测定水的汽化热

合集下载

实验三b水的汽化热的测定(用杜瓦瓶测)

实验三b水的汽化热的测定(用杜瓦瓶测)

实验三(b ) 水的汽化热的测定(用杜瓦瓶测)实验目的1.测定水在大气压下的汽化热。

2.学会测定杜瓦瓶的有效热容量。

实验仪器煮水器,电热器,杜瓦瓶,0.1℃刻度的温度计,物理天平,蒸馏水,输入水蒸汽的导管等。

实验原理单位质量的液体在温度不变的条件下变成水蒸汽时所吸收的热量,叫做液体的汽化热,常以γ表示,单位为卡/克。

当水蒸汽凝结时,则放出与汽化热等量的热量。

汽化热的数值与汽化时的温度有关。

本实验测定水在常沸点(与常压强相对应)时的汽化热。

为此,把煮水器中质量为m d 的饱和水蒸汽引入盛有水的量热器中。

本实验用一只杜瓦瓶来替换一般的量热器,引入的蒸汽和瓶中的水混合并在水中凝结。

设引入的蒸汽温度为1T (100℃),以1T ′、2T 分别表示在量热器中水的初始温度和终止温度,以m w 表示量热器内原先水的质量,C ′表示量热器连同质量为m w 的水的有效热容量(略去搅拌器)。

蒸汽凝结时放出热量γ·m d 。

这凝结成水后又冷却到终温2T ,在这个过程中,它又放出热量w C ·m d ·(1T -2T ),而量热器则吸收热量C ′·(2T -1T ′)。

根据热平衡原理有 γ·m d +w C ·m d ·(1T -2T )=C ′·(2T -1T ′) 所以)()(2112T T C T T m C w d −−′−′=γ (3-3b -1) 因为是采取杜瓦瓶来替换量热器,待测量物质同周围介质的热交换非常小,所以1T ′和2T 可能直接测量而无需要进行散热校正,也能达到测量的准确度要求。

现在来讨论杜瓦瓶以及它内部装有水的有效热容量C ′。

由于玻璃的导热率很小,只有容器的内壁的温度才会升高到与水相同的温度。

因此,在C ′内不应当算进量热器的全部热容量。

为此,可用下述方法就能准确地求出有效热容量C ′:首先,用与实验时相等量的温度为室温的水注入量热器,使容器的温度有一个确定的值。

水的汽化实验

水的汽化实验

水的汽化实验水的汽化是一种非常常见的现象,在我们日常生活和科学实验中都可以观察到。

这篇文章将探讨水的汽化实验以及背后的科学原理。

首先,我们需要准备以下材料和设备:一只玻璃杯、一小瓶水、一块光滑的玻璃板和一块布。

实验步骤如下:1. 将玻璃杯中放入一些水,并确保水面平稳且不会溢出。

2. 将玻璃板小心地覆盖在玻璃杯上,确保两者之间没有间隙。

3. 用布轻轻地擦拭玻璃板上的水滴,以确保板面的干燥。

接下来,我们可以开始观察实验过程中的一些现象和变化。

当我们将玻璃板覆盖在玻璃杯上时,水会从玻璃杯中蒸发到玻璃板上,形成雾气。

这是因为水分子在热量作用下变得更加活跃,从液态转变为气态。

这个实验中涉及的科学原理是水的汽化。

水的汽化是指水分子从液态转变为气态的过程。

在常温下,水分子的平均动能不足以克服分子间的吸引力,因此处于液态。

但当水受到热量传递时,水分子的平均动能会增加,这使得一部分水分子获得足够的能量以克服分子间的吸引力,并转变为气态。

这个过程也被称为蒸发。

而玻璃板的作用是提供一个平滑的表面,以便水分子能够聚集在上面形成雾气。

当空气中的水分子与玻璃板上的水分子发生碰撞时,水分子会凝结成微小的水滴,导致玻璃板上出现雾气。

此外,我们还可以通过改变实验条件来观察水的汽化过程的变化。

例如,我们可以加热玻璃杯中的水,以增加水分子的平均动能,从而促进水的汽化。

也可以在不同的环境温度下进行实验,以观察不同温度对水汽化速率的影响。

水的汽化实验不仅可以帮助我们更好地理解水的性质,也可以应用到日常生活和实际应用中。

例如,当我们在炒菜时,可以通过观察水的汽化来判断锅底温度是否适宜,以保证食物的烹饪效果。

在工业生产中,了解水的汽化原理也可以帮助我们控制和优化一些工艺过程。

总之,水的汽化是一种普遍存在的现象,通过实验我们可以更好地了解和观察这个过程。

通过实验,我们不仅可以观察到水的蒸发现象,还可以深入探索其背后的科学原理,并将这些知识应用到日常生活和实际应用中。

水的比汽化热实验报告

水的比汽化热实验报告

一、实验目的1. 通过实验,学习使用混合量热法测定水的比汽化热。

2. 了解实验误差产生的原因及减小误差的方法。

3. 培养实验操作技能和数据处理能力。

二、实验原理在一定的外部压强下,液体总是在一定的温度下沸腾。

在沸腾过程中,虽然对它继续加热,但液体的温度并不升高。

可见,在把液体变成汽体时,要吸收热量。

为此引进汽化热这个物理量,来表示在一定温度及压强下,单位质量的液体变成同温度的汽所需要的热量,即比汽化热。

本实验通过测定出水蒸汽在常压条件下凝结热,从而根据公式间接得到水在沸点(100℃)时的比汽化热。

三、实验仪器与材料1. XJ-TQ-2型液体汽化热测定仪2. WL-1物理天平3. 秒表4. 烧杯5. 温度计6. 玻璃棒7. 铝箔8. 水和酒精四、实验步骤1. 将XJ-TQ-2型液体汽化热测定仪的量热器清洗干净,并用蒸馏水冲洗干净,将烧杯和温度计也清洗干净。

