第7章__频率调制与解调2
高频电路原理和分析课件第7章_频率调制和解调
第7章 角度调制与解调
7.1 角度调制信号分析 7.2 调频器与调频方法 7.3 调频电路 7.4 鉴频器与鉴频方法 7.5 鉴频电路 7.6 调频收发信机及附属电路 7.7 调频多重广播
第7章 角度调制与解调
概述
在无线通信中,频率调制和相位调制是又一类重要的 调制方式。
1、频率调制又称调频(FM)——模拟信号调制,它是使 高频振荡信号的频率按调制信号的规律变化(瞬时频率变化 的大小与调制信号成线性关系),而振幅保持恒定的一种调 制方式。调频信号的解调称为鉴频或频率检波。
些边频对称地分布在载频两边,其幅度取决于调制指数mf ;
(2) 由于mf=Δ ωm/Ω=Δ fm/F,且Δ ωm=kfUΩ,因此调制指 数mf既取决于最大频偏,又取决于调制信号频率F。 (3) 由于相邻两根谱线的间隔为调制信号频率,因此调制信 号频率越大,谱线间隔越大,在相同的调制指数mf时,最 大频偏也越大。
(7-3)
第7章 角度调制与解调
式中, m
m f 为调频指数。FM波的表示式为
u F M ( t ) U C c o s (c t m fs i n t ) R e [ U C e j e t e j m fs i n t ]
(7-4)
图7-1画出了频率调制过程中调制信号、调频信号及 相应的瞬时频率和瞬时相位波形。
J
2 n
(mf
)
1
n
PFM
1 2RL
Uc2
Pc
(7-14) (7-15)
第7章 角度调制与解调
(7-15)式说明,调频波的平均功率与未调载波的平均 功率相等。当调制指数mf由零增加时,已调制的载波功 率下降,而分散给其他边频分量。这就是说,调频的过 程就是进行功率的重新分配,而总功率不变,即调频器 可以看作是一个功率分配器。
高频电子线路最新版课后习题解答第七章——角度调制与解调答案
第七章 思考题与习题7.1 什么是角度调制?解:用调制信号控制高频载波的频率(相位),使其随调制信号的变化规律线性变化的过程即为角度调制。
7.2 调频波和调相波有哪些共同点和不同点,它们有何联系?解:调频波和调相波的共同点调频波瞬时频率和调相波瞬时相位都随调制信号线性变化,体现在m f MF ∆=;调频波和调相波的不同点在:调频波m f m f k V Ω∆=与调制信号频率F 无关,但f m f k V M Ω=Ω与调制信号频率F 成反比;调相波p p m M k V Ω=与调制信号频率F 无关,但m f m f k V Ω∆=Ω与调制信号频率F 成正比;它们的联系在于()()d t t dtϕω=,从而具有m f MF ∆=关系成立。
7.3 调角波和调幅波的主要区别是什么?解:调角波是载波信号的频率(相位)随调制信号的变化规律线性变化,振幅不变,为等福波;调幅波是载波信号的振幅随调制信号的变化规律线性变化,频率不变,即高频信号的变化规律恒定。
7.4 调频波的频谱宽度在理论上是无限宽,在传送和放大调频波时,工程上如何确定设备的频谱宽度? 解:工程上确定设备的频谱宽度是依据2m BW f =∆确定7.5为什么调幅波调制度 M a 不能大于1,而调角波调制度可以大于1?解:调幅波调制度 M a 不能大于,大于1将产生过调制失真,包络不再反映调制信号的变化规律;调角波调制度可以大于1,因为f fcmmV M k V Ω=。
7.6 有一余弦电压信号00()cos[]m t V t υωθ=+。
其中0ω和0θ均为常数,求其瞬时角频率和瞬时相位解: 瞬时相位 00()t t θωθ=+ 瞬时角频率0()()/t d t dt ωθω==7.7 有一已调波电压1()cos()m c t V A t t υωω=+,试求它的()t ϕ∆、()t ω∆的表达式。
如果它是调频波或调相波,它们相应的调制电压各为什么?解:()t ϕ∆=21A t ω,()()12d t t A t dtϕωω∆∆==若为调频波,则由于瞬时频率()t ω∆变化与调制信号成正比,即()t ω∆=()f k u t Ω=12A t ω,所以调制电压()u t Ω=1fk 12A t ω 若为调相波,则由于瞬时相位变化()t ϕ∆与调制信号成正比,即 ()t ϕ∆=p k u Ω(t )所以调制电压()u t Ω=1pk 21A t ω 由此题可见,一个角度调制波可以是调频波也可以是调相波,关键是看已调波中瞬时相位的表达式与调制信号:与调制信号成正比为调相波,与调制信号的积分成正比(即瞬时频率变化与调制信号成正比)为调频波。
通信原理第7章(樊昌信第七版)
整理知识 梳理关系 剖析难点 强化重点
归纳结论 引导主线 解惑疑点 点击考点
曹丽娜
樊昌信
编著
国防工业出版社
谢谢!
