时间序列分析

合集下载

数据分析中的时间序列分析方法

数据分析中的时间序列分析方法

数据分析中的时间序列分析方法时间序列分析是数据分析中常用的一种方法,通过对时间序列数据的分析,可以揭示出数据的趋势、周期性和随机变动等规律,从而为决策提供有力的支持。

本文将介绍几种常用的时间序列分析方法。

一、平滑法(Smoothing)平滑法是一种常见的时间序列分析方法,其主要目的是去除数据中的随机波动,揭示出数据的长期趋势。

平滑法最常用的方法包括简单移动平均法、加权移动平均法和指数平滑法等。

简单移动平均法将一段时间内的数据取平均值,加权移动平均法则对不同时间的数据进行加权计算,而指数平滑法则是根据数据的权重递推计算平滑值。

二、分解法(Decomposition)分解法是将时间序列数据分解为趋势、季节性和随机成分三个部分的方法。

通过分析趋势部分,可以了解数据的长期变化趋势;分析季节性部分,可以揭示出数据中的周期性变动;而随机成分则代表了不可预测的波动。

常用的分解法有加法分解和乘法分解两种方式。

加法分解是将时间序列数据减去趋势和季节性成分,得到的剩余部分就是随机成分;乘法分解则是将时间序列数据除以趋势和季节性成分,得到的结果同样是随机成分。

三、自回归移动平均模型(ARMA)自回归移动平均模型是一种常用的时间序列预测方法,通过对时间序列数据的自相关和移动平均相关进行建模,可以预测未来时间点的值。

ARMA模型是AR模型和MA模型的结合,AR模型用于描述数据的自相关关系,而MA模型则用于描述数据的移动平均相关关系。

ARMA模型的具体建模过程包括模型的阶数选择、参数估计和模型检验等。

四、季节性ARIMA模型(SARIMA)季节性ARIMA模型是在ARIMA模型的基础上加入季节性成分的一种模型。

季节性ARIMA模型主要用于处理具有明显季节性规律的时间序列数据。

与ARIMA模型类似,季节性ARIMA模型也包括模型阶数选择、参数估计和模型检验等步骤,不同的是在建模时需要考虑季节性的影响。

五、灰色系统模型(Grey Model)灰色系统模型是一种特殊的时间序列预测方法,主要适用于数据样本较少或者数据质量较差等情况。

时间序列分析

时间序列分析

时间序列分析⼀、定义时间序列(或称动态数列)是指将同⼀统计指标的数值按其发⽣的时间先后顺序排列⽽成的数列。

时间序列分析的主要⽬的是根据已有的历史数据对未来进⾏预测。

经济数据中⼤多数以时间序列的形式给出。

根据观察时间的不同,时间序列中的时间可以是年份、季度、⽉份或其他任何时间形式。

时间序列简单的说就是各时间点上形成的数值序列。

时间序列分析并不是关于时间的回归,它主要是研究⾃⾝的变化规律的(这⾥不考虑含外⽣变量的时间序列)。

对时间序列进⾏观察,研究,寻找它变化发展的规律,预测它将来的⾛势,就是时间序列分析。

⼆、构成要素:长期趋势,季节变动,循环变动,不规则变动。

1)长期趋势( T )现象在较长时期内受某种根本性因素作⽤⽽形成的总的变动趋势。

2)季节变动( S )现象在⼀年内随着季节的变化⽽发⽣的有规律的周期性变动。

3)循环变动( C )现象以若⼲年为周期所呈现出的波浪起伏形态的有规律的变动。

4)不规则变动(I )是⼀种⽆规律可循的变动,包括严格的随机变动和不规则的突发性影响很⼤的变动两种类型。

三、作⽤1. 反映社会经济现象的发展变化过程,描述现象的发展状态和结果。

2. 研究社会经济现象的发展趋势和发展速度。

3. 探索现象发展变化的规律,对某些社会经济现象进⾏预测。

4. 利⽤时间序列可以在不同地区或国家之间进⾏对⽐分析,这也是统计分析的重要⽅法之⼀。

四、变量特征⾮平稳性(nonstationarity,也译作不平稳性,⾮稳定性):即时间序列变量⽆法呈现出⼀个长期趋势并最终趋于⼀个常数或是⼀个线性函数。

波动幅度随时间变化(Time-varying Volatility):即⼀个时间序列变量的⽅差随时间的变化⽽变化。

这两个特征使得有效分析时间序列变量⼗分困难。

平稳型时间数列(Stationary Time Series)系指⼀个时间数列其统计特性将不随时间之变化⽽改变。

五、时域分析的经典步骤1.考察序列的特征,检验是否具有平稳性2.根据序列特征选择拟合的模型3.确定模型的⼝径4.检验、优化模型5.利⽤拟合的模型进⾏预测以下为转载————————————————版权声明:本⽂为CSDN博主「Python⾦融量化」的原创⽂章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原⽂出处链接及本声明。

时间序列分析

时间序列分析

时间序列分析xx年xx月xx日CATALOGUE目录•时间序列分析简介•时间序列数据的预处理•时间序列模型的构建•时间序列模型的评估与优化•时间序列分析的应用场景与实例•时间序列分析的未来发展与挑战01时间序列分析简介时间序列分析是一种统计学方法,用于研究具有时间顺序的数据,以揭示其内在的规律性和预测未来的趋势。

时间序列数据通常表现为历史数据序列,可以用于预测未来,从而帮助决策者做出更好的决策。

定义与概念1时间序列分析的用途与重要性23通过分析时间序列数据,可以预测未来的趋势和变化,从而提前做好准备和规划。

预测未来趋势时间序列分析可以识别出异常情况或突发事件,从而及时采取措施应对。

识别异常情况通过预测未来需求,时间序列分析可以帮助决策者优化资源配置,提高效率和降低成本。

优化资源配置数据收集和处理收集和处理时间序列数据,包括数据清洗、缺失值填充等预处理工作。

通过图表等方式将数据呈现出来,以便更好地观察和分析数据。

根据数据的特点和需求选择合适的模型,并建立模型以拟合数据。

对模型进行评估和优化,以提高模型的预测能力和准确性。

利用训练好的模型对未来进行预测,并给出预测结果和建议。

时间序列分析的基本步骤数据可视化模型评估与优化预测未来趋势模型选择与建立02时间序列数据的预处理03数据格式转换根据分析需求,将数据转换为合适的格式,如将日期转换为时间戳或将多个变量合并为一个数据集。