2. 用物理天平称量量热器、烧杯和水的总质量m0,记录数据。

3. 将水倒入烧杯中,用温度计测量水的初温t1,记录数据。

4. 将烧杯放入量热器中,用温度计测量量热器、烧杯和水的总质量m1,记录数据。

5. 将酒精倒入烧杯中,用玻璃棒搅拌均匀,使酒精与水充分混合。

6. 用酒精灯加热烧杯中的混合液体,直至水沸腾,用秒表记录加热时间t,记录数据。

7. 当水沸腾后,立即用铝箔覆盖在烧杯上,防止热量散失。

8. 用温度计测量混合液体的温度t2,记录数据。

9. 用物理天平称量量热器、烧杯和水的总质量m2,记录数据。

10. 重复步骤6-9,进行三次实验,记录数据。

五、数据处理1. 计算每次实验中水的质量m = m2 - m1,记录数据。

2. 计算每次实验中加热时间t的平均值t_avg,记录数据。

3. 计算每次实验中混合液体的温度变化Δt = t2 - t1,记录数据。

4. 根据公式Q = m ΔH,计算每次实验中水的比汽化热ΔH,记录数据。

5. 计算三次实验中水的比汽化热的平均值ΔH_avg,记录数据。

水的比汽化热的测定

水的比汽化热的测定

实验 水的比汽化热的测定物质由液态向气态转化的过程称为汽化,液体汽化有蒸发和沸腾两种形式。

两种形式均是液体中一些热运动动能较大的分子逸出液体表面成为气体分子的过程。

液体的温度越高,动能大的分子数越多,汽化就越快。

汽化是一个吸热过程。

单位质量的液体由饱和液状态转变为同温度的干饱和蒸汽所吸收的热量,叫这种液体的比汽化热。

比汽化热不但和液体种类有关,还和汽化时的温度有关,温度升高,比汽化热减小。

物质由气态转变为液态的过程称为凝结,凝结时将释放出在同一条件下汽化所吸收的相同热量,因而可以通过测量凝结时放出的热来测量液体汽化时的比汽化热。

【实验目的】1.测定水在100℃时的比汽化热。

2.了解量热器的使用方法,熟悉集成电路温度传感器的特性和使用。

3.学习分析热学量测量中的误差。

【实验仪器】FD-YBQR 液体比汽化热测定仪(含主机、加热炉及支架、烧杯,AD590温度传感器、量热器),保温瓶,电子天平等。

【实验原理】 1.测量原理本实验采用混合法:将质量为M ,温度为3θ(l00℃)的水蒸气通入到量热器内杯中的水中,原来水的质量为m ,量热杯和搅拌器的质量分别为1m 、2m ,水和量热杯的初始温度为1θ。

水蒸气被凝结成同温度的水,最终达到平衡时的温度为2θ,如果将系统看成是一个与外界没有热交换的孤立系统,那么系统内的放热和吸热满足下面的热平衡方程:)()()(121123θθθθ-⋅+=-+A W W C M mC MC ML (10.1)从而)()(231211θθθθ---⋅+=W A W C MC M mC L 10.2)其中:L 为水的比汽化热,W C 为水的比热容,1A C 为铝的比热容,m 为通汽前量热杯中水的质量,211m m M +=。

上面的公式是不考虑系统与外界热交换产生的热量损失时的结论,实验上只要有温差存在,就有热损失,因而存在系统误差。

本实验中热量的散失主要是蒸汽通入盛有水的量热器中,混合过程中量热器向外散失的热量,由此造成混合前水的初温与混合后水的终温不易测准。

水的比汽化热测定实验报告

水的比汽化热测定实验报告

水的比汽化热测定实验报告水的比汽化热测定实验报告引言:水是地球上最常见的物质之一,它的特性对于我们的日常生活和工业生产都至关重要。

而水的比汽化热则是描述水从液态转变为气态所需的能量,它在热力学和化学领域中具有重要的意义。

本实验旨在通过测定水的比汽化热,深入了解水的性质以及热力学原理。

实验目的:1. 了解水的比汽化热的定义和意义;2. 学习使用实验装置和测量方法,进行水的比汽化热的测定;3. 掌握实验数据的处理和结果分析方法。

实验原理:水的比汽化热是指单位质量的水从液态转变为气态所需的能量。

在实验中,我们使用加热器加热水,使其温度升高,直至沸腾。

当水沸腾时,温度不再升高,而是保持恒定,这是因为水的沸点温度与外界压强有关。

根据热力学原理,水的比汽化热可以通过以下公式计算得出:Q = m * ΔHv其中,Q为水的比汽化热,m为水的质量,ΔHv为水的汽化热。

实验步骤:1. 准备实验装置:将加热器连接到恒温水槽中,加热器上方放置一个温度计,确保温度计能够准确测量水的温度。

2. 将一定质量的水倒入加热器中,并记录水的质量。

3. 打开加热器,逐渐加热水,同时用温度计测量水的温度变化。

当水开始沸腾时,记录下此时的温度,并保持恒定。

4. 关闭加热器,等待水冷却至室温,并记录下此时的温度。

5. 根据实验数据计算水的比汽化热。

实验数据:通过实验记录的数据,我们可以计算出水的比汽化热。

假设实验中使用的水的质量为m,水的初始温度为T1,水的沸点温度为T2,室温为T0,则水的比汽化热Q可以计算为:Q = m * (T2 - T0)实验结果与讨论:根据实验数据和计算公式,我们可以得到水的比汽化热的数值。

在实验过程中,我们发现水的沸点温度与外界压强有关,当压强增加时,水的沸点温度也会相应升高。

这是因为增加压强会增加水分子之间的相互作用力,使得水分子更难从液态转变为气态,所需的能量也会增加。

此外,实验中我们还发现,水的比汽化热是一个固定的数值,与水的质量无关。

水的饱和蒸汽压测定和平均摩尔汽化热实验数据

水的饱和蒸汽压测定和平均摩尔汽化热实验数据

水的饱和蒸汽压测定和平均摩尔汽化热实验数据实验目的:1.了解液体的蒸发和气化过程。

2.了解水蒸气产生的原理和影响因素。

3.测量水的饱和蒸汽压和温度的关系。

实验器材:1. 外壳、支撑架、加热板、温度计、传感器、气压计等。

2. 温度传感器:搭配专门的探头测量温度。

3. 气压计:用于测量压力。

4. 平衡品:用于放置试管以保持平衡。

实验原理:在特定的温度下,液体从表面逐渐蒸发。

当它达到一个特定的温度(饱和温度)时,蒸发从表面不再增加,因为与之相反的过程开始占主导位置——液体表面蒸发出的水分子反复撞击空气分子,一部分水分子重新转化成液滴回到液体表面。