3 QPSK 解调
原理:分解为两路2PSK信号的相干解调。
x 带通 输入 滤波器 低通 x1 (t ) 滤波器 位定时 低通 滤波器 抽样 判决 抽样 判决
a
并/串 变换 输出
y (t ) cos c t
sin c t
x 载波 恢复
x2 (t )
b
存在问题:存在900的相位模糊(0, 90, 180, 270) 解决方案:采用四相相对相位调制,即QDPSK。
QPSK 特点:
01
Q 11
相位跳变:0°,± 90°,± 180° 跳变周期 2Tb 带宽 B=Rb
0
I
误码性能与BPSK相同
00
10
最大相位跳变:180°
发生在0011或0110交替时,
即双比特ab同时跳变时,信号点沿对角线移动。
21
QPSK 缺点:
最大相位跳变180°,使限带的QPSK信号包络起
744多进制差分相移键控mdpsk1基本原理?qdpsk与qpsk的关系如同2dpsk与2psk关系?4dpsk也称qdpsk?qdpsk的矢量图与qpsk的矢量图相似只是参考相位是前一码元的载波相位n??双比特码元ab载波相位naba方式b方式0?111110?10?10?1111109018027022531545135参考相位a?矢量图aba前一码元载波相位t?波形t参考相位atc?cos?也有法正交调相法和相位选择法?仅需在qpsk调制器基础上增添差分编码码变换2qdpsk调制tc?sin2??差分编码将绝对码ab
通信原理第7章
以概率P 发送“”时 1 以概率1 P 发送“0”时
1
载波
t
2ASK
t
4
第7章数字带通传输系统
2ASK信号的一般表达式 e2ASK (t ) st cosc t
其中
s(t ) an g (t nTs )
n
Ts - 码元持续时间; g(t) - 持续时间为Ts的基带脉冲波形,通常假设是高
10
第7章数字带通传输系统
P2 ASK 1 2 2 f s P (1 P ) G ( f f c ) G ( f f c ) 4
1 2 2 f s (1 P ) 2 G (0) ( f f c ) ( f f c ) 4
G( f ) TS Sa( f TS )
13
第7章数字带通传输系统
7.1.2 二进制频移键控(2FSK)
基本原理
表达式:在2FSK中,载波的频率随二进制基带信号在f1
和f2两个频率点间变化。故其表达式为
A cos(1t n ), e2FSK (t ) A cos( 2 t n ), 发送“”时 1 发送“ ”时 0
概率为 P 1, an 1, 概率为 1 P
即发送二进制符号“0‖时(an取+1),e2PSK(t)取0相位;发送
二进制符号“1‖时( an取 -1), e2PSK(t)取相位。这种以载
波的不同相位直接去表示相应二进制数字信号的调制方式, 称为二进制绝对相移方式。
26
第7章数字带通传输系统
键控法
开关电路
cos ct
e2 ASK (t )
高频电子线路复习题
高频电子线路复习第一章绪论一、习题1.通信系统由哪些部分组成?各组成部分的作用是什么?2.无线电通信为什么要进行调制?常用的模拟调制方式有哪些?3.小信号谐振放大器的主要特点是以作为放大器的交流负载,具有和功能。
4.放大电路直流通路和交流通路画法的要点是:画直流通路时,把视为开路;画交流通路时,把视为短路。
5.石英晶体振荡器是利用石英晶体的工作的,其频率稳定度很高,通常可分为和两种。
