件丰富的单元库、强大的求解器以及便捷的后处理功能,对工程结构进行非线性分析不失为一种很好的方法。

关键词:杆系结构;几何非线性ANSYS;全过程分析BEAM3对于许多工程问题,结构的刚度是变化的,必须用非线性理论解决,而几何非线问题就是非线性理论中的一类。

因几何变形引起的结构刚度变化的一类问题都属于几何非线性问题。

几何非线性理论一般可以分成大位移小应变即有限位移理论和大位移大应变理论即有限应变理论。

其核心是由于结构的几何形状或位置的改变引起结构刚度矩阵发生变化,也就是结构的平衡方程必须建立在变形后的位置上。

ANSYS程序充分考虑了这两种理论。

ANSYS所考虑的几何非线性通常分为3类:①大应变,即认为应变不再是有限的,结构本身的形状可以发生变化,结构的位移和转动可以是任意大小;②大位移,即结构发生了大的刚体转动,但其应变可以按照线性理论来计算,结构本身形状的改变可以忽略不计;③应力刚化,是指单元较大的应变使得单元在某个面内具有较大的应力状态,从而显著影响面外的刚度。

大应变包括大位移和应力刚化,此时应变不再是“小应变”,而是有限应变或“大应变”;大位移包括了其自身和应力刚化效应,但假定为“小应变”;应力刚化被激活时,程序计算应力刚度矩阵并将其添加到结构刚度矩阵中,应力刚度矩阵仅是应力和几何的函数,因此又称为“几何刚度”。