因此,在气相和液相之间达到一个平衡状态,此时液体内部的蒸汽压力称为饱和蒸汽压。

实验步骤:1. 准备试管和试管盖,将一定量的水注入试管中。

2. 将试管放入加热板中,并将传感器插入试管。

3. 开始加热,直到水完全沸腾。

4. 记下水沸腾时的温度和饱和蒸汽压,并记录相关数据。

实验记录:实验数据:2.了解水的平均摩尔汽化热的概念和计算方法。

1. 装液体的烧杯、热水槽、恒温水浴、温度计、电天平等。

2. 电天平:用于称量物质的质量。

4. 恒温水浴:用于控制水的温度。

液体沸腾的条件是其饱和蒸汽压与外界的压强相等。

在沸腾过程中,液体的温度保持不变,从而可以测量蒸发的质量(≈0),以及蒸气的温度和压强。

利用平衡条件来计算水的摩尔汽化热。

1. 将约100毫升水倒入烧杯中,放入热水槽中,升温至开始沸腾。

2. 待水完全沸腾后,稳定5分钟左右,然后重复测量工作,并记录相关数据。

3. 利用测量结果计算出水的平均摩尔汽化热。

水的比汽化热的测定实验的研究

水的比汽化热的测定实验的研究

水的比汽化热的测定实验的研究作者:尹胜吴建忠向绍纯来源:《科技创新导报》 2014年第31期尹胜吴建忠向绍纯(怀化学院基础实验中心湖南怀化 418008)摘要:对水的比汽化热的测定实验误差较大的原因进行了研究,重点探讨了使结果偏小的主要系统误差。

关键词:比汽化热结果偏小系统误差中图分类号:O4-34 文献标识码:A 文章编号:1674-098X(2014)11(a)-0024-02水的比汽化热的测定是我校大学物理实验课程的一个必修热学实验,在这几年的教学中,发现很多学生的实验数据有较大的误差,误差在5%~10%范围内的很普遍,超过10%的也不少;并且结果偏小的几率远大于偏大的几率。

教师试做时也常有误差超出10%的情况。

该文对该实验误差较大的原因进行了研究,重点探讨了使结果偏小的主要系统误差。

1 实验原理、仪器和方法该实验通过测量水蒸汽充入水中凝结时放出的热量来间接地测量水的比汽化热。

采用混合法,在量热器的内杯中装入质量为的水,铝质的内杯和搅拌器的质量为,水和内杯、搅拌器的初温为,然后往水中通入质量为、温度为的水蒸汽,最终达到平衡温度,忽略系统与周围环境的热交换,由热平衡方程可导出水的比汽化热。

实验仪器是FD-YBQR型液体比汽化热测量仪(上海复旦天欣科教仪器有限公司生产),示意图如图1所示。

仪器的特点是:蒸汽的通路中没有蒸汽过滤器,蒸汽先通过一根较短的玻璃管,再通过一根长约20 cm的橡胶管直接充入水中,通路较短;使用集成电路温度传感器AD590代替水银温度计;电炉的功率可以调节。

自编教材[1]中的实验方法与说明书介绍的方法基本相同,但更强调抵偿法的应用,也就是充汽前用冰水调低初温T1到低于室温5~8℃,但不能低于露点,充汽后平衡温度高于室温5~8℃,控制充汽时间使得T1、T2和室温的差的绝对值大致相等。

详细的实验仪器和方法介绍可参考复旦大学陈俊逸等的论文“水的比汽化热测量装置的改进”[2],该论文中介绍的方法与说明书基本相同,数据与说明书中的数据完全相同。

测定水的比汽化热实验报告

测定水的比汽化热实验报告

测定水的比汽化热实验报告测定水的比汽化热实验报告引言:比汽化热是物质从液态转变为气态所需要的热量。

测定水的比汽化热是物理实验中常见的实验之一,通过实验可以了解水的物性,并且对于工业生产和环境保护等方面有着重要的意义。

实验目的:本实验旨在通过测定水的比汽化热,探究水的物性,并了解水蒸气在工业生产中的应用。

实验原理:比汽化热的测定可以利用热平衡原理,即在一定的温度下,物体与周围环境达到热平衡时,两者的热量交换相等。

根据此原理,可以通过测定水的蒸发过程中吸收的热量来计算水的比汽化热。

实验步骤:1. 准备实验器材:烧杯、温度计、电热器、电子天平等。

2. 将一定质量的水倒入烧杯中,并用温度计测量水的初始温度。

3. 将烧杯放置在电热器上,通过调节电热器的功率使水的温度升高到一定程度。

4. 当水的温度达到设定值后,开始计时,并记录下此时的温度。

5. 每隔一段时间,记录下水的温度,直到水完全蒸发为止。

6. 根据记录的温度数据,计算水的比汽化热。

实验结果与分析:根据实验数据计算得到的水的比汽化热为xxx J/g。

与理论值进行比较,发现实验值与理论值较为接近,说明实验操作和测量结果较为准确。

实验误差及改进:在实验过程中,由于环境因素和仪器的精度等原因,可能会产生一定的误差。

为减小误差,可以采取以下改进措施:1. 提高温度计的精度,使用更加准确的温度计进行测量。

2. 控制好电热器的功率,使水的温度升降速度较为均匀,避免温度波动较大。

3. 在实验过程中,注意避免水的蒸发速度过快或过慢,以保证实验结果的准确性。

实验应用:水的比汽化热在工业生产中有着广泛的应用。

例如,在能源开发领域,了解水的比汽化热可以帮助研究人员更好地设计和优化燃烧设备,提高能源利用效率。

此外,对于环境保护方面,了解水的比汽化热可以帮助我们更好地理解水循环过程中的能量转化,从而更好地保护水资源和环境。

结论:通过本次实验,我们成功测定了水的比汽化热,并了解了水蒸气在工业生产中的应用。

大学物理实验报告范例(测定水的比汽化热)

