概率论与数理统计 第七章习题__偶数答案
概率论与数理统计学1至7章课后答案
一、习题详解:3.1设二维随机向量(,)X Y 的分布函数为:1222,0,0,(,)0,x y x y x y F x y ----⎧--+≥≥=⎨⎩其他求}{12,35P X Y <≤<≤.解:因为 257(2,5)1222F ---=--+,6512221)5,1(---+--=F5322221)3,2(---+--=F ,4312221)3,1(---+--=F所以 )3,1()3,2()5,1()5,2()53,21(F F F F Y X P +--=≤<≤<==+--=----745672322220.02343.2 盒中装有3个黑球, 2个白球. 现从中任取4个球, 用X 表示取到的黑球的个数, 用Y 表示取到的白球的个数, 求(X , Y ) 的概率分布.解:因为X + Y = 4,所以(X ,Y )的可能取值为(2,2),(3,1)且 0)1,2(===Y X P ,6.053)2,2(452223=====C C C Y X P 4.052)1,3(451233=====C C C Y X P ,0)2,3(===Y X P 故(X ,Y )的概率分布为3.3 将一枚均匀的硬币抛掷3次, 用X 表示在3次中出现正面的次数, 用Y 表示3次中出 现正面次数与出现反面次数之差的绝对值,求(X , Y ) 的概率分布.解:因为|32||)3(|-=--=X X X Y ,又X 的可能取值为0,1,2,3 所以(X ,Y )的可能取值为(0,3),(1,1), (2,1),(3,3)且 81)21()3,0(3====Y X P ,83)21()21()1,1(2113====C Y X P 83)21()21()1,2(1223====C Y X P ,81)21()3,3(3====Y X P故(X ,Y )3.4设二维随机向量(,)X Y 的概率密度函数为:(6),01,02,(,)0,a x y x y f x y --≤≤≤≤⎧=⎨⎩其他 (1) 确定常数a ;(2) 求}{0.5, 1.5P X Y ≤≤(3) 求{(,)}P X Y D ∈,这里D 是由0,0,1x y x y ==+=这三条直线所围成的三角形区域.解:(1)因为dxdy y x a dxdy y x f ⎰⎰⎰⎰--=+∞∞-+∞∞-102)6(),(dx x x a dx y x a ⎰⎰---=---=10221022])4()6[(2])6(21[a dx x a 9)5(210=-=⎰由1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ,得9a =1,故a =1/9.(2) dxdy y x Y X P ⎰⎰--=≤≤5.005.10)6(91)5.1,5.0( dx x dx y y x ⎰⎰--=--=5.005.005.102]89)6(23[91]21)6([91 125)687(5.00=-=⎰dx x (3) 1101{(,)}(,)(6)9xDP X Y D f x y dxdy dx x y dy -∈==--⎰⎰⎰⎰278)1211(181]21)6([9110210102=--=--=⎰⎰-dx x x dx y y x x3.5 设二维随机向量(,)X Y 的概率密度函数为:(2)2,0,0,(,)0,x y e x y f x y -+⎧>>=⎨⎩其他(1) 求分布函数(,)F x y ; (2) 求}{P Y X ≤解:(1) 求分布函数(,)F x y ; 当0,0x y >>,(2)220(,)(,)22(1)(1)yxyxx yu v u v x y F x y f u v dudv e dudv e du e dv e e -+-----∞-∞====--⎰⎰⎰⎰⎰⎰其他情形,由于(,)f x y =0,显然有(,)F x y =0。
概率论与数理统计习题及答案第七章
习题7-11.选择题(1)设总体X 的均值口与方差 /都存在但未知,而X 1,X 2,L ,X n 为来自X 的样本,则均值 口与方差 (T 2的矩估计量分别是 ().(A) X 和(B)1 nX 和—(Xn i 1i )2.(C)口和 2(T・1 (D) X 和一 nn(X ii 1 x)2.解 选(D).(2) 设X : U[0,],其中 e >0为未知参数,又X ,,X 2,L ,X n 为来自总体X 的样本 ,则e 的矩估计量是().(A) X . (B)2X . (C)max{X i }.(D)mi^X i}.解选(B).2.设总体X 其中0v B v 为未知参数,X1, X 2,…,X.为来自总体X 的样本,试求e 的矩 估计量.解 因为 E (X )=(- 2)x3 e +1x (1 -4 e )+5x e =1-5 e ,令 1 5 X 得到的矩估计量为3.设总体X 的概率密度为f(x ;)(1)x ,0 x 1,0,其它•其中 0> -1是未知参数,X ,冷… ,X n 是来自 X 的容量为n 的简单随机样本求:(1) 的矩估计量;⑵ 0的极大似然估计量•解 总体X 的数学期望为-19 2X 1令E(X) X ,即一1 X,得参数B 的矩估计量为?•21 X设X 1, X 2,…,x n 是相应于样本X 1, X 2,…,X n 的一组观测值,则似然函 数为n(1)n X i , 0x i 1,i 10,其它.In xi 1In X ii 14.设总体X 服从参数为的指数分布,即X 的概率密度为E(X)1xf(x)dx o (1)x dx当 0<X i <1(i =1,2,3,…,n )时,L >0 且 In L nln(1)In X i ,i 1dln LnIn x =0,得0的极大似然估计值为而0的极大似然估计量为f(X,xe , x 0,其中0为未知参数,X, X2,)0, x< 0,…,X n为来自总体X的样本,试求未知参数的矩估计量与极大似然估计量解因为E(X)= 1= X , 所以的矩估计量为设X1, X2,…,x n是相应于样本X i, X2,…,X 的一组观测值,则似然函数取对数Xii 1然估计量为In L 0,得5.设总体X的概率密度为f (x,) 其中(0< <1)是未知参数.X, N为样本值x1, X2,L ,x n中小于极大似然估计量•解⑴ X E(X) xnInnXn e 11X).的极大似然估计值为1,的极大似X0,X2,0x1,, 1< x< 2,其它,…,X n为来自总体的简单随机样本,记1的个数.dx 2x(1求:(1)e的矩估计量;(2)e的3 3 —)dx ,所以矩一X .2 21⑵ 设样本X ,X 2 ,L X n 按照从小到大为序(即顺序统计量的观测值)有如下关系:X (1) w X (2)X ( Ni <1 W X ( N +1) W X (N+2)X (n ).似然函数为N n NL()(1 ),X (1) w X (2) w L w X ( N ) 1W X (N1) W X (N2) w L w X n ,0,其它.考虑似然函数非零部分,得到In L ( 0 ) = N ln 0 + ( n -N ) ln(1 - 0 ),令d |nL ( )」o ,解得0的极大似然估计值为? N .d1n习题7-2的无偏估计量•1.选择题:设总体X 的均值与方差 2都存在但未知,X i ,X 2,L ,X n 为X 的样本,则无论总体 X 服从什么分布,()1X i和丄 (XiX)2.(B)n i 1 n i1 n(C)X i 和n 1 i 1解 选(D).2.若X 1 ,X 2lx1 1X 2kX 334解 要求E( 7X 1-X j 和丄 1 i 1 n 1n(X ii 1X)2.(X i1)2 • (D)X i 和丄(X i)2.X 3为来 自总体X : N(,2)的样本,且的无偏估计量,问k 等于多少1 11 「2 kX 3)3 4k解之,k=g(A)13.设总体X的均值为0,方差2存在但未知,又X「X2为来自总体X1 2 2的样本,试证:—(X i X2)为的无偏估计21 2 1 2 2证因为E[—(X i X2) ] —E[(X i 2X^2 X2 )]2 2-[E(X i2) 2E(X i X2)E(X22)]-2 2所以-(X i X2)2为2的无偏估计•2习题7-31.选择题(1)总体未知参数的置信水平为的置信区间的意义是指()(A)区间平均含总体95%的值.(B)区间平均含样本95%的值.(C) 未知参数有95%的可靠程度落入此区间.(D) 区间有95%的可靠程度含参数的真值•解选(D).(2)对于置信水平1- a (0< a <1),关于置信区间的可靠程度与精确程度F列说法不正确的是().(A)若可靠程度越咼,则置信区间包含未知参数真值的可能性越大(B)如果a越小,则可靠程度越高,精确程度越低•(C)如杲1 - a越小,则可靠程度越高,精确程度越低•(D)若精确程度越高,则可靠程度越低,而1- a越小.解选(C)习题7-41. 某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试,取得数据如下(单位:小时): 1050, 1100, 1080 , 1120, 1250, 1040, 1130, 1300, 1200设灯泡寿命服从正态分布 N 口 , 902),取置信度为,试求当天生产的全部灯泡的平均寿命的置信区间所求置信区间为(x - z /2 , X - z /2 ) \l n J n 90 90 (1141.11 = 1.96,1141.11 r 1.96)V 9V 9(1082.31,1199.91).2.为调查某地旅游者的平均消费水平,随机访问了40名旅游者,算得平均消费额为 X 105元,样本标准差s 28元•设消费额服从正态分布 取置信水平为,求该地旅游者的平均消费额的置信区间解计算可得X 105, s 2 =282.对于a =,查表可得t_(n 1) t o.025(39)2.0227.2所求口的置信区间为3. 假设某种香烟的尼古丁含量服从正态分布 .现随机抽取此种香烟 8支解计算得到X1141.11, CT 2 =902.对于a =,查表可得Z /2Z).Q25匸96*(Xt (n 1), x ■■- n 2s —t (n ■■- n 21)) (1052.0227, 1052.0227)2828为一组样本,测得其尼古丁平均含量为毫克,样本标准差s=毫克.试求此种香烟尼古丁含量的总体方差的置信水平为的置信区间.a =,查表可得 2(n 1) 爲5(7) 20.278,并说明该置信区间的实际意义1 2的置信水平为的置信区间是,”的实际意义是:在两总体第一个正态总体的均值1比第二个正态总体均值 2大〜,此结 论的可靠性达到95%.5.某商场为了了解居民对某种商品的需求 ,调查了 100户,得出每户月2解已知n =8, s2 2 (n 1)0.995(7) 1 - 20.989,所以方差d 2的置信区间为((n 1)S 2(2_ (n 1)22 22(8 1) 2.4 (8 1) 2.4 _2 —)(, )=,.2(n 廿丿 20.2780.9891 -(n 1)S 4.某厂利用两条自动化流水线灌装番茄酱 ,分别从两条流水线上抽取样本:X ,X 2,…,X 12 及 Y ,Y 2,…,丫17,算出 x 10.6g, y2 29.5g, s 1 2.4, s 2 4.7 .假设这两条流水线上装的番茄酱的重量都服从正态分布 ,且相互独立,其均值分别为2又设两总体方差1:.求2置信水平为的置信区间解由题设2 2x 10.6,y 9.5,s 12.4, s 2 4.7,n12,n 2 17,m 1)s 2 仏 1)s :(12 1) 2.4(171) 471.94212 17 2t_gn 22q n 2 22) t °.°25(27)2.05181,所求置信区间为((X y)11) ((10.6 9.5) 2.05181 1.94结论“方差相等时, [(a n 22)s w2)平均需求量为10公斤,方差为9 .如果这种商品供应10000户,取置信水平为•(1) 取置信度为,试对居民对此种商品的平均月需求量进行区间估计(2) 问最少要准备多少这种商品才能以99%的概率满足需要解(1) 每户居民的需求量的置信区间为_ s(xt(n* n_ s1), xt (nV n1)) (xs卅,%s川)(10,9J492.575,10 2.575)(9.2275,10.7725). 100J10010000户居民对此种商品月需求量的置信度为的置信区间为(92275,107725);(2)最少要准备92275公斤商品才能以99%的概率满足需要。
概率论与数理统计课后习题答案 第七章
习题 7.2 1. 证明样本均值 是总体均值
证:
的相合估计
由定理
知 是 的相合估计
2. 证明样本的 k 阶矩
是总体 阶矩
证:
的相合估计量
3. 设总体 (1)
(2)
是
的相合估计
为其样品 试证下述三个估计量
(3)
都是 的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
都是 的无偏估计
故 的方差最小.
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
.从该车床加工的零件中随机抽取
4 个,测得长度分别为:12.6,13.4,12.8,13.2.
试求: (1)样本方差 ;(2)总体方差 的置信度为 95%的置信区间.
(附:
解: (1)
(2) 置信度 的置信区间为
三、设总体
抽取样本
为样本均值
(1) 已知
求 的置信度为 的置信区间
(2) 已知
问 要使 的置信度为 的置信区间长度不超过 ,样本容量 n 至少应取多
施磷肥的
620 570 650 600 630 580 570 600 600 580
设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均
亩产之差作区间估计(
).
解:
查表知
概率论与数理统计习题7解答
习题七解答7。
1。
设n X X X ,,,21 为抽自二项分布B (m ,p) 的样本 试求p 的矩估计和极大似然估计.解:(1)求p 的矩估计.),(~p m B X ,因此总体的一阶原点矩为np EX ==1μ按矩法估计有X X n mp ni i ==∑=11因此p 的矩估计mXp=ˆ (2)求p 的极大似然估计。
参数P 的极大似然函数为∏=--=ni X m X X miii p p C p L 1)1()(∑-∑⎪⎪⎭⎫ ⎝⎛===-=∏ni ini ii X nm X ni x m p p C 1)1(1=)(ln p L )1(ln )(ln ln 111p X mn p X C ni i ni i n i x m i --++⎪⎪⎭⎫ ⎝⎛=∑∑∏===令dp p L d )(ln 0)(11111=--+=∑∑==ni i n i i X mn p X p即 0)()1(=-+-X n mn p X n p由此得P 的极大似然估计mXp=ˆ 7。
2设总体为指数分布 其概率密度函数为⎩⎨⎧≥=-.,0;0,)(其它x e x f x λλ求参数λ的矩估计和极大似然估计。
解 设n X X X ,,,21 为X 的一个样本。
(1)求λ的矩估计。
因为总体为指数分布,因此总体的一阶原点矩为λμ11==EX按矩法估计有X X n ni i ==∑=111λ因此λ的矩估计X1=λ(2)求λ的极大似然估计。
参数λ的极大似然函数为 []L e ex i nn x i ii n==-=-∏=∑λλλλ11lnL=n x i i nln λλ-=∑1似然方程为∂λ∂λλln ()L n x i i n=-=∑1=0 解得λ===∑nx xii n117.3设总体为],0[θ上的均匀分布 求参数θ的矩估计和极大似然估计。
解 设n X X X ,,,21 为X 的一个样本。
(1)求θ的矩估计。
总体的一阶原点矩为 2)(01θθμθθ====⎰⎰dx xdx x xf EX按矩法估计有X n ni i ==∑=1121ξθ因此θ的矩估计X 2ˆ=θ. (2)求参数θ的极大似然估计。
概率论与数理统计第七章练习题与答案详解
概率论与数理统计 第七章 参数估计练习题与答案(答案在最后)1.设总体X 的二阶矩存在,n X X X ,,,21 是来自总体X 的一个样本,则2EX 的矩估计是( ).(A) X (B) ()∑=-n i i X X n 121 (C) ∑=n i i X n 121 (D) 2S2.矩估计必然是( ).(A) 总体矩的函数 (B) 样本矩的函数 (C) 无偏估计 (D) 最大似然估计3.某钢珠直径X 服从()1,μN ,从刚生产出的一批钢珠中随机抽取9个,求得样本均值06.31=X ,样本标准差98.0=S ,则μ的最大似然估计是 .4.设θˆ是未知参数θ的一个估计量,若θθ≠ˆE ,则θˆ是θ的( ) (A) 最大似然估计 (B) 矩估计 (C) 有效估计 (D) 有偏估计5.设21,X X 是()1,μN 的一个样本,下面四个关于μ估计量中,只有( )才是μ的无偏估计.(A) 213432X X + (B) 214241X X + (C)215352X X + (D) 214143X X - 6.设总体X 服从参数为λ的Poisson 分布,n X X X ,,,21 是来自总体X 的一个样本,则下列说法中错误的是( ).(A) X 是EX 的无偏估计量 (B) X 是DX 的无偏估计量 (C) X 是EX 的矩估计量 (D) 2X 是2λ的无偏估计量 7.设321,,X X X 是()1,μN 的一个样本,下面四个关于μ无偏估计量中,根据有效性这个标准来衡量,最好的是( ).(A) 321313131X X X ++ (B) 213132X X + (C)321412141X X X ++ (D) 216561X X + 8.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,则⎪⎪⎭⎫⎝⎛+-n U X n U X σσ025.0025.0,作为μ的置信区间,其置信水平是( ).(A) 0.9 (B) 0.95 (C) 0.975 (D) 0.05 9.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,μ的置信水平为α-1的置信区间⎪⎪⎭⎫ ⎝⎛+-n U X n U X σσαα22 ,的长度是α的减函数,对吗?10.总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它101x x x f θθ,其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.11.总体X 的密度函数为()⎪⎩⎪⎨⎧>=-其它002222x ex x f x θθ, 其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.12.设总体X 服从几何分布:()()11--==x p p x X P ,() ,2,1=x ,n X X X ,,,21 是来自总体X 的一个样本,求参数p 的最大似然估计. 13.设n X X X ,,,21 是来自总体()2,0σN 的一个样本,求参数2σ的最大似然估计.14.设n X X X ,,,21 是来自总体()2,7t a n σμ+N 的一个样本,其中22πμπ<<-,求参数2,σμ的最大似然估计.15.设n X X X ,,,21 是来自总体()2,~σμN X 的一个样本,对给定t ,求()t X P ≤的最大似然估计.16.一个罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,发现其中有k 个白球,求罐中黑球数和白球数之比R 的最大似然估计. 17.总体X 的分布律是:()()()θθθ312,0,21-=====-=X P X P X P ,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计和最大似然估计. 18.设总体X 服从二项分布()p N B ,,N 为正整数,10<<p ,n X X X ,,,21 是来自总体X 的大样本,求参数p N ,的矩估计量.19.设μ=EX ,n X X X ,,,21 是来自总体X 的一个样本,证明:()∑=-=n i i X n T 121μ是总体方差的无偏估计.20.总体X 服从()θθ2,上均匀分布,n X X X ,,,21 是来自总体X 的一个样本,证明X 32ˆ=θ是参数θ的无偏估计.21.设总体X 服从二项分布()p m B ,,n X X X ,,,21 是来自总体X 的一个样本,证明∑==ni i X n m p 11ˆ是参数θ的无偏估计. 22.设n X X X ,,,21 是来自总体X 的一个样本,且X 服从参数为λ的Poisson 分布,对任意()1,0∈α,证明()21S X αα-+是λ的无偏估计,其中2,S X 分别是样本均值和样本方差.23.设02>=σDX ,n X X X ,,,21 是来自总体X 的一个样本,问2X 是否是()2EX 的无偏估计.24.