几何非线性问题一般指的是大位移问题,只有在材料发生塑性变形时,以及类似橡皮这样的材料才会遇到的大的应变,大变形一般包含大应变、大位移和应力刚化,而不加区分。

1几何非线性分析应注意的问题用ANSYS进行几何非线性分析时,首先要打开大位移选项,即(NLGEOM,ON),并设置求解控制选项,可根据问题类型而定。

ANSYS结构非线性分析指南

ANSYS结构非线性分析指南

ANSYS结构非线性分析指南ANSYS是一个强大的工程仿真软件,能够对各种复杂的结构进行分析。

其中,结构非线性分析是其中一种重要的分析方法,它能够模拟结构在非线性载荷和变形条件下的行为。

本文将为您提供一个ANSYS结构非线性分析的指南,帮助您更好地理解和应用这个方法。

首先,我们需要明确结构非线性分析的目标。

一般来说,结构非线性分析主要用于研究结构在大变形、材料非线性、接触或摩擦等复杂条件下的响应。

例如,当结构受到极大的外力作用时,其产生的变形可能会导致材料的非线性行为,这时我们就需要进行非线性分析。

在进行非线性分析之前,我们需要进行准备工作。

首先,我们需要准备一个几何模型,可以通过CAD软件导入或者直接在ANSYS中绘制。

然后,我们需要选择合适的材料模型,这将直接影响分析结果的准确性。

ANSYS提供了多种材料模型,例如线弹性模型、塑性模型和粘弹性模型等。

接下来,我们需要定义边界条件和载荷。

边界条件指明了结构的固定边界和自由边界,这决定了结构的位移约束。

载荷是作用在结构上的外力或者外界约束,例如压力、点载荷或者摩擦力等。

在非线性分析中,载荷的大小和施加方式可能会导致结构的非线性响应,因此需要仔细选择。

接下来,我们需要选择适当的非线性分析方法。

ANSYS提供了多种非线性分析方法,例如几何非线性分析、材料非线性分析和接触非线性分析等。

几何非线性分析适用于大变形情况下的分析,材料非线性分析适用于材料的弹塑性行为分析,而接触非线性分析适用于多个结构之间的接触行为分析。

在进行非线性分析之前,我们需要对模型进行预处理,包括网格划分和解算控制参数的设置。

网格划分的精度会直接影响分析结果的准确性,因此需要进行适当的剖分。

解算控制参数的设置涉及到收敛性和稳定性的问题,需要进行合理的调整。

然后,我们可以进行非线性分析了。

ANSYS提供了多种求解器,例如Newton-Raphson方法和弧长法等。

这些求解器可以通过迭代算法来求解非线性方程组,得到结构的响应结果。

ANSYS非线性分析指南

ANSYS非线性分析指南

几何非线性分析随着位移增长一个有限单元已移动的坐标可以以多种方式改变结构的刚度一般来说这类问题总是是非线性的需要进行迭代获得一个有效的解大应变效应一个结构的总刚度依赖于它的组成部件单元的方向和单刚当一个单元的结点经历位移后那个单元对总体结构刚度的贡献可以以两种方式改变变首先如果这个单元的形状改变它的单元刚度将改变看图2─1(a)其次如果这个单元的取向改变它的局部刚度转化到全局部件的变换也将改变看图2─1b)小的变形和小的应变分析假定位移小到 足够使所得到的刚度改变无足轻重这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移什么时候使用小变形和应变依赖于特定分析中要求的精度等级 相反大应变分析说明由单元的形状和取向改变导致的刚度改变因为刚度受位移影响且反之亦然所以在大应变分析中需要迭代求解来得到正确的位移通过发出NLGEOM ON GUI 路径Main Menu>Solution>Analysis Options)来激活 大应变效应这效应改变单元的形状和取向且还随单元转动表面载荷集中载荷和惯性载荷保持它们最初的方向在大多数实体单元包括所有的大应变和超弹性单元以及部分的壳单元中大应变特性是可用的在ANSYS/Linear Plus 程序中大应变效应是不可用的图1─11 大应变和大转动大应变处理对一个单元经历的总旋度或应变没有理论限制某些ANSYS 单元类型将受到总应变的实际限制──参看下面然而应限制应变增量以保持精度 因此总载荷应当被分成几个较小的步这可以NSUBST DELTIM AUTOTS 通过GUI 路径 Main Menu>Solution>Time/Prequent)无论何时当系统是非保守系统来自动实现如在模型中有塑性或摩擦或者有多个大位移解存在如具有突然转换现象使用小的载荷增量具有双重重要性关于大应变的特殊建模讨论应力─应变在大应变求解中所有应 力─应变输入和结果将依据真实应力和真实或对数应变一维时真实应变将表求为 对于响应的小应变区真实应变和工程应变基本上是一致的要从小工程应变转换成对数应变使用 要从工程应力转换成真实应力使用 这种应力转化反对不可压缩塑性应力─应变数据是有效的为了得到可接受的结果对真实应变超过50%的塑性分析应使用大应变单元大应变与小应变分析的界定VISCO106107及108单元的形状应该认识到在大应变分析的任何迭代中低劣的单元形状也就是大的纵横比过度的顶角以及具有负面积的已扭曲单元将是有害的因此你必须和注意单元的原始形状一样注意的单元已扭曲的形状除了探测出具有负面积的单元外ANSYS程序对于求解中遇到的低劣单元形状不发出任何警告必须进行人工检查如果已扭曲的网格是不能接受的可以人工改变开始网格在容限内以产生合理的最终结果参看图2─2图2─2 在大应变分析中避免低劣单元形状的发展具有小应变的大偏移小应变大转动某些单元支持大的转动但不支持大的形状改变一种称作大挠度的大应变特性的受限形式对这类单元是适用的在一个大挠度分析中单元的转动可以任意地大但是应变假定是小的大挠度效应没有大的形状改变在ANSYS/Linear