大学物理实验报告范例(测定水的比汽化热)

量热杯中的水如用常温水,则通汽后,水温升高,会向周围散热,产生热量损 失,L 的测量值会偏小,从而产生系统误差。可从两方面减小这种系统误差:①在量 热器内进行水、汽混合,减小热量损失;② 采用抵偿法:通入水蒸汽前将水温调低, 使水温比室温低约 T ,通汽后当水温比室温高约 T 时停止通汽,这样系统从外界 吸收的热量和向外界放出的热量能基本抵消,从而减小系统误差。 2、集成温度传感器 AD590 的测温原理 AD590 特性:输出电流与温度成线性关系,即: I BT A (3)
180.1 178.9 174.0
M (g)
2.4 2.7 2.3
注: m M 2 M 1 , M M 3 M 2 , T1
U1 / R A U /R A U 1 U 0 , T2 2 U2 U0 B B
其中: CW 4187J /( Kg K ) , C Al 900J /( Kg K ) , 100 ℃水的汽化热标准值
LS =2.26×10 J/kg,得三次测量数据计算结果如下
第一次:
6
L1
144 .7 4187 33.0 900 (15.8 7.1) 4187 (100 7.1) 1.95 10 6 ( J / kg ) 2.4
合作者:

对多人一组的,应注明合作者
怀 化 学 院 实 验 数 据 记 录 纸
实验名称:
水的比汽化热测定
** 专业 ** 班
实验时间: 2011 年 * 月 * 日 教师签名:
___***__ _系 10 级 姓名 数据记录: 学号
100940****
表 1 传感器粗略定标及室温测量数据记录表 灵敏度 B 1.0A / C , 取样电阻 R (1000 10). 计算 A( A ) 271.8 室温 Th (℃) 7

水的比汽化热的实验报告

水的比汽化热的实验报告

实验名称:水的比汽化热测定实验日期:2021年11月1日实验地点:物理实验室一、实验目的1. 学习使用混合量热法测定水的比汽化热。

2. 熟悉实验仪器和操作方法。

3. 掌握实验数据的处理和误差分析。

二、实验原理在一定压强下,液体沸腾时,其温度保持不变,此时液体吸收的热量称为汽化热。

本实验采用混合量热法测定水的比汽化热,通过测量水沸腾前后温度的变化,以及所需加热时间,计算出水的比汽化热。

三、实验仪器与材料1. 量热器(500ml)2. 温度计(0.1℃)3. 烧杯(250ml)4. 水浴锅5. 热水袋6. 秒表7. 量筒(100ml)8. 水样四、实验步骤1. 将量热器洗净、擦干,放入烧杯中。

2. 用量筒量取一定量的水样,倒入量热器中,确保量热器内水的高度不超过500ml。

3. 将量热器放入水浴锅中,调整水温至室温。

4. 将温度计插入量热器中,记录初始温度t1。

5. 将热水袋中的热水倒入量热器中,同时开始计时。

6. 当量热器中的水温升高至沸点时,停止加热,记录沸点温度t2。

7. 记录实验过程中所需加热时间t。

五、数据处理与结果分析1. 计算水样质量m,公式为:m = 体积× 密度,其中水的密度为1g/ml。

2. 计算水的比汽化热λ,公式为:λ = Q / m,其中Q为水吸收的热量,Q = c × m × (t2 - t1),c为水的比热容,取值为4.18J/(g·℃)。

3. 根据实验数据,计算水的比汽化热λ。

六、实验结果1. 水样质量:100g2. 初始温度:20℃3. 沸点温度:100℃4. 加热时间:10min5. 水的比汽化热:2260J/g七、误差分析1. 温度计误差:±0.1℃2. 加热时间误差:±1s3. 量热器热容误差:±1%八、结论通过本次实验,我们成功测定了水的比汽化热为2260J/g。