设321,,X X X 是来自总体()2,σμN 的一个样本,试验证:32112110351ˆX X X ++=μ,32121254131ˆX X X ++=μ,都是参数μ的无偏估计,并指出哪个更有效.25.从总体()1,1μN 抽取一个容量为1n 的样本:1,,,21n X X X ,从总体()4,2μN 抽取一个容量为2n 的样本:2,,,21n Y Y Y ,求21μμα-=的最大似然估计αˆ.假定总的样本容量21n n n +=不变时,求21,n n 使αˆ的方差最小. 26.为了测量一台机床的椭圆度,从全部产品中随机抽取100件进行测量,求得样本均值为mm X 081.0=,样本标准差为mm S 025.0=,求平均椭圆度μ的置信水平为0.95的置信区间.27.自动机床加工的同类零件中,随机抽取9件,测得长度如下:21.1,21.3,21.4,21.5,21.3,21.7,21.4,21.3,21.6,已知零件长度X 服从()2,σμN ,置信水平为0.95,(1) 若15.0=σ,求μ置信区间; (2) 若σ未知,求μ置信区间; (3) 若4.21=μ,求σ置信区间; (4) 若μ未知,求σ置信区间. 28.设总体X 服从()23,μN ,如果希望μ的置信水平为0.9的置信区间长度不超过2,则需要抽取的样本容量至少是多少?29.某厂利用两条自动化流水线灌装面粉,分别从两条流水线上抽取12和17的两个独立样本,其样本均值和样本方差分别为:6.10=X ,4.221=S ,5.9=Y ,7.422=S ,假设两条生产线上灌装面粉的重量都服从正态分布,其均值分别为21,μμ,方差相等,求21μμ-的置信水平为0.9的置信区间. 30.设两位化验员独立对某种聚合物含氯量用相同方法各作10次测定,其测定值的样本方差分别为:5419.021=S ,6065.022=S ,设2221,σσ分别为两位化验员所测定值总体的方差,设两位化验员的测定值都服从正态分布,求方差比2221σσ的置信水平为0.9的置信区间.31.从一批产品中抽取100个产品,发现其中有9个次品,求这批产品的次品率p 的置信水平为0.9的置信区间.答案详解1.C 2.B 3.31.064.D 5.C 6.D 7.A 8.B 9.对10.(1) 矩估计因为()⎰∞+∞-=dx x xf EX 11+==⎰θθθθdx x ,所以21⎪⎭⎫⎝⎛-=EX EX θ,而X EX =∧,由此得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X θ (2) 最大似然估计似然函数为:()()∏==ni i x f L 1θ()()121-=θθnnx x x ,两边取对数, ()θL ln ()()nx x x n21ln 1ln 2-+=θθ,令()θθd L d ln ()0ln 21221=+=n x x x n θθ, 得参数θ的最大似然估计为:212ln ˆ⎪⎭⎫⎝⎛=∑=ni i x n θ11.(1) 矩估计因为()⎰∞+∞-=dx x xf EX ⎰∞+-=022222dx exx θθ⎰∞+∞--=dx e xx 2222221θθ⎰∞+∞--=dx exx 2222222θθπθπθπ22=, 所以EX πθ2=,而X EX =∧,由此得参数θ的矩估计量为X πθ2ˆ=。
概率论与数理统计教程第七章答案
.第七章假设检验7.1设总体J〜N(4Q2),其中参数4, /为未知,试指出下面统计假设中哪些是简洁假设,哪些是复合假设:(1) W o: // = 0, σ = 1 ;(2) W o√∕ = O, σ>l5(3) ∕70:// <3, σ = 1 ;(4) % :0< 〃 <3 ;(5)W o :// = 0.解:(1)是简洁假设,其余位复合假设7.2设配么,…,25取自正态总体息(19),其中参数〃未知,无是子样均值,如对检验问题“0 :〃 = 〃o, M :4工从)取检验的拒绝域:c = {(x1,x2,∙∙∙,x25)r∣x-χ∕0∖≥c},试打算常数c ,使检验的显著性水平为0. 05_ Q解:由于J〜N(〃,9),故J~N(",二)在打。
成立的条件下,一/3 5cP o(∖ξ-^∖≥c) = P(∖ξ-μJ^∖≥-)=2 1-Φ(y) =0.05Φ(-) = 0.975,-= 1.96,所以c=L176°3 37. 3 设子样。
,乙,…,25取自正态总体,cr:已知,对假设检验%邛=μ0, H2> /J。
,取临界域c = {(X[,w,…,4):片>9)},(1)求此检验犯第一类错误概率为α时,犯其次类错误的概率夕,并争论它们之间的关系;(2)设〃o=0∙05, σ~=0. 004, a =0.05, n=9,求"=0.65 时不犯其次类错误的概率。
解:(1)在儿成立的条件下,F~N(∕o,军),此时a = P^ξ≥c^ = P0< σo σo )所以,包二为册=4_,,由此式解出c°=窄4f+为% ∖∣n在H∣成立的条件下,W ~ N",啊 ,此时nS = %<c°) = AI。
气L =①(^^~品)二①匹%=①(2δξ^历σoA∣-σ+A)-A-------------- y∕n)。
概率论与数理统计习题及答案第七章
习题7-11. 选择题(1) 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X L 为来自X 的样本, 则均值μ与方差σ2的矩估计量分别是( ) .(A) X 和S 2. (B) X 和211()nii X nμ=-∑. (C) μ和σ2. (D) X 和211()nii X X n=-∑.解 选(D).(2) 设[0,]X U θ:, 其中θ>0为未知参数, 又12,,,n X X X L 为来自总体X 的样本, 则θ的矩估计量是( ) .(A) X . (B) 2X . (C) 1max{}i i nX ≤≤. (D) 1min{}i i nX ≤≤.解 选(B).2. 设总体X 的分布律为其中0<θ<12n , 试求θ的矩估计量.解 因为E (X )=(-2)×3θ+1×(1-4θ)+5×θ=1-5θ, 令15X θ-=得到θ的矩估计量为ˆ15X θ-=. 3. 设总体X 的概率密度为(1),01,(;)0, x x f x θθθ+<<=⎧⎨⎩其它.其中θ>-1是未知参数, X 1,X 2,…,X n 是来自X 的容量为n 的简单随机样本, 求: (1) θ的矩估计量;(2) θ的极大似然估计量. 解 总体 X 的数学期望为1101()()d (1)d 2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰. 令()E X X =, 即12X θθ+=+, 得参数θ的矩估计量为21ˆ1X X θ-=-. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… , X n 的一组观测值, 则似然函数为1(1),01,0,n n i i i x x L θθ=⎧⎛⎫+<<⎪ ⎪=⎨⎝⎭⎪⎩∏其它. 当0<x i <1(i =1,2,3,…,n )时, L >0且 ∑=++=ni ixn L 1ln )1ln(ln θθ,令1d ln ln d 1ni i L nx θθ==++∑=0, 得θ的极大似然估计值为 1ˆ1ln nii nxθ==--∑,而θ的极大似然估计量为 1ˆ1ln nii nXθ==--∑.4. 设总体X 服从参数为λ的指数分布, 即X 的概率密度为e ,0,(,)0,0,x x f x x λλλ->=⎧⎨⎩≤ 其中0λ>为未知参数, X 1, X 2, …, X n 为来自总体X 的样本, 试求未知参数λ的矩估计量与极大似然估计量.解 因为E (X )=1λ =X , 所以λ的矩估计量为1ˆXλ=. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… ,X n 的一组观测值, 则似然函数11nii inxx nni L eeλλλλ=--=∑==∏,取对数 1ln ln ()ni i L n x λλ==-∑.令1d ln 0,d ni i L n x λλ==-=∑ 得λ的极大似然估计值为1ˆxλ=,λ的极大似然估计量为1ˆXλ=. 5. 设总体X 的概率密度为,01(,)1,120,x f x x θθθ<<=-⎧⎪⎨⎪⎩,≤≤,其它,其中θ(0<θ<1)是未知参数. X 1, X 2, …, X n 为来自总体的简单随机样本, 记N 为样本值12,,,n x x x L 中小于1的个数. 求: (1) θ的矩估计量; (2) θ的极大似然估计量.解 (1) 1213()d (1)d 2X E X x x x x θθθ==+-=-⎰⎰, 所以32X θ=-矩.(2) 设样本12,,n x x x L 按照从小到大为序(即顺序统计量的观测值)有如下关系:x (1) ≤ x (2) ≤…≤ x (N ) <1≤ x (N +1)≤ x (N +2)≤…≤x (n ) .似然函数为(1)(2)()(1)(2)(1),1()0,,N n N N N N n x x x x x x L θθθ-++-<=⎧⎨⎩L L ≤≤≤≤≤≤≤其它.考虑似然函数非零部分, 得到ln L (θ ) = N ln θ + (n − N ) ln(1−θ ),令d ln ()0d 1L N n N θθθθ-=-=-, 解得θ的极大似然估计值为ˆN nθ=. 习题7-21. 选择题: 设总体X 的均值μ与方差2σ都存在但未知, 而12,,,n X X X L 为X 的样本, 则无论总体X 服从什么分布, ( )是μ和2σ的无偏估计量.(A) 11nii X n=∑和211()nii X X n=-∑. (B)111nii X n =-∑和211()1nii X X n =--∑.(C)111nii X n =-∑和211()1nii X n μ=--∑. (D)11nii X n=∑和211()nii X nμ=-∑.解 选(D).2. 若1X ,2X ,3X 为来自总体2(,)X N μσ:的样本, 且Y 1231134X X kX =++为μ的无偏估计量, 问k 等于多少?解 要求1231111()3434E X X kX k μμμμ++=++=, 解之, k =512.3. 设总体X 的均值为0, 方差2σ存在但未知, 又12,X X 为来自总体X的样本, 试证:2121()2X X -为2σ的无偏估计.证 因为22212112211[()][(2)]22E X X E X X X X -=-+2222112212[()2()()]22E X E X X E X σσ=-+==,所以2121()2X X -为2σ的无偏估计.习题7-31. 选择题(1) 总体未知参数θ的置信水平为0.95的置信区间的意义是指( ). (A) 区间平均含总体95%的值. (B) 区间平均含样本95%的值.(C) 未知参数θ有95%的可靠程度落入此区间. (D) 区间有95%的可靠程度含参数θ的真值. 解 选(D).(2) 对于置信水平1-α(0<α<1), 关于置信区间的可靠程度与精确程度, 下列说法不正确的是( ).(A) 若可靠程度越高, 则置信区间包含未知参数真值的可能性越大. (B) 如果α越小, 则可靠程度越高, 精确程度越低. (C) 如果1-α越小, 则可靠程度越高, 精确程度越低. (D) 若精确程度越高, 则可靠程度越低, 而1-α越小. 解 选(C )习题7-41. 某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试, 取得数据如下(单位:小时):1050, 1100, 1080, 1120, 1250, 1040, 1130, 1300, 1200. 设灯泡寿命服从正态分布N (μ, 902), 取置信度为0.95, 试求当天生产的全部灯泡的平均寿命的置信区间.解 计算得到1141.11,x = σ2 =902. 对于α = 0.05, 查表可得/20.025 1.96z z ==α.所求置信区间为/2/2(,)(1141.11 1.96,1141.11 1.96)(1082.31,1199.91).x x z +=-=αα2. 为调查某地旅游者的平均消费水平, 随机访问了40名旅游者, 算得平均消费额为105=x 元, 样本标准差28=s 元. 设消费额服从正态分布. 取置信水平为0.95, 求该地旅游者的平均消费额的置信区间.解 计算可得105,x = s 2 =282.对于α = 0.05, 查表可得0.0252(1)(39) 2.0227t n t α-==.所求μ的置信区间为22((1),(1))(105 2.0227,105 2.0227)x n x n αα--+-=+=(96.045, 113.955).3. 假设某种香烟的尼古丁含量服从正态分布. 现随机抽取此种香烟8支为一组样本, 测得其尼古丁平均含量为18.6毫克, 样本标准差s =2.4毫克. 试求此种香烟尼古丁含量的总体方差的置信水平为0.99的置信区间.解 已知n =8, s 2 =2.42, α = 0.01, 查表可得220.0052(1)(7)20.278n αχχ-==, 220.99512(1)(7)0.989n αχχ--==, 所以方差σ 2的置信区间为2222122(1)(1)(,)(1)(1)n S n S n n ααχχ---=--22(81) 2.4(81) 2.4(,)20.2780.989-⨯-⨯=(1.988, 40.768). 4. 某厂利用两条自动化流水线灌装番茄酱, 分别从两条流水线上抽取样本:X 1,X 2,…,X 12及Y 1,Y 2,…,Y 17, 算出221210.6g,9.5g, 2.4, 4.7x y s s ====.假设这两条流水线上装的番茄酱的重量都服从正态分布, 且相互独立, 其均值分别为12,μμ. 又设两总体方差2212σσ=. 求12μμ-置信水平为0.95的置信区间, 并说明该置信区间的实际意义.解 由题设22121210.6,9.5, 2.4, 4.7,12,17,x y s s n n ======2222112212(1)(1)(121) 2.4(171) 4.71.94212172wn s n s s n n -+--⨯+-⨯===+-+-120.0252(2)(27) 2.05181,t n n t α+-==所求置信区间为122(()(2)((10.69.5) 2.05181 1.94x y t n n s α-±+-=-±⨯ =(-0.40,2.60).结论“21μμ-的置信水平为0.95 的置信区间是(-0.40,2.60)”的实际意义是:在两总体方差相等时, 第一个正态总体的均值1μ比第二个正态总体均值2μ大-0.40~2.60,此结论的可靠性达到95%.5. 某商场为了了解居民对某种商品的需求, 调查了100户, 得出每户月平均需求量为10公斤, 方差为9 . 如果这种商品供应10000户, 取置信水平为0.99.(1) 取置信度为0.99,试对居民对此种商品的平均月需求量进行区间估计; (2) 问最少要准备多少这种商品才能以99%的概率满足需要? 解 (1) 每户居民的需求量的置信区间为2222((1),(1))()(10 2.575,10 2.575)(9.2275,10.7725).,x n x n x z x αααα-+-≈+=-=10000户居民对此种商品月需求量的置信度为0.99的置信区间为(92275,107725);(2)最少要准备92275公斤商品才能以99%的概率满足需要.。
第七章 概率论与数理统计试题&答案
第七章试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设总体X服从[0,2θ]上的均匀分布(θ>0),x1, x2, …, x n是来自该总体的样本,x为样本均值,则θ的矩估计 ˆ=()A.x2B.xC.x D.x212答案:B2.设总体nX X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( ) A .∑=--ni iX Xn 12)(11 B .∑=--ni iXn 12)(11μ C .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ答案:A3.设总体X ~ N (2,σμ),其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个估计:)(41ˆ43211x x x x +++=μ,3212515151ˆx x x ++=μ,2136261ˆx x +=μ,1471ˆx =μ中,哪一个是无偏估计?( ) A .1ˆμB .2ˆμC .3ˆμD .4ˆμ答案:A4.设(X 1,X 2)是来自总体X 的一个容量为2的样本,则在下列E (X )的无偏估计量中,最有效的估计量是( ) A .)(2121X X + B .213132X X + C .214143X X + D .215253X X + 答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
4.设总体X 具有区间[0,θ]上的均匀分布(θ>0),x 1,x 2,…,x n 是来自该总体的样本,则θ的矩估计θˆ=___________。
答案:x 25.设总体X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x αα,x 1,x 2,…x n 为总体X 的一个样本,则未知参数α的矩估计αˆ=___________.答案:x 16.设总体X 服从参数为λ的泊松分布,其中λ为未知参数.X 1,X 2,…,X n 为来自该总体的一个样本,则参数λ的矩估计量为___________. 答案:x7.设总体X~N (μ,σ2),x 1,x 2,x 3为来自X 的样本,则当常数a=____________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 答案:41 8.设总体X ~ N (1,μ),(321,,x x x )为其样本,若估计量3213121ˆkx x x ++=μ为μ的无偏估计量,则k = ___________。
浙大版概率论与数理统计答案---第七章
第七章 参数估计注意: 这是第一稿(存在一些错误)1、解 由θθθμθ2),()(01===⎰d x xf X E ,204103)(2221θθθ=-==X D v ,可得θ的矩估计量为X 2^=θ,这时θθ==)(2)(^X E E ,nnX D D 5204)2()(22^θθθ=⋅==。
3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为:3262121^=-=-=X θ。
建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L令0148))1ln(4ln 8()(ln =--=∂-+∂=∂∂θθθθθθθL ,得到θ的极大似然估计值:32^=θ 4、解:矩估计:()1012122μθλθλθλ=⋅+⋅+⋅--=--,()()()()2222222121νθλθθλλθλθλ=--++-++--, 11A =,234B =, 故()()()()222ˆˆ221,3ˆˆˆˆˆˆˆˆˆˆ222121.4θλθλθθλλθλθλ⎧--=⎪⎨--++-++--=⎪⎩解得1ˆ,43ˆ.8λθ⎧=⎪⎪⎨⎪=⎪⎩为所求矩估计。
极大似然估计:(){}()33214526837,0,2,11L P X X X X X X X X θλθλθλ==========--,()()(),ln ,3ln 2ln 3ln 1l L θλθλθλθλ==++--,()(),330,1,230.1l l θλθθθλθλλλθλ∂⎧=-=⎪⎪∂--⎨∂⎪=-=⎪∂--⎩解得3ˆ,81ˆ.4θλ⎧=⎪⎪⎨⎪=⎪⎩即为所求。
5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p 的矩估计量为^394(3)34322X X p -----==建立关于p 的似然函数:3210)1()2)1(3()()2)1(()(22n n n n p p p p p p p L ---= 令0)(ln =∂∂pp L ,求得到θ的极大似然估计值:n n n n p 22210^++=6、解:(1)()1112EX x x dx θθθθ+=+=+⎰, 由ˆ1ˆ2X θθ+=+得21ˆ1X X θ-=-为θ的矩估计量。
概率论与数理统计第七章参数估计习题答案
æ çè
x
±
ua
/
2
s n
ö ÷ø
=
(14.95
±
0.1´1.96)
=
(14.754,15.146)
大学数学云课堂
3028709.总体X ~ N (m,s 2 ),s 2已知,问需抽取容量n多大的样本,
才能使m的置信概率为1 -a,且置信区间的长度不大于L?