Plus程序中是可用的在ANSYS/Mechanical,以及ANSYS/Structural产品中对于支持大应变特性的单元大挠度效应不能独立于大应变效应被激活在所有梁单元和大多数壳单元中以及许多非线性单元中这个特性是可用的通过打开NLGEOM ON GUI路径Main Menu>Solution>Anolysis Options来激活那些支持这一特性的单元中的大位移效应应力刚化结构的面外刚度可能严重地受那个结构中面内应力的状态的影响面内应力和横向刚度之间的联系通称为应力刚化在薄的高应力的结构中如缆索或薄膜中是最明显的一个鼓面当它绷紧时会产生垂向刚度这是应力强化结构的一个普通的例子尽管应力刚化理论假定单元的转动和应变是小的在某些结构的系统中如在图2─3a)中刚化应力仅可以通过进行大挠度分析得到在其它的系统中如图2─3(b)中刚化应力可采用小挠度或线性理论得到图2─3 应力硬化梁要在第二类系统中使用应力硬化必须在第一个载荷步中发出SSTIF ON GUI路径Main Menu>Solution>Analysis Options)ANSYS程序通过生成和使用一个称作应力刚化矩阵的辅助刚度矩阵来考虑应力刚化效应尽管应力刚度矩阵是使用线性理论得到的但由于应力应力刚度矩阵在每次迭代之间是变化的这个事实因而它是非线性的大应变和大挠度处理包括进初始应力效应作为它们的理论的一个子集对于许多实体和壳单元当大变型效应被激活时NLGEOM ON GUI路径Main Menu>Solution>Analysis Options)自动包括进初始硬化效应在大变形分析中NLGEOM ON包含应力刚化效应SSTIF ON将把应力刚度矩阵加到主刚度矩阵上以在具有大应变或大挠度性能的大多数单元中产生一个近似的协调切向刚度矩阵例外情况包括BEAM4和SHELL63以及不把应力刚化列为特殊特点的任何单元对于BEAM4和SHELL63你可以通过设置KEYOPT2=1和NLGEOM ON在初始求解前激活应力刚化当大变形效应为ON开时这个KEYOPT 设置激活一个协调切向刚度矩阵选项当协调切向刚度矩阵被激活时也就是当KEYOPT 2=1且NLGEOM ON时SSTIF对BEAM4和SHELL63将不起作用在大变型分析中何时应当使用应力刚化对于大多数实体单元应力刚化的效应是与问题相关的在大变型分析中的应用可能提高也可能降低收敛性在大多数情况下首先应该尝试一个应力刚化效应OFF关闭的分析如果你正在模拟一个受到弯曲或拉伸载荷的薄的结构当用应力硬化OFF关时遇到收敛困难则尝试打开应力硬化应力刚化不建议用于包含不连续单元由于状态改变刚度上经历突然的不连续变化的非线性单元如各种接触单元SOLID65等等的结构对于这样的问题当应力刚化为ON开时结构刚度上的不连续线性很容易导致求解胀破对于桁梁和壳单元在大挠度分析中通常应使用应力刚化实际上在应用这些单元进行非线性屈曲和后屈曲分析时只有当打开应力刚化时才得到精确的解对于BEAM4和SHELL63你通过设置单元KEYOPT2=1激活大挠度分析中NLGEOMON的应力刚化然而当你应用杆梁或者壳单元来模拟刚性连杆耦合端或者结构刚度的大变化时你不应使用应力刚化注意无论何时使用应力刚化务必定义一系列实际的单元实常数使用不是成比例也就是人为的放大或缩小的实常数将影响对单元内部应力的计算且将相应地降低那个单元的应力刚化效应结果将是降低解的精度旋转软化旋转软化为动态质量效应调整软化旋转物体的刚度矩阵在小位移分析中这种调整近似于由于大的环形运动而导致几何形状改变的效应通常它和预应力[PSTRES]GUI路径Main Menu>Solution>Analysis Options)一起使用这种预应力由旋转物体中的离心力所产生它不应和其它变形非线性大挠度和大应变一起使用旋转软化用OMEGA命令中的KPSIN来激活GUI路径MainMenu>Preprocessor>Loads>-Loads-Apply>-Structural-Other>Angular Velotity)关于非线性分析的忠告和准则着手进行非线性分析通过比较小心地采用时间和方法可以避免许多和一般的非线性分析有关的困难下列建议对你可能是有益的了解程序的运作方式和结构的表现行为如果你以前没有使用过某一种特别的非线性特性在将它用于大的复杂的模型前构造一个非常简单的模型也就是仅包含少量单元以及确保你理解了如何处理这种特性通过首先分析一个简化模型以便使你对结构的特性有一个初步了解对于非线性静态模型一个初步的线性静态分析可以使你知道模型的哪一个区域将首先经历非线性响应以及在什么载荷范围这些非线性将开始起作用对于非线性瞬态分析一个对梁质量块及弹簧的初步模拟可以使你用最小的代价对结构的动态有一个深入了解在你着手最终的非线性瞬时动态分析前初步非线性静态线性瞬时动态和/或模态分析同样地可以有助于你理解你结构的非线性动态响应的不同的方面阅读和理解程序的输出信息和警告至少在你尝试后处理你的结果前确保你的问题收敛对于与路程相关的问题打印输出的平衡迭代记录在帮助你确定你的结果是有效还是无效方面是特别重的简化尽可能简化最终模型如果可以将3─D结构表示为2─D平面应力平面应变或轴对称模型那么这样做如果可以通过对称或反对称表面的使用缩减你的模型尺寸那么这样做然而如果你的模型非对称加载通常你不可以利用反对称来缩减非线性模型的大小由于大位移反对称变成不可用的如果你可以忽略某个非线性细节而不影响你模型的关键区域的结果那么这样做只要有可能就依照静态等效载荷模拟瞬时动态加载考虑对模型的线性部分建立子结构以降低中间载荷或时间增量及平衡迭代所需要的计算时间采用足够的网格密度考虑到经受塑性变形的区域要求一个合理的积分点密度每个低阶单元将提供和高阶单元所能提供的一样多积分点数因此经常优先用于塑性分析在重要塑性区域网格密度变得特别地重要因为大挠度要求对于一个精确的解个单元的变形弯曲不能超过30度在接触表面上提供足够的网格密度以允许接触应力以一种平滑方式分布提供足够用于分析应力的网格密度那些