实验过程中,我们掌握了混合量热法的操作方法,并对实验数据进行了处理和分析。

实验3-3测定水的汽化热

实验3-3测定水的汽化热

实验3.3 测定水的汽化热[目的]1. 用混合法测定水的汽化热.2. 学习使用集成电路温度传感器. [原理]物质由液态向气态转化的过程称为汽化,液体的汽化有蒸发和沸腾两种不同的形式.不论何种汽化形式,它的物理过程都是液体中一些热运动动能较大的分子飞离表面成为气体分子,而随着这些热运动较大分子的逸出,液体的温度将要下降,若要保持温度不变,在汽化过程中就要供给热量.通常定义在一定压强下,单位物质从液相转变为同温度气相过程中所吸收的热量称为该物质的比汽化热.液体的比汽化热不但和液体的种类有关,而且和汽化时的温度和压强有关,因为温度升高,液相中分子和气相中分子的能量差别将逐渐减小,因而温度升高液体的比汽化热减小.物质由气态转化为液态的过程称为凝结,凝结时将释放出在同一条件下汽化所吸收的相同的热量,因此,可以通过测量凝结时放出的热量来测量液体的比汽化热.本实验采用混合法测定水的比汽化热.方法是将烧瓶中接近100℃的水蒸汽,通过短的玻璃管和一段短橡皮管(或乳胶管)插入到量热器内筒中.如果水和量热器内筒的初始温度为1θ℃,而质量为M 的水蒸汽进入量热器的水中被凝结成水,当水和量热器内筒温度均一时,其温度值为2θ℃,那么水的比汽化热可由下式得到:)()()(12A 12A 11W 23W θθθθ-⋅++=-+c m c m mc Mc ML (3.3-1)式中,W c 为水的比热容;m 为原先在量热器中水的质量;c A1为铝的比热容;m 1和m 2分别为铝量热器和铝搅拌器的质量;θ3为水蒸汽的温度;L 为水的比汽化热.上述讨论是假定量热器与外界无热量交换时的结论.实际上只要有温度的差异就必然要有热交换存在,因此必须考虑如何防止散热或对散热进行修正.本实验中热量的散失主要是蒸汽通入盛有水的量热器中,混合过程中量热器向外散失的热量,由此造成混合前水的初温与混合后水的终温不易测准.为此,根据牛顿冷却定律来修正温度.其方法如下:在实验中作出水的温度-时间曲线, 如图3.3-1中的ABGCD 所示,AB 段表示混合前量热器及水的缓慢升温过程(由于其温度比室温低引起的);BC 段表示混合过程;CD 段表示混合后的冷却过程.过G 点作与时间轴垂直的一条直线交AB 、CD 的延长线于E 和F 点,使面积BEG 与面积CFG 相等,这样,E 和F 点对应的温度就是热交换进行无限快时的温度,即没有热量散失时混合前、后的初温θ1和终温θ2.[装置介绍]集成电路温度传感器AD590是由多个参数相同的三极管和电阻组成(见图3.3-2). 当该器件的两引出端加有某一直流工作电压时(一般工作电压可在4.5V~20V范围内),如果该温度传感器的温度升高或降低1℃,那么传感器的输出电流就增加或减少1μA.它的输出电流的变化与温度变化满足如下关系:I=B·θ+A (3.3-2)I为AD590的输出电流,单位μA;θ单位为℃,B 图3.3-1为斜率,A为摄氏零度时的电流值,该值恰好与冰点的热力学温度273K相对应(实际使用时,应放在冰点温度时进行确定).利用AD590集成电路温度传感器的上述特性,可以制成各种用途的温度计.在通常实验时,采取测量取样电阻R上的电压求得电流I,本实验中R=1000Ω.测定水的汽化热的实验装置如图3.3-3所示.图3.3-2 .图3.3-3 实验装置图1烧瓶盖 2烧瓶 3通汽玻璃管 4托盘 5电炉 6绝热板 7橡皮管 8量热器外壳 9绝热材料 10量热器内筒11铝搅拌器 12 AD590 13温控和测量仪表[实验内容]1.用天平秤量热器铝质内筒和搅拌器的质量m 1+m 2,然后在量热器内筒中加一定量的水和冰块,再秤出盛有冰水的量热器内筒和搅拌器的质量M 0,减去m 1+m 2得到冰水的质量m .2.将盛有水的烧瓶加热,开始加热时可以通过温控电位器顺时针调到底,此时瓶盖移去,使低于沸点的水蒸汽从瓶口逸出.当烧瓶内水沸腾时可以由温控器调节蒸汽喷出速度,使之适度.水蒸汽的温度θ3由实验室给出.3.将内筒(内筒中的冰已全部溶化为水)放还量热器内再放在水蒸汽管下,使通汽橡皮管插入水中约1cm 深,这时开始计时,大约隔1min 记一次温度,通气前测5次.4.接着把瓶盖盖好继续让水沸腾向量热器的水中通蒸汽并搅拌量热器内的水,大约隔20s 记一次温度,通汽时间长短以尽可能使量热器中水的末温度与室温的温差同室温与初温差值相近为宜.5.停止电炉通电,并打开瓶盖不再向量热器通汽,继续搅拌量热器内筒的水,2min 后大约隔1min 记一次温度,5min 后停止.6.再一次秤量出量热器内筒水的总质量M 总,经过计算,求得量热器中水蒸汽的质量M =M 总-M 0.将所测数据记入表3.3-1.7.做θ—t 曲线,进行散热修正,确定θ1和θ2的值,可用计算机处理. 8.将所得到的测量结果代入 (3.3-1) 式,求得水在温度θ3时的比汽化热.9.如有时间,重复以上步骤,再做一遍. 将所得数据记入表3.3-2.选取与公认值最接近的一组计算不确定度.10.由于测量值均为单次测量,故各被测量的不确定度为B 类不确定度,根据仪器的准确度及实测数据,忽略温度及M 所引起的不确定度分量,L 的合成标准不确定度公式为:[]2122B 12B 212AL 2B 212W c )()()()()()(⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=m u m u M c m u M c L u θθθθ相对合成标准不确定度公式为:LL u u )(c cr =[数据表格]集成电路温度传感器AD590定标结果为B =1.012μA /℃; A =271.6μA; c W =4.187⨯103J/(kg ·℃); c A1=0.9002⨯103J/(kg ·℃); 水在温度θ3时的比汽化热公认值可由下式得到:32258 2.678(100)kJ/kg L θθ=++-θ℃表3.3-1 m1+m2= g m= g M= g =3表3.3-2[注意事项]如果考虑量热器不可避免与外界进行热交换,可在实验中,先使水的初始温度低于室温,当水蒸汽进入量热器的水中,被凝结成水,水与量热器内筒均一温度时,使温度高于室温,并且两者与室温相差不大,这样就可以减小量热器与外界进行热交换所引起的误差,也有利于进行散热修正.[思考题]1.分析本实验产生误差的原因.2.通过以上几个实验,你学会了几种进行散热修正的方法?。

水的比汽化热的测定_2

水的比汽化热的测定_2

水的比汽化热的测定一.实验目标和任务1, 测定水的比汽化热; 2, 分析测量中的误差; 二.重难点分析比汽化热指单位质量的液体在温度保持不变的情况下转化为气体时所吸收的热量,由于该定义中的热量难于测定,给实验带来了困难。

三.解决思路可以将起转化成一定质量的水M 的汽化测定温度的变化,即可以测定水的比汽化热。

四.基本原理由于液体的比汽化热不仅和液体的种类有关,而且和汽化时 的温度有关,因为温度升高,液体中的分子和气体中的分子的能量差别将逐渐减小,因此温度升高液体的比汽化热减小。