数据清洗与整理01缺失值处理对于缺失的数据,需要选择合适的处理方法,如插值、删除或忽略。

02异常值处理异常值可能会对分析结果产生不良影响,应进行识别和处理,如平滑处理或直接删除。

季节性调整通过去除时间序列数据中的季节性因素,以揭示趋势和循环成分。

趋势分析对时间序列数据的长期变化进行分析,以识别增长或下降的趋势。

季节性调整与趋势分析数据转换为改善数据的质量和稳定性,可对数据进行转换,如对数转换或平方根转换。

平滑处理为减少数据中的随机波动和噪声,可采用平滑技术,如移动平均法或低通滤波器。

时间序列分析

时间序列分析

时间序列分析随着大数据时代的到来,时间序列分析在许多领域中变得越来越重要和有用。

时间序列是同一个变量随时间变化的观察值的集合,通常是按照固定的时间间隔收集的。

时间序列分析的目的是通过了解过去的数据来预测未来的趋势和行为,并且可以用于决策制定、政策制定、生产计划和成本预测等。

时间序列分析的方法主要包括描述性分析、时间序列分解、移动平均、指数平滑法、自回归移动平均模型(ARMA)、季节性自回归移动平均模型(SARIMA)等。

1. 描述性分析描述性分析是时间序列分析中最简单的方法。

它主要是通过绘制时间序列图来展示时间序列的趋势和周期性。

通过这些图标,我们可以看到序列的长期趋势、季节性变化以及随机波动。

2. 时间序列分解时间序列分解是将时间序列分解成趋势、季节性和随机波动成分的方法。

趋势是指随时间变化而出现的长期变化趋势。

季节性是指在固定时间内,随时间变化而出现的周期性变化。

随机波动是由于随机因素引起的不规则波动。

时间序列分解不仅可以帮助我们理解时间序列的结构,还可以提供有关未来趋势和季节性变化的预测。

3. 移动平均移动平均是一种常见的平滑时间序列的方法。

它可以用于减少随机波动并减轻季节性变化的影响。

移动平均是指在一段时间内,将所有观察值的平均值作为一个预测值。

较短时间的移动平均可以更好地反映季节性变化,而较长时间的移动平均可以更好地反映趋势。

4. 指数平滑法指数平滑法通过对过去的观察值进行加权平均来预测未来的值。

这种方法适用于数据中存在随机波动和季节性变化的情况。

指数平滑法中的系数反映了过去观察值的重要性,离当前预测时间越近的观察值的重要性越大。

5. 自回归移动平均模型(ARMA)自回归移动平均模型是一种常见的时间序列模型。

它将时间序列的值分解为自回归和移动平均成分。

自回归成分取决于序列的过去值,移动平均成分取决于序列以前的误差和随机波动。

ARMA模型的参数可以通过拟合时间序列来得到,然后可以用于预测未来值。

什么是时间序列分析?有哪些应用场景?

 什么是时间序列分析?有哪些应用场景?

时间序列分析是一种统计方法,专门用于研究有序时间点上观测到的数值数据。

这些数据点按照时间顺序排列,形成了一条时间序列。

时间序列分析旨在揭示这些数据随时间变化的模式、趋势和周期性,并预测未来的走势。

这一方法广泛应用于各个领域,包括但不限于金融、经济、气象、生物学、医学、社会科学和工程等。

**一、时间序列分析的基本概念**1. **时间序列的定义**:时间序列是一组按时间顺序排列的数据点,通常用于反映某个或多个变量随时间的变化情况。

这些数据点可以是连续的(如每秒的气温),也可以是离散的(如每天的股票价格)。

2. **时间序列的构成**:时间序列通常由四个部分组成:趋势(Trend)、季节性(Seasonality)、周期性(Cyclicality)和随机性(Randomness)。

* **趋势**:长期变化的方向,可以是上升、下降或平稳的。

* **季节性**:由外部因素(如季节变化)引起的周期性变化。

* **周期性**:由内部因素(如经济周期)引起的周期性变化。

* **随机性**:无法预测的随机波动。

3. **时间序列的类型**:根据数据的性质和分析目标,时间序列可以分为平稳时间序列和非平稳时间序列。

平稳时间序列的统计特性(如均值和方差)不随时间变化,而非平稳时间序列则可能存在长期趋势或其他非恒定特性。

**二、时间序列分析方法**1. **描述性统计**:通过计算时间序列的均值、方差、标准差等指标,初步了解数据的分布情况。

2. **时间序列图**:通过绘制时间序列图,可以直观地观察数据的趋势、季节性和周期性。

3. **时间序列模型**:常用的时间序列模型包括自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)等。

这些模型通过拟合历史数据来预测未来的趋势。

**三、时间序列分析的应用场景**1. **金融市场分析**:时间序列分析在金融市场分析中具有重要意义。

股票价格、汇率、债券收益率等金融数据都是典型的时间序列数据。

时间序列 8种方法

时间序列 8种方法

时间序列分析是一种用于处理和分析时间序列数据的方法,它可以帮助我们理解数据的变化趋势、周期性、随机性等特征。

以下是在时间序列分析中常用的8种方法:
1. 描述性统计:这是最基本的数据分析方法,包括平均值、中位数、标准差、极值等。

2. 趋势图:将数据以图表的形式展示出来,可以直观地看到数据的变化趋势。

3. 季节性分析:如果数据具有季节性特征,可以使用季节性指数、移动平均法等方法来分析。

4. 回归分析:通过建立回归模型,对时间序列数据进行拟合,以预测未来的数据。

5. 滑动平均模型(SMA):这是一种常用的时间序列分析方法,可以平滑短期波动,反映价格或指数的长期变化趋势。

6. 指数平滑:这是一种基于时间序列数据的平滑方法,可以处理时间序列数据的非平稳性问题。

它有多种形式,如一次指数平滑、二次指数平滑等。

7. ARIMA模型:这是一种常用于时间序列分析的模型,可以自动处理时间序列数据的平稳性和季节性变化。

8. 时间序列预测的神经网络方法:这种方法利用神经网络对时间序列数据进行训练,以预测未来的数据。

这些方法各有优缺点,具体使用哪种方法取决于数据的特征和需求。

在应用这些方法时,需要注意数据的清洗和预处理,以及对结果的解读和分析。

另外,随着数据科学技术的不断发展,可能还会出现新的方法和工具来应对时间序列分析中的问题。

此外,要注意这些方法只是帮助我们理解和预测时间序列数据的一种手段,它们不能替代我们对于数据背后问题的深入思考和探讨。

在应用这些方法时,我们需要结合实际问题和背景知识,进行合理的分析和解释。

同时,也需要不断地学习和探索,以应对不断变化的数据和分析需求。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种重要的统计学方法,用于研究随时间变化的数据。