应力或应变关心的面与那些需要对位移或非线性解析处的面相比要求相对好的网格使用足够表征最高的重要模态形式的网格密度所需单元数目依赖于单元的假定位移形状函数以及模态形状本身使用足够可以用来分析通过结构的任何瞬时动态波传播的网格密度如果波传播是重要的那么至少提供20个单元来分析一个波长逐步加载对于非保守的与路径相关的系统你需要以足够小的增量施加载荷以确保你的分析紧紧地跟随结构的载荷响应曲线有时你可以通过逐渐地施加载荷提高保守系统的收敛特性从而使所要求的Newton_Raphson平衡迭代次数最小合理地使用平衡迭代务必允许程序使用足够多的平衡迭代NEQIT在缓慢收敛路径无关的分析中这会是特别重要的相反地在与路径严重相关的情况下可能不应该增加平衡迭代的最大次数超过程序的缺省值25如果路径相关问题在一个给定的子步内不能快速收敛那么你的解可能偏离理论载荷响应路径太多这个问题当你的时间步长太大时出现通过强迫你的分析在一个较小的迭代次数后终止你可以从最后成功地收敛的时间步重起动ANTYPE建立一个较小的时间步长然后继续求解打开二分法²AUTOTS ON会自动地用一个较小的时间步长重起动求解克服收敛性问题如果问题中出现负的主对角元计算出过度大的位移或者仅仅没能在给定的最大平衡迭代次数内达到收敛则收敛失败发生收敛失败可能表明出结构物物理上的不稳定性或者也可能仅是有限无模型中某些数值问题的结果ANSYS程序提供几种可以用来在分析中克服数值不稳性的工具如果正在模拟一个实际物理意义上不稳定的系统也就是具有零或者负的刚度那么将拥有更多的棘手问题有时你可以应用一个或更多的模拟技巧来获得这种情况下的一个解让我们来探讨一下某些你可以用来尝试提高你的分析的收敛性能的技术打开自动时间步长当打开自动时间步长时往往需要一个小的最小的时间步长或者大的最大的步长数当有接触单元如CONTACT48CONTACT12等等时使用自动时间分步程序可能趋向于重复地进行二分法直到它达到最小时间步长然后程序将在整个求解期间使用最小时间步长这样通常产生一个稳定但花费时间的解接触单元具有一个控制程序在它的时间步选择中将是多么保守的选项设置KEYOPT7这样允许你加速在这些情况下的运行时间对于其它的非线性单元你需要仔细地选择你的最小时间步如果你选择一个太小的最小时间步自动时间分步算法可能使你的运行时间太长相反地使你的最小时间步长太大可能导致不收敛务必对时间步长设置一个最大限度DELTIM或者NSUBST特别别是对于复杂的模型这确保所有重要的模态和特性将被精确地包含进这在下列情况下可能是重要的具有局部动态行为特性的问题例如涡轮叶片和轮毂部件在这些问题中系统的低频能量含量以优势压倒高频范围具有很短的渐进加载时间问题如果时间步长允许变得太大载荷历程的渐进部分可能不能被精确地表示出来包含在一个频率范围内被连续地激励的结构的问题例如地震问题当模拟运动结构具有刚体运动的系统时注意分析输入或系统驱动频率所要求的时间步通常比分析结构的频率所要求的大几个数量级采用这样粗略的一个时间步会将相当大的数值干扰引入解中求解甚至可能变得不稳定下面这些准则通常可以帮助你获得一个好的解如果实际可行采用一个至少可以分析系统的第一阶非零频率的时间步长把重要的数值阻尼在TINTP命令中0.05P1加到求解中以过滤出高频噪音特别是如果采用了一个精略的时间步长时由于阻尼质量矩阵乘子ALPHAD命令会阻碍系统的刚体运动零频率模态在一个动态运动分析中不要使用它避免强加的位移历程说明因为强加的位移输入具有理论上加速度上的无限突跃对于Newmark时间积分算法其导致稳定性问题使用二分法无论何时你打开自动时间步长AUTOTS ON二分法被自动激活这个特性通常会使你能够从由于采用一个太大的时间步导致的收敛失败中恢复它受最小时间步长限制NSUBST DELTIM二分法对于任何对加载步长敏感的分析一般是有益的对于发现一个非线性系统的屈曲临界负载它同样是有用的使用Newton-Raphson选项和自适应下降因子Newton-Raphson选项的最佳选择将依据存在于你模型中的非线性种类变化尽管通过让程序选择Newton-Raphson选项NROPT AUTO通常你会获得最佳的收敛特性但也可能偶尔遇到使用一些其它选择会更有效的情况例如如果非线性材料的行为发生在你模型的一个相对小的区域中采用修正的Newton-Raphson或者初始刚度选项可以降低分析的总体CPU代价自适应下降因子NROPT和塑性以及某些非线性单元包括接触单元同时使用在几乎没有载荷重新分配的情况下通过关闭这个特性你可以获得更快的收敛性自适应下降在仅有大挠度的非线性的问题中几乎没有效果使用线性搜索线性搜索LNSRCH作为一个对自适应下降NROPT的替代会是有用的一般地你不应同时既激活线性搜索又激活自适应下降线性搜索方法通常导致收敛但在时间上它可能是缓慢的和昂贵的特别是具有塑性时在下列情况下你可以设置线搜索为打开状态当你的结构是力加载的其与位移控制的相反时如果你正在分析一个刚度增长的薄膜结构如一根钓鱼杆如果你注意到从程序的输出信息你的分析正导致自适应下降频频被激活应用预测预测PRED基于基于前一个时间步的求解预估在这个时间步中的求解情况因此可能减少所需的平衡迭代次数如果非线性响应相对地平滑这个特性会是有益的在大转动和粘弹性分析中它一般不是有益的应用弧长方法对于许多物理意义上不稳定的结构你可以应用弧长方法ARCLEN ARCTRM来获得数值上稳定的解当应用弧长方法时请记住下列考虑事项弧长方法限制于仅具有渐进加载方式的静态分析程序由第一个子步的第一次迭代的载荷或位移增量计算出参考弧长半径采用下列公式参考弧长半径=总体载荷或位移NSBSTP这里NSBSTP是NSUBST命令中指定的子步数当选择子步数时考虑到更多的子步将导致很长的求解时间理想地你会选择一个最佳有效解所需的最小子步数或许你不得不对所需的子步数进行评诂按照需要调整后再重新求解当弧长方法是激活的时不要使用线搜索LNSRCH预测PRED自适应下降NROPT