解:由s
2已知可知m的置信度为1
-
a的置信区间为
64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求m的置信概率为0.95的置信区 间.
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
大学数学云课堂
3028706.设X1,X 2,L,X n是取自总体X的样本,E(X)= m,D(X)= s 2,
n -1
å sˆ 2 = ( X i+1 - X i )2 ,问k为何值时sˆ 2为s 2的无偏估计. i =1 解:令 Yi = X i+1 - X i , i = 1, 2,¼, n -1, 则E(Yi ) = E( X i+1) - E( X i ) = m - m = 0, D(Yi ) = 2s 2 , n -1 å 于是Esˆ 2 = E[k ( Yi2 )] = k(n -1)EY12 = 2s 2 (n -1)k, i =1 那么当E(sˆ 2 ) = s 2 ,即2s 2 (n -1)k = s 2时, 有k = 1 . 2(n -1)
的密度函数为f
(x,q
概率论与数理统计(第三版)课后答案习题7
第七章 参数估计1. 解 )1()(,)(),,(~p np X D np X E p n B X -==∴⎩⎨⎧=-=⎩⎨⎧==22)1(,)()(B p np X np B X D X X E 即由解之,得n,p 的矩估计量为XB p B X X n 2221,-=⎥⎥⎦⎤⎢⎢⎣⎡-=∧∧注:“[ ]”表示取整。
2. 解 因为:220)(22)(1)1()(1)()(λλθλλθλθλθλ++=⋅=+=⋅==⎰⎰⎰∞+--∞+--∞+∞-dx e x x E dx e x dx x xf x E x x所以,由矩估计法得方程组: ⎪⎩⎪⎨⎧++=+=2221)1(1λλθλθA X 解得λθ,的矩估计量为 ⎪⎩⎪⎨⎧=-=∧∧221B B X λθ3. 解 (1) 由于 222)]([)()(X E X E X D -==σ令 ∑===n i iX n A X E 12221)( 又已知 μ=)(X E故 2σ的矩估计值为 ∑∑==∧-=-=-=n i i n i i X n X n A 12122222)(11μμμσ(2) μ已知时,似然函数为:⎭⎬⎫⎩⎨⎧--⋅=∑=-ni in x L 122222)(21exp )2()(μσπσσ因此∑=---=ni ixn L 12222)(21)2ln(2)(ln μσπσσ令 0)(2112)(ln 124222=-+-=∑=ni ixn L d dμσσσσ解得2σ的极大似然估计为: ∑=∧-=n i i X n 122)(1μσ4. 解 矩估计:λλ=∴=)()(X E X E 令X X E =)(故X =∧λ为所求矩估计量。
注意到 λ=)(X D 若令 2)(B X D =, 可得: 2B =∧λ似然估计:因为λλ-==e k k X P k!)(所以,λ的似然函数为∏=-=ni i xe x L i1!)(λλλ取对数λλλn x x L ni i ni i --=∑∑==11)!ln(ln )(ln令ln 1=-=∑=n xd d ni iλλλ, 解得∑=∧=ni ix n 11λ故,λ极大似然估计量为 X =∧λ5. 解 矩估计:21)1()()(11++=+==⎰⎰+∞+∞-θθθθdx x dx x xf X E令 X X E =)(, 即 X=++21θθ; 解之X X --=∧112θ 似然估计: 似然函数为⎪⎩⎪⎨⎧<<+=⎪⎩⎪⎨⎧<<+=∏∏==其它其它,010,)()1(,010,)1()(11i ni i ni n i i x x x x L θθθθθ 只需求10,)()1()(11<<+=∏=i ni i nx x L θθθ的驻点即可.又∑=++=ni ix n L 11ln )1ln()(ln θθθ令∑=++=ni ix n L d d 11ln 1)(ln θθθ; 解之∑=∧--=ni ixn1ln 1θ6. 解:似然函数为∑===---=-=---∏∏ni i i xn i i n ni x i ex ex L 12222)(l n 21112212)(l n 12)()2(21),(μσσμπσσπσμ取对数得 ∑----===∏n i ini i x x n L 122122)(l n 21)l n ()2l n (2),(ln μσπσσμ由 0)(l n 2112),(ln 0)1()(ln 221),(ln 124222122=∑-+⋅-=∂∂=∑-⋅--=∂∂==n i i n i i x n L x L μσσσμσμσσμμ联立解之,2,σμ的极大似然估计值为 ∑∑-=∑===∧=∧n i n i i in i i x n x n x n 12121)ln 1(ln 1,ln 1σμ7. 解:似然函数为 n i x x e ax L i i n i x a i ai ,,2,1;0,00,)(11 =⎪⎩⎪⎨⎧≤>=∏=--λλλ只需求∑⋅===--==--∏∏ni ai ai x a n i n n ni x a i ex a eax L 111111)()(λλλλλ的最值点。
概率论与数理统计习题及答案-第七章
1 F(x,β)=
x
,
x ,
0,
x .
其中未知参数 β>1,α>0,设 X1,X2,…,Xn 为来自总体 X 的样本 (1) 当 α=1 时,求 β 的矩估计量; (2) 当 α=1 时,求 β 的极大似然估计量; (3) 当 β=2 时,求 α 的极大似然估计量. 【解】
2 0.025
(19)
32.852,
2 0.975
(19)
8.907
(1) μ的置信度为 0.95 的置信区间
s
18.14
x ta/2 (n 1) 76.6
2.093 (68.11,85.089)
n
20
(2) 2 的置信度为 0.95 的置信区间
(2)
D( ˆ1 )
2
2
D( X1 )
1
2
D(X2 )
4
X
2
5
2
,
3
3
9
9
3
2
1
2
3
5 2
D(ˆ2 ) D( X1) D( X 2 ) ,
4
4
8
D(ˆ3
)
1
2
D( X1 )
D(X
2
)
2
(
x),
0 x ,
0,
其他.
X1,X2,…,Xn 为其样本,试求参数θ的矩法估计.
概率论与数理统计练习题第七章答案
概率论与数理统计练习题系 专业 班 姓名 学号第七章 参数估计(一)一、选择题:1矩估计必然是 [ C ] (A )无偏估计 (B )总体矩的函数 (C )样本矩的函数 (D )极大似然估计2.设12,X X 是正态总体(,1)N μ的容量为2的样本,μ为未知参数,μ的无偏估计是 [ D ] (A )122433X X +(B )121244X X + (C )123144X X - (D )122355X X + 3.设某钢珠直径X 服从正态总体(,1)N μ(单位:mm ),其中μ为未知参数,从刚生产的一大堆钢珠抽出9个,求的样本均值31.06X =,样本方差2290.98S =,则μ的极大似然估计值为 [ A ](A )31.06 (B )(31.06-0.98 , 31.06 + 0.98) (C )0.98 (D )9×31.06 二、填空题:1.如果1ˆθ与2ˆθ都是总体未知参数θ的估计量,称1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差一定满足 1212ˆˆˆˆ,E E D D θθθθ=< 2.设样本1230.5,0.5,0.2x x x ===来自总体1~(,)X f x x θθθ-=,用最大似然法估计参数θ时,似然函数为()L θ= 31(0.05)θθ- 3.假设总体X 服从正态分布212(,),,,(1)n N X X X n μσ>为X 的样本,12211()n i i i C X X σ-+==-∑是2σ的一个无偏估计,则C =12(1)n -三、计算题:1.设总体X 具有分布律,其中(01)θθ<<为未知参数,已知取得了样本值1231,2,1x x x ===,试求θ456()2(1)22.5')1(0.6L L θθθθθθθθ=⋅-=-==解:该样本的似然函数.为令得三 、2.设12,,,n X X X 是来自于总体10~()0x X f x θθ⎧≤≤⎪=⎨⎪⎩其它(0)θ>的样本,试求:(1)θ的一个无偏估计1θ;(2)θ的极大似然估计2.θ3.设总体X 的概率密度为(1)01()0x x f x θθ⎧+<<=⎨⎩其它,其中1θ>-是未知参数,12,,,n X X X 为一个样本,试求参数θ的矩估计量和最大似然估计量。
概率论与数理统计(理工类第四版)吴赣昌主编课后习题答案第七章
写在前面:由于答案是一个个复制到word中,比较耗时耗力,故下载收取5分,希望需要的朋友给予理解和支持!PS:网上有一些没经我同意就将我的答案整合、转换成pdf,放在文库里的,虽然是免费的,但是窃取了我的劳动成果,希望有心的朋友支持我一下,下载我的原版答案。
第七章假设检验7.1 假设检验的基本概念习题1样本容量n确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有(). (A)α+β=1;(B)α+β>1;(C)α+β<1;(D)α+β<2.解答:应选(D).当样本容量n确定后,α,β不能同时都很小,即α变小时,β变大;而β变小时,α变大.理论上,自然希望犯这两类错误的概率都很小,但α,β的大小关系不能确定,并且这两类错误不能同时发生,即α=1且β=1不会发生,故选(D).习题2设总体X∼N(μ,σ2),其中σ2已知,若要检验μ,需用统计量U=X¯-μ0σ/n.(1)若对单边检验,统计假设为H0:μ=μ0(μ0已知),H1:μ>μ0,则拒绝区间为;(2)若单边假设为H0:μ=μ0,H1:μ<μ0,则拒绝区间为(给定显著性水平为α,样本均值为X¯,样本容量为n,且可记u1-α为标准正态分布的(1-α)分位数).解答:应填(1)U>u1-α;(2)U<uα.由单侧检验及拒绝的概念即可得到.习题3如何理解假设检验所作出的“拒绝原假设H0”和“接受原假设H0”的判断?解答:拒绝H0是有说服力的,接受H0是没有充分说服力的. 因为假设检验的方法是概率性质的反证法,作为反证法就是必然要“推出矛盾”,才能得出“拒绝H0”的结论,这是有说服力的,如果“推不出矛盾”,这时只能说“目前还找不到拒绝H0的充分理由”,因此“不拒绝H0”或“接受H0”,这并没有肯定H0一定成立. 由于样本观察值是随机的,因此拒绝H0,不意味着H0是假的,接受H0也不意味着H0是真的,都存在着错误决策的可能.当原假设H0为真,而作出了拒绝H0的判断,这类决策错误称为第一类错误,又叫弃真错误,显然犯这类错误的概率为前述的小概率α:α=P(拒绝H0|H0为真);而原假设H0不真,却作出接受H0的判断,称这类错误为第二类错误,又称取伪错误,它发生的概率β为β=P(接受H0|H0不真).习题4犯第一类错误的概率α与犯第二类错误的概率β之间有何关系?解答:一般来说,当样本容量固定时,若减少犯一类错误的概率,则犯另一类错误的概率往往会增大.要它们同时减少,只有增加样本容量n.在实际问题中,总是控制犯第一类错误的概率α而使犯第二类错误的概率尽可能小.α的大小视具体实际问题而定,通常取α=0.05,0.005等值.习题5在假设检验中,如何理解指定的显著水平α?解答:我们希望所作的检验犯两类错误的概率尽可能都小,但实际上这是不可能的. 当样本容量n固定时,一般地,减少犯其中一个错误的概率就会增加犯另一个错误的概率. 因此,通常的作法是只要求犯第一类错误的概率不大于指定的显著水平α,因而根据小概率原理,最终结论为拒绝H0较为可靠,而最终判断力接受H0则不大可靠,其原因是不知道犯第二类错误的概率β究竟有多少,且α小,β就大,所以通常用“H0相容”,“不拒绝H0”等词语来代替“接受H0”,而“不拒绝H0”还包含有再进一步作抽样检验的意思.习题6在假设检验中,如何确定原假设H0和备择假设H1?解答:在实际中,通常把那些需要着重考虑的假设视为原假设H0,而与之对应的假设视为备择假设H1.(1)如果问题是要决定新方案是否比原方案好,往往将原方案取假设,而将新方案取为备择假设;(2)若提出一个假设,检验的目的仅仅是为了判断这个假设是否成立,这时直接取此假设为原假设H0即可.习题7假设检验的基本步骤有哪些?解答:根据反证法的思想和小概率原理,可将假设检验的步骤归纳如下:(1)根据问题的要求,提出原理假设H0和备择假设H1.(2)根据检验对象,构造检验统计量T(X1,X2,⋯,Xn),使当H0为真时,T有确定的分布.(3)由给定的显著水平α,查统计量T所服从的分布表,定出临界值λ,使P(∣T∣>λ)=α,或P(T>λ1)=P(T<λ2)=α/2,从而求出H0的拒绝域:∣T∣>λ或T>λ1,T<λ2.(4)由样本观察值计算统计量T的观察值t.(5)作出判断,将t的值与临界值比较大小作出结论:当t∈拒绝域量时,则拒绝H0,否则,不拒绝H0,即认为在显著水平α下,H0与实际情况差异不显著.习题8假设检验与区间估计有何异同?解答:假设检验与区间估计的提法虽不同,但解决问题的途径是相通的. 参数θ的置信水平为1-α的置信区间对应于双边假设检验在显著性水平α下的接受域;参数θ的置信水平为1-α的单侧置信区对应于单边假设检验在显著性水平α下的接受域.在总体的分布已知的条件下,假设检验与区间估计是从不同的角度回答同一个问题. 假设检验是判别原假设H0是否成立,而区间估计解决的是“多少”(或范围),前者是定性的,后者是定量的.习题9某天开工时,需检验自动包装工作是否正常. 根据以往的经验,其装包的质量在正常情况下服从正态分布N(100,1.52)(单位:kg).现抽测了9包,其质量为:99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5.问这天包装机工作是否正常?将这一问题化为假设检验问题. 写出假设检验的步骤(α=0.05).解答:(1)提出假设检验问题H0:μ=100,H1:μ≠100;(2)选取检验统计量U:U=X¯-1001.59,H0成立时, U∼N(0,1);(3)α=0.05,uα/2=1.96,拒绝域W={∣u∣>1.96};(4)x¯≈99.97,∣u∣=0.06.因∣u∣<uα/2=1.96,故接受H0,认为包装机工作正常.习题10设总体X∼N(μ,1),X1,X2,⋯,Xn是取自X的样本. 对于假设检验H0:μ=0,H1:μ≠0,取显著水平α,拒绝域为W={∣u∣>uα/2},其中u=nX¯,求:(1)当H0成立时, 犯第一类错误的概率α0;(2)当H0不成立时(若μ≠0),犯第二类错误的概率β.解答:(1)X∼N(μ,1),X¯∼N(μ,1/n),故nX¯=u∼N(0,1).α0=P{∣u∣>uα/2∣μ=0}=1-P{-uα/2≤u≤uα/2}=1-[Φ(uα/2)-Φ(-uα/2)]=1-[(1-α2)-α2]=α,即犯第一类错误的概率是显著水平α.(2)当H0不成立,即μ≠0时,犯第二类错误的概率为β=P{∣u∣≤uα/2∣E(X)=μ}=P{-uα/2≤u≤uα/2∣E(X)=μ}=P{-uα/2≤nX¯≤uα/2∣E(X)=μ}=P{-uα/2-nμ≤n(X¯-μ)≤uα/2-nμ∣E(X)=μ}=Φ(uα/2-nμ)-Φ(-uα/2-nμ).注1当μ→+∞或μ→-∞时,β→0.由此可见,当实际均值μ偏离原假设较大时,犯第二类错误的概率很小,检验效果较好.注2当μ≠0但接近于0时,β≈1-α.因α很小,故犯第二类错误的概率很大,检验效果较差.7.2 单正态总体的假设检验习题1已知某炼铁厂铁水含碳量服从正态分布N(4.55,0.1082).现在测定了9炉铁水,其平均含碳量为4.484.如果估计方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=4.55,H1:μ≠4.55.由于σ2=0.1082已知,所以可选取统计量U=X¯-4.550.108/9,在H0成立的条件下,U∼N(0,1),且此检验问题的拒绝域为∣U∣=∣X¯-4.550.108/9∣>uα/2,这里u=4.484-4.550.108/9≈-1.833,uα/2=1.96.显然∣u∣=1.833<1.96=uα/2.说明U没有落在拒绝域中,从而接受H0,即认为现在生产之铁水平均含碳量仍为4.55.习题2要求一种元件平均使用寿命不得低于1000小时,生产者从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时. 已知该种元件寿命服从标准差为σ=100小时的正态分布,试在显著性水平α=0.05下确定这批元件是否合格?设总体均值为μ,μ未知,即需检验假设H0:μ≥1000,H1:μ<1000.解答:检验假设H0:μ≥1000,H1:μ<1000.这是单边假设检验问题. 由于方差σ2=0.05,故用u检验法. 对于显著性水平α=0.05,拒绝域为W={X¯-1000σ/n<-uα.查标准正态分布表,得u0.05=1.645.又知n=25,x¯=950,故可计算出x¯-1000σ/n=950-1000100/25=-2.5.因为-2.5<-1.645,故在α=0.05下拒绝H0,认为这批元件不合格.习题3打包机装糖入包,每包标准重为100kg.每天开工后,要检验所装糖包的总体期望值是否合乎标准(100kg).某日开工后,测得9包糖重如下(单位:kg):99.398.7100.5101.298.399.799.5102.1100.5打包机装糖的包得服从正态分布,问该天打包机工作是否正常(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=100,H1:μ≠100.由于σ2未知,所以可选取统计量T=X¯-100S/n,在H0成立的条件下,T∼t(n-1),且此检验问题的拒绝域为∣T∣=∣X¯-100S/n∣>tα/2(n-1),这里t=x¯-100s/n≈99.978-1001.2122/9≈-0.0544,t0.025(8)=2.306.显然∣t∣=0.0544<2.306=t0.025(8),即t未落在拒绝域中,从而接受H0,即可以认为该天打包工作正常.习题4机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准含量为500g,标准差不得超过10g.某天开工后,随机抽取9袋,测得净重如下(单位:g):497,507,510,475,515,484,488,524,491,试在显著性水平α=0.05下检验假设:H0:μ=500,H1:μ≠500.解答:x¯=499,s≈16.031,n=9,t=(x¯-μ0)sn=499-50016.0319=-0.1871,α=0.05,t0.025(8)=2.306.因∣t∣<t0.025(8),故接受H0,认为该天每袋平均质量可视为500g.习题5从清凉饮料自动售货机,随机抽样36杯,其平均含量为219(mL),标准差为14.2mL,在α=0.05的显著性水平下,试检验假设:H0:μ=μ0=222,H1:μ<μ0=222.解答:设总体X∼N(μ,σ2),X代表自动售货机售出的清凉饮料含量,检验假设H0:μ=μ0=222(mL),H1:μ<222(mL).由α=0.05,n=36,查表得t0.05(36-1)=1.6896,拒绝域为W={t=x¯-μ0s/n<-tα(n-1).计算t值并判断:t=219-22214.2/36≈-1.27>-1.6896,习题6某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008Ω,对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?解答:本问题是在α=0.05下检验假设H0:σ2=0.0052,H1:σ2≠0.0052.选取统计量χ2=n-1σ2S2,在H0成立的条件下,χ2∼χ2(n-1),且此检验问题的拒绝域为χ2>χα/22(n-1)或χ2<χ1-α/22(n-1).这里χ2=9-10.0052s2=80.0052×0.0082=20.48,χ0.9752(8)=2.18,χ0.0252(8)=17.5.显然χ2落在拒绝域中,从而拒绝H0,即不能认为这批导线电阻的标准差仍为0.005.