它可以帮助我们了解数据的趋势、周期性和季节性,预测未来的变化趋势,并做出相应的决策。

本文将介绍时间序列分析的基本概念、常见的方法和应用领域。

一、时间序列的基本概念时间序列是按时间先后顺序排列的一组观察数据。

它可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售量。

时间序列的分析要求数据点之间存在一定的相关性和规律性。

二、时间序列的组成部分时间序列通常由三个主要组成部分构成:趋势、季节性和随机性。

趋势是时间序列在长期内呈现的整体变化趋势;季节性是时间序列在较短的时间内出现的重复周期性变化;随机性是时间序列中无法解释的随机波动。

三、时间序列分析的方法1. 描述性分析描述性分析是对时间序列数据进行可视化和概括的方法。

常用的方法包括绘制折线图、直方图和自相关图等,以帮助我们了解数据的分布和相关性。

2. 平稳性检验平稳性是时间序列分析的基本假设。

平稳序列的统计特性在时间上是不随时间变化的,包括均值、方差和自相关性等。

常见的平稳性检验方法有单位根检验和ADF检验。

3. 建立模型建立时间序列模型是对数据进行预测和分析的关键步骤。

常用的时间序列模型有ARIMA模型、AR模型和MA模型等。

通过对历史数据的拟合,我们可以得到模型的参数,从而进行未来值的预测。

4. 模型诊断与改进在建立模型之后,需要对其进行诊断和改进。

常见的诊断方法包括残差检验、模型稳定性检验和模型比较等。

根据诊断结果,我们可以对模型进行改进,提高预测的准确性。

四、时间序列分析的应用领域时间序列分析在许多领域都有广泛的应用,例如经济学、金融学、气象学和市场营销等。

在经济学中,时间序列分析可以用于预测经济增长趋势和通货膨胀率。

在金融学中,它可以帮助我们预测股票价格和利率走势。

在气象学中,时间序列分析可以用于预测天气变化和自然灾害。

在市场营销中,它可以帮助我们预测销售量和用户行为。

什么是时间序列分析

什么是时间序列分析

什么是时间序列分析关键信息项:1、时间序列分析的定义2、时间序列分析的目的3、时间序列分析的常用方法4、时间序列数据的特点5、时间序列分析的应用领域6、时间序列分析的步骤7、时间序列分析的局限性11 时间序列分析的定义时间序列分析是一种用于研究数据随时间变化规律的统计方法。