ON自动时间分步AUTOTS TIME DELTIM或时间积分效应TIMINT不要尝试将收敛建立在位移的基础上CNVTOL U使用力的收敛准则CNVTOLF要用弧长方法来帮助使求解时间最小化一个单一子步中的最大平衡迭代数应当小于或等于15如果一个弧长求解在规定的最大迭代次数内NEQIT没能收敛程序将自动进行二分且继续分析直到获得一个收敛的解或者最小的弧长半径被采用最小半径由NSUBST NSUBST和MINARC ARCLEN定义一般地你不能应用这种方法来在一个确定的载荷或位移值处获得一个解因为这个值随获得的平衡态改变沿球面弧注意图1─4中给定的载荷仅用作一个起始点收敛处的实际载荷有点小类似地当在一个非线性屈曲分析中应用弧长方法来在某些已知的容限范围内确定一个极限载荷或位移的值可能是困难的通常你不得不通过尝试─错误─再尝试调整参考弧长半径使用NSUBST来在极限点处获得一个解应用带二分AUTOTS 的标准NEWTON-RAPHSON迭代来确定非线性载荷屈曲临界负载的值可能会更方便通常你应当避免和弧长方法一起使用JCG或者PCG求解器EQSLV因为弧长方法可能会产生一个负定刚度矩阵负的主对角线用这些求解器其可能导致求解失败在任何载荷步的开始你可以从Newton-Raphson迭代方法到弧长方法自由转换然而要从弧长到Newton-Raphson迭代转换你必须终止分析然后重起动且在重起动的第一个载荷步中去杀死弧长方法ARCLEN OFF一个弧长求解在这些情况下终止当由ARCTRM或NCNV命令定义的极限达到时当在所施加的载荷范围内求解收敛时当你使用一个放弃文件时Jobname.ABT使用载荷位一移曲线作为用于评价和调整你的分析以帮助你获得所需结果的准则通常对于每一个分析都绘制你的载荷一偏移曲线采用POST26命令是一种好的作法经常地一个不成功的弧长分析可以归因于弧长半径或者太大或者太小沿载荷一偏移曲线原路返回的回漂是一种由于使用太大或太小弧长半径导致的典型难点研究载荷偏移曲线来理解这个问题然后使用NSUBST和ARCLEN命令来调整弧长半径的大小和范围为合适的值总体弧长载荷因子SOLU命令中的ALLF项或者会是正的或者会是负的类似地TIME其在弧长分析中相关于总体弧长载荷因数同样会不是正的就是负的ALLF或TIME的负值表示弧长特性正在以反方向加载以便保持结构中的稳定性负的ALLF或者TIME值一般会在各种突然转换分析中遇到当将弧长结果读入基本数据用于POSTI后处理时SET你总是应当引用由它的载荷步和子步号LSTEP和SBSTEP或者进它的数据设置号所设定的所需结果数据不要引用用TIME值的结果因为TIME值在一个弧长分析中并不总是单调增加的单一的一个TIME值可能涉及多于一个的解此外程序不能正确地解释负的TIME值C其可能在一个突然转换分析中遇到如果TIME为负的记住在产生任何POST26图形前定义一个合适的变化范围IXRANGE或者IYRANGE在你的模型响应中人为地抑制发散如果你不想使用弧长方法来分析一个在奇异零刚度形状时开始开或者通过奇异形状的力加载的结构时有时你可以使用其它的技术来人工地抑制模型响应中的发散在某些情况下你可以使用强加的位移来替代所施加的力这种方法可以用于在较靠近平衡位置处开始一个静态分析或者用于控制整个不稳定响应期间如突然转换或后翘曲的位移其它在阻止由于初始不稳定性所造成的问题时有效的技术包括使用带有强加的初始应变的应力刚化SSTIF致冷也就是增加暂时的人工热应变或者将一个静态问题执行为一个缓慢动态分析也就是在任意一个载荷步尝试使用时间积分效应阻止解发散你也可以应用控制单元如COMBIN37或者应用其它单元的出生和死亡选项对不稳定的DOFs施加暂时的人工刚度这里的想法是在中期的载荷步期间人为地约束系统以阻止不符合实际的大位移被计算出随着系统变位到稳定的形态人工刚度被移去应用雅各比共轭梯度求解器这个求解器通过EQSLV命令获得在经历某一奇异划零零刚度状态的分析中会是有用的叶ÔJCG求解器来说相对大的求解容差有时会涂抹掉这种奇异性导致载荷一位移曲线的斜度具有某些假的非零值在EQSLV中这个求解器的容限不是非线性收敛容限雅各比共轭梯度求解器仅是一种求解线性矩阵方程的替代方法这种求解器的使用不能替代任何方式的非线性处理关闭特殊的单元形状有时在非线性分析中使用无中节点单元的形状选项会产生收敛困难合理地使用出生和死亡认识到结构的刚度矩阵的任何突然改变可能会导致收敛问题当激活或杀死单元时试着将变化分散在若干子步内如果需要采用一个小的时间步长来完成这种变化也要注意到随着你激活或杀死单元可能会产生的奇异性如尖的再生角像这样的奇异性可能产生收敛问题检验你的分析结果好的有限无分析FEA过程总是要求你检验你的结果你需要自己证明你理解了程序你正在正确地使用它以及你的分析结果正确地体现出你的结构的物理特性在检验你的非线性分析时你可以使用若干标准验证技术标准分析一个确保你了解如何恰当地施加程序的特殊特性的好的方法是通过进行一个或多个标准分析在一个标准分析中一般是你对一个有理论解存在的简单结构进行独立地分析这里的想法是通过将你的FEA结果与已知结果相对照以验证你可以正确地运用程序的特性当然标准分析结构应当与要分析的完整结构非常相似ANSYS Verification Manual 是标准问题的一种较好的来源结果合理么大多数工程师在他们职业的早期就认识到要对他们的数值结果的有效性提出疑问无论这些结果是通过手工计算计算机分析还是一些其它方法得到的在你开始任何分析前你总是应当对你期望获得的结果至少具有一个粗略的概念通过经验试验标准分析等等获得如果你最终的结果似乎不合理也就是如果它们不同于你的期望值你应当确信你理解了这是为什么好的工程实际要求你总是使你的分析结果和合理的期望值相一致。