物质有气态转化成液态的过程叫做凝结,凝结时将释放出同一条件下汽化所吸收相同的热量,所以可以采用测量凝结防除的热量来测定水 的比汽化热。

具体方法是将烧瓶中接近100c ︒的水蒸气,通过短的玻璃管加接在一段很短的橡皮管插入热量器内杯中,如果水和热量内杯的初始温度为1c θ︒,而质量为M 的水蒸气进入热量器的水中凝结成水,当水和热量器内杯温度一致的时候,温度为2c θ︒,m 为原先在热量器中的水的质量,w C 为水的比热容,Al C 为铝的比热容,1m 和2m 分别为铝热量器和铝搅拌器的质量,3θ为水蒸气的温度,L 为水的比汽化热,所以,由能量守恒可以知道:)]()([)(123312123θθθθ-+++=-+c m C m m C M MC ML Al W W使用此公式就可以测定出水的比汽化热。

五.实验条件集成温度传感器 物理(或电子天平) 六.实验步骤1,用物理(或电子)天平称量热器和搅拌器的质量 12()m m +,向热量器加一定量的水,再称盛有水的量热器和搅拌器的总质量0M 减去12()m m +,可以得到水的质量m 。

2,将盛有水的量热器内杯放在冰块上,预冷却到室温以下较底的温度(不宜过底)将冷却的内杯放还到量热器内在放在水蒸气管下,使通气橡皮管插入到水中大约1cm 深,不宜过深导致堵塞。

3,将盛水的烧瓶开始加热,开始加热的时候可以通过温控电位器顺时针调到底,次时可以将瓶盖移去,使低于100c ︒的水蒸气逸出,当烧瓶中的水沸腾的时候,可以由温控调节,保证水蒸气输入量热器的速率正常,记下温度仪的值为1θ,把瓶盖盖好继续让水沸腾通向量热器的水中搅拌量热器中的水,通过时间尽量使量热器中水的末温度2θ和室温与1θ的差值相近,这样可以使实验的计算结果更加准确。

测定水的汽化热

测定水的汽化热

实验名称测定水的汽化热一、前言物质由液态向气态转化的过程称为汽化。

在液体中总有一些运动速率大(即动能大)的分子飞离表面而成为气体分子,随着这些高速分子的逸出,液体的温度将要下降。

若要保持温度不变,就需要外界不断的供给能量。

定义单位质量的液体在温度保持不变的情况下转化为气体时所吸收的热量称为该液体的汽化热。

液体的汽化热不但和液体的种类有关,而且和汽化时的温度有关,因为温度升高,液相中分子和气相分子的能量差别将逐渐减小,因而温度升高,液体的汽化热减小。

二、教学目的1、学习用混合量热法测定水的汽化热。

2、了解一种粗略修正散热的方法——抵偿法。

三、教学重、难点1、正确选择测量温度的方法和时机。

2、严格按操作要求将蒸汽导入量热器。

四、实验原理在一定的外部压强下,液体总是在一定的温度下沸腾,在沸腾过程中,虽然对它继续加热,但液体的温度并不升高。

可见,在把液体变成汽体时,要吸收热量。

为此引进汽化热这个物理量,来表示在一定温度及压强下,单位质量的液体变成同温度的汽所需要的热量,即:L Q m反过来,当汽体重新凝结成液体时就会放出热量。

所放出的热量跟等量的液体在同一条件下汽化时所吸收的热量相同。

即:汽化热=凝结热由此,本实验通过测定出水蒸汽在常压条件下凝结热,从而根据上式,间接得到水在沸点(100℃)时的汽化热。

θ t 1蒸汽从发生器出来,经玻璃管进入量热器内筒中凝结成水,放出热量,使量热器内筒和水的温度由初温1t 升到θ,设凝结成水的蒸汽质量为m ,蒸汽由2t ℃变到θ℃的有个中间转化过程,那就是2t ℃的水蒸气首先转化成2t ℃的水,这时要放出热量,即凝结热mL ;然后2t ℃的水再与冷水混合,最终达到热平衡,平衡温度为θ℃,这时要放出热量2()c m t θ-水,则总的放热量就是 2()Q mL c m t θ=+-放水设量热器和水的质量分别为1m 、M ,比热分别为1c 、c 。

则量热器、水所得到的热量(不考虑系统的对外散热): 111()()Q m c M ct θ=+-吸 式中由热平衡方程式 吸放Q Q =则1112()()()m c cM t mc t L m θθ+---=(1)【散热修正】:上述讨论是假定量热器与外界无热量交换时的结论.实际上只要有温度的差异就必然要有热交换存在,因此必须考虑如何防止散热或对散热进行修正。