它通过对一系列按时间顺序排列的数据点进行分析,以揭示数据中的趋势、季节性、周期性和随机性等特征。

时间序列分析在经济学、金融学、气象学、工程学等多个领域都有广泛的应用。

111 时间序列数据的特点时间序列数据具有以下几个主要特点:1111 顺序性:数据是按照时间顺序依次记录的,时间顺序对于分析结果具有重要影响。

1112 相关性:相邻时间点的数据之间往往存在一定的相关性。

1113 趋势性:数据可能呈现出长期的上升、下降或稳定的趋势。

1114 季节性:某些数据在一年内的特定时间段内会表现出相似的模式,如销售数据在节假日期间的增加。

1115 随机性:数据中还包含了一些无法预测的随机波动。

12 时间序列分析的目的时间序列分析的主要目的包括:121 预测未来值:通过对历史数据的分析,预测未来一段时间内数据的可能取值,为决策提供依据。

122 理解数据的动态特征:揭示数据的趋势、季节性和周期性等模式,帮助人们更好地理解数据产生的机制。

123 监测和控制:用于监测系统的运行状态,及时发现异常情况并采取相应的控制措施。

124 评估政策和干预的效果:在政策实施或干预措施执行后,通过时间序列分析评估其对相关数据的影响。

13 时间序列分析的常用方法常用的时间序列分析方法包括:131 移动平均法:通过计算一定时期内数据的平均值来平滑数据,消除随机波动。

132 指数平滑法:对历史数据进行加权平均,给予近期数据更高的权重,以更好地反映数据的最新变化。

133 自回归模型(AR):利用数据自身的滞后值来预测当前值。

134 移动平均自回归模型(ARMA):结合自回归和移动平均的特点进行建模。

时间序列分析法概述

时间序列分析法概述

时间序列分析法概述时间序列分析是指对时间序列数据进行统计建模和预测的一种方法。

时间序列数据是指按照一定时间顺序排列的数据,通常是在相等时间间隔下连续观测到的数据。

时间序列分析的目的是从数据中发现特定模式或趋势,并利用这些模式和趋势进行预测。

它通常用于经济学、金融学、气象学等领域,例如股票价格预测、销售量预测、天气预测等等。

时间序列分析方法主要包括以下几个步骤:1. 数据处理:首先需要对时间序列数据进行预处理,包括去除趋势、季节性和不稳定性等因素,以使数据满足稳定性和平稳性的假设。

这通常可以通过差分、平滑和变换等方式来实现。

2. 模型选择:根据时间序列数据的特性,选择合适的模型来进行建模和预测。

常用的模型包括自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。

模型的选择通常需要借助统计指标和图形分析的方法来确定。

3. 参数估计:在选择好模型之后,需要对模型的参数进行估计。

参数估计可以通过最大似然估计、最小二乘估计或贝叶斯估计等方法来实现。

估计得到的参数可以用于模型的建立和预测。

4. 模型诊断:对模型进行诊断,检查模型是否符合数据的统计特性和假设。

常用的诊断方法包括自相关函数(ACF)和偏自相关函数(PACF)的分析,以及白噪声检验等。

如果模型存在问题,则需要对模型进行修正或调整。

5. 模型预测:根据已经估计好的模型和参数,对未来的数据进行预测。

预测可以基于滚动窗口逐步预测,也可以直接进行多步预测。

常用的预测方法包括常规预测、指数平滑预测和季节性预测等。

总的来说,时间序列分析是一种基于时间序列数据的统计建模和预测方法。

通过对时间序列数据进行处理、模型选择、参数估计、模型诊断和模型预测等步骤,可以得到对未来数据的预测结果,并用于决策和规划。

然而,需要注意的是,时间序列分析方法需要满足一定的数据假设和模型假设,以及对模型的合理性和可靠性进行评估。

时间序列分析法

时间序列分析法

时间序列分析法时间序列分析是一种广泛应用于统计学和经济学领域的方法,它专门用于处理具有时间依赖性的数据。

时间序列数据是按时间顺序排列的一组观测值,例如股票价格、气温变化、经济指标等。

时间序列分析的目标是从历史数据中提取模式、趋势和周期以及预测未来的数据走势。

时间序列分析包括了多种方法和技术,下面将介绍其中几种常用的方法:1. 均值模型均值模型是最简单的时间序列模型之一,它假设时间序列的未来值将等于过去几期的平均值。

均值模型最常用的是移动平均模型(MA)和指数平滑模型(ES)。

移动平均模型根据过去几期的观测值对未来值进行预测,而指数平滑模型则给予较大权重给近期的观测值。

2. 趋势分析趋势分析用于识别时间序列中的长期趋势。

常用的趋势分析方法包括线性趋势分析、多项式回归分析以及指数平滑趋势分析。

这些方法主要是通过拟合一个数学模型来描述时间序列的趋势,然后根据模型对未来走势进行预测。

3. 季节性分析季节性分析用于识别和预测时间序列中的季节性模式。

常用的季节性分析方法包括季节性平均法、回归分析以及季节性指数平滑法。

这些方法可以通过拟合一个季节性模型来描述时间序列的季节性变动,并进行未来的预测。

4. 自回归移动平均模型(ARMA)ARMA模型是一种将自回归模型(AR)和移动平均模型(MA)结合起来的时间序列模型。

AR模型通过过去的观测值对未来值进行预测,而MA模型则根据过去的误差对未来值进行预测。

ARMA模型可以通过估计AR和MA参数来对时间序列进行预测。

5. 自回归积分移动平均模型(ARIMA)ARIMA模型是一种将自回归模型(AR)和移动平均模型(MA)与差分运算结合起来的时间序列模型。

ARIMA模型可以通过求解差分参数来对非平稳时间序列进行预测。

差分运算可以减少时间序列的趋势和季节性,使其更具平稳性。

以上是常用的时间序列分析方法,每种方法都有其适用性和局限性。

在实际应用中,根据具体情况选择合适的方法进行分析和预测。

时间序列分析

时间序列分析

时间序列分析时间序列数据的特点是观测值之间存在时间上的依赖关系,即一个观测值的取值可能与之前的多个观测值存在相关性。

时间序列分析主要考虑以下几个方面:1. 趋势分析:时间序列数据中存在的长期增长或下降趋势可以通过趋势分析来判断。

趋势分析可以采用移动平均法、指数平滑法等方法来拟合趋势线,从而预测未来的趋势。

2. 季节性分析:时间序列数据中的季节性波动是一种按照固定的季节循环出现的规律变动。

季节性分析可以通过季节性指数、分解法等方法来对季节性波动进行分析和预测。

3. 周期性分析:周期性是指时间序列数据中存在的较长周期的波动。

周期性分析可以通过傅里叶分析、自相关函数等方法来分析和预测周期性波动。

4. 随机性分析:时间序列数据中的随机变动是指除趋势、季节性、周期性之外的不可预测的波动。

随机性分析可以通过残差项的分析来判断数据中是否存在随机波动。

时间序列分析的方法包括统计方法和经典时间序列分析方法。

统计方法主要包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。

经典时间序列分析方法主要包括指数平滑法、趋势法、季节性指数法等。

时间序列分析的应用领域广泛。

在经济学中,时间序列分析可以用来预测经济指标的变动趋势,为政府决策提供依据。

在金融学中,时间序列分析可以用来预测股市的走势,帮助投资者制定投资策略。

在气象学中,时间序列分析可以用来预测天气变化,为农民和旅行者提供参考。

在医学中,时间序列分析可以用来预测疾病的传播趋势,为疾病防控提供支持。

然而,时间序列分析也存在一些挑战和限制。

首先,时间序列数据的质量和可靠性对分析结果的影响很大,因此数据的采集、清洗和处理是很重要的。

其次,时间序列数据的非线性和非平稳性使得分析方法的选择和应用更为复杂。

此外,时间序列数据同时受到多种因素的影响,如外部环境、政策变化等,这些因素需要合理地加以考虑。

总的来说,时间序列分析是一种重要的统计分析方法,可以用来揭示时间序列数据内部的潜在规律和特征,并通过对过去数据的观察和分析来预测未来的趋势。

时间序列分析法概述

时间序列分析法概述

时间序列分析法概述时间序列分析(Time Series Analysis)是一种对时间序列数据进行统计分析和预测的方法。