6.通常将携带有信息的电信号称为,未调制的高频振荡信号称为,通过调制后的高频振荡信号称为。
7.接收机分为和两种。
一、习题1.无线电通信中,信号是以电磁波形式发射出去的。
它的调制方式有、、。
针对不同的调制方式有三种解调方式,分别是检波、鉴频、和鉴相。
2.通信系统由输入变换器、、、以及输出变换器组成。
3.无线电波的三种传播方式是什么?各有什么特点?4.为什么发射台要将信号调制到高频载波上再发送?6.无线电广播发送和接收设备由哪些主要部分组成?7.将下列采用调幅方式实现的无线通信系统中的超外差式接收机的组成框图补充完整。
高频小信号检波器放大器第二章选频网络一、习题1.在调谐放大器的LC回路两端并上一个电阻R,可以()。
A.提高回路的Q值B.提高谐振频率C.加宽通频带D.减小通频带2.正弦振荡器中选频网络的作用是()。
A.产生单一频率的正弦波B.提高输出信号的振幅C.保证电路起振D.降低输出信号的振幅3.在一块正常放大的电路板上,测得某三极管的三个极对地电位如图所示,则管子的导电类型以及管脚自左至右的顺序分别为()。
A.NPN型、becB.NPN型、ebcC.NPN型、ecbD.NPN型、bce4.LC谐振回路有和两种谐振方式。
5.LC并联谐振回路的品质因数越高,则越窄。
6.并联谐振回路如图所示,已知:C=300pF,L=390uF,Q空=100,信号源内阻R S=100kΩ,负载电阻R L=200kΩ。
求该回路的谐振频率、谐振电阻、通频带。
通原7章习题答案
码反变换2DPSK相干解调时的系统误码率为
Pe
=
1 [1− 2
erf
(
r )2 ] = 1 ×[1− (0.999992)2 ] = 8×10−6 2
2DPSK信号差分相干解调时的误码率为
Pe
=
1 e−r 2
=
1 e−10 2
=
2.27 ×10−5
第七章
7‐15 在二进制数字调制系统中,已知码元传输速率
由已知,fs = RB = 2×106 Hz, f1 = 10MHz, f2 = 10.4MHz
所以, B = f2 − f1 + 2 fs = 10.4 −10 + 2× 2 = 4.4MHz
(2)解调器的输入噪声功率为
σ
2 n
=
n0 2
fs
=
6 ×10−18
× 2× 2×106
=
2.4 ×10−11W
RB = 1000B,接收机输入高斯白噪声的双边功率谱
密度
n0 2
= 10−10W / Hz ,若要求解调器输出误码率Pe
≤ 10−5
,试求相干解调OOK、非相干解调2FSK、差分相干
解调2DPSK以及相干解调2PSK等系统所要求的输入
信号功率。
第七章
• 7‐15
在(1)系对统于误相码干率O为OK1,解0 −5调时时,系查统表误得码解率调器Pe输=入12 e端rfc信( 4r噪) 比r=36。 而ASK信号所需得传输带宽近似为码元速率的2倍,即
第七章
7‐13 在二进制相位调制系统中,已知解调器 输入信噪比r=10dB。试分别求出相干解调 2PSK、相干解调——码反变换2DPSK和差分 相干解调2DPSK信号时的系统误码率。
第7章 频率调制与解调
未加调制信号时的频率 若γ=2,则得
一般情况下,γ≠2,这时,上式可以展开成幂级数
忽略高次项,上式可近似为
2013年8月23日星期五8时17分29秒
二次谐波失真系数可用下式求出:
2013年8月23日星期五8时17分29秒