ANSYS非线性分析(控制选项)

ANSYS非线性分析(控制选项)

ANSYS非线性分析(控制选项)1、非线性分析(1)牛顿-拉普森选项(NROPT)仅在非线性分析中使用这个选项,。

这个选项制定在求解期间每隔多长时间修正一次正切矩阵。

可以指定下列值中的一个: 程序选择(NROPT,AUTO)。

程序根据模型中存在的非线性种类自动选用这些选项中的一个。

在需要时牛顿-拉普森方法将自动激活自适应下降。

完全牛顿-拉普森选项(NROPT,FULL)。

程序使用完全的牛顿-拉普森处理方法,在这种处理方法中每进行一次平衡迭代都修改刚度矩阵一次。

如果自适应下降是关闭的,程序每一次平衡迭代都使用正切刚度矩阵。

如果自适应下降是打开的,只要迭代保持稳定,程序仅适用正切刚度矩阵。

如果在某一次迭代过程中检测到发散倾向,程序将抛弃发散的迭代并重新开始求解,此时应用正切和正割刚度矩阵的加权组合。

当迭代重新回到收敛模式是程序将重新开始使用正切刚度矩阵。

对复杂的非线性问题自适应下降统称能提高程序获得收敛的能力。

修正牛顿-拉普森选项(NROPT,MODL)。

程序使用修正的牛顿-拉普森方法,在这种方法中正切刚度矩阵在每一步中都被修正,在一个子步的平衡迭代期间矩阵不被改变。

这个选项不适应于大变形分析,而且无法使用自适应下降。

初始刚度(NROPT,INIT)。

程序在每一次平衡迭代中都使用初始刚度矩阵,该选项可以使迭代过程更容易收敛,但需要更多迭代次数得到收敛。

该选项不适用于大变形分析,求自适应下降不可用。

(2)指定载荷步选项这些选项可以在任何载荷中改变。

下列选项适用于非线性分析:l 普通选项在普通选项包括:Time(TIME)。

ANSYS程序借助在每一个载荷步末端指定TIME参数识别出载荷步和子步。

使用TIME命令可以用来定义受某些实际物理量限制的TIME值。

程序通过这个选项来指定载荷步的末端时间。

时间步的数目(NSUBST)和时间步长(DELTIM)。

非线性分析要求在每一个载荷步内有多个子步或时间步,从而ANSYS可以逐渐施加所给定的载荷,逐步得到精确解。

ANSYS非线性分析

ANSYS非线性分析
荷步选项。在作非线性结构静力分析时,可以应用求解控 制对话框来设置。该对话框对许多非线性静力分析提供了 缺省设置。求解控制对话框是非线性静力分析的推荐工具 ,我们在下面将详细论述。
16
11.2 结构非线性分析
• 1.进入求解控制对话框 ➢ GUI:【Main Menu】/【Solution】/【Analysis Type】/
表11-3 Advanced NL标签选项
选项 Termination Criteria Arc-length options
用途 终止分析结束准则 激活和终止弧长法控制
28
11.2 结构非线性分析
图11-5 Advanced NL标签界面
29
11.2 结构非线性分析
➢ 11.2.1.3 设置其它求解选项 • 其他求解选项很少使用,并且其默认值设置都很少改变,
33
11.2 结构非线性分析
➢ (3) 预应力效应计算 • 这一选项用来在同一模型中执行预应力分析,如预应力模
型的分析。缺省值为 OFF。应力刚度效应和预应力效应计 算二者都控制应力刚度矩阵的生成,因此在一个分析中不 以同时应用。如二者都指定,则最后选项将覆盖前者。 ➢ 命令:PSTRES ➢ GUI:【Main Menu】/【Solution】/【Unabridged Menu】/【Analysis Options】
32
11.2 结构非线性分析
➢ (2)Newton-Raphson选项 • 这一选项只能用于非线性分析中,它说明在求解时切线矩
阵如何修正。在存在非线性时,ANSYS的自动求解控制 将应用自适应下降关闭的完全牛顿-拉普森选项。但在应 用节点-节点,节点-面接触单元的有摩擦接触分析中,自 适应下降功能是自动打开的。 ➢ 命令:NROPT ➢ GUI:【Main Menu】/【Solution】/【Unabridged Menu】/【Analysis Options】

ANSYS讲义非线性分析

ANSYS讲义非线性分析
F1
t1
t2
时间 t
XJTU
自动时间步(续)
• 自动时间步算法是 非线性求解控制 中包含的多种算法的一种。
(在以后的非线性求解控制中有进一步的讨论。) • 基于前一步的求解历史与问题的本质,自动时间步算法或者增加
或者减小子步的时间步大小。
XJTU
5) 输出文件的信息
在非线性求解过程中,输出窗口显示许多关于收敛的信息。输出 窗口包括:
子步
时间 ”相关联。
“时间
两个载荷步的求解 ”
XJTU
在非线性求解中的 “ 时间 ”
• 每个载荷步与子步都与 “ 时间 ”相关联。 子步 也叫时间步。
• 在率相关分析(蠕变,粘塑性)与瞬态分析中,“ 时间 ”代表真实 的时间。
• 对于率无关的静态分析,“ 时间 ” 表示加载次序。在静态分析中, “ 时间 ” 可设置为任何适当的值。
最终结果偏离平衡。
u 位移
XJTU
1) Newton-Raphson 法
ANSYS 使用Newton-Raphson平衡迭代法 克服了增量
求解的问题。 在每个载荷增量步结束时,平衡迭代驱 使解回到平衡状态。
载荷
F
4 3 2
1
u 位移
一个载荷增量中全 Newton-Raphson 迭代 求解。(四个迭代步如 图所示)
XJTU
非线性分析的应用(续)
宽翼悬臂梁的侧边扭转失 稳
一个由于几何非线性造 成的结构稳定性问题
XJTU
非线性分析的应用(续)
橡胶底密封 一个包含几何非线 性(大应变与大变 形),材料非线性 (橡胶),及状态 非线性(接触的例 子。
XJTU
非线性分析的应用(续)

ANSYS结构非线性分析指南_第二章

ANSYS结构非线性分析指南_第二章

第二章开始结构非线性分析2.1 在ANSYS中执行非线性分析ANSYS应用基于问题物理特性的自动求解控制方法,把各种非线性分析控制参数设置到合适的值。

如果用户对这些设置不满意,还可以手工设置。

下列命令的缺省设置已进行了优化处理: AUTOTS PRED MONITORDELTIM NROPT NEQITNSUBST TINTP SSTIFCNVTOL CUTCONTROL KBCLNSRCH OPNCONTROL EQSLVARCLEN CDWRITE LSWRITE这些命令及其设置在将在后面讨论。

参见《ANSYS Commands Reference》。

如果用户选择自己的设置而不是ANSYS的缺省设置,或希望用以前版本的ANSYS的输入列表,则可用/SOLU模块的SOLCONTROL,OFF命令,或在/BATCH命令后用/CONFIG,NLCONTROL,OFF命令。

参见SOLCONTROL命令的详细描述。

ANSYS对下面的分析激活自动求解控制:∙单场的非线性或瞬态结构以及固体力学分析,在求解自由度为UX、UY、UZ、ROTX、ROTY、ROTZ 的结合时;∙单场的非线性或瞬态热分析,在求解自由度为TEMP时;注意--本章后面讨论的求解控制对话框,不能对热分析做设置。

用户必须应用标准的ANSYS求解命令或GUI来设置。

2.2 非线性静态分析步骤尽管非线性分析比线性分析变得更加复杂,但处理基本相同。

只是在非线形分析的过程中,添加了需要的非线形特性。

非线性静态分析是静态分析的一种特殊形式。

如同任何静态分析,处理流程主要由以下主要步骤组成:∙建模;∙设置求解控制;∙设置附加求解控制;∙加载;∙求解;∙考察结果。

2.2.1 建模这一步对线性和非线性分析基本上是一样的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,参考§4《材料非线性分析》,和§6.1《单元非线性》。

如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实(或对数)应变表示。

ANSYS非线性求解的理论基础

ANSYS非线性求解的理论基础

NROPT,MODI:程序在每一个子步中修正切线 刚度。自适应下降不可用。
NROPT,INIT:程序在所有迭代中都使用初始刚 度。自适应下降不可用。
14
ANSYS非线性求解的理论基础
收敛准则--位移准则
ui 1 D ui ui 1
D --位移收敛容差,一般取0.001~0.005之间;
1
K i F
1
,收敛性差,因此很
切线刚度法: K i K i T ,令 Newton-Raphson迭代法。
1 1
1 则得到
8
ANSYS非线性求解的理论基础
Full Newton-Raphson(F.N.R)
F
`
在一个荷载步或子步内每次迭代 后重新形成一次 Ki T
下面仅讨论比例加载情况下过极值点(过屈 曲)的方法:当前的主流方法是自动步长法。
24
ANSYS非线性求解的理论基础
自动步长法--概述(1)
如前所述,非线性方程组的解法主要是增量 加迭代法,即外荷载是逐级施加的,每施加一级 荷载增量后进行平衡迭代直至解的结果满足允许 容差。
因此,荷载增量大小的控制对求解有很重要 的意义:增量过大,解难于收敛甚至发散,这一 点在接近极值点时特别明显;增量太小,意味着 求解次数过多,使计算工作量增大。
1
ANSYS非线性求解的理论基础
主要内容