时间序列数据是以时间顺序排列的、按一定时间间隔收集到的一系列数据观测值。

时间序列分析通过对过去的数据进行分析,揭示出数据内部的规律和变化趋势,从而对未来的数据进行预测和模拟。

时间序列分析方法广泛应用于经济学、金融学、工程学、气象学等领域,可以用于分析和预测股票价格、销售数据、气温变化等各种现象。

时间序列分析方法包括描述性统计分析、平稳性检验、自相关与偏相关分析、谱分析、移动平均模型和自回归模型等。

描述性统计分析是时间序列分析的起点,其目的是对时间序列数据的基本特征进行描述和总结。

描述性统计分析通常包括计算数据的均值、方差、极值等指标,以及绘制数据的线图、直方图等图形。

通过对描述性统计分析的结果进行观察和比较,可以初步了解数据的分布和趋势。

平稳性检验是时间序列分析的基础,其目的是判断时间序列数据是否具有平稳性。

平稳性是指时间序列数据的统计特性在不同时间段内是相似的,即均值和方差不随时间的变化而变化。

常用的平稳性检验方法有ADF检验和KPSS检验。

如果时间序列数据不具有平稳性,需要进行平稳化处理,以满足时间序列分析的前提条件。

自相关与偏相关分析是时间序列分析中的重要内容,其目的是研究时间序列数据之间的相关性和连接性。

自相关是指时间序列数据与其在不同时间点上的滞后值之间的相关性,反映了时间序列数据的时间间隔相关性。

偏相关是在控制其他变量的影响下,研究两个时间序列数据之间的相关性。

通过自相关与偏相关分析,可以揭示时间序列数据内部的规律和关系。

谱分析是时间序列分析的重要方法之一,其目的是研究时间序列数据的频率特征和功率谱密度。

谱分析基于傅里叶变换,将时间序列数据转换到频域分析。

谱分析可以揭示时间序列数据的周期性和趋势性,为进一步的数据分析和预测提供依据。

移动平均模型是一种常用的时间序列预测方法,它基于过去若干个时间点的数据,预测未来一个时间点的数据。

第四章_时间序列分析

第四章_时间序列分析

• 年底
• •
a4
104
•则:该年平均每月的职工人数为:
•(二)对相对指标或平均指标动态数列计算
•由于各个zi 的对比基数 xi 不尽相同,所以不能将各期 zi 简单算术平均。
•基本公式
•a数列的序时平均数
•b数列的序时平均数
•公式表明:相对指标或平均指标动态数列 • 的序时平均数,是由分子、分母两个 • 数列的序时平均数对比得到的。
一般认为,间隔越短,计算结果就越准确。
例如,由一年中各月底数计算的全年平均数,就比只用年初和年末两 项数据计算的结果更准确。
•⑵ 对间隔不等时点数列求 • (加权序时平均法)
•例4-2-5
•时 间
•职工人数(人 )
• 1月 初
• •
1a012

3月初
• 9月 初
• •
a2 105
• •
1a038
•日 期
•职工人数(人 )
• 1日—8 日
• a1 • 102
•9日—15日 •a2
•105
• 16日—30 日
• a3 • 108
•则:1号至30号平均每天的职工人数为:
•②由间断时点数列计算序时平均数
•当时点数列中的数据是每隔一段时间 •(如隔一月、一年等)才观测一次的数据时 ,这样的时点数列为间断时点数列。
•所以
•其中: •所以:
•例4-2-7:某企业商品销售额和库存额资料如下:
•项目

•间商品销售额(万元
)•月初库存额(万元

•四 •月150
• 45
•五 •月200
• 55
• 六 •七 •月240 •月150

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种统计学方法,用于分析时间序列数据。

时间序列数据是按照时间顺序排列的一组观测值,通常用于研究随时间变化的趋势、周期性和季节性等特征。

本文将介绍时间序列分析的基本概念、方法和应用。

一、基本概念1. 时间序列数据:时间序列数据由时间组成的一组观测值。

例如,每天的股票价格、每月的销售数据等都可以作为时间序列数据进行分析。

2. 趋势:趋势是时间序列数据中长期变化的模式。

可以是递增的趋势(上升趋势)或递减的趋势(下降趋势)。

3. 周期性:周期性是时间序列数据中呈现出来的重复出现的模式。

例如,季节性需求的数据在每年同一季度都呈现相似的特征。

4. 季节性:季节性是时间序列数据中特定季节上的周期性变动。

例如,夏季疫情的确诊人数可能会高于其他季节。

5. 不规则成分:时间序列数据中不规则成分是由于随机因素导致的波动,通常不能归因于趋势、周期性或季节性,需要通过其他模型进行建模。

二、方法1. 描述性分析:描述性分析是对时间序列数据进行可视化和描述统计分析。

通过绘制时间序列图、计算均值、标准差和自相关系数等指标,可以了解数据的整体特征。

2. 平稳性检验:平稳性是时间序列分析的基本假设,即数据的统计特性在时间上不发生显著变化。

平稳性检验可以通过单位根检验、ADF检验等方法来进行。

3. 季节性分解:季节性分解是将时间序列数据分解为趋势、季节性和不规则成分的过程。

常用的季节性分解方法有移动平均法、分段回归法等。

4. 时间序列模型:时间序列模型是通过建立数学模型来描述时间序列数据的变化。

常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。

5. 预测:时间序列分析的一个重要应用是进行预测。

通过拟合时间序列模型并利用历史数据进行预测,可以预测未来一段时间内的趋势和季节性变化。

三、应用时间序列分析在各个领域都有广泛的应用,特别是在经济学、金融学和市场调研等方面。

1. 经济学:时间序列分析可以用于研究经济数据的趋势和周期性变化,如GDP的季度变动、通货膨胀率等。

时间序列分析(统计分析学概念)

时间序列分析(统计分析学概念)
时间序列分析(统计分析学概 念)
统计分析学概念
01 基础知识
03 分类 05 主要用途
目录
02 性质特点 04 具体方法
时间序列分析(Time-Series Analysis)是指将原来的销售分解为四部分来看——趋势、周期、时期和不 稳定因素,然后综合这些因素,提出销售预测。强调的是通过对一个区域进行一定时间段内的连续遥感观测,提 取图像有关特征,并分析其变化过程与发展规模。当然,首先需要根据检测对象的时相变化特点来确定遥感监测 的周期,从而选择合适的遥感数据。
主要用途
时间序列分析常用在国民经济宏观控制、区域综合发展规划、企业经营管理、市场潜量预测、气象预报、水 文预报、地震前兆预报、农作物病虫灾害预报、环境污染控制、生态平衡、天文学和海洋学等方面。主要包括从 以下几个方面入手进行研究分析。
系统描述 根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。 系统分析 当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解 给定时间序列产生的机理。 预测未来 一般用ARMA模型拟合时间序列,预测该时间序列未来值。 决策和控制 根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必 要
特点:简单易行,便于掌握,但准确性差,一般只适用于短期预测。
分类
时间序列依据其特征,有以下几种表现形式,并产生与之相适应的分析方法: 1.长期趋势变化:受某种基本因素的影响,数据依时间变化时表现为一种确定倾向,它按某种规则稳步地增 长或下降。使用的分析方法有:移动平均法、指数平滑法、模型拟和法等。 2.季节性周期变化:受季节更替等因素影响,序列依一固定周期规则性的变化,又称商业循环。采用的方法: 季节指数。 3.循环变化:周期不固定的波动变化。 4.随机性变化:由许多不确定因素引起的序列变化。 时间序列分析主要有确定性变化分析和随机性变化分析。其中,确定性变化分析包括趋势变化分析、周期变 化分析、循环变化分析。随机性变化分析:有AR、MA、ARMA模型等。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种统计方法,用于研究随时间变化的数据。