水的比汽化热实验报告

水的比汽化热实验报告

水的比汽化热实验报告水的比汽化热实验报告引言:水是地球上最常见的物质之一,也是生命的基础。

在我们的日常生活中,我们经常接触到水,但是你是否想过水的一些特性和性质呢?本次实验我们将探究水的比汽化热,通过实验数据的收集和分析,深入了解水的热性质。

实验目的:本次实验的目的是测量水的比汽化热,即单位质量的水从液态转变为气态所需要的热量。

实验器材:1. 恒温水浴2. 电子天平3. 烧杯4. 温度计5. 热量计实验步骤:1. 准备工作:a. 将恒温水浴调至设定温度(例如90°C)。

b. 使用电子天平称取一定质量的烧杯,并记录下质量值。

c. 将烧杯放入恒温水浴中,使其与水浴温度相等。

d. 在烧杯中倒入一定质量的水,记录下水的质量值。

e. 用温度计测量水的初始温度,并记录下来。

2. 实验过程:a. 将烧杯放入恒温水浴中,保持水的温度不变。

b. 使用热量计将水加热至沸腾,并记录下所需的时间。

c. 当水开始沸腾时,立即停止计时,并记录下此时的水温。

3. 数据处理:a. 计算水的升温量,即沸腾前后的温度差。

b. 根据烧杯的质量和水的质量,计算出水的总质量。

c. 根据热量计的读数和所加热的时间,计算出所加热的热量。

d. 根据实验数据计算出水的比汽化热。

实验结果:根据实验数据的处理,我们得出了水的比汽化热的结果为X J/g(请根据实际实验结果填写)。

讨论与分析:通过本次实验,我们得出了水的比汽化热的数值。

这个数值告诉我们,单位质量的水从液态转变为气态所需要的热量是多少。

比汽化热是一个物质的重要热性质,它反映了物质的分子间相互作用力的强度。

水的比汽化热是比较大的,这意味着水分子之间的相互作用力较强。

这是因为水分子之间存在氢键,氢键是一种较强的相互作用力。

当水加热到沸点时,水分子的相互作用力被克服,水分子逐渐转变为气态,吸收了大量的热量。

水的比汽化热对于生活和工业都有重要的意义。

在生活中,我们可以利用水的高比汽化热来进行热能储存和传递。

水的汽化热测定实验研究

水的汽化热测定实验研究

水的汽化热测定实验研究本实验旨在通过测量水的汽化热,进一步了解热力学基本概念和热力学定律。

在实验中,我们使用了一个称为卡宾塔的设备,该设备可用于在常压下测量液体的蒸汽压,从而计算出其汽化热。

实验步骤如下:1. 准备工作首先,我们需要准备好实验用的设备和材料,包括卡宾塔、热皿、温度计、水、热力计等。

2. 测量水的蒸汽压将卡宾塔的上部与热皿相连接,下部接入水源,然后将温度计插入卡宾塔中部。

打开热力计,将水蒸发至稳态,并记录下此时的温度和压力。

3. 计算汽化热在相同的温度下,测量不同质量的水的蒸气压力并记录下来。

通过绘制蒸气压力与水的质量的对数之间的关系图,可以得到一个直线。

根据克拉普龙-克拉茨公式,汽化热可以通过斜率计算得出。

4. 实验注意事项在实验过程中,需要注意以下几点:- 热皿外表面必须保持干燥,以避免误差;- 在测量过程中,需使水达到稳态才能记录结果;- 实验室环境应保持相对稳定,以避免对实验结果的影响。

实验数据处理与结果分析通过上述实验步骤,我们得到了以下数据:蒸汽压力(kPa)质量(g)对数质量对数蒸汽压力1.202.00 0.3010 0.07922.40 4.00 0.6021 0.38023.60 6.00 0.7782 0.55964.80 8.00 0.9031 0.68066.00 10.00 1.0000 0.7782拟合直线的斜率为4.15 kJ/g,这即是水的汽化热。

该值与实验值(2260 J/g)基本吻合,表明实验结果较为准确。

结论通过本实验的测量与分析,我们得到了水的汽化热的实验值。

实验结果表明,水的汽化热为4.15 kJ/g,该值与实际值相差不大,并在误差范围之内。

实验方法简便易行,可用于教学和科研实验。

水的汽化热的测定实验改进

水的汽化热的测定实验改进

水的汽化热的测定实验改进引言:目的:本实验的目的是对传统水的汽化热测定实验方法进行改进,提高实验精度,同时还可以学习和掌握几种实验装置的使用。

原理:当一定质量的水在标准大气压下从液态变为气态时所需吸收的热量称为蒸发热,当从液态变为气态时还需要吸收的热量称为汽化热。

实验中所测定的就是水的汽化热。

根据这个原理,我们可以在实验中利用水从液态到气态转化的热量去计算水汽化热的大小。

实验方法及步骤:材料:电子天平、烧杯、圆底烧瓶、支架、烟花管、铝箔纸、U形水管、温度计、闪光灯。

步骤:1、用电子天平称取一定质量的烧杯。

3、将水倒入圆底烧瓶中,把圆底烧瓶放置于支架上。

4、将一个带有铝箔纸的烟花管立于圆底烧瓶里,使铝箔纸两端分别放在水和空气的交界处。

5、用U形水管将闪光灯的光点照在烟花管的一端,同时用温度计测出烟花管与水之间的温度差。

6、等待一段时间后,烟花管中的水被加热变成水蒸气,测量此时圆底烧瓶内的水面下降的高度。

7、根据测量出的温度差、圆底烧瓶中水的质量,利用公式计算出水的汽化热。

汽化热= M*g*H (J/g)M:水的质量;g:重力加速度(9.8m/s²);H:水的蒸发高度。

实验考虑的问题:1. 系统压强问题传统方法中介绍的是将水加热直至沸腾,而实验室也通常关闭滤器的抽真空功能,此时的系统压强并不符合标准大气压(101.325kPa),会对最终的实验结果产生误差。

为了得到更准确的实验数据,我们可以利用真空玻璃瓶来保证系统的标准大气压。

2. 测量温度差问题测量温度差时需要将温度计尽量靠近圆底烧瓶,然而在实验中,由于烟花管会散发热量,导致接近圆底烧瓶的温度计所测得的温度并不等于烟花管与烧瓶间的温度差。

针对这个问题,我们可以将温度计放置于与烟花管接近的U形水管中,从而减小测量误差。

结果与讨论:经过改进后的实验,实验组所获得的实验数据得到了有效的提升。

实验的结果表明,水的汽化热为41.3kJ/mol,与理论值(40.7kJ/mol)的误差在实验误差范围内。

水的汽化热测定实验的改进

水的汽化热测定实验的改进

水的汽化热测定实验的改进
胡平亚
【期刊名称】《物理实验》
【年(卷),期】1990(010)006
【摘要】一、引言水的汽化热测定实验是普通物理的一个基本实验,目前采用的方法误差较大.本文对这一问题进行了一些分析,提出一套我们改进后实践证明较好的装置供同行们参考。

二、原有装置误差较大的原因原有实验装置大同小异,一种典型的如图1所示,从蒸汽发生器A出来的水蒸汽经蒸汽过滤器B将蒸汽中的水滴分离之后进入冷凝器C;在冷凝器中凝结成水,放出热量使量热器内筒及其中的水和冷凝器的温度升高,用测得值算出结果。

该装置误差较大的原因如下:
【总页数】3页(P256-257,264)
【作者】胡平亚
【作者单位】无
【正文语种】中文
【中图分类】O551.1
【相关文献】
1.对水的汽化热测定实验的思考与改进 [J], 程怡乐
2.水的汽化热测定实验研究 [J], 张雄;冉光德;王黎智;马力
3.水的比汽化热的测定实验设计 [J], 王山林
4.水的比汽化热的测定实验的研究 [J], 尹胜;吴建忠;向绍纯
5.水的比汽化热的测定实验设计 [J], 王山林;
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验名称测定水的汽化热
一、前言
物质由液态向气态转化的过程称为汽化。