NROPT, , Option, --, Adptky
—— 非线性方程组的解法

CNVTOL, Lab, VALUE, TOLER, NORM, MINREF
—— 收敛准则

AUTOTS, Key
ARCLEN, Key, MAXARC, MINARC

非线性2【ANSYS非线性分析】

非线性2【ANSYS非线性分析】

1几何非线性分析随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。

一般来说这类问题总是是非线性的,需要进行迭代获得一个有效的解。

大应变效应一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。

当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变变。

首先,如果这个单元的形状改变,它的单元刚度将改变。

(看图2─1(a))。

其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变。

(看图2─1(b))。

小的变形和小的应变分析假定位移小到 足够使所得到的刚度改变无足轻重。

这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移。

(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级。

相反,大应变分析说明由单元的形状和取向改变导致的刚度改变。

因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。

通过发出NLGEOM ,ON (GUI 路径Main Menu>Solution>Analysis Options),来激活 大应变效应。

这效应改变单元的形状和取向,且还随单元转动表面载荷。

(集中载荷和惯性载荷保持它们最初的方向。

)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。

在ANSYS/Linear Plus 程序中大应变效应是不可用的。

图1─11 大应变和大转动大应变处理对一个单元经历的总旋度或应变没有理论限制。

(某些ANSYS单元类型将受2到总应变的实际限制──参看下面。

)然而,应限制应变增量以保持精度。

因此,总载荷应当被分成几个较小的步,这可以〔NSUBST ,DELTIM ,AUTOTS 〕,通过GUI 路径 Main Menu>Solution>Time/Prequent)。

无论何时当系统是非保守系统,来自动实现如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。

ANSYS结构非线性分析指南

ANSYS结构非线性分析指南

ANSYS结构非线性分析指南ANSYS是一款非常强大的有限元分析软件,广泛应用于各种工程领域的结构分析。

在常规的结构分析中,通常会涉及到线性分析,但一些情况下,结构出现了非线性行为,这时就需要进行非线性分析。

非线性分析可以更准确地模拟结构的真实行为,包括材料的非线性、几何的非线性和接触非线性等。

在进行ANSYS结构非线性分析时,需要考虑以下几个方面:1.材料的非线性:在材料的应力-应变关系中,材料的性质可能会发生变化,如塑性变形、损伤、软化等。

因此在非线性分析中,需要考虑材料的非线性特性,并正确选取材料模型。

2.几何的非线性:在一些情况下,结构本身的几何形态可能会发生较大变化,如大变形、屈曲等。

这需要考虑结构的几何非线性,并在分析中充分考虑结构的形变情况。

3.接触非线性:当结构中存在接触面时,接触面之间的接触力可能是非线性的,如摩擦力、法向压力等。

在进行非线性分析时,需要考虑接触面上的非线性行为,确保接触的可靠性。

在进行ANSYS结构非线性分析时,可以按照以下步骤进行:1.建立模型:首先需要根据实际情况建立结构的有限元模型,包括几何形状、边界条件和加载条件等。

在建立模型时,需要考虑到结构的材料、几何和接触情况,并进行合理的网格划分。

2.设置分析类型:在ANSYS中,可以选择静力分析、动力分析等不同的分析类型。

在进行非线性分析时,需要选择适合的非线性分析模块,并设置相应的参数。

3.设置材料模型:根据结构的材料特性,选择合适的材料模型,如弹塑性模型、本构模型等。

根据实际情况,设置材料的材料参数,确保材料的非线性行为能够得到准确的描述。

4.设置几何非线性:考虑结构的几何非线性时,需要选择合适的几何非线性选项,并设置合适的几何参数。

在进行大变形分析时,需要选择几何非线性选项,确保结构的形变情况能够得到准确的描述。

5.设置接触非线性:当结构存在接触面时,需要考虑接触面上的非线性行为。

在ANSYS中,可以设置接触类型、摩擦系数等参数,确保接触的可靠性。

ansys非线性分析指南

ansys非线性分析指南

ANSYS 非线性分析指南(1) 基本过程第一章结构静力分析1. 1 结构分析概述结构分析的定义:结构分析是有限元分析方法最常用的一个应用领域。

结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身、骨架;海洋结构,如船舶结构;航空结构,如飞机机身、机翼等,同时还包括机械零部件,如活塞传动轴等等。

在ANSYS 产品家族中有七种结构分析的类型,结构分析中计算得出的基本未知量- 节点自由度,是位移;其他的一些未知量,如应变、应力和反力,可通过节点位移导出。

七种结构分析的类型分别是:a. 静力分析- 用于求解静力载荷作用下结构的位移和应力等。

静力分析包括线性和非线性分析。

而非线性分析涉及塑性、应力刚化、大变形、大应变、超弹性、接触面和蠕变,等。

b. 模态分析- 用于计算结构的固有频率和模态。

c. 谐波分析- 用于确定结构在随时间正弦变化的载荷作用下的响应。

d. 瞬态动力分析- 用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。

e. 谱分析- 是模态分析的应用拓广,用于计算由于响应谱或PSD 输入随机振动引起的应力和应变。

f. 屈曲分析- 用于计算屈曲载荷和确定屈曲模态,ANSYS 可进行线性特征值和非线性屈曲分析。

g. 显式动力分析- ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。

除了前面提到的七种分析类型,还有如下特殊的分析应用:? 断裂力学? 复合材料? 疲劳分析? p-Method结构分析所用的单元:绝大多数的ANSYS 单元类型可用于结构分析。