它可以帮助我们揭示数据背后的趋势、周期性和季节性等模式,帮助我们做出有意义的预测和决策。

本文将介绍时间序列分析的基本原理、常用的方法和应用领域等内容。

一、时间序列分析的基本原理时间序列是按时间顺序排列的数据序列。

时间序列分析的基本原理是假设数据是由趋势、周期性、季节性和随机波动组成的。

通过分解时间序列,可以将数据分解为这些组成部分,进而对每个部分进行建模和分析。

趋势是时间序列长期变化的方向。

通过趋势分析,可以判断数据的增长或下降趋势,并预测未来的发展方向。

常用的趋势分析方法有移动平均法、指数平滑法和回归分析法等。

周期性是时间序列在一定时间范围内变化的重复模式。

周期性分析可以帮助我们了解数据的周期性波动,并进行周期性预测。

常用的周期性分析方法有傅里叶级数分析、谱分析和周期性指数平滑法等。

季节性是时间序列在一年内循环出现的固定模式。

季节性分析可以揭示数据中的季节性变化规律,并进行季节性预测。

常用的季节性分析方法有季节性指数平滑法、季节性回归模型和季节性自回归移动平均模型等。

随机波动是时间序列中无法由趋势、周期性和季节性解释的部分。

随机波动的分析可以帮助我们评估模型的准确性和稳定性。

常用的随机波动分析方法有自相关函数和偏自相关函数的分析等。

二、常用的时间序列分析方法1. 移动平均法移动平均法是一种常用的趋势分析方法,通过计算一定时间段内数据的平均值来平滑时间序列。

移动平均法能够过滤数据的随机波动,较好地反映数据的趋势。

2. 指数平滑法指数平滑法是一种适用于短期预测的方法,通过赋予过去观测值不同的权重来预测未来的值。

指数平滑法能够灵活地适应数据的变化,并能够较好地捕捉数据的趋势。

3. 季节性指数平滑法季节性指数平滑法是一种适用于季节性数据的方法,通过对每个季节的数据赋予不同的权重来进行季节性预测。

季节性指数平滑法能够很好地反映季节性数据的变化规律。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种统计学方法,用于分析时间序列数据的模式、趋势和周期性。

它可以帮助我们了解随着时间推移,数据如何变化,并预测未来的发展趋势。

本文将介绍时间序列分析的基本概念、常用方法和实际应用。

一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据点。

它可以是连续的,例如每天的股票价格,也可以是离散的,例如每个月的销售量。

时间序列分析旨在通过观察数据中的模式和趋势,揭示数据背后的规律和关系。

二、时间序列分析的常用方法1. 描述统计法描述统计法用于计算数据的统计指标,如平均值、标准差和相关系数。

这些指标可以帮助我们了解数据的分布情况和相关性。

2. 组件分析法组件分析法将时间序列分解为趋势、季节和随机成分。

趋势表示长期的变化趋势,季节表示重复出现的周期性变化,随机成分表示无法通过趋势和季节解释的随机波动。

通过对组成部分的分析,可以更好地理解时间序列的内在规律。

3. 平稳性检验法平稳性是时间序列分析的基本假设之一。

平稳时间序列的统计特性不随时间变化而改变。

平稳性检验可以通过观察时间序列的趋势、自相关图和单位根检验等方法进行。

4. 预测方法时间序列分析的一个重要应用是预测未来的数值。

常用的预测方法包括移动平均法、指数平滑法和ARIMA模型等。

这些方法基于过去的数据,通过建立模型来预测未来的趋势和周期性。

三、时间序列分析的实际应用时间序列分析在各个领域都有广泛的应用。

在金融领域,它可以用于股票价格的预测和风险管理;在经济学领域,它可以用于 GDP 的预测和经济政策制定;在气象学领域,它可以用于天气预报和气候变化研究。

除了上述领域外,时间序列分析还用于交通流量预测、销售预测、生态学研究等。

通过对历史数据的分析,我们可以更好地理解和预测未来的发展趋势,为决策提供依据。

结论时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据中的模式和趋势。

通过对数据的描述统计、组件分析和预测,我们可以揭示数据背后的规律,并用于实际问题的解决。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种经过时间排序的统计数据分析方法,它是指对同一时间观测到的数据的分析,包括自然界和社会现象等范畴。

时间序列分析可用于预测未来趋势、分析周期性变化、发现非线性关系、判断相关性等,广泛应用于经济、金融、气象、地震预测、健康等领域。

时间序列分析中常见的数据主要包括三种类型:趋势、季节性和周期性。

趋势是一种长期观测到的数据变化趋势,它可以是线性的、非线性的、上升的或下降的。

例如,一家公司的销售额随着时间的推移而逐渐上升是一种典型的趋势。

季节性是指短期内重复出现的周期性变化,通常是因为季节变化、传统节日等原因引起的。

例如,零售行业的销售额在圣诞节和冬季假期期间通常会增加,而在夏季会下降。

周期性是一种存在于相对较长时间内的、定期重复的变化。

例如,经济周期性波动,股票价格的周期性变动等都是周期性变化的例子。

对于时间序列分析,常见的方法有时域方法和频域方法两种。

时域方法是指直接对观测数据进行建模和预测,常见的模型有移动平均模型(MA)、自回归模型(AR)、自回归移动平均模型(ARMA)和自回归积分移动平均模型(ARIMA)等。