调频灵敏度可以通过调制特性或式(7―27)求出。根据调频灵敏 度的定义,有
表明调频灵敏度由二极管的特性和静态工作点确定。
Bs=2nF=2mfF=2Δfm
最大频偏的 两倍 当mf很小时,如mf<0.5,为窄 带调频,此时 Bs=2F 图7―6 |Jn(mf)|≥0.01时的n/mf曲线
2013年8月23日星期五8时17分29秒
对于一般情况,带宽为 Bs=2(mf+1)F=2(Δfm+F) 更准确的调频波带宽计算公式为 根据mf的值来选择 带宽的计算公式
2013年8月23日星期五8时17分29秒
FM信号的频谱有如下特点: 1)以载频fc为中心,无穷多对以 调制信号频率为间隔的边频分量 组成,各分量的幅度值取决于 Bessel函数。 2)载频分量不总是最大,有时 为零。 3)FM信号的功率大部分集中在 载频附近。 4)频谱结构于mf有密切关系。 思考:哪些参量的变化 能够引起mf的变化,频 谱结构有何影响? (a)Ω为常数;(b)Δωm为常数
当mp≤π/12时,上式近似为
uPM≈Ucosωct-UmpcosΩtsinωct
当x很小时cosx≈1,sinx≈x
2013年8月23日星期五8时17分29秒
说明在调相指数很小时,调相波可以由两个信号合成。
先积分再调相 为调频信号
调相原理框图
调幅原理框图
图7―11 矢量合成法调频
2013年8月23日星期五8时17分29秒
通信原理第7版第7章PPT课件(樊昌信版)
实验二:数字调制与解调实验
实验目的
掌握数字调制与解调的基本原理和实现方法。
实验内容
设计并实现一个数字调制与解调系统,包括调制器、解调器和信道等部分。
实验二:数字调制与解调实验
01
实验步骤
02
1. 选择合适的数字调制方式,如2ASK、2FSK、2PSK等。
03
2. 设计并实现调制器,将数字基带信号转换为已调信号。
循环码
编码原理
01
循环码是一种具有循环特性的线性分组码,其任意码字的循环
移位仍然是该码的码字。
生成多项式与校验多项式
02
生成多项式用于描述循环码的编码规则,而校验多项式则用于
检测接收码字中的错误。
编码效率与纠错能力
03
循环码的编码效率与线性分组码相当,但纠错能力更强,可以
纠正多个错误。
卷积码
编码原理
06
同步原理与技术
载波同步技术
载波同步的定义
在通信系统中,使本地产生的载波频率和相位与接收到的信号载波保持一致的过程。
载波同步的方法
包括直接法、插入导频法和同步法。直接法利用接收信号中的载波分量进行同步;插入导频法在发送端插入一个导频 信号,接收端利用导频信号进行同步;同步法则是通过特定的同步信号或同步头来实现同步。
归零码(RZ)
在码元间隔内电平回归到零,有利于时钟提取。
差分码(Differential Cod…
利用相邻码元电平的相对变化来表示信息,抗干扰能力强。
眼图与误码率分析
眼图概念
通过示波器观察到的数字基带信号的一种图形表示,可以 直观地反映信号的质量和传输性能。
眼图参数
包括眼睛张开度、眼睛高度、眼睛宽度和交叉点位置等, 用于评估信号的定时误差、幅度失真和噪声影响等。
最新第7章--频率调制与解调
主要用于超短波波段。
如:调频广播:(88~108)MHz,BW=180KHz。3. Nhomakorabea射功率小。
作用:
调频主要用于调频广播、广播电视、通信与遥控遥
测等。调相主要用于数字通信。