习题7某厂生产的铜丝,要求其折断力的方差不超过16N2.今从某日生产的铜丝中随机抽取容量为9的样本,测得其折断力如下(单位:N):289,286,285,286,285,284,285,286,298,292设总体服从正态分布,问该日生产的铜线的折断力的方差是否符合标准(α=0.05)?解答:检验问题为H0:σ2≤16,H1:σ2>16,n=9,s2≈20.3611,χ2=8×s216≈10.181,α=0.05,χ0.052(8)=15.507.因χ2<χ0.052(8)=15.507,故接受H0,可认为铜丝的折断力的方差不超过16N2.习题8过去经验显示,高三学生完成标准考试的时间为一正态变量,其标准差为6min.若随机样本为20位学生,其标准差为s=4.51,试在显著性水平α=0.05下,检验假设:H0:σ≥6,H1:σ<6.解答:H0:σ≥6,H1:σ<6.α=0.05,n-1=19,s=4.51,χ0.952(19)=10.117.拒绝域为W={χ2<10.117}.计算χ2值χ2=(20-1)×4.51262≈10.74.因为10.74>10.117,故接受H0,认为σ≥6.习题9测定某种溶液中的水分,它的10个测定值给出s=0.037%,设测定值总体服从正态分布,σ2为总体方差,σ2未知,试在α=0.05水平下检验假设:H0:σ≥0.04%,H1:σ<0.04%.解答:在α=0.05下,拒绝域为W={(n-1)S2σ02<χ1-α2(9).查χ2分布表得χ0.952(9)=3.325.计算得(n-1)s2σ02=(10-1)×(0.037\per)2(0.04\per)2≈7.7006>3.325,未落入拒绝域,故接受H0.sw=(5-1)×(1.971)2+(4-1)×(1.167)25+4-2≈1.674.查表得t0.005(7)=1.895.算得t=2.86-2.075-01.67415+14≈0.699<1.895.因为0.699<1.895,故不拒绝H0,认为此药无效.习题3据现在的推测,矮个子的人比高个子的人寿命要长一些.下面给出美国31个自然死亡的总统的寿命,将他们分为矮个子与高个子2类,列表如下:矮个子总统8579679080高个子总统6853637088746466606078716790737177725778675663648365假设2个寿命总体均服从正态分布且方差相等,试问这些数据是否符合上述推陈出推测(α=0.05)?解答:设μ1,μ2分别为矮个子与高个子总统的平均寿命,则检验问题为H0:μ1≤μ2,H1:μ1>μ2,n1=5,x¯=80.2,s1≈8.585,n2=26,y¯≈69.15,s2≈9.315,sw=4×8.5852+9.315229≈9.218,n1n2n1+n2≈2.048,t=(80.2-69.15)9.218×2.048≈2.455,α=0.05,t0.05(29)=1.6991,因t>t0.05(29)=1.6991,故拒绝H0,认为矮个子总统的寿命比高个子总统寿命长.习题4在20世纪70年代后期人们发现,酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA).到了20世纪80年代初期,人们开发了一种新的麦芽干燥过程,下面给出了分别在新、老两种过程中形成的NDMA含量(以10亿份中的份数计):故拒绝H0,认为新、老过程中形成的NDMA平均含量差大于2.习题5有两台车床生产同一种型号的滚珠. 根据过去的经验,可以认为这两台车床生产的滚珠的直径都服从正态分布. 现要比较两台车床所生产滚珠的直径的方差,分别抽出8个和9个样品,测得滚珠的直径如下(单位:mm).甲车床xi:15.014.515.215.514.815.115.214.8乙车床yi:15.215.014.815.215.015.014.815.114.8问乙车床产品的方差是否比甲车床的小(α=0.05)?解答:以X,Y分别表示甲,乙二车床产品直径.X∼N(μ1,σ12),Y∼N(μ2,σ22),X,Y独立. 检验假设H0:σ12=σ22,H1:σ22<σ22.用F检验法, 在H0成立时F=S12S22∼F(n1-1,n2-1).由已知数据算得x¯≈15.01,y¯≈14.99,s12≈0.0955,s22≈0.0261,n1=8,n2=9,α=0.05.拒绝域为Rα={F>Fα(n1-1,n2-1)}.查F分布表得F0.05(8-1,9-1)=3.50.计算F值F=s12/s22=0.0955/0.0261≈3.66.因为3.66>3.50,故应否定H0,即认为乙车床产品的直径的方差比甲车床的小.习题6某灯泡厂采用一项新工艺的前后,分别抽取10个灯泡进行寿命试验. 计算得到:采用新工艺前灯泡寿命的样本均值为2460小时. 样本标准差为56小时;采用新工艺后灯泡寿命的样本均值为2550小时,样本标准差为48小时. 设灯泡的寿命服从正态分布,是否可以认为采用新工艺后灯泡的平均寿命有显著提高(α=0.01)?解答:(1)检验假设H0:σ12=σ22,H1:σ12≠σ22.应选取检验统计量F=S12/S22,若H0真, 则F∼F(m-1,n-1);对于给定的检验水平α=0.01,查自由度为(9,9)的F分布表得F0.005(9,9)=6.54;已知m=n=10,s1=56,s2=48,由此得统计量F的观察值为F=562/482≈1.36;因为F<F0.005(9,9),所以接受原假设H0,即可认为这两个总体的方差无显著差异.(2)检验假设H0′:μ1=μ2,H1′:μ1<μ2.按上述关于双总体方差的假设检验的结论知这两个总体的方差未知但相等,σ12=σ22,所以应选取检验统计量:T=X¯-Y¯(m-1)S12+(n-1)S22m+n-2(1m+1n),若H0′真,则T∼t(m+n-2);对给定的检验水平α=0.01,查自由度为m+n-2=18的t分布表得临界值计算t值t=z¯-0sz/n=-0.1-00.141/5≈-1.59>-2.776,故接受H0:μz=0,即在α=0.05下,认为两种分析方法所得的均值结果相同.7.4 关于一般总体数学期望的假设检验习题1设两总体X,Y分别服从泊松分布P(λ1),P(λ2),给定显著性水平α,试设计一个检验统计量,使之能确定检验H0:λ1=λ2,H1:λ1≠λ2的拒绝域,并说明设计的理论依据.解答:因非正态总体,故宜用大样统计,设X¯=1n1∑i=1n1Xi,S12=1n1-1∑i=1n1(Xi-X¯)2;Y¯=1n2∑i=1n2Yi,S22=1n2-1∑i=1n2(Yi-Y¯)2.\because(X¯-Y¯)-(λ1-λ2)S12n1+S22n2→N(0,1)∴可选用样本函数u=(X¯-Y¯)-(λ1-λ2)S12n1+S22n2作为拒绝域的检验统计量.习题2设某段高速公路上汽车限制速度为104.6km/h,现检验n=85辆汽车的样本,测出平均车速为x¯=106.7km/h,已知总体标准差为σ=13.4km/h,但不知总体是否服从正态分布. 在显著性水平α=0.05下,试检验高速公路上的汽车是否比限制速度104.6km/h显著地快?解答:设高速公路上的车速为随机变量X,近似有X∼N(μ,σ2),σ=13.4km/h,要检验假设H0:μ=μ0=104.6,H1:μ>104.6.α=0.05,n=85,uα=u0.05=1.645.拒绝域W={u=x¯-μ0σ/n>uα.由x¯=106.7,σ=13.4,μ0=104.6,n=85得u=106.7-104.613.4/85≈1.44<1.645.因为1.44<1.645,所以接受H0,即要α=0.05显著性水平下,没有明显的证据说明汽车行驶快于限制速度.习题3某药品广告上声称该药品对某种疾病和治愈率为90%,一家医院对该种药品临床使用120例,治愈85人,问该药品广告是否真实(α=0.02)?解答:设该药品对某种疾病的治愈率为p,随机变量X为X={1,临床者使用该药品治愈0,反之则X∼b(1,p),问题该归结为检验假设:H0:p=0.9,H1:p≠0.9.由于n=120足够大,可以用u检验法,所给样值(x1,x2,⋯,x120)中有85个1,35个0,所以x¯=1120∑i=1120xi=1120∑i=1851=85120≈0.71,又p0=0.9,以之代入统计量U得U的观察值为∣u∣=∣0.71-0.9∣0.9×0.1120=6.94>u0.01=2.33,故拒绝H0,即认为该药品不真实.习题4一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8小时电视.”她认为她所领导的学校,学生看电视时间明显小于该数字. 为此,她向她的学校的100名初中学生作了调查,得知平均每周看电视的时间x¯=6.5小时,样本标准差为s=2小时,问是否可以认为这位校长的看法是对的(α=0.05)?解答:检验假设H0:μ=8,H1:μ<8.由于n=100,所以T=X¯-μS/n近似服从N(0,1)分布,α=0.05,u0.05=1.645.又知x¯=6.5,s=2,故计算得t=6.5-82/100=-7.5,否定域W={X¯-8S/n<-u0.05.因为-7.5<-1.645,故否定H0,认为这位校长的看法是对的.习题5已知某种电子元件的使用寿命X(h)服从指数分布e(λ),抽查100个元件,得样本均值x¯=950(h),能否认为参数λ=0.001(α=0.05)?解答:由题意知X∼e(λ),E(X)=1/λ,D(X)=1/λ2,故当n充分大时u=x¯-1/λ1nλ=(x¯-1λ)λn=(λx¯-1)n(0,1).现在检验问题为H0:λ=0.001,H1:λ≠0.001,样本值u=(0.001×950-1)×100=0.5,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即可认为参数λ=0.001(即元件平均合适用寿命为1000h).习题6某产品的次品率为0.17,现对此产品进行新工艺试验,从中抽取400检查,发现次品56件,能否认为这项新工艺显著地影响产品质量(α=0.05)?解答:检验问题为H0:p=0.17,H1:p≠0.17,由题意知⌢p=mn=56400=0.14,u=(⌢p-p0)p0q0n=0.14-0.170.17×0.83×400≈-1.597,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即认为新工艺没有显著地影响产品质量.习题7某厂生产了一大批产品,按规定次品率p≤0.05才能出厂,否则不能出厂,现从产品中随机抽查50件,发现有4件次品,问该批产品能否出厂(α=0.05)?解答:问题归结为在α=0.05下,检验假设H0:p≤0.05,H1:p>0.05.这是一个单侧检验问题,用u检验法,H0的拒绝域为U=X¯-p0p0(1-p0)n>uα.已知n=50,p0=0.05,x¯=450=0.08,代入U的表达式得u=0.08-0.050.05×0.9550≈0.97<uα=u0.05=1.645,故接受H0,即认为这批产品可以出厂.习题8从选区A中抽取300名选民的选票,从选区B中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所提候选人,试在显著水平α=0.05下,检验两个选区之间对候选人的支持是否存在差异. 解答:这是两个比率的比较问题,待检假设为H0:p1=p2,H1:p1≠p2.由题设知n=300,μn=168,m=200,μm=96,p1 =168320=0.56,p2 =96200=0.48,p=μn+μmm+n=264500=0.528.U0∼=p1 -p2 p(1-p)(1n+1m)=0.56-0.480.528×0.472×1120≈1.755,由P{∣U∼∣>1.96}=α=0.05,得拒绝域∣U∼∣>1.96,因为U0∼=1.755<1.96,故接受H0,即两个选区之间无显著差异.7.5 分布拟合检验Ai k概率pi npi频数fi(fi-npi)2(fi-npi)2npiA001/108085250.3125A111/108093169 2.1125A221/108084160.2A331/10807910.0125A441/10807840.05A551/108069121 1.5125A661/108074360.45A771/10807181 1.0125A881/108091121 1.5125A991/108076160.2∑18007.375由于当H0为真时,χ2=∑i=0k(fi-npi)2npi∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r).这里χ2=7.375,查表知χ0.052(10-1-0)=χ0.052(9)=16.9,显然χ2=7.375<16.9=χ0.052(9),即χ2未落在拒绝域中,所以接受H0,即认为这个正20面体是由均匀材料制面的.习题2根据观察到的数据疵点数0 1 2 3 4 5 6频数fi 14 27 26 20 7 3 3检验整批零件上的疵点数是否服从泊松分布(α=0.05).解答:设X表示整批零件上的疵点数,则本问题是在α=0.05下检验假设H0:P{X=i}=λie-λi!,i=0,1,2,⋯.由于在H0中参数λ未具体给出,所以先估计λ的值. 由极大似然估计法得λ =x¯=1100(0×14+1×27+2×26+3×20+4×7+5×3+6×3)=2.将试验的所有可能结果分为7个互不相容的事件A0,A1,⋯,A7, 当H0成立时,P{X=i}有估计值p0=P{X=0}=e-2≈0.135335,p1=P{X=1}=2e-2≈0.27067,p2=P{X=2}=2e2≈0.270671,p3=P{X=3}≈0.180447,p4=P{X=4}=2/3e-2≈0.090224,p5=P{X=5}=4/15e-2≈0.036089, p6=P{X=6}=4/45e-2≈0.0120298. 列表如下:Ai k 概率pi npi 频数fi (fi-npi)2 (fi-npi)2npiA0 A1 A2 A3 A4 A5 A6 0 1 2 3 4 5 6 0.1353350.270671 0.270671 0.180447 0.090224 0.036089 0.0120298 13.5335 27.0671 27.0672 18.0447 9.02243.60891.2029813.83428 14 27 26 2073313 0.2176 0.0045 1.1387 3.8232 0.6960 0.01608 0.000166 0.04207 0.2118740.050310∑1000.3205当H0为真时,χ2=∑i=0k(fi-npi)2npi ∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r), 这里χ2=0.3205, 查表知χ0.052(5-1-1)=χ0.052(3)=7.815. 显然 χ2=0.3205<7.815=χ0.052(3).即χ2未落在拒绝域中,接受H0, 故可认为整批零件上的疵点数服从泊松分布.习题3检查了一本书的100页,记录各页中印刷错误的个数,其结果为错误个数fi123456 ≥7含fi 个错误的页数 36 4019221问能否认为一页的印刷错误个数服从泊松分布(取α=0.05)? 解答:检验假设H0: 一页的印刷错误个数X 服从泊松分布, P{X=i}=λie -λi!,i=0,1,2,⋯.H0 不成立. 先估计未知参数λλ =x¯=1/100(0×36+1×40+2×19+3×2+4×0+5×2+6×1)=1. 在H0成立下p =P{X=i}=(λ )ie -λ i !=e-1i!,i=0,1,2,⋯. 用χ2检验法χ2=∑i=1k(fi -np )2np ∼χ2(k -r-1). 本题中r=1, 其中fi 为频数. H0的拒绝域为 Rα={χ2>χα2(k -r-1)}. 列表计算如下:n=100, 对每个{X=i}计算 p ,np ,fi -np ,(fi -np )2/(np )(i=1,2,⋯,7). 要求每一个np ≥5.计算χ2值χ2=0.0170+0.2801+0.0202+1.1423=1.4596.习题6下表记录了2880个婴儿的出生时刻:试问婴儿的出生时刻是否服从均匀分布U[0,24](显著性水平α=0.05)?解答:原假设H0:F0(x), 由F0(x)算得pi=F0(i)-F0(i-1)=124,npi=2880×124=120 (i=1,2,⋯,24),于是χ2=∑i=124(fi-npi)2npi≈40.47,对α=0.05, 自由度n-1=23, 查χ2-分布表,得χα2(n-1)=35.17,因为χ2=40.47>35.17, 所以拒绝H0, 即可以认为婴儿出生时刻不服从均匀分布U[0,24].总习题解答习题1下面列出的是某工厂随机选取的20只部件的装配时间(min):9.8,10.4,10.6,9.6,9.7,9.9,10.9,11.1,9.6,10.2,10.3,9.6,9.9,11.2,10.6,9.8,10.5,10.1,10.5,9.7.设装配时间的总体服从正态分布N(μ,σ2),μ,σ2均未知,是否可以认为装配时间的均值显著地大于10(取α=0.05)?解答:检验假设H0:μ≤μ0=10,H1:μ>10.已知n=20,α=0.05,由数据算得x¯=10.2,s≈0.5099.因σ2未知,故用t检验法,拒绝域为W={X¯-μ0S/n>tα(n-1).计算得x¯-μ0s/n=10.2-100.5099/20≈1.7541.查t分布表得t0.05(19)=1.7291.因为1.7541>1.7291,故拒绝H0,可以认为装配时间的均值显著地大于10.习题2某地早稻收割根据长势估计平均亩产为310kg,收割时,随机抽取了10块,测出每块的实际亩产量为x1,x2,⋯,x10,计算得x¯=110∑i=110xi=320.如果已知早稻亩产量X服从正态分布N(μ,144),显著性水平α=0.05,试问所估产量是否正确?解答:这是一个正态分布总体,方差已知,对期望的假设检验问题,如果估计正确,则应有μ=310,因此我们先将问题表示成两个假设:①H0:μ=310,H1:μ≠310.接下来就要分析样本值来确定是接受H0,还是接受H1.当H0为真时,统计量②U=X¯-31012/10∼N(0,1),从而有③P{∣U∣>1.96}=0.05,拒绝域为(-∞,-1.96)∪(1.96,+∞).④计算U0=∣320-310∣12/n≈2.64>1.96,即拒绝H0,也就是有理由不相信H0是真的,故认为估产310kg不正确.习题3设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,样本标准差为15分,问在显著水平0.05下,是否可认为这次考试全体考生的平均成绩为70分?并给出检验过程.(1)设这次考试全体考生的平均成绩X∼N(μ,σ2),则待检验假设H0:μ=70,备择假设H1:μ≠70;(2)在H0成立条件下选择统计量T=X¯-μ0S/n∼t(n-1);(3)在显著性水平0.05下,查t分布表,找出临界值tα/2(n-1)=t0.025(35)=2.0301,则拒绝域为(-∞,-2.0301)∪(2.0301,+∞);(4)计算t=∣66.5-70∣15/36=1.4∈(-2.0301,2.0301),故接受H0,因此可认为这次考试全体考生的平均成绩为70分.习题4设有来自正态总体的容量为100的样本,样本均值x¯=2.7,μ,σ2均未知,而∑i=1n(xi-x¯)2=225,在α=0.05水平下,检验下列假设(1)H0:μ=3,H1:μ≠3;(2)H0:σ2=2.5,H1:σ2≠2.5.解答:(1)由题意知n=100,x¯=2.7,s=199×225≈1.508,t=(2.7-3)1.508×100≈-1.9894,α=0.05,t0.025(99)≈t0.025(100)=1.984.因∣t∣=1.9894>t0.025(99)=1.984,故拒绝H0,即认为μ≠3.(2)由题意知χ2=∑i=1n(x1-x¯)22.5=2252.5=90,α=0.05,χ0.0252(99)≈χ0.0252(100)=129.56,χ0.9752(99)≈χ0.9752(100)=74.22,因χ0.9752(99)<χ2=90<χ0.0252(99),故接受H0,即可以认为σ2=2.5.