频域方法则是将时间序列转换为频率域,进行分析和模型设计,常用的方法有傅里叶变换、功率谱分析等。

在实际应用中,时间序列分析常常需要处理的问题包括序列平稳性、季节型、异常值等。

序列平稳是指序列的统计性质在时间上的不变性,如果序列不平稳,则需要进行差分处理以达到平稳的要求。

在季节性分析中,需要使用季节性分解的方法来区分季节性和趋势成分。

异常值指的是在序列中出现的短期内极端高或者极端低的值,这些异常值对分析的结果产生影响,因此需要进行处理。

总之,时间序列分析是一种广泛应用的统计分析方法,对于理解和预测时间序列的趋势、季节型和周期性变化具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古海洋学 12.740 2004年春季讲义5冰期/间冰期“摆动”:为什么?时间序列分析对于过去700,000年来的气候变化的大致过程,我们已经有了一定的了解。

尽管我们能够认识到地理学指标的变化非常有意义,但其绝大部分都具有相似的基本模式。

籍由此,我们便可以发问:为什么?两种途径:1.“物理学”:由第一定律得到冰期。

祝你好运!(如果你能做出结论,记得打电话通知我)2.“相关性(非因果)”:将由第一定律推知的确定的驱动力与古环境记录之间的相似性(巧合?)寻找出来。

根据少量样品得到的一致性只能说是偶然的。

如果这些少量数据有价值,那么深究其中的相关机制也就是有意义的。

成功的研究方法需要:(1)生物扰动程度较低的可信的古环境证据,(2)古环境记录需要足够长,以使有足够多的旋回可供分析检验。

I。

研究简史A. 1840:Agassiz提出大规模大陆冰川假说;学术论战随之兴起,但最终归结为赞同其观点;B. 1860:Croll提出地球轨道参数的变化对冰川旋回负有一定责任,学界反响强烈,但意见不一;C. 1920:Milankovitch公开量化计算地球轨道参数变更的详细内容,但仍有人不同意该理论;D. 1950:Emiliani给出证明周期性冰期旋回的证据,意图重振Milankovitch学说,但时间尺度的确定仍是最大问题;E. 1960,1970:Barbados群岛分析数据(以及据此得到修正时间尺度)使学界重拾对Milankovitch学说的兴趣,也正是这时候,Milankovitch学说才被学界严肃对待,同时距离被证明仍然遥远;F. 1976:Hays,Imbrie,Shackleton的论文,战胜了学界对轨道影响气候学说的绝大部分反对意见,说明轨道参数变化至少也可以起到冰周期的“带跑者”作用;G. 现在:相对地已经很少有人怀疑地球轨道变化会对气候环境产生影响,因此主要问题就集中在各个参数对不同气候因子的作用到底有多大?在多大程度上气候可以被准确预测?这些轨道动力是否存在显著相关的系统内反映(或称共振)?气候的次轨道大尺度可变性的起源是什么?我们能否利用对古代气候变化的理解,使得对未来气候变化的预测更加准确。

对最后一个问题的注释:气候模型(后文将有详细讨论)往往会论及很多物理学定律(比如:运动定律、动力学定律),但是由于气候体系庞大的复杂性、囿于计算机计算速度,对一些认识较浅和次级尺度的过程,我们不能给出确定性的表述(例如:对流沉积;浮冰形成和融化;土壤、植被、蒸发作用、沉积和河流刨蚀过程)。

所有这些要素都非常重要,因此不能舍弃。

实际上,地质学很多内容的处理是经验化的,因此含有不少为了得到与现代气候相“协调”而“编造”的因数。

由于地质过程不可能在短时间内产生明显效应,因此预测一两天的天气,这种逼近还可以应用,但是对于气候变更,这种逼近方法引入的不确定因素就会产生一系列的问题。

同时,气候模型对不同参数的灵敏度也可能会被错误估计。

检验模型灵敏度的方法之一,就是检测其在某一已知地质过程的作用下如何表现(例如:较近一次的火山爆发)。

最著名的作用于环境变迁的驱动力就是地球轨道参数差异引起的地表辐射量变化。

II。

地球轨道参数变化以及对大气层顶接收太阳辐射量的影响。

根源:地球与太阳以及行星之间的万有引力作用。

地球运动特征受到太阳引力场影响,轨道倾斜率/偏心率受到太阳-木星作用于地球的反向的引力制衡的影响。

A。

季节更迭。

成因在于地轴相对于黄道面的倾角:平视图(平行黄道面):斜视图(示意图,偏心率不准确)北半球为夏季B。

偏心率 ee=(a2-b2)1/2/a1.地球的偏心率变化显示0~0.06准周期性,周期长度大约在96000到40000年之间;2.太阳位于轨道焦点,地球越靠近太阳,运动速率越快,距日越远,则越慢;3.由太阳系外垂直于黄道面俯视,地球轨道取向会发生运动,如下图示:偏心率随时间的变化,如下图示:4.偏心率的变化并不会对全球年平均太阳辐射量产生显著影响,毕竟(在约0.1%范围内)夏季损失的日照可以由冬季补偿。