第7章 频率调制与解调
调频与调相的关系: (1)调频必调相,调相必调频 (2)鉴频和鉴相也可以相互利用
角度调制的优点: 抗干扰和噪声的能力较强
第一类贝塞尔函数曲线:
第7章 频率调制与解调
2.调频波的频谱结构和特点
级数展开式进一步写成 uFM(t)=UC[J0(mf)cosωct+J1(mf)cos(ωc+Ω)t -J1(mf)cos(ωc-Ω)t+J2(mf)cos(ωc+2Ω)t +J2(mf)cos(ωc-2Ω)t+J3(mf)cos(ωc+3Ω)t -J3(mf)cos(ωc-3Ω)t+…]
( t)C t m fs it nC ( t)
第7章 频率调制与解调
7.1.2 调频波的频谱
1.调频波的展开式
u F M ( t ) U C c o s (c t m fs i n t ) R e [ U C e j c t e j m fs i n t ]
e jmf sint
第7章 频率调制与解调
3 调频波的信号带宽 通常采用的准则是,信号的频带宽度应包括幅度大于未
调载波1%以上的边频分量,即 |Jn(mf)| ≥0.01
角度调制的缺点: (1)频带利用率不高 (2)原理和电路实现上都要困难一些
第7章 频率调制与解调
7.1 调频信号分析
7.1.1 调频信号的参数与波形
1.调频信号分析
高频电路原理与分析-第7章频率调制与解调
调制的分类
1 幅度调制(AM)
调制信号改变载波信 号幅度的过程。
2 频率调制(FM)
调制信号改变载波信 号频率的过程。
3 相位调制(PM)
调制信号改变载波信 号相位的过程。
频率调制的原理与方法
直接频率调制
直接改变载波信号的频率,简单粗暴。
间接频率调制
通过改变载波信号的相位或幅度,间接改变频率。
调频技术的实际应用
认知无线电
利用智能技术来实现无线电 频谱的有效利用和优化。
通过检测载波信号的相位变化,恢复调制信号。
调制与解调的性能评价
调制与解调的性能影响通信系统的质量。评价指标包括信噪比、频谱利用率、 抗干扰能力等。合理评估性能有助于设计和优化高效的调制解调系统。
频率调制与解调的发展趋势
数字调制
数字调制技术的发展将在通 信系统中起到重要作用。
软件定义无线电
通过软件控制无线电设备, 实现更高的灵活性和性能。
调频技术在通信领域有广泛的应用。它能够提供稳定的通信信号,并具有抗 干扰能力强、传输距离远的优点。广播、无线电导航和移动通信等领域都使 用调频技术。
Байду номын сангаас
解调的原理与方法
1
幅度解调(AM)
通过检测载波信号的幅度变化,恢复调制信号。
2
频率解调(FM)
通过检测载波信号的频率变化,恢复调制信号。
3
相位解调(PM)
高频电路原理与分析-第7 章频率调制与解调
本章介绍频率调制与解调的基础概念、分类、原理与方法,以及调频技术的 实际应用。探讨解调的原理与方法,评价调制与解调的性能,并展望频率调 制与解调的发展趋势。
调制与解调的基础概念
模拟电子技术---第七章 信号处理电路
当 f f 0 时,上式可以化简为
Au ( f fo ) Auf j(3 Auf )
定义有源滤波器的等效品质因数Q值
1 Q 3 Auf
Au Auf 1 ( f 2 1 f ) j f0 Q f0
e
u y / UT
1
i C5
(1-30)
§7.2
i C1 i C2
i 类似可得: C4
模拟乘法器