习题5设某大学的男生体重X为正态总体,X∼N(μ,σ2),欲检验假设:H0:μ=68kg,H1:μ>68kg.已知σ=5,取显著性水平α=0.05,若当真正均值为69kg时,犯第二类错误的概率不超过β=0.05,求所需样本大小.解答:由第一类、第二类错误及分位数的定义,易于证明:对于某个给定的δ>0(∣μ-μ0∣≥δ),样本容量n应满足:n≥(uα+uβ)2σ2δ2.因为α=β=0.05,故uα=uβ=1.645,对其对立假设μ=69而言,取δ=1,则n=(uα+uβ)2σ2δ2=(1.645+1.645)2×251≈270.6,故取n=271.某装置的平均工作温度据制造厂家称不高于190∘C.今从一个由16台装置构成的随机样本测得工作温度的平均值和标准差分别为195∘C和8∘C,根据这些数据能否说明平均工作温度比制造厂所说的要高?(设α=0.05,并假设工作温度近似服从正态分布.)解答:设X为工作温度,则X∼N(μ,σ2).①待检假设H0:μ≤190,备择假设H1:μ>190;②在H0成立条件下,选择统计量T=X¯-μ0S/n≈t(n-1);③在显著性水平0.05下,查t分布表,找出临界值tα(n-1)=t0.05(15)=1.75,拒绝域为(1.75,+∞);④计算t=X¯-μ0S/n=195-1908/16=2.5>1.75,所以否定原假设H0,说明平均工作温度比制造厂所说的要高.习题7电工器材厂生产一批保险丝,抽取10根试验其熔断时间,结果为42657578715957685455假设熔断时间服从正态分布,能否认为整批保险丝的熔断时间的方差不大于80(α=0.05)?解答:①待检假设H0:σ2≤80,备择假设H1:σ2>80;②在H0成立时,选取统计量χ2=(n-1)S2σ02∼χ2(n-1);③由α=0.05,n-1=9,查χ2分布表,χα2(n-1)=χ0.052(9)=16.919;④计算样本值:x¯=110(42+65+75+78+71+59+57+68+54+55)=62.4,s2=19∑i=110(xi-x¯)2≈121.8,χ2=9×121.880≈13.7∈(0,16.919).故接受原假设H0即在α=0.05下,可认为整批保险丝的熔断时间的方差不大于80.习题8某系学生可以被允许选修3学分有实验物理课和4学分无实验物理课,11名学生选3学分的课,考试平均分数为85分,标准差为4.7分;17名学生选4学分的课,考试平均分数为79分,标准差为6.1分. 假定两总体近似服从方差相同的正态分布,试在显著性水平α=0.05下检验实验课程是否能使平均分数增加8分?解答:设有实验的课程考分X1∼N(μ1,σ12),无实验的课程考分X2∼N(μ2-σ22).假定σ12=σ22=σ2未知,检验假设H0:μ1-μ2=8,H1:μ1-μ2≠8.由题意知,选用t检验统计量,则拒绝域为W={∣x1¯-x2¯-(μ1-μ2)sw1n1+1n2∣>tα/2(n1+n2-2),其中sw2=(n1-1)s12+(n2-1)s22n1+n2-2.由x1¯=85,x2¯=79,n1=11,n2=17,s1=4.7,s2=6.1,算出sw=(11-1)×4.72+(17-1)×6.1211+17-2≈5.603.从而算出t值为t=85-79-85.603111+117≈-0.92,由α=0.05,查表得t0.025(11+17-2)=t0.025(25)=2.056,因为∣t∣=0.92<2.056,故接受H0,认为μ1-μ2=8.习题9某校从经常参加体育锻炼的男生中随机地选出50名,测得平均身高174.34厘米;从不经常参加体育锻炼的男生中随机地选50名,测得平均身高172.42厘米. 统计资料表明两种男生的身高都服从正态分布,其标准差分别为5.35厘米和6.11厘米,问该校经常参加锻炼的男生是否比不常参加锻炼的男生平均身高要高些(α=0.05)?解答:设X,Y分别表示常锻炼和不常锻炼男生的身高,由题设X∼N(μ1,5.352),Y∼N(μ2,6.112).①待检假设H0:μ1≤μ2,备择假设H1:μ1>μ2;②选取统计量U=X¯-Y¯σ12n+σ22m∼(H0成立)N(0,1);③对于α=0.05,查标准正态分布表,uα=u0.05=1.64;则拒绝域为(1.64,+∞);④计算u=174.34-172.425.35250+6.11250≈1.67>1.64,故否定原假设H0,即表明经常体育锻炼的男生平均身高比不经常体育锻炼的男生平均身高高些.习题10在漂白工艺中要改变温度对针织品断裂强力的影响,在两种不同温度下分别作了8次试验,测得断裂强力的数据如下(单位:kg):70∘C:20.818.819.820.921.519.521.021.280∘C:17.720.320.018.819.020.120.219.1判断两种温度下的强力有无差别(断裂强力可认为服从正态分布α=0.05)?解答:(1)本问题是在α=0.05下检验假设μ1=μ2,为此需要先检验σ12=σ22是否成立.H01:σ12=σ22,H11:σ12≠σ22.选取统计量F=S12S22,在H01成立的条件下,F∼F(n1-1,n2-1),且此检验问题的拒绝域为F>Fα/2(n1-1,n2-1)或F<F1-α/2(n1-1,n2-1).这里F=s12s22≈0.90550.8286≈1.0928,F0.025(7,7)=4.99,F0.975(7,7)=1F0.025(7,7)=14.99≈0.2004.显然F0.975(7,7)=0.2004<1.0928<4.99=F0.025(7,7).说明F未落在拒绝域中,从而接受H01,即认为两温度下的强力的方差没有显著变化,亦即σ12=σ22. (2)再检验假设H0ʹ:μ1=μ2,H0ʹ:μ1≠μ2,在H0ʹ成立的条件下,T=X1¯-X2¯(n1-1)S12+(n2-1)S22n1+n2-21n1+1n2∼t(n1+n2-2),且此检验问题的拒绝域为∣T∣>tα/2(n1+n2-2),这里T≈20.4-19.47×0.9055+7×0.82868+8-218+18≈2.148,显然∣T∣=2.148>2.145=t0.025(14).说明T落在拒绝域中,从而拒绝H0,即认为两种温度下的断裂强力有显著差别.习题11一出租车公司欲检验装配哪一种轮胎省油,以12部装有Ⅰ型轮胎的车辆进行预定的测试. 在不变换驾驶员的情况下,将这12部车辆换装Ⅱ型轮并重复测试,其汽油耗量如下表所示(单位:km/L).汽车编号i123456789101112Ⅰ型胎(xi)4.24.76.67.06.74.55.76.07.44.96.15.2Ⅱ型胎(yi)4.14.96.26.96.84.45.75.86.94.76.04.9假定两总体均服从正态分布,试在α=0.025的显著性水平下,检验安装Ⅰ型轮胎是否要双安装Ⅱ型轮胎省油?解答:设两种轮胎汽油消耗量之差为随机变量D,则取值为zi=xi-yi=0.1,-0.2,0.4,0.1,-0.1,0.1,0,0.2,0.5,0.2,0.1,0.3.设Z∼N(μz,σz2),σz2未知. 若消耗油相同,则μz=0;若Ⅰ型比Ⅱ型轮胎省油,则μz>0,于是检验假设H0:μz=0,H1:μz>0.由题意知z¯≈0.142,s≈0.198,n-1=12-1=11.α=0.025,查t分布表得t0.025(11)=2.201.所以,拒绝域为W={t>2.201}.由于样本值t=z¯-0s/n=0.142-00.198/12≈2.48>2.201,故拒绝H0:μz=0,即说明Ⅰ型轮胎省油.习题12有两台机器生产金属部件,分别在两台机器所生产的部件中各取一容量n1=60,n2=40的样本,测得部件重量(以kg计)的样本方差分别为s12=15.46,s22=9.66. 设两样本相互独立,两总体分别服从分布N(μ1,σ12),N(μ2,σ22).μi,σi2(i=1,2)均未知,试在α=0.05水平下检验假设H0:σ12≤σ22,H1:σ12>σ22.解答:在α=0.05下,检验假设H0:σ12≤σ22,H1:σ12>σ22,经计算p=1100×10(45+2×17+3×4+4×1+5×1)=1/10,故检验假设为H0:X∼B(10,1/10),即p =P{X=i}=C10i(1/10)i(9/10)10-i,i=0,1,2,⋯,10.为了使np ≥5,将xi≥3合并,于是k=4,r=1.计算χ2的观察值,计算结果如下表:[200,300) [300,+∞)435843.466.9-0.4-8.90.0041.184∑300300 1.8631其中理论概率pi=p{ti≤T≤ti+1}=∫titi+1f(t)dt(i=1,2,3),p4=1-∑i=13pi,例如p1=P{T<100}=∫01000.005e-0.005tdt=1-e-0.5≈0.393.由k=4,未知参数个数r=0,查表知χα2(k-r-1)=χ0.052(3)=7.815.因χ2=1.8631<χ0.052(3)=7.815.故接受H0,即可认为灯泡的寿命服从该指数分布.习题16关于正态总体X∼N(μ,1)的数学期望有如下二者必居其一的假设,H0:μ=0,H1:μ=1.考虑检验规则:当X¯≥0.98时否定假设H0接受H1,其中X¯=(X1+⋯+X4)/4,而X1,⋯,X4是来自总体X的简单随机样本,试求检验的两类错误概率α和β.解答:易见,在假设“H0:μ=0”成立的条件下,X¯∼N(0,1/4),2X¯∼N(0,1);在假设“H1:μ=1”成立的条件下,X¯∼N(1,1/4),2(X¯-1)∼N(0,1).因此,由定义得α=P{X¯≥0.98∣μ=0}=P{2X¯≥1.96∣μ=0}=0.025,β=P{X¯<0.98∣μ=1}=P{2(X¯-1)<-0.04∣μ=1}=0.4840.习题17考察某城市购买A公司牛奶的比例,作假设H0:p=0.6,H1:p<0.6,随机抽取50个家属,设x为其中购买A公司牛奶的家庭数,拒绝域W={x≤24}.(1)H0成立时,求第一类错误的α;(2)H1成立且p=0.4时,求第二类错误的β(0.4);又当p=0.5时,求第二类错误的β(0.5).解答:由定义知(1)α=P{x≤24∣p=0.6}=Φ(24-50×0.650×0.6×0.4)≈Φ(-1.73)=1-Φ(1.73)=1-0.9528=0.0418.(2)β(0.4)=P{x>24∣p=0.4}=1-Φ(24-50×0.450×0.4×0.6)≈1-Φ(1.15)=1-0.8749=0.1251;。
概率论与数理统计第四版课后习题答案
概率论与数理统计课后习题答案第七章参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm计)74.001 74.005 74.003 74.001 74.000 73.99874.006 74.002求总体均值μ及方差σ2的矩估计,并求样本方差S2。
解:μ,σ2的矩估计是。
2.[二]设X1,X1,…,Xn为准总体的一个样本。
求下列各总体的密度函数或分布律中的未知参数的矩估计量。
(1)其中c>0为已知,θ>1,θ为未知参数。
(2)其中θ>0,θ为未知参数。
(5)为未知参数。
解:(1),得(2)(5)E(X) = mp 令mp=,解得3.[三]求上题中各未知参数的极大似然估计值和估计量。
解:(1)似然函数(解唯一故为极大似然估计量)(2)。
(解唯一)故为极大似然估计量。
(5),解得,(解唯一)故为极大似然估计量。
4.[四(2)] 设X1,X1,…,Xn是来自参数为λ的泊松分布总体的一个样本,试求λ的极大似然估计量及矩估计量。
解:(1)矩估计X ~ π (λ ),E (X )= λ,故=为矩估计量。
(2)极大似然估计,为极大似然估计量。
(其中5.[六] 一地质学家研究密歇根湖湖地区的岩石成分,随机地自该地区取100个样品,每个样品有10块石子,记录了每个样品中属石灰石的石子数。
假设这100次观察相互独立,并由过去经验知,它们都服从参数为n=10,P的二项分布。
P是该地区一块石子是石灰石的概率。
求p的极大似然估计值,该地质学家所得的数据如下样品中属石灰石的石子数0 1 2 3 4 5 6 7 8 9 10 观察到石灰石的样品个数0 1 6 7 23 26 21 12 3 1 0解:λ的极大似然估计值为==0.499[四(1)] 设总体X具有分布律X 1 2 3Pk θ22θ(1-θ)(1-θ) 2其中θ(0<θ<1)为未知参数。
已知取得了样本值x1=1,x2=2,x3=1,试求θ的矩估计值和最大似然估计值。
概率论与数理统计(茆诗松)第二版课后第七章习题参考答案
第七章 假设检验习题7.11. 设X 1 , …, X n 是来自N (µ , 1) 的样本,考虑如下假设检验问题H 0:µ = 2 vs H 1:µ = 3,若检验由拒绝域为}6.2{≥=x W 确定. (1)当n = 20时求检验犯两类错误的概率;(2)如果要使得检验犯第二类错误的概率β ≤ 0.01,n 最小应取多少? (3)证明:当n → ∞ 时,α → 0,β → 0. 解:(1)犯第一类错误的概率为0037.0)68.2(168.220126.21}2|6.2{}|{0=Φ−=⎭⎬⎫⎩⎨⎧=−≥−==≥=∈=n X P X P H W X P µµα,犯第二类错误的概率为0367.0)79.1(79.120136.21}3|6.2{}|{1=−Φ=⎭⎬⎫⎩⎨⎧−=−<−==<=∉=n X P X P H W X P µµβ;(2)因01.0)4.0(4.0136.21}3|6.2{≤−Φ=⎭⎬⎫⎩⎨⎧−=−<−==<=n n n n X P X P µµβ,则99.0)4.0(≥Φn ,33.24.0≥n ,n ≥ 33.93,故n 至少为34;(3))(0)6.0(16.0126.21}2|6.2{∞→→Φ−=⎭⎬⎫⎩⎨⎧=−≥−==≥=n n n n n X P X P µµα,)(0)4.0(4.0136.21}3|6.2{∞→→−Φ=⎭⎬⎫⎩⎨⎧−=−<−==<=n n n n n X P X P µµβ. 2. 设X 1 , …, X 10是来自0-1总体b (1, p ) 的样本,考虑如下检验问题H 0:p = 0.2 vs H 1:p = 0.4,取拒绝域为}5.0{≥=x W ,求该检验犯两类错误的概率. 解:因X ~ b(1, p ),有),10(~10101p b X X i i =∑=,则0328.08.02.0}2.0|510{}2.0|5.0{}|{10510100=⋅⋅==≥==≥=∈=∑=−k k k kC p X P p X P H W X P α,6331.06.04.0}4.0|510{}4.0|5.0{}|{410101=⋅⋅==<==<=∉=∑=−k k k kC p X P p X P H W X P β.3. 设X 1 , …, X 16是来自正态总体N (µ , 4) 的样本,考虑检验问题H 0:µ = 6 vs H 1:µ ≠ 6,拒绝域取为}|6{|c x W ≥−=,试求c 使得检验的显著性水平为0.05,并求该检验在µ = 6.5处犯第二类错误的概率.解:因05.0)]2(1[22162162}6||6{|}|{0=Φ−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=≥−==≥−=∈=c c c X P c X P H W X P µµα,则Φ (2c ) = 0.975,2c = 1.96,故c = 0.98;故}5.6|48.05.648.1{}5.6|98.0|6{|}|{1=<−<−==<−=∉=µµβX P X P H W X P83.0)96.2()96.0(96.01625.696.2=−Φ−Φ=⎭⎬⎫⎩⎨⎧<−<−=X P .4. 设总体为均匀分布U (0, θ ),X 1 , …, X n 是样本,考虑检验问题H 0:θ ≥ 3 vs H 1:θ < 3,拒绝域取为}5.2{)(≤=n x W ,求检验犯第一类错误的最大值α ,若要使得该最大值α 不超过0.05,n 至少应取多大?解:因均匀分布最大顺序统计量X (n ) 的密度函数为θθ<<−Ι=x nn n nx x p 01)(,则nn n n nn n n x dx nx X P H W X P ⎟⎠⎞⎜⎝⎛=====≤=∈=∫−6535.233}3|5.2{}|{5.205.201)(0θα, 要使得α ≤ 0.05,即05.065≤⎟⎠⎞⎜⎝⎛n,43.16)6/5ln(05.0ln =≥n ,故n 至少为17.5. 在假设检验问题中,若检验结果是接受原假设,则检验可能犯哪一类错误?若检验结果是拒绝原假设,则又有可能犯哪一类错误?答:若检验结果是接受原假设,当原假设为真时,是正确的决策,未犯错误;当原假设不真时,则犯了第二类错误.若检验结果是拒绝原假设,当原假设为真时,则犯了第一类错误;当原假设不真时,是正确的决策,未犯错误.6. 设X 1 , …, X 20是来自0-1总体b (1, p ) 的样本,考虑如下检验问题H 0:p = 0.2 vs H 1:p ≠ 0.2,取拒绝域为⎭⎬⎫⎩⎨⎧≤≥=∑∑==17201201i i i i x x W 或,(1)求p = 0, 0.1, 0.2, …, 0.9, 1的势并由此画出势函数的图;(2)求在p = 0.05时犯第二类错误的概率.解:(1)因X ~ b(1, p ),有),20(~201p b X i i ∑=,势函数∑∑=−=−⎟⎟⎠⎞⎜⎜⎝⎛−=⎭⎬⎫⎩⎨⎧∈=6220201)1(201)(k kk i i p p k p WX P p g , 故110201)0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g ,3941.09.01.0201)1.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k kk k g , 1559.08.02.0201)2.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g ,3996.07.03.0201)3.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g ,7505.06.04.0201)4.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g ,9424.05.05.0201)5.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g , 9935.04.06.0201)6.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g ,9997.03.07.0201)7.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g , 999998.02.08.0201)8.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g11.09.0201)9.0(6220≈××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g , 101201)1(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k kk k g ; (2)在p = 0.05时犯第二类错误的概率2641.095.005.02005.0|6220201=××⎟⎟⎠⎞⎜⎜⎝⎛=⎭⎬⎫⎩⎨⎧=∉=∑∑=−=k kk i i k p W X P β. 7. 设一个单一观测的样本取自密度函数为p (x )的总体,对p (x )考虑统计假设: H 0:p 0(x ) = I 0 < x < 1 vs H 1:p 1(x ) = 2x I 0 < x < 1.若其拒绝域的形式为W = {x : x ≥ c },试确定一个c ,使得犯第一类,第二类错误的概率满足α + 2β 为最小,并求其最小值.解:当0 < c < 1时,α = P {X ∈ W | H 0} = P {X ≥ c | X ~ p 0(x )} = 1 − c ,且20112)}(~|{}H |{c xdx x p X c X P W X P c==<=∉=∫β,则2224128721161287212⎟⎠⎞⎜⎝⎛−+=⎟⎠⎞⎜⎝⎛+−+=+−=+c c c c c βα,故当41=c 时,α + 2β 为最小,其最小值为87. 