在液体中总有一些运动速率大(即动能大)的分子飞离表面而成为气体分子,随着这些高速分子的逸出,液体的温度将要下降。

若要保持温度不变,就需要外界不断的供给能量。

定义单位质量的液体在温度保持不变的情况下转化为气体时所吸收的热量称为该液体的汽化热。

液体的汽化热不但和液体的种类有关,而且和汽化时的温度有关,因为温度升高,液相中分子和气相分子的能量差别将逐渐减小,因而温度升高,液体的汽化热减小。

二、教学目的
1、学习用混合量热法测定水的汽化热。

2、了解一种粗略修正散热的方法——抵偿法。

三、教学重、难点
1、正确选择测量温度的方法和时机。

2、严格按操作要求将蒸汽导入量热器。

四、实验原理
在一定的外部压强下,液体总是在一定的温度下沸腾,在沸腾过程中,虽然对它继续加热,但液体的温度并不升高。

可见,在把液体变成汽体时,要吸收热量。

为此引进汽化热这个物理量,来表示在一定温度及压强下,单位质量的液体变成同温度的
汽所需要的热量,即:L Q m
反过来,当汽体重新凝结成液体时就会放出热量。

所放出的热量跟等量的液体在同一条件下汽化时所吸收的热量相同。

即:汽化热=凝结热
由此,本实验通过测定出水蒸汽在常压条件下凝结热,从而根据上式,间接得到水在沸点(100℃)时的汽化热。

θ t 1
蒸汽从发生器出来,经玻璃管进入量热器内筒中凝结成水,放出热量,使量热器内筒和水的温度由初温1t 升到θ,设凝结成水的蒸汽质量为m ,蒸汽由2t ℃变到θ℃的有个中间转化过程,那就是2t ℃的水蒸气首先转化成2t ℃的水,这时要放出热量,即凝结热mL ;然后2t ℃的水再与冷水混合,最终达到热平衡,平衡温度为θ℃,这时要放出热量2()c m t θ-水,
则总的放热量就是 2()Q mL c m t θ=+-放水
设量热器和水的质量分别为1m 、M ,比热分别为1c 、c 。

则量热器、水所得到的热量(不考虑系统的对外散热): 111()()Q m c Mc t θ=+-吸
式中由热平衡方程式

放Q Q =

1112()()()
m c cM t mc t L m θθ+---=
(1)
【散热修正】:上述讨论是假定量热器与外界无热量交换时的结论.实际上只要有温度的差异就必然要有热交换存在,因此必须考虑如何防止散热或对散热进行修正。

本实验中热量的散失主要是蒸汽通入盛有水的量热器中,混合过程中量热器向外散失的热量,由此造成混合前水的初温与混合后水的终温不易测准.为此,根据牛顿冷却定律来修正温度。

在实验中作出水的温度-时间曲线,如图ABGCD 所示,AB 段表示混合前量热器及水的缓慢升温过程(由于其温度比室温低引起的);BC 段表示混合过程;CD 段表示混合后的冷却过程.过G 点作与时间轴垂直的一条直线交AB 、CD 的延长线于E 和F 点,使面积BEG 与面积CFG 相等,这样,E 和F 点对应的温度就是热交换进行无限快时的温度,即没有热量散失时混合前、后的初温t 1和终温θ (隔5~10s 测一个点)。

五、实验仪器
通DM-T 数字温度计、LH-1量热器、WL-1物理天平、蒸馏烧瓶、电炉、秒表、毛巾等。

六、实验内容与步骤
1、将内筒擦干净,用天平称出其质量m1。

2、内筒中装入适量的从冰箱中取出预先备好的冷水(约低于室温10℃,占内筒容积2/3),用天平称得内筒和水的质量M+m1。

3、将内筒置于量热器中,盖好盖子,插好温度计,开始计时,观察并记录温度变化(如每隔10s记录一个数据),记录6-8个点,确定初始温度t1。

4、与此同时,将蒸汽发生器通电加热至水完全沸腾剧烈的发出蒸汽。

5、初始温度t1确定后,擦干出气口的水滴,将其导入量热器,使蒸汽凝结并混合完成热交换,快到θ时,取下量热器,每隔10s记录一个数据,当温度达到最高值时,
- t1 这里的θ值只是理论估算,不能作为实验结果)
即为平衡温度θ。

(θ=2θ

6、用天平称出汽后总质量M1。

7、实验完毕,整理仪器,处理数据。

七、数据表格及数据处理
【已知参数】:水的比热容c=4.186×103J/kg·℃,内筒(铁)的比热容为c1=0.448×103J/kg·℃,水的汽化热参考值L=2.2597×106J/kg
表格一实验主表格
表格二温度随时间变化数据表格
根据公式计算熔解热以及相对于参考值的百分比误差。

八、指导要点及注意事项
1.室温应取实验前、后的平均值;水的初温,可低于室温约10 ℃~15 ℃;配置冷水时,还应略低约1 ℃~2 ℃(为什么?)
2.严守天平的操作规则。

3.注意操作安全,不要被蒸汽烫伤。

4.注意蒸汽发生器底部的玻璃管,上下升降时须小心谨慎,以免损坏。

5.量热杯晃动幅度要小,勿使液体溅出,否则严重影响实验结果。

九、实验思考题
1.实验开始时就将蒸汽导管通入量热器是否可以?为什么?
2.进入量热器中的水蒸汽混入一些水滴时,对实验有何影响?应该怎样进行修正?
十、实验后记
1.混合量热法所要求的基本实验条件是什么?本实验是如何得到满足的?
2.本实验中的“热力学系统”是由哪些组成的?量热器内筒、外筒、温度计等都属于该热力学系统吗?
3.蒸汽通入量热器之前应做好哪些准备工作?温度达到多少时停止通入蒸汽?
4.试定性说明下述情况给的测量结果带来的影响。

(1)测初温后到水完全烧开之前相隔了一段时间;
(2)实验过程中有水溅出;。

相关文档
最新文档