e e
u y / UT u y / UT
1
i C3 i C 6 th
1 uy
i C 5 i C 5 th
uy 2U T
i C5 i C6
将上式代入,得:
2U T ux I 0 th 2U T
的放大倍数有所抬高,甚至可能引起自激。
(1-17)
§7.1
有源虑波器
3. 二阶高通有源滤波器(HPF) 二阶压控型有源高通滤波器的电路图
(1-18)
§7.1
(1)通带增益
RF Auf =1+ R1
有源虑波器
(2)传递函数
(sCR ) 2 Auf U o ( s) A(s )= U i ( s) 1 (3 Auf ) sCR (sCR) 2
当ux<<2UT,uy<<UT时有:
uy ux u 0 R C I 0 th .th 2U T 2U T
u 0 R C I0 u x .u y 4U T
2
(1-31)
§7.2
模拟乘法器
集成模拟乘法器——F1596.MC1596
(1-32)
§7.2
第7章振幅调制
第7章振幅调制
(3) 振幅调制:由调制信号去控制载波振幅,使已调信号的振 幅 随调制信号线性变化。
(4) 频率调制:调制信号控制载波频率,使已调波的频率随调 制信号线性变化。
(5) 相位调制:调制信号控制载波相位,使已调波的相位随 调
制信号线变化振。幅 检 波 振 幅 调 制 的 逆 过 程 (6) 解调方式: 鉴 频 调 频 的 逆 过 程
第7章 振幅调制
➢7.1 概述 ➢7.2 振幅调制原理及特性 ➢7.3 振幅调制电路 ➢7.4 振幅调制的解调
第7章振幅调制
重点: 振幅调制波的基本特性(数学表达式,波形
图,频谱图,带宽,功率)。 解调原理
难点: 峰值包络检波器的工作原理
第7章振幅调制
概述
振幅调制
解调(检波) 属于 频谱线性搬移电路
混频(变频)
语言
调制信号:需要传输的信号(原始信号) 图像 vVco st
密码
信号 载波信号:(等幅)高频振荡信号
正弦波 方波
三角波 vcVccoc st ()
锯齿波
已调信号(已调波):经过调制后的高频信号(射频信号)
(1) 调制:用调制信号去控制载波信号的某一个参量的过程 (2) 解调:调制的逆过程,即从已调波中恢复原调制信号的过程
ma
1UmaxUmin 2 Uc
VmaxVc(1ma)
Vc
m VminVc(1ma)
a
ma
0时 1时
ma
1时
未调幅 最大调幅(百分之百) 过调幅,包络失真,
实际电路中必须避免
波形特点:1)调幅波的振幅(包络)变化
规律
与调制信号波形一致
弱程度
2) 调幅度ma反映了调幅的强 一般可m以a值看越出大:调幅越深第7章振幅调制
第7章频率调制与解调
2024/8/8
16
间接调频中的调相方法: (1) 矢量合成法:针对窄带调相。
uPM (t) Uc cos(ct mp cost)
Uc cosct cos(mp cost) Uc sinct sin(mp cost) 当m p π/12时:uPM (t) U c cosct U cmp cost sin ct
本章的重点是调频和鉴频。
2024/8/8
1
1、调频信号的时域分析
调制信号: u U cost;载波信号 :uc Uc cosct; 瞬时频率: (t) c (t) c k fU cost c m cost
k f :比例常数 (调制灵敏度 ); m k fU : 峰值角频偏。