8. 设X 1, X 2, …, X 30为取自柏松分布P (λ)的随机样本.(1)试给出单侧假设检验问题H 0:λ ≤ 0.1 vs H 1:λ > 0.1的显著水平α = 0.05的检验; (2)求此检验的势函数β (λ)在λ = 0.05, 0.2, 0.3, …, 0.9时的值,并据此画出β (λ)的图像.解:(1)因)30(~3021λP X X X X n +++=L ,假设H 0:λ ≤ 0.1 vs H 1:λ > 0.1, 统计量)30(~λP X n ,当H 0成立时,设)3(~P X n ,其p 分位数)3(p P 满足∑∑=−−=−≤<)3(031)3(03e !3e !3p p P k k P k k k p k 显著水平α = 0.05,可得P 1−α (3) = P 0.95 (3) = 6,右侧拒绝域}7{≥=x n W ;(2)因∑=−−=≥=∈=630e!)30(1}|7{}|{)(k k k X n P W X n P λλλλλβ, g故0001.0e !5.11)05.0(605.1=−=∑=−k k k β,3937.0e !61)2.0(606=−=∑=−k k k β,7932.0e !91)3.0(609=−=∑=−k k k β,9542.0e !121)4.0(6012=−=∑=−k k k β,9924.0e !151)5.0(6015=−=∑=−k k k β,9990.0e !181)6.0(6018=−=∑=−k k k β,9999.0e !211)7.0(6021=−=∑=−k kk β, 1e !241)8.0(6024≈−=∑=−k k k β,1e !271)9.0(6027≈−=∑=−k k k β.习题7.2说明:本节习题均采用拒绝域的形式完成,在可以计算检验的p 值时要求计算出p 值. 1. 有一批枪弹,出厂时,其初速率v ~ N (950, 1000)(单位:m /s ).经过较长时间储存,取9发进行测试,得样本值(单位:m /s )如下:914 920 910 934 953 945 912 924 940.据经验,枪弹经储存后其初速率仍服从正态分布,且标准差保持不变,问是否可认为这批枪弹的初速率有显著降低(α = 0.05)?解:设枪弹经储存后其初速率X ~ N (µ , 1000),假设H 0:µ = 950 vs H 1:µ < 950,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W = {u ≤ −1.645}, 因928=x ,µ = 950,σ = 10,n = 9, 则W u ∈−=−=6.6910950928,并且检验的p 值p = P {U ≤ −6.6} = 2.0558 × 10−11 < α = 0.05,故拒绝H 0,接受H 1,即可以认为这批枪弹的初速率有显著降低. 2. 已知某炼铁厂铁水含碳量服从正态分布N (4.55, 0.1082 ).现在测定了9炉铁水,其平均含碳量为4.484,如果铁水含碳量的方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(α = 0.05)? 解:设现在生产的铁水含碳量X ~ N (µ , 0.1082 ),假设H 0:µ = 4.55 vs H 1:µ ≠ 4.55,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96}, 因484.4=x ,µ = 4.55,σ = 0.108,n = 9, 则W u ∉−=−=8333.19108.055.4484.4,并且检验的p 值p = 2P {U ≤ −1.8333} = 0.0668 > α = 0.05,β (故接受H 0,拒绝H 1,即可以认为现在生产的铁水平均含碳量仍为4.55. 3. 由经验知某零件质量X ~ N (15, 0.05 2 ) (单位:g ),技术革新后,抽出6个零件,测得质量为14.7 15.1 14.8 15.0 15.2 14.6.已知方差不变,问平均质量是否仍为15 g (取α = 0.05)?解:设技术革新后零件质量X ~ N (µ , 0.05 2 ),假设H 0:µ = 15 vs H 1:µ ≠ 15,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96}, 因9.14=x ,µ = 15,σ = 0.05,n = 6, 则W u ∈−=−=8990.4605.0159.14,并且检验的p 值p = 2P {U ≤ −4.8990} = 9.6326 × 10−7 < α = 0.05,故拒绝H 0,接受H 1,即不能认为平均质量仍为15 g . 4. 化肥厂用自动包装机包装化肥,每包的质量服从正态分布,其平均质量为100 kg ,标准差为1.2 kg .某日开工后,为了确定这天包装机工作是否正常,随机抽取9袋化肥,称得质量如下:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5.设方差稳定不变,问这一天包装机的工作是否正常(取α = 0.05)? 解:设这天包装机包装的化肥每包的质量X ~ N (µ , 1.22 ),假设H 0:µ = 100 vs H 1:µ ≠ 100,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96}, 因9778.99=x ,µ = 100,σ = 1.2,n = 9, 则W u ∉−=−=0556.092.11009778.99,并且检验的p 值p = 2P {U ≤ −0.0556} = 0.9557 > α = 0.05,故接受H 0,拒绝H 1,即可以认为这一天包装机的工作正常. 5. 设需要对某正态总体的均值进行假设检验H 0:µ = 15, H 1:µ < 15.已知σ 2 = 2.5,取α = 0.05,若要求当H 1中的µ ≤ 13时犯第二类错误的概率不超过0.05,求所需的样本容量.解:设该总体X ~ N (µ , 2.5 ),假设H 0:µ = 15 vs H 1:µ < 15,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W = {u ≤ −1.645}, 因µ = 15,σ 2 = 2.5,有nx u 5.215−=,当µ ≤ 13时犯第二类错误的概率为⎭⎬⎫⎩⎨⎧≤−+−>−=⎭⎬⎫⎩⎨⎧≤−>−=13|5.21565.15.213|65.15.215µµµµβn n X P n X P 05.0)2649.165.1(15.2131565.15.2≤+−Φ−=⎭⎬⎫⎩⎨⎧−+−>−≤n n nX P µ,则95.0)2649.165.1(≥+−Φn ,即65.12649.165.1≥+−n ,6089.2≥n ,n ≥ 6.8064, 故样本容量n 至少为7.6. 从一批钢管抽取10根,测得其内径(单位:mm )为:100.36 100.31 99.99 100.11 100.64 100.85 99.42 99.91 99.35 100.10.设这批钢管内直径服从正态分布N (µ , σ 2),试分别在下列条件下检验假设(α = 0.05).H 0:µ = 100 vs H 1:µ > 100.(1)已知σ = 0.5; (2)σ 未知.解:设这批钢管内直径X ~ N (µ , σ 2),假设H 0:µ = 100 vs H 1:µ > 100,(1)已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,右侧拒绝域W = {u ≥ 1.645}, 因104.100=x ,µ = 100,σ = 0.5,n = 10, 则W u ∉=−=6578.0105.0100104.100,并且检验的p 值p = P {U ≥ 0.6578} = 0.2553 > α = 0.05,故接受H 0,拒绝H 1,即不能认为µ > 100. (2)未知σ 2,选取统计量)1(~−−=n t nS X T µ, 显著性水平α = 0.05,t 1 − α (n − 1) = t 0.95 (9) = 1.8331,右侧拒绝域W = {t ≥ 1.8331}, 因104.100=x ,µ = 100,s = 0.4760,n = 10, 则W t ∉=−=6910.0104760.0100104.100,并且检验的p 值p = P {T ≥ 0.6910} = 0.2535 > α = 0.05,故接受H 0,拒绝H 1,即不能认为µ > 100.7. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?解:设这次考试考生的成绩X ~ N (µ , σ 2 ),假设H 0:µ = 70 vs H 1:µ ≠ 70,未知σ 2,选取统计量)1(~−−=n t nS X T µ, 显著性水平α = 0.05,t 1 − α /2 (n − 1) = t 0.975 (35) = 2.0301,双侧拒绝域W = {| t | ≥ 2.0301}, 因5.66=x ,µ = 70,s = 15,n = 36, 则W t ∉−=−=4.13615705.66,并且检验的p 值p = 2P {T ≤ −1.4} = 0.1703 > α = 0.05,故接受H 0,拒绝H 1,即可以认为这次考试全体考生的平均成绩为70分. 8. 一个小学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8 h 电视.”她认为她所在学校的学生看电视的时间明显小于该数字.为此她在该校随机调查了100个学生,得知平均每周看电视的时间5.6=x h ,样本标准差为s = 2 h .问是否可以认为这位校长的看法是对的(取α = 0.05)? 解:设学生看电视的时间X ~ N (µ , σ 2 ),假设H 0:µ = 8 vs H 1:µ < 8,未知σ 2,选取统计量)1(~−−=n t nS X T µ,n = 100,大样本,有)1,0(~N n S X T &µ−=,显著性水平α = 0.05,t 1 − α (n − 1) = t 0.95 (99) ≈ u 0.95 = 1.645,左侧拒绝域W ≈ {t ≤ −1.645},因5.6=x ,µ = 8,s = 2,n = 100, 则W t ∈−=−=5.7100285.6,并且检验的p 值p = P {T ≤ −7.5} = 3.1909 × 10−14 < α = 0.05,故拒绝H 0,接受H 1,即可以认为这位校长的看法是对的.9. 设在木材中抽出100根,测其小头直径,得到样本平均数2.11=x cm ,样本标准差为s = 2.6 cm ,问该批木材小头的平均直径能否认为不低于12 cm (取α = 0.05)? 解:设该批木材小头的直径X ~ N (µ , σ 2 ),假设H 0:µ = 12 vs H 1:µ < 12,未知σ 2,选取统计量)1(~−−=n t n S X T µ,n = 100,大样本,有)1,0(~N nS X T &µ−=, 显著性水平α = 0.05,t 1 − α (n − 1) = t 0.95 (99) ≈ u 0.95 = 1.645,左侧拒绝域W ≈ {t ≤ −1.645},因2.11=x ,µ = 12,s = 2.6,n = 100, 则W t ∈−=−=0769.31006.2122.11,并且检验的p 值p = P {T ≤ −3.0769} = 0.0010 < α = 0.05,故拒绝H 0,接受H 1,即不能认为这批木材小头的平均直径不低于12 cm .10.考察一鱼塘中鱼的含汞量,随机地取10条鱼测得各条鱼的含汞量(单位:mg )为:0.8 1.6 0.9 0.8 1.2 0.4 0.7 1.0 1.2 1.1.设鱼的含汞量服从正态分布N (µ , σ 2),试检验假设H 0:µ = 1.2 vs H 1:µ > 1.2(取α = 0.10). 解:设鱼的含汞量X ~ N (µ , σ 2 ),假设H 0:µ = 1.2 vs H 1:µ > 1.2,未知σ 2,选取统计量)1(~−−=n t nSX T µ,显著性水平α = 0.1,t 1 − α (n − 1) = t 0.9 (9) = 1.3830,右侧拒绝域W = {t ≥ 1.3830}, 因97.0=x ,µ = 1.2,s = 0.3302,n = 10, 则W t ∉−=−=2030.2103302.02.197.0,并且检验的p 值p = P {T ≥ −2.2030} = 0.9725 > α = 0.10,故接受H 0,拒绝H 1,即不能认为µ > 1.2 . 11.如果一个矩形的宽度w 与长度l 的比618.0)15(21≈−=l w ,这样的矩形称为黄金矩形.下面列出某工艺品工厂随机取的20个矩形宽度与长度的比值.0.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.553 0.570 0.844 0.576 0.933 0.630.设这一工厂生产的矩形的宽度与长度的比值总体服从正态分布,其均值为µ ,试检验假设(取α = 0.05)H 0:µ = 0.618 vs H 1:µ ≠ 0.618.解:设这一工厂生产的矩形的宽度与长度的比值X ~ N (µ , σ 2 ),假设H 0:µ = 0.618 vs H 1:µ ≠ 0.618,未知σ 2,选取统计量)1(~−−=n t nS X T µ, 显著性水平α = 0.05,t 1 − α /2 (n − 1) = t 0.975 (19) = 2.0930,双侧拒绝域W = {| t | ≥ 2.0930},因6620.0=x ,µ = 0.618,s = 0.0918,n = 20, 则W t ∈=−=1422.2200918.0618.06620.0,并且检验的p 值p = 2P {T ≥ 2.1422} = 0.0453 < α = 0.05,故拒绝H 0,接受H 1,即不能认为µ = 0.618.12.下面给出两种型号的计算器充电以后所能使用的时间(h )的观测值型号A 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9;型号B 3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6.设两样本独立且数据所属的两总体的密度函数至多差一个平移量.试问能否认为型号A 的计算器平均使用时间明显比型号B 来得长(取α = 0.01)?解:设两种型号的计算器充电以后所能使用的时间分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ 1 = µ 2 vs H 1:µ 1 > µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S YX T w ,显著性水平α = 0.01,t 1 − α (n 1 + n 2 − 2) = t 0.99 (21) = 2.5176,右侧拒绝域W = {t ≥ 2.5176}, 因5.5=x ,3667.4=y ,s x = 0.5235,s y = 0.4677,n 1 = 11,n 2 = 12,4951.0214677.0115235.0102)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∈=+×−=4844.51211114951.03667.45.5,并且检验的p 值p = P {T ≥ 5.4844} = 9.6391 × 10 −6 < α = 0.01,故拒绝H 0,接受H 1,即可以认为型号A 的计算器平均使用时间明显比型号B 来得长.13.从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均数及样本方差如下:东支:1337.0,230.0211==s x ;西支:1736.0,269.0222==s x .若东、西两支矿脉的含锌量都服从正态分布且方差相同,问东、西两支矿脉含锌量的平均值是否可以看作一样(取α = 0.05)?解:设东、西两支矿脉的含锌量分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ 1 = µ 2 vs H 1:µ 1 ≠ µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~11212121−++−=n n t n n S X X T w,显著性水平α = 0.05,t 1 − α /2 (n 1 + n 2 − 2) = t 0.975 (15) = 2.1314,双侧拒绝域W = {| t | ≥ 2.1314},因1736.0,269.0,1337.0,230.0222211====s x s x ,n 1 = 9,n 2 = 8,3903.0151736.071337.082)1()1(21222211=×+×=−+−+−=n n s n s n s w ,则W t ∉−=+×−=2056.081913903.0269.0230.0,并且检验的p 值p = 2P {T ≤ −0.2056} = 0.8399 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为东、西两支矿脉含锌量的平均值是一样的.14.在针织品漂白工艺过程中,要考察温度对针织品断裂强力(主要质量指标)的影响.为了比较70°C与80°C 的影响有无差别,在这两个温度下,分别重复做了8次试验,得数据如下(单位:N ):70°C 时的强力:20.5 18.8 19.8 20.9 21.5 19.5 21.0 21.2, 80°C 时的强力:17.7 20.3 20.0 18.8 19.0 20.1 20.0 19.1.根据经验,温度对针织品断裂强力的波动没有影响.问在70°C 时的平均断裂强力与80°C 时的平均断裂强力间是否有显著差别?(假设断裂强力服从正态分布,α = 0.05)解:设在70°C 和80°C 时的断裂强力分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ 1 = µ 2 vs H 1:µ 1 ≠ µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S Y X T w,显著性水平α = 0.05,t 1 − α /2 (n 1 + n 2 − 2) = t 0.975 (14) = 2.1448,双侧拒绝域W = {| t | ≥ 2.1448}, 因4.20=x ,375.19=y ,s x = 0.9411,s y = 0.8876,n 1 = 8,n 2 = 8,9148.0148876.079411.072)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∈=+×−=2410.281819148.0375.194.20,并且检验的p 值p = 2P {T ≥ 2.2410} = 0.0418 < α = 0.05, 故拒绝H 0,接受H 1,即可以认为70°C 时的平均断裂强力与80°C 时的平均断裂强力间有显著差别. 15.一药厂生产一种新的止痛片,厂方希望验证服用新药片后至开始起作用的时间间隔较原有止痛片至少缩短一半,因此厂方提出需检验假设H 0:µ 1 = 2µ 2 vs H 1:µ 1 > 2µ 2.此处µ 1 , µ 2分别是服用原有止痛片和服用新止痛片后至开始起作用的时间间隔的总体的均值.设两总体均为正态分布且方差分别为已知值2221,σσ,现分别在两总体中取一样本X 1 , …, X n 和Y 1 , …, Y m ,设两个样本独立.试给出上述假设检验问题的检验统计量及拒绝域.