单元类型从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元1.2 结构线性静力分析静力分析的定义:静力分析计算在固定不变的载荷作用下结构的响应。

它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。

可是静力分析可以计算那些固定不变的惯性载荷对结构的影响,如重力和离心力;以及那些可以近似为等价静力作用的随时间变化载荷,如通常在许多建筑规范中所定义的等价静力风载和地震载荷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 假定几何体与网格划分已完成,非线性分析的典型步骤如下:
1. 确定分析类型(通常为静态)。
• 2. 确定求解控制Solution>Sol’n Control. 许多控制可以采用,但是常用的 是:
·小或大变形 ·时间和时间步或子步数 ·输出控制
1. 施加荷载。 2. 保存数据库。 3. 求解。
January 30, 2001 Inventory #001443
8-10
INTRODUCTION TO ANSYS 5.7 - Part 2
非线性分析入门 C. 练习
• 这一练习由下列问题组成: • W7.Arched Beam • 请参考你的说明书的练习附录
Training Manual
January 30, 2001 Inventory #001443
8-11
[KT]
F Fnr
23
4 次平衡迭 代ns
1
Du
• -一直迭代,直到在允许误差范围内。
Displacement
• -一些非线性分析收敛困难。在这种情况下,更进一步的分析技术 可以采用(包括在结构非线性训练课程中)。
January 30, 2001 Inventory #001443
8-6
非线性分析入门 …基本概念
Training Manual
• 这一过程在每一荷载增量中继续,直到整个外部荷载被施加。 • 这样一个典型的非线性分析包括以下内容:
INTRODUCTION TO ANSYS 5.7 - Part 2
外荷载 荷载步 (LS) 2
LS 1
子步 “时间"
• -一个或更多的荷载步来施加 外部荷载以及边界条件。(这 对于线性分析也同样适用。)
非线性分析入门 …基本概念
Training Manual
• 一种方法为将荷载分为几段增量形式并逐渐施加荷载,同时在每一 荷载增量末时调整刚度矩阵。
• 这一方法的主要问题是随着每一荷载增量的误差积累,引起最终 结果起出平衡范围。外荷载 计算值误差
非线性反应
位移
January 30, 2001 Inventory #001443
模块八
非线性分析入门
INTRODUCTION TO ANSYS 5.7 - Part 2
8.非线性分析入门
Training Manual
• 当作用在结构上的荷载引起结构刚度的重大改变时,要进行非线性 分析。引起刚度改变的主要原因是:
• -应变起过弹性极限(塑性)
• -大变形,如受力的吊鱼杆。
• -两个物体之间的接触。
• 主要目的是给你一个非线性分析的“尝试”。有许多非线性分析方 面超出该训练课程的范围,它们分布在:
• -结构分析指南 • -结构非线性分析训练手册
January 30, 2001 Inventory #001443
8-3
INTRODUCTION TO ANSYS 5.7 - Part 2
非线性分析入门 A. 基本概念

ANSYS具有一个自动时间步长的功能,它会在一个荷载步的所
有子步中预测并控制时间步尺寸。
DF 外荷载
Dt
1.0
2.0
“时间“
January 30, 2001 Inventory #001443
8-9
INTRODUCTION TO ANSYS 5.7 - Part 2
非线性分析入门 B.典型步骤
Training Manual
2.0
“时间"
January 30, 2001 Inventory #001443
8-8
INTRODUCTION TO ANSYS 5.7 - Part 2
非线性分析入门 …基本概念
Training Manual

时间步决定了在一个子步中的荷载增量。时间步越大,荷载增
量越大,因此时间步对求解的精度有直接的影响。
非线性分析入门 …基本概念
Training Manual
.时间和时间步
每一荷载步和子步与一个具体的时间相对应。
在大多数非线性静力分析中,时间只是被用作一个计数器,并不意味 着实际的时间。
外荷载
1.0
– -缺省情况下,在第一荷载步末赋于 时间为1.0,在第二荷载步末赋于时间 为2.0,以此类推。
– -对于非比例分析,为方便起见,你 可以设置时间为任何期望的值。例如 ,将时间设置与荷载大小相等,你将 会很容易地绘制荷载-变形曲线。
Stress
Strain
January 30, 2001 Inventory #001443
8-2
INTRODUCTION TO ANSYS 5.7 - Part 2
...非线性分析入门
Training Manual
• 在这一章,我们将通过下面几个主题来对非线性的求解作简要的介 绍:
• A. 基本概念 • B. 典型步骤 • C. 练习
• -多个子步来逐渐施加荷载。 每一子步代表一个荷载增量。 (线性分析每一荷载步仅需要 一个子步)
• -平衡迭代以获得在每一子步 的平衡(或收敛)。(不适用 于线性分析。)
January 30, 2001 Inventory #001443
8-7
INTRODUCTION TO ANSYS 5.7 - Part 2
8-5
非线性分析入门 …基本概念
Training Manual
INTRODUCTION TO ANSYS 5.7 - Part 2
• ANSYS运用Newton-Raphson 运算法则:
• -以增量形式逐渐施加荷载。
• -在每一荷载增量中完成平衡迭代来使得增量求解达到平衡。
• -求解平衡方程 • =切线刚度矩阵 • =位侈增量 • =外部荷载向量 • =内部力向量
Training Manual
• 当荷载引起较大的刚度改变,荷载-变形曲线变为非线性。 • 意图是用一个线性方程来求解非线性位移反应。
外荷载
线性反应 非线性反应
位侈
January 30, 2001 Inventory #001443
8-4
INTRODUCTION TO ANSYS 5.7 - Part 2
相关文档
最新文档