调频信号瞬时相位: (t )
变容二极管调频器:用调制信号去控制振荡器的变容二极管的 结电容,是最常用的调频方法,本章要重点讲这种调频电路。
电抗管调频:用电子管、晶体管或场效应管作为振荡器的等效 可控电抗,在调制信号控制下实现调频,目前这种调频方法已 很少使用。
(2) 间接法:对调制信号先积分,再调相可以实现调频。
间接法的关键是如何调相,调相方法包括:矢量合成法、 可变移相法和可变延时法。
J
2 n
(mf
)
n
Uc2 2RL
Pc ,
J
2 n
(mf
)
1
n
说明:调频波的平均功率和未调载波的平均功率相等。因此调
频器可以理解为功率分配器,它的功能是将载波功率分配给每
个边频分量,而分配的原则与调频指数mf有关。
4、调频波和调相波的比较
调制信号:u U cost 载波信号:uc Uc cosct
Δfm=75kHz,Fmax=15kHz,Bs=180kHz>>2Fmax=30kHz。 适用频段:由于FM信号的带宽较宽,因此FM只用于超短 波和频率更高的波段。
现代通信原理与技术
现代通信原理与技术《现代通信原理与技术(第三版)》张辉课后思考题答案第⼀章绪论1-1.什么是数字信号和模拟信号?两者的区别是什么?答:数字信号是⼀种离散的、脉冲有⽆的组合形式,是负载数字信息的信号;模拟信号是指信号⽆论在时间上或是在幅度上都是连续的。
区别:模拟信号的信号参量的取值连续(不可数,⽆穷多),⽽数字信号的信号参量只可能取有限个值。
1-2.何谓数字通信?简述数字通信系统的主要优缺点?答:数字通信是⽤数字信号作为载体来传输消息,或⽤数字信号对载波进⾏数字调制后再传输的通信⽅式。
它可传输电报、数字数据等数字信号,也可传输经过数字化处理的语声和图像等模拟信号。
优点:(1)抗⼲扰能⼒强,且噪声不积累;(2)差错可控,可以采⽤信道编码技术使误码率降低,提⾼传输的可靠性;(3)易于与各种数字终端接⼝,⽤现代计算机技术对信号进⾏处理,加⼯,变换,存储,从⽽形成智能⽹;(4)易于集成化,从⽽使通信设备微型化;(5)易于加密处理,且保密强度⾼。
缺点: (1)占⽤频带较宽;(2)技术要求复杂,尤其是同步技术要求精度很⾼;(3)进⾏模/数转换时会带来量化误差。
1-3. 画出数字通信系统的⼀般模型,并简述各⼩⽅块的主要功能。
答:如下各⼩⽅块主要功能:信息源:信源(信息源,也称发终端)的作⽤是把待传输的消息转换成原始电信号,如电话系统中电话机可看成是信源。
信息源编码器:主要实现信源编码。
信源编码的作⽤之⼀是提⾼信息传输的有效性,即通过某种数据压缩技术来减少冗余度(减少信息码元数⽬)和降低数字信号的码元数率。
信道编码器:实现信道编码的功能。
信道编码是以提⾼信息传输的可靠性为⽬的的编码。
通常通过增加信源的冗余度来实现。
采⽤的⼀般⽅法是增⼤码率或带宽。
与信源编码正好相反。
数字调制器:主要实现数字调制功能。
数字调制就是把数字基带信号的频谱搬移到⾼频处,形成适合在信道中传输的频带信号。
信道:传输信号的物理媒质。
数字解调器:对频带信号进⾏相⼲解调或⾮相⼲解调还原为数字基带信号。
计算机通信技术第7章+多路复用技术
第7章多路复用技术
信号1 信号2 信号3
信号N
. . .
频 分 复 用 器
f1 f2 f3
. . .
防护频带
信号1
fN
图7-3 频分多路复用原理
解 频 分 复 用 器
信号2 信号3
信号N
. . .