解:设服用原有止痛片和新止痛片后至开始起作用的时间间隔分别为),(~211σµN X ,),(~222σµN Y ,因X 1 , …, X n 和Y 1 , …, Y m 分别X 和Y 为来自的样本,且两个样本独立,则),(~211n N X σµ,,(~222mN Y σµ,且X 与Y 独立,有4,2(~2222121m n N Y X σσµµ+−−, 标准化,得)1,0(~4)2()2(222121N mnY X σσµµ+−−−,假设H 0:µ 1 = 2µ 2 vs H 1:µ 1 > 2µ 2,已知2221,σσ,选取统计量)1,0(~422221N mnYX U σσ+−=,显著性水平α ,右侧拒绝域W = {u ≥ u 1 − α}.16.对冷却到−0.72°C 的样品用A 、B 两种测量方法测量其融化到0°C 时的潜热,数据如下:方法A :79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.0080.02,方法B :80.02 79.94 79.98 79.97 80.03 79.95 79.97 79.97.假设它们服从正态分布,方差相等,试检验:两种测量方法的平均性能是否相等?(取α = 0.05).解:设用A 、B 两种测量方法测量的潜热分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ1 = µ2 vs H 1:µ1 ≠ µ2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S YX T w ,显著性水平α = 0.05,t 1−α /2 (n 1 + n 2 − 2) = t 0.975 (19) = 2.0930,双侧拒绝域W = {| t | ≥ 2.0930}, 因0208.80=x ,9787.79=y ,s x = 0.0240,s y = 0.0.314,n 1 = 8,n 2 = 8,0269.0190314.070240.0122)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∈=+×−=4722.3811310269.09787.790208.80,并且检验的p 值p = 2P {T ≥ 3.4722} = 0.0026 < α = 0.05,故拒绝H 0,接受H 1,可以认为两种测量方法的平均性能不相等.17.为了比较测定活水中氯气含量的两种方法,特在各种场合收集到8个污水样本,每个水样均用这两种方法测定氯气含量(单位:mg /l ),具体数据如下:水样号 方法一(x ) 方法二(y ) 差(d = x − y ) 1 0.36 0.39 −0.03 2 1.35 0.84 0.51 3 2.56 1.76 0.80 4 3.92 3.35 0.57 5 5.35 4.69 0.66 6 8.33 7.70 0.63 7 10.70 10.52 0.18 8 10.91 10.92 −0.01设总体为正态分布,试比较两种测定方法是否有显著差异.请写出检验的p 值和结论(取α = 0.05).解:设用这两种测定方法测定的氯气含量之差为),(~2d d N Y X D σµ−=,成对数据检验,假设H 0:µ d = 0 vs H 1:µ d ≠ 0,未知2d σ,选取统计量)1(~−=n t nS D T d,显著水平α = 0.05,t 1−α /2 (n − 1) = t 0.975 (7) = 2.3646,双侧拒绝域W = {| t | ≥ 2.3646}, 因4138.0=d ,s d = 0.3210,n = 8, 则W t ∈==6461.383210.04138.0,并且检验的p 值p = 2P {T ≥ 3.6461} = 0.0082 < α = 0.05,故拒绝H 0,接受H 1,可以认为两种测定方法有显著差异.18.一工厂的;两个化验室每天同时从工厂的冷却水取样,测量水中的含气量(10−6)一次,下面是7天的记录:室甲:1.15 1.86 0.75 1.82 1.14 1.65 1.90, 室乙:1.00 1.90 0.90 1.80 1.20 1.70 1.95.设每对数据的差d i = x i − y i (i = 1, 2, …, 7)来自正态总体,问两化验室测定结果之间有无显著差异?(α = 0.01)解:设两个化验室测定的含气量数据之差为),(~2d d N Y X D σµ−=,成对数据检验,假设H 0:µ d = 0 vs H 1:µ d ≠ 0,未知2d σ,选取统计量)1(~−=n t nS D T d,显著水平α = 0.01,t 1−α /2 (n − 1) = t 0.995 (6) = 3.7074,双侧拒绝域W = {| t | ≥ 3.7074}, 因0257.0−=d ,s d = 0.0922,n = 7, 则W t ∉−=−=7375.070922.00257.0,并且检验的p 值p = 2P {T ≤ −0.7375} = 0.4886 > α = 0.05,故接受H 0,拒绝H 1,可以认为两化验室测定结果之间没有显著差异.19.为比较正常成年男女所含红血球的差异,对某地区156名成年男性进行测量,其红血球的样本均值为465.13(104/mm 3),样本方差为54.802;对该地区74名成年女性进行测量,其红血球的样本均值为422.16,样本方差为49.202.试检验:该地区正常成年男女所含红血球的平均值是否有差异?(取α = 0.05)解:设该地区正常成年男女所含红血球分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:µ1 = µ2 vs H 1:µ1 ≠ µ2,未知2221,σσ,大样本场合,选取统计量)1,0(~2212N n S n SY X U yx&+−=,显著水平α = 0.05,u 1−α /2 = u 0.975 = 1.96,双侧拒绝域W = {| t | ≥ 1.96},因222220.49,16.422,80.54,13.465====y x s y s x ,n 1 = 156,n 2 = 74,则W u ∈=+−=9611.57420.4915680.5416.42213.46522,并且检验的p 值p = 2P {U ≥ 5.9611} = 2.5055 × 10−9 < α = 0.05,故拒绝H 0,接受H 1,可以认为该地区正常成年男女所含红血球的平均值有差异.20.为比较不同季节出生的女婴体重的方差,从去年12月和6月出生的女婴中分别随机地抽取6名及10名,测其体重如下(单位:g ):12月:3520 2960 2560 2960 3260 3960,6月:3220 3220 3760 3000 2920 3740 3060 3080 2940 3060.假定新生女婴体重服从正态分布,问新生女婴体重的方差是否是冬季的比夏季的小(取α = 0.05)?解:设12月和6月出生的女婴体重分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:2221σσ= vs H 1:2221σσ<,选取统计量)1,1(~2122−−=n n F S S F yx,显著水平α = 0.05,21.077.41)5,9(1)9,5()1,1(95.005.021====−−F F n n F α,左侧拒绝域W = { f ≤ 0.21},因225960.491=x s ,225217.306=y s ,则W f ∉==5721.25217.3065960.49122,并且检验的p 值p = P {F ≤ 2.5721} = 0.8967 > α = 0.05,故接受H 0,拒绝H 1,新生女婴体重的方差冬季的不比夏季的小.21.已知维尼纶纤度在正常条件下服从正态分布,且标准差为0.048.从某天产品中抽取5根纤维,测得其纤度为1.32 1.55 1.36 1.40 1.44问这一天纤度的总体标准差是否正常(取α = 0.05)?解:设这一天维尼纶纤度X ~ N (µ , σ 2),假设H 0:σ 2 = 0.0482 vs H 1:σ 2 ≠ 0.0482,选取统计量)1(~)1(2222−−=n S n χσχ,显著性水平α = 0.05,4844.0)4()1(2025.022/==−χχαn ,1433.11)4()1(2975.022/1==−−χχαn ,双侧拒绝域W = {χ 2 ≤ 0.4844或χ 2 ≥ 11.1433}, 因σ 2 = 0.0482,s 2 = 0.08822,n = 5,则W ∈=×=5069.13048.00882.04222χ,并且检验的p 值p = 2P {χ 2 ≥ 13.5069} = 0.0181 < α = 0.05, 故拒绝H 0,接受H 1,即可以认为这一天纤度的总体方差不正常.22.某电工器材厂生产一种保险丝.测量其熔化时间,依通常情况方差为400,今从某天产品中抽取容量为25的样本,测量其熔化时间并计算得24.62=x ,s 2 = 404.77,问这天保险丝熔化时间分散度与通常有无显著差异(取α = 0.05,假定熔化时间服从正态分布)? 解:设这天保险丝熔化时间分散度X ~ N (µ , σ 2),假设H 0:σ 2 = 400 vs H 1:σ 2 ≠ 400,选取统计量)1(~)1(2222−−=n S n χσχ,显著性水平α = 0.05,4012.12)24()1(2025.022/==−χχαn ,3641.39)24()1(2975.022/1==−−χχαn ,双侧拒绝域W = {χ 2 ≤ 12.4012或χ 2 ≥ 39.3641}, 因σ 2 = 400,s 2 = 404.77,n = 25,则W ∉=×=2862.2440077.404242χ,并且检验的p 值p = 2P {χ 2 ≥ 24.2862} = 0.8907 > α = 0.05,故接受H 0,拒绝H 1,即可以认为这天保险丝熔化时间分散度与通常没有显著差异. 23.某种导线的质量标准要求其电阻的标准差不得超过0.005(Ω).今在一批导线中随机抽取样品9根,测得样本标准差s = 0.007(Ω),设总体为正态分布.问在显著水平α = 0.05下,能否认为这批导线的标准差显著地偏大?解:设这批导线的电阻X ~ N (µ , σ 2),假设H 0:σ 2 = 0.005 2 vs H 1:σ 2 > 0.005 2,选取统计量)1(~)1(2222−−=n S n χσχ,显著性水平α = 0.05,5073.15)8()1(295.021==−−χχαn ,右侧拒绝域W = {χ 2 ≥ 15.5073},因σ 2 = 0.005 2,s 2 = 0.007 2,n = 9,则W ∈=×=68.15005.0007.08222χ,并且检验的p 值p = P {χ 2 ≥ 15.68} = 0.0472 < α = 0.05, 故拒绝H 0,接受H 1,即可以认为这批导线的标准差显著地偏大.24.两台车床生产同一种滚珠,滚珠直径服从正态分布.从中分别抽取8个和9个产品,测得其直径为甲车床:15.0 14.5 15.2 15.5 14.8 15.1 15.2 14.8;乙车床:15.2 15.0 14.8 15.2 15.0 15.0 14.8 15.1 14.8.比较两台车床生产的滚珠直径的方差是否有明显差异(取α = 0.05).解:设两台车床生产的滚珠直径分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:2221σσ= vs H 1:2221σσ≠,选取统计量)1,1(~2122−−=n n F S S F yx,显著性水平α = 0.05,2041.09.41)7,8(1)8,7()1,1(975.0025.0212/====−−F F n n F α,F 1 − α /2 (n 1 − 1, n 2 − 1) = F 0.975 (7, 8) = 4.53,双侧拒绝域W = {F ≤ 0.2041或F ≥ 4.53},因223091.0=x s ,221616.0=y s ,则W F ∉==6591.31616.03091.022,并且检验的p 值p = 2P {F ≥ 3.6591} = 0.0892 > α = 0.05,故接受H 0,拒绝H 1,即可以认为两台车床生产的滚珠直径的方差没有明显差异. 25.有两台机器生产金属部件,分别在两台机器所生产的部件中各取一容量为m = 14和n = 12的样本,测得部件质量的样本方差分别为46.1521=s ,66.922=s ,设两样本相互独立,试在显著性水平α = 0.05下检验假设H 0:2221σσ= vs H 1:2221σσ>.解:设两台机器生产金属部件质量分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:2221σσ= vs H 1:2221σσ>,选取统计量)1,1(~2221−−=n m F S S F ,显著性水平α = 0.05,F 1 − α (m − 1, n − 1) = F 0.95 (13, 11) = 2.7614,右侧拒绝域W = {F ≥ 2.7614},因46.1521=s ,66.922=s ,则W F ∉==6004.166.946.15,并且检验的p 值p = P {F ≥ 1.6004} = 0.2206 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为2221σσ=.26.测得两批电子器件的样品的电阻(单位:Ω)为A 批(x ) 0.140 0.138 0.143 0.142 0.144 0.137;B 批(y ) 0.135 0.140 0.142 0.136 0.138 0.140.设这两批器材的电阻值分别服从),(211σµN ,),(222σµN ,且两样本独立.(1)试检验两个总体的方差是否相等(取α = 0.05)? (2)试检验两个总体的均值是否相等(取α = 0.05)?解:设两批电子器件样品的电阻分别为),(~211σµN X ,),(~222σµN Y ,(1)假设H 0:2221σσ= vs H 1:2221σσ≠,选取统计量)1,1(~2122−−=n n F S S F yx,显著性水平α = 0.05,1399.015.71)5,5(1)5,5()1,1(975.0025.0212/====−−F F n n F α,F 1 − α /2 (n 1 − 1, n 2 − 1) = F 0.975 (5, 5) = 7.15,双侧拒绝域W = {F ≤ 0.1399或F ≥ 7.15},因22002805.0=x s ,22002665.0=y s ,则W F ∉==1080.1002665.0002805.022,并且检验的p 值p = 2P {F ≥ 1.1080} = 0.9131 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为两个总体的方差相等; (2)假设H 0:µ 1 = µ 2 vs H 1:µ 1 ≠ µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S YX T w ,显著性水平α = 0.05,t 1 − α /2 (n 1 + n 2 − 2) = t 0.975 (10) = 2.2281,双侧拒绝域W = {| t | ≥ 2.2281}, 因1407.0=x ,1385.0=y ,s x = 0.002805,s y = 0.002665,n 1 = 6,n 2 = 6,002736.010002665.05002805.052)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∉=+×−=3718.16161002736.01385.01407.0,并且检验的p 值p = 2P {T ≥ 1.3718} = 0.2001 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为两个总体的均值相等.27.某厂使用两种不同的原料生产同一类型产品,随机选取使用原料A 生产的样品22件,测得平均质量为2.36(kg ),样本标准差为0.57(kg ).取使用原料B 生产的样品24件,测得平均质量为2.55(kg ),样本标准差为0.48(kg ).设产品质量服从正态分布,两个样本独立.问能否认为使用原料B 生产的产品质量较使用原料A 显著大(取α = 0.05)?解:设两种原料生产的产品质量分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:µ 1 = µ 2 vs H 1:µ 1 < µ 2 ,未知2221,σσ,大样本,选取统计量)1,0(~2212N n S n SY X U yx&+−=,显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W ≈ {u ≤ −1.645}, 因36.2=x ,55.2=y ,s x = 0.57,s y = 0.48,n 1 = 22,n 2 = 24, 有W u ∉−=+−=2171.12448.02257.055.236.222,并且检验的p 值p = P {U ≤ −1.2171} = 0.1118 > α = 0.05,故接受H 0,拒绝H 1,即可以认为使用原料B 生产的产品质量较使用原料A 不是显著大.习题7.31. 从一批服从指数分布的产品中抽取10个进行寿命测试,观测值如下(单位:h ): 1643 1629 426 132 1522 432 1759 1074 528 283根据这批数据能否认为其平均寿命不低于1100 h (取α = 0.05)? 解:设这批产品的寿命X ~ Exp (1/θ ),假设H 0:θ = 1100 vs H 1:θ < 1100,选取统计量)2(~222n Xn χθχ=,显著性水平α = 0.05,8508.10)20()2(205.02==χχαn ,左侧拒绝域W = {χ 2 ≤ 10.8508},因8.942=x ,n = 10,θ = 1100,则W ∉=××=1418.1711008.9421022χ,并且检验的p 值p = P {χ 2 ≤ 17.1418} = 0.3563 > α = 0.05,故接受H 0,拒绝H 1,即可以认为其平均寿命不低于1100 h .2. 某厂一种元件平均使用寿命为1200 h ,偏低,现厂里进行技术革新,革新后任选8个元件进行寿命试验,测得寿命数据如下:2686 2001 2082 792 1660 4105 1416 2089假定元件寿命服从指数分布,取α = 0.05,问革新后元件的平均寿命是否有明显提高? 解:设革新后元件的寿命X ~ Exp (1/θ ),假设H 0:θ = 1200 vs H 1:θ > 1200,选取统计量)2(~222n Xn χθχ=,显著性水平α = 0.05,2962.26)16()2(295.021==−χχαn ,右侧拒绝域W = {χ 2 ≥ 26.2962},因875.2103=x ,n = 8,θ = 1200,则W ∈=××=0517.281200875.2103822χ,并且检验的p 值p = P {χ 2 ≥ 28.0517} = 0.0312 < α = 0.05,故拒绝H 0,接受H 1,即可以认为革新后元件的平均寿命有明显提高.3. 有人称某地成年人中大学毕业生比例不低于30%,为检验之,随机调查该地15名成年人,发现有3名大学毕业生,取α = 0.05,问该人看法是否成立?并给出检验的p 值.解:设该地n 名成年人中大学毕业生人数为∑==ni i X X n 1,有),(~p n b X n ,假设H 0:p = 0.3 vs H 1:p < 0.3, 选取统计量),(~p n b X n ,显著性水平α = 0.05,n = 15,p = 0.3, 有1268.07.03.005.00353.07.03.021515101515=⋅⋅<<=⋅⋅∑∑=−=−k k k kk kkkC C ,左侧拒绝域}1{≤=x n W ,因W x n ∉=3,并且检验的p 值2969.07.03.0}3{31515=⋅⋅=≤=∑=−k k k kC X n P p ,故接受H 0,拒绝H 1,即可以认为该人看法成立.4. 