C。

黄赤交角(ε)(地球轨道相对黄道面的倾斜角度)ε的分异约存在于21.8°到24.4°范围内,现在的黄赤交角为23.44°。

主要影响回归线和极圈的纬度位置。

周期约为41000年,且相对而言规律性更强。

可以将黄赤交角的变化视为太阳系角动量振动系统的部分表现(对于整个太阳系角动量是守恒的,而在太阳系内不同星体之间角动量有转移)。

黄赤交角随时间变化,如下图示:D。

分点岁差岁差频率决定于地球角动量和太阳作用于地球的力矩。

对于所有的旋转物体来说,物理学特征都是类似的。

地轴相对位置恒定的恒星的进动周期是25700年。

而地轴进动周期和地球轨道中轴进动的周期的交互作用决定了地球气候变化的效应(直接原因是日地距离的变化)。

大约以22000年为周期,太阳辐射量的分布完成一个循环。

[进动:当受到外力作用时旋转体轴的运动,如旋转陀螺般的摇摆]初始状态约22000年之后总的净效应在于约22000年的太阳辐射地球收入量周期。

而太阳辐射量的进动周期(岁差)是由轨道绝对偏心率决定的。

如果地球轨道是正圆形,就不会产生辐射收入量的季节变化和南北半球差异;地球轨道偏心率越大,辐射量的季节变化量和南北差异也就越大。

e sinω 是对辐射周期的一个简单度量。

进动参数:e sinω偏心率的“振幅”“调制”辐射量进动周期。

E。

太阳辐射量以上所有地球轨道因数的变化都会影响大气层顶接收的太阳辐射量,同时形成随季节和纬度的气候分异现象。

1。

岁差/偏心率的影响a.辐射量的半球差异:在近日点时为夏季的半球接收更多的太阳辐射。

偏心率越大,两半球辐射量差异越大。

b.半球内部的季节性差异:当某一半球处于夏季近日和冬季近日的更迭之中,则季节性差异就要被修正。

由于此效应对于两半球是不一致的,因此会产生辐射量的不同。

2。

黄赤交角的影响黄赤交角越大,则高纬地区夏季能够接收到的太阳辐射越多;同时冬季的辐射量却不会有变化。

F。

总结利用牛顿力学,我们能够将几百万年以来的这些轨道特征量精确计算。

然而不确定因素的积攒(例如:行星的相对质量,行星的形状和密度分布)会造成绝对值的不确定性,尽管某些轨道参数几百万年来的变化周期可以认为是无误的。

能被准确判定的只有50万年以来的计算值。

III。

如何做出有关轨道参数变化和气候变化记录的正确比较?A。

曲线拟合法:非常流行,但具有主观性强、相位滞后的可能性、时间尺度误差等缺陷。

B。

数学分析法:有很多可行的方法,但傅立叶分析最逼近真实。

尽管其数学推导繁复,但由于某些特征参数根本无法简单计算,因此实用性仍然最好。

IV。

傅立叶幂级数分析A。

棱柱类推(prism analogy):观察一个合理的包含时间变量的级数函数。

傅立叶变换给出将该时间函数等价转换为一系列正弦函数(sin)与余弦函数(cos)的和的形式的理论推导和处理方法。

B。

设G(t)为一连续可导且导数连续的函数。

如果我们在该函数图像上等间隔的取点,创建一个函数序列:G(t1)、G(t2)......G(t n);则有且仅有一个复合函数S(f)=A(f)+B(f)i (其中f代表频率,i是-1的平方根)满足:其中f j=j/t n,j=1、2、3...n这些谐函数fj都是两两直交的(也就是说由于Σf k≠j,从而不可能重建f j波),也是完f 备的(也就是说给出任意一个合理的t,都能找到一个完备且唯一的函数值)1. 定义域为实数区间的时间级数G(t)的傅立叶变换,定义为:[其中ω=2πf]a.简单表达:2.傅立叶变换是可逆的:也就是说傅立叶变换和时间级数都包含相当的“信息”,也就意味着我们能够利用傅立叶变换的逆运算作频率分析。

b.一条正弦波的傅立叶变换得到一条单峰频率分布曲线。

同样的,对一条单峰频率分布曲线作逆傅立叶变换就得到一条正弦波。

C。

推导过程1。

在傅立叶定律的理论基础上,离散型傅立叶变换形式上只是一组联立的方程。

我们取离散均匀取样的数据点为例:假设对G(t)取N个观测值,并转换成N/2对sin、cos系数。

系数的个数一定等于N。

那么问题转化成解决一个N阶方程组。

令A为一NxN的矩阵,sin和cos系数为其元素,且使其每行为:(i=1…N)例如:并令x为一傅立叶系数(a,b)的N阶向量(或称一Nx1的矩阵):(注意是竖直排列)并令g为一N阶向量,g(t i)为其每一项:(i=1…N)由傅立叶定律,可得:解之,可得傅立叶系数:2。

上述乃傅立叶变换的一种途径,但实际上还有更为简便的变换方式,也就是快速傅立叶变换法(FFT),这是一种解方程组的简便方法。

64行BASIC程序语言,就能实现这一过程;详情可见于“the visible FFT”计算程序。

实际上你也可以通过插入新数据,从而得到一条数据点均匀分布(时间上)的二次幂序列(由于古气候数据往往并不平滑,因此这是很有意义的);或者可以用添零法处理数据,直到得到二次幂的形式。

3。

较老的文献中常是用“Blackman和Tukey”法进行计算,这也是FFT出现之前较为流行的,主要在SPECMAP计划中普遍用到。

该方法的理论基础是时间级数的自相关性,主要内容就是对时间级数关于自身的自相关系数的计算。

这种方法在算术意义上具有等价性,同时所采用计算方法并不会严重影响计算结果。

4。

对于非等间隔取点的时间数据级数,IV.C.1只给出解决办法之一。

在这种情形下,我们可以将时间级数的单个测量值转换成与之对应的sin、cos函数即可,而不必顾及其取点间隔。

因此矩阵X中的行向量就可以写作:其中t=每次测量的时间值上述数据格式可能导致计算的傅立叶系数(由于每个谐函数都记录了长度值因此必须保留)多于观测值数量,忽略谐函数最大值,是处理该问题的一般方法。

也有可能需要将所有值较大的谐函数全部忽略,从而导致观测值数量又多于傅立叶系数。

[这在古气候学上常是有用的,因为时间尺度的误差值往往表现为无意义的谐函数最大值]。

在此种情形下,IV.C.1中的b等式用最小方阵逼近为:相对FFT,此方法计算复杂程度更高,因而效率稍显低。

但是有计算机之后,计算复杂性的压力被电脑承担。

相对的计算难度也就显得无关紧要。

5。

有限离散取样的时间级数傅立叶变换,暗含将所取数据周期化的假设,换句话说,所测级数在周期性重复。

这会导致很多问题,例如:假如首个和末个数据点的值相差甚远,则需用基本频率的高频谐函数来做傅立叶变换,才能得到比较“尖峰”的图线。

D。

折频和混淆离散取样,则推导频率不可能大于取样频率的2倍(折频);如果数据点可以表示为较低频率的波谱,则可能得到较高的频率(混淆)。

E。

谐函数基本周期为P的谐函数的锯齿状(线性趋势重复)波谱:F。

相关文档
最新文档