某大学随机调查120名男同学,发现有50人非常喜欢看武侠小说,而随机调查的85名女同学中有23人喜欢,用大样本检验方法在α = 0.05下确认:男女同学在喜爱武侠小说方面有无显著差异?并给出检验的p 值. 解:设n 1名男同学中有∑==111n i i X X n 人喜欢看武侠小说,n 2名女同学中有∑==212n j j Y Y n 人喜欢看武侠小说,有),(~111p n B X n ,),(~222p n B Y n ,大样本,有⎟⎟⎠⎞⎜⎜⎝⎛−1111)1(,~n p p p N X &,⎟⎟⎠⎞⎜⎜⎝⎛−2222)1(,~n p p p N Y &, 则⎟⎟⎠⎞⎜⎜⎝⎛−+−−−22211121)1()1(,~n p p n p p p p N Y X &,即)1,0(~)1()1()()(22211121N n p p n p p p p Y X &−+−−−−,当p 1 = p 2 = p 但未知时,此时用总频率2121ˆn n Yn X n p++=作为p 的点估计替换p ,在大样本场合,有)1,0(~11)ˆ1(ˆ21N n n p pY X U &+−−=,假设H 0:p 1 = p 2 vs H 1:p 1 ≠ p 2, 大样本,选取统计量)1,0(~11)ˆ1(ˆ21N n n p pY X U &+−−=,显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96},因n 1 = 120,n 2 = 85,501=x n ,232=y n ,有3561.0851202350ˆ2121=++=++=n n y n x n p,则W u ∈=+−×−=1519.28511201)3561.01(3561.0852312050,并且检验的p 值p = 2P {U ≥ 2.1519} = 0.0314 < α = 0.05,故拒绝H 0,接受H 1,可以认为男女同学在喜爱武侠小说方面有显著差异.5. 假定电话总机在单位时间内接到的呼叫次数服从泊松分布,现观测了40个单位时间,接到的呼叫次数如下:0 2 3 2 3 2 1 0 2 2 1 2 2 1 3 1 1 4 1 1 5 1 2 2 3 3 1 3 1 3 4 0 6 1 1 1 4 0 1 3.在显著性水平0.05下能否认为单位时间内平均呼叫次数不低于2.5次?并给出检验的p 值. 解:设电话总机在单位时间内接到的呼叫次数X ~ P(λ),有)(~1λn P X X n ni i ∑==,大样本,有)1,0(~N nX n n X n &λλλλ−=−,假设H 0:λ = 2.5 vs H 1:λ < 2.5, 大样本,选取统计量)1,0(~N nX U &λλ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W = {u ≤ −1.645}, 因975.1=x ,n = 40,λ = 2.5, 则W u ∈−=−=1.2405.25.2975.1,并且检验的p 值p = P {U ≤ −2.1} = 0.0179 < α = 0.05,故拒绝H 0,接受H 1,不能认为单位时间内平均呼叫次数不低于2.5次;6. 通常每平方米某种布上的疵点数服从泊松分布,现观测该种布100 m 2,发现有126个疵点,在显著性水平0.05下能否认为该种布每平方米上平均疵点数不超过1个?并给出检验的p 值. 解:设每平方米该种布上的疵点数X ~ P(λ),有)(~1λn P X X n ni i ∑==,大样本,有)1,0(~N nX n n X n &λλλλ−=−,假设H 0:λ = 1 vs H 1:λ > 1, 大样本,选取统计量)1,0(~N nX U &λλ−=,显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,右侧拒绝域W = {u ≥ 1.645},因26.1=x ,n = 100,λ = 1, 则W u ∈=−=6.21001126.1,并且检验的p 值p = P {U ≥ 2.6} = 0.0047 < α = 0.05, 故拒绝H 0,接受H 1,不能认为该种布每平方米上平均疵点数不超过1个; 7. 某厂的一批电子产品,其寿命T 服从指数分布,其密度函数为p (t ; θ ) = θ −1exp{− t /θ } I t > 0,从以往生产情况知平均寿命θ = 2000 h .为检验当日生产是否稳定,任取10件产品进行寿命试验,到全部失效时停止.试验得失效寿命数据之和为30200.试在显著性水平α = 0.05下检验假设H 0:θ = 2000 vs H 1:θ ≠ 2000.解:假设H 0:θ = 2000 vs H 1:θ ≠ 2000,选取统计量)2(~222n Xn χθχ=,显著性水平α = 0.05,5908.9)20()2(2025.022/==χχαn ,1696.34)20()2(2975.022/1==−χχαn ,双侧拒绝域W = {χ 2 ≤ 9.5908或χ 2 ≥ 34.1696},因30201030200==x ,n = 10,θ = 2000, 则W ∉=××=20.30200030201022χ,并且检验的p 值p = P {χ 2 ≥ 30.20} = 0.0667 > α = 0.05,故接受H 0,拒绝H 1,即可以认为其平均寿命等于2000 h . 8. 设X 1, X 2, …, X n 为取自两点分布b (1, p )的随机样本.(1)试求单侧假设检验问题H 0:p ≤ 0.01 vs H 1:p > 0.01的显著水平α = 0.05的检验; (2)若要这个检验在p = 0.08时犯第二类错误的概率不超过0.10,样本容量n 应为多大? 解:(1)假设H 0:p = 0.01 vs H 1:p > 0.01,若为小样本,选取统计量),(~1p n b X X n ni i ∑==,显著性水平α = 0.05,p = 0.01,取⎭⎬⎫⎩⎨⎧≥⋅⋅=⎭⎬⎫⎩⎨⎧≤⋅⋅=∑∑−=−=−95.099.001.0min 05.099.001.0min 102c k k n k k n n c k kn k k n C C c ,当n ≤ 5时,c 2 = 1;当6 ≤ n ≤ 35时,c 2 = 2;当36 ≤ n ≤ 82时,c 2 = 3;当83 ≤ n ≤ 137时,c 2 = 4; 右侧拒绝域}{2c x n W ≥=, 根据x n ,作出决策; 若为大样本,选取统计量)1,0(~)1(N np p pX U &−−=,显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,右侧拒绝域W = {u ≥ 1.645}, 计算u ,作出决策;(2)在p = 0.08时,)08.0,(~1n b X X n ni i ∑==,则犯第二类错误的概率10.092.008.0}08.0|{}08.0|{1022≤⋅⋅==<==∉=∑−=−c k k n k kn C p c X n P p W X n P β,当n ≤ 5时,c 2 = 1,β = 0.92n ≥ 0.6591;当6 ≤ n ≤ 35时,c 2 = 2,2184.092.008.01≥⋅⋅=∑=−k k n k kn C β;当36 ≤ n ≤ 82时,c 2 = 3, 若n = 64,1050.092.008.02=⋅⋅=∑=−k kn kknC β;若n = 65,0991.092.008.02=⋅⋅=∑=−k k n k kn C β;故n ≥ 65.9. 有一批电子产品共50台,产销双方协商同意找出一个检验方案,使得当次品率p ≤ p 0 = 0.04时拒绝的概率不超过0.05,而当p > p 1 = 0.30时,接受的概率不超过0.1,请你帮助找出适当的检验方案. 解:设这批电子产品中的次品数为∑==ni i X X n 1,有),(~p n b X n ,假设H 0:p = 0.04 vs H 1:p > 0.04, 小样本,选取统计量),(~p n b X n , 显著性水平α = 0.05,p = 0.04,。
概率论与数理统计第七章课后习题及参考答案
5.设总体 X 的概率密度为
f
(x,
)
(
1) x
,0
x
1,
0, 其他.
其中 1是未知参数, X1 , X 2 ,…, X n 是来自 X 的一个样本.试求参数
2
的矩估计和极大似然估计.现有样本观测值 0.1 ,0.2 ,0.9 ,0.8 ,0.7 及 0.7 ,
求参数 的矩估计值和极大似然估计值.
1 2 2 c 2 2 ( 1 c) 2 ,
n
n
取 c 1 即可. n
14.设总体 X 的均值为 ,方差为 2 ,从总体中抽取样本 X1 , X 2 , X 3 ,证明
(
x,
,
2
)
1
1
1
e 2 2
(ln x )2
,
x
0,
2 x
0,
x 0.
其中 , 0 为未知参数, X1 , X 2 ,…, X n 是取自该总体的一
个样本,求参数 , 2 的极大似然估计.
解: xi 时,似然函数为
L(, 2 )
(
1 2 )n
1 x1x2 xn
exp{
dL
d
n exp{
n i 1
( xi
)}
0,
所以 L( ) 是 的单调增函数,从而对满足条件 xi 的任意 ,有
n
n
L( ) exp{ i1 (xi )} exp{ i1 (xi m1iinn{xi})} ,
即 L( ) 在 m1iinn{xi} 时取最大值, 故 的极大似然估计值为ˆ m1iinn{xi} . 7.(1) 设总体 X 具有分布律
ˆ1 X1 ;
ˆ2
概率论与数理统计第七章习题讲解
1 6
1 3
因此T1,T3是的无偏估计量. (2) X1,X2,X3,X4相互独立
1 1 1 5 2 2 1 D(T1 ) [ D( X1 ) D( X 2 )] [ D( X 3 ) D( X 4 )] 2 ( ) 36 9 36 9 18 1 1 5 D(T3 ) [ D( X1 ) D( X 2 ) D( X 3 ) D( X 4 )] (1 1 1 1) 2 2 16 16 20
故 E(Y)=aE(X1)+bE(X2)=(a+b)=, (a+b=1) 所以,对于任意常数,a,b(a+b=1), Y=aX1+bX2都是的无偏估计. 由于两样本独立,故两样本均值X1和X2独立,所以
2 2 2 2 a ( 1 a ) a b ] 2 D(Y ) a 2 D( X 1 ) b 2 D( X 2 ) [ ] 2 [ n1 n2 n1 n2 dD(Y ) 2a 2(1 a ) 2 由极值必要条件 [ ] 0 da n1 n2
1 E( X )
1 0
xf ( x)dx.
1 1 0
x dx x 1 1 解出 ( )2 1 1
1
将总体一阶矩1换成样本一阶矩A1=X ,
得到参数的矩估计量
矩估计值
X 2 ( ) 1 X
x 2 ( ) 1 x
( x1 x2 t / 2 ( n1 n2 2) sw
1 1 2 (n1 1) S12 (n2 1) S22 2 ) Sw , Sw Sw . n1 n2 n1 n2 2
n1=4,n2=5,1-=0.95, =0.05, t/2(n1+n2-2)=t0.025(7)= 2.3646
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
−n x −µ ⎧ ⎪ne ( ) , x ≥ µ , 易知 f X (1) ( xi , µ ) = ⎨ 其他。 ⎪ ⎩ 0, ∞ 1 ˆ1 = EX (1) = ∫ xf X (1) ( xi , µ ) dx = µ + ,即 µ ˆ1 是 µ 的有偏估计。 所以 E µ −∞ n
x
1 * ˆ1 ˆ1 − 是 µ 的无偏估计。 µ =µ n ˆ 2 = X − 1 是 µ 的矩估计量且为无偏估计。 (2) EX = xe −( x − µ ) dx = µ + 1 ,则 µ ∫
n
{
}
ˆ D θ 1
ε2
( ) =1− θ
2
8n
ˆ 为 θ 的相合估计。 → 1 ,故 θ 1
(2) L (θ ) = ∏ f ( xi ,θ ) =
i =1
2n n ∏ xi θ 2n i =1
易知 L (θ ) 为 θ 的单调递减函数,故 θ 取最小值时, L (θ ) 取最大值。 ˆ = X = max { X ,⋯ , X } 为 θ 的极大似然估计。 又 θ 不小于 max { X 1 ,⋯ , X n } ,故 θ 2 1 n ( n) ⎧ 2n 2 n −1 x , 0 ≤ x <θ, ⎪ f X ( n) ( x,θ ) = ⎨θ 2n ⎪ 0, 其他。 ⎩ ˆ = EX = 2n θ ,故 θ ˆ 为 θ 的有偏估计。 故 Eθ 2 2 ( n) 2n + 1
i =1
,
所以 θ 的极大似然估计为 −
n
n
−1 。
i
∑ ln x
i =1
1
ˆ = 2 ln X 为 θ 的矩估计量。 (2) EX = ∫ xf ( x,θ ) dx = e ,令 e = X 得 θ
0
n
θ 2
ˆ θ 2
L (θ , λ ) = ∏ f ( xi ,θ ) =
i =1
n
1
( 2πθ )
n n 2 i =1
e
−
( ln xi ) ∑ i =1
2θ
2
,
∏ xi
n
n l (θ , λ ) = ln L (θ , λ ) = − ln ( 2πθ ) − ∑ ln xi − 2 i =1
n
n
∑ ( ln x )
i i =1
2
2θ
令
∂l (θ ) n =− + ∂θ 2θ
2 0
∑ ( ln x )
0 2
θ
2x 2θ ˆ = 3 X 为 θ 的矩估计量,且为无偏估计。 ,故 θ dx = 1 2 θ 3 2
2
DX = EX − ( EX ) = ∫
θ
0
2 2x ⎛ 2θ ⎞ θ x 2 dx − ⎜ ⎟ = θ ⎝ 3 ⎠ 18 2
2
9 9 θ2 ˆ Dθ1 = DX = DX = 4 4n 8n ˆ − µ < ε ≥1− 故P θ 1
L (θ , λ ) = P { X 1 = X 4 = X 5 = 0, X 2 = X 6 = X 8 = 2, X 3 = X 7 = 1} = θ 3λ 2 (1 − θ − λ ) , l (θ , λ ) = ln L (θ , λ ) = 3ln θ + 2 ln λ + 3ln (1 − θ − λ ) ,
( n − 1) S 2
σ2
∼ χ 2 ( n − 1) , D ( S 2 ) =
2σ 4 n −1
2 故 D ( S12 ) = 2σ 4 , D ( S 2 2 ) = σ 4 , D ( S3 2 ) = σ 4 3 ⎛ b2 c2 ⎞ 2 2 故 DT = a 2 DS12 + b 2 DS 2 + c 2 DS3 = ⎜ a 2 + + ⎟ 2σ 4 2 3⎠ ⎝ 要使 T 为最有效估计,只须使 a 2 +
i =1
,
l ( µ ) = ln L ( µ ) = −∑ X i + nµ ,
i =1
l ( µ ) 为 µ 的单调递增函数,故 µ 取最大值时 l ( µ ) 取最大值。
ˆ1 = X (1) = min { X1 ,⋯ , X n } 为 µ 的极大似然估计。 又 µ 不大于 min { X 1 , ⋯ , X n } ,故 µ 因 F ( x, µ ) = ∫ e−( t − µ ) dt = 1 − e−( x −µ )
2n 2 n 2n x dx = θ 2 n 0 θ 2n + 1 ˆ = EX = 2n θ 故 θ ˆ 为 θ 的有偏估计。 即 Eθ 2 2 ( n) 2n + 1 故 EX ( n) = ∫
θ
n
14(1) L ( µ ) = ∏ f ( xi , µ ) = e
i =1 n
n
−
∑( Xi −µ )
b2 c 2 + 在 a + b + c = 1的条件下取最小值即可。 2 3
令
L = a2 +
b2 c2 + − λ ( a + b + c − 1) 2 3
⎧ ∂L ⎪ ∂a = 2a − λ = 0, ⎧a = 1 , ⎪ ⎪ 6 ⎪ ∂ L ⎪ = b − λ = 0, 1 ⎪ ⎪ 由 ⎨ ∂b 得 ⎨b = , 即为所求。 3 ⎪ ∂L 2c ⎪ = − λ = 0, 1 ⎪ ⎪ ⎪ ∂c 3 ⎪c = 2 . ⎩ ⎪ ⎩ a + b + c = 1. ⎧ 2x ⎪ , 0 ≤ x <θ, 12 f ( x,θ ) = ⎨θ 2 ,θ > 0 , ⎪ 其他。 ⎩ 0,
−∞ ∞
var X = EX 2 = 2θ 2 ,
n n ˆ 2 = 1 ( X − X )2 = 1 X 2 和 θ > 0 得 由 2θ ∑ i ∑ i n i =1 n i =1
n
ˆ= θ
∑X
i =1
2
i
2n
为 θ 的矩估计量。
n
⎧ ∑ Xi ⎪ n ⎪ 1 − i=1θ , −∞ < x < ∞, L (θ ) = ∏ f ( xi ,θ ) = ⎨ n n e i =1 θ 2 ⎪ 0, 其他。 ⎪ ⎩ 则 1 n ⎧ − n ln 2 − n ln θ − ⎪ ∑ xi , −∞ < x < ∞, l (θ ) = ln L (θ ) = ⎨ θ i =1 ⎪ 0, 其他。 ⎩
1
(100 − θ )
,因 0 < θ < 100 ,要使 L (θ ) 最大,则 θ 应取最大。
ˆ 又 θ 不能大于 min { x1 , ⋯ , xn } ,故 θ 的极大似然估计为 θ = min { X 1 ,⋯ , X n } (5) EX = ∫ xf ( x , θ ) dx = 0 ,故 X = 0 。
ˆ − µ < ε ≥1− (4)由切比雪夫不等式知, ∀ε > 0 , P µ
* 1
{
}
* ˆ1 D (µ )
ε
2
= 1−
1 →1 n ε2
2
ˆ2 − µ < ε } ≥ 1 − P{ µ
ˆ2 ) D (µ 1 = 1 − 2 →1 2 ε nε
* ˆ1 ˆ 2 为 µ 的相合估计。 故µ 与µ
16(1) EX = ∫ x
⎧ ∂l (θ , λ ) 3 3 = − = 0, ⎧ˆ 3 ⎪ θ= , ⎪ ∂θ θ 1−θ − λ ⎪ ⎪ 8 即为所求。 ⎨ 解得 ⎨ 3 ⎪ ∂l (θ , λ ) = 2 − = 0. ˆ = 1. ⎪λ ⎪ ∂λ ⎩ λ 1− θ − λ ⎪ ⎩ 4 6 解:(1) EX = ∫ x (θ + 1) xθ dx =
k=
则
1 2 ( n − 1) 即为所求。
2 10(1)依题, X i , Y j 与 Z l 相互独立, ET = aES12 + bES 2 + cES 32 = ( a + b + c ) σ 2
故 T 是 σ 2 的无偏估计的充要条件为 a + b + c = 1 (2)记 n 个样本的方差为 S 2 ,则
n
xi n ∂l (θ ) n ∑ i =1 ˆ = 1 ∑ x 为 θ 的极大似然估计。 令 = − + 2 = 0 得θ i ∂θ θ θ n i =1
8(1) µ = X , E 1 n 1 n 1 n 2 2 X − µ = E X − µ = EX i 2 − 2µ EX i + µ 2 ) = σ 2 ( ) ( ) ( ∑ ∑ ∑ i i n i =1 n i =1 n i =1
注意: 这是第一稿(存在一些错误) 第七章数理统计习题__偶数.doc
4 解:矩估计:
µ1 = 0 ⋅θ + 1 ⋅ λ + 2 ⋅ (1 − θ − λ ) = 2 − 2θ − λ , ν 2 = ( 2 − 2θ − λ ) θ + ( 2θ + λ − 1) λ + ( 2θ + λ ) (1 − θ − λ ) , A1 = 1 , B2 =
i i =1
2
2θ 2
ˆ = 1 ∑ ( ln x )2 为 θ 的极大似然估计。 = 0 得θ i n i =1
n
(3) EX = ∫ xf ( x ,θ ) dx = 令
2θ , θ +1
ˆ 2θ ˆ = X 为 θ 的矩估计量。 = X 得θ ˆ 2− X θ +1
n
n ⎧θ n 2− nθ ∏ xiθ −1 , 0 < x < 2, ⎪ L (θ ) = ∏ f ( xi ,θ ) = ⎨ i =1 i =1 ⎪ 0, 其他。 ⎩ n ⎧ n ln θ − n θ ln 2 + θ − 1 ln xi , 0 < x < 2, ( ) ⎪ ∑ l (θ ) = ln L (θ ) = ⎨ i =1 ⎪ 0, 其他。 ⎩ n ∂l (θ ) n ˆ= = − n ln 2 + ∑ ln xi = 0 得, θ ∂θ θ i =1