第7章多路复用技术
第一步 第二步 第三步 第四步
滤波器
0 ~4 KHz M1(t) 载频
108 KHz
实际应用中,频分多路复用主要用于模 拟信道的复用,使用时先对多路信号的频谱 范围进行限制,然后通过变频处理,将信号 分配到不同的频段上。图7-4为语音频分多 路复用的过程示意图,如图7-4(a)所示,发 送端的各路信号M1(t),M2(t),…,Mn(t) 经各自的低通滤波器分别采用载波108k、 104k、…、64k进行调制。各路带通滤波器 滤出相应的边带(载波电话通常采用单边带 调制),相加后便形成频分多路信号。
第7章多路复用技术
在接收端,各路的带通滤波器将各路信 号分开,并分别与各路的载波108k、 104k、…、64k相乘,实现相干解调,以恢 复各路信号,其过程如图7-4(b)所示。
第一步 第二步 第三步 第四步
滤波器
104 KHz~ 108 KHz 传输介质
解 多 路 复 用 器
滤波器
0 ~ 4 KHz 载频
第7章多路复用技术
波分复用的原理如图7-6所示,发送端 光纤1和光纤2上的信号,通过光栅复用到一 条远距离传输光纤上进行传输。在接收端再 解复用到光纤3和光纤4上,利用这一过程就 可以建立交换式的WDM系统。在一根光纤上 复用80路或更多路的光载波信号称为密集波 分复用(DWDM ),目前单根光纤的数据传输 速率最高可以达到数太比特每秒。
第七章 线性调频通信技术
第七章 线性调频通信技术线性调频(LFM)是一种不需要伪随机编码序列的扩展频谱调制技术。
由于线性调频信号占用的频带宽度远大于信息带宽,所以也可以获得很大的系统处理增益。
线性调频信号又称鸟声(Chirp)信号,因为其频谱带宽落于可听范围,则听若鸟声,所以又称Chirp 扩展频谱(CSS)技术。
LFM 技术在雷达、声纳技术中有广泛应用,如在雷达定位技术中,它可在增大射频脉冲宽度、提高平均发射功率、加大通信距离同时又保持足够的信号频谱宽度,不降低雷达的距离分辨率。
1962年,M.R.Wiorkler 将CSS 技术用于通信中,它以同一码元周期内不同的Chirp 速率表达符号信息。
研究表明,这种以Chirp 速率调制的恒包络数字调制技术抗干扰能力强,能显著减少多径干扰的影响,有效地降低移动通信带来的快衰落影响,非常适合无线接入的应用。
进入21世纪以来,将CSS 技术用于扩频通信的研究发展日益活跃,尤其随着超宽带(UWB)技术的发展,将CSS 技术与UWB 的宽带低功率谱相结合形成的Chirp-UWB 通信,它利用Chirp 技术产生超宽带宽,具备二者优势,增强了抗干扰与抗噪声的能力。
目前CSS 技术已成为传感网络通信标准IEEE802.15中物理层候选标准。
7.1 LFM 信号的表征与特性 7.1.1 信号表征线性调频(LFM)信号是指瞬时频率随时间成线性变化的信号。
假设在一个信码持续时间T 内,信号的瞬时频率变化如图7-1所示。
也就是说,假设信号的瞬时角频率i ω为:02T T ,T22i Ft t πωω=+-≤≤ (7-1)式中,00=2f ωπ,0f 为中心频率,F 为瞬时频率变化范围,即围绕0f 的两倍频率偏移。
由于信号的瞬时角频率与瞬时相位()t φ之间为微分关系,即()i dt dtωφ=(7-2) 所以,LFM 信号的时域表达式可以写为(设振幅归一化,初始相位为零):20T T()cos{()}cos(),T 22F f t t t t t πφω==+-≤≤(7-3) 从而有对应图7-1的时域波形()f t 如图7-2所示。
1、调频波的调制与解调
实验一、调频波的调制与解调一、实验内容1.调频波的调制2.调频波的解调二、实验目的和要求1.熟悉MATLAB系统的基本使用方法2.掌握调制原理和调频波的调制方法3.掌握解调原理和调频波的解调方法三、预习要求1.熟悉有关调频的调制和解调原理2.熟悉鉴频器解调的方法并了解锁相环解调四、实验设备〔软、硬件〕1.MATLAB软件通信工具箱,SIMULINK2.电脑五、实验注意事项通信仿真的过程可以分为仿真建模、实验和分析三个步骤.应该注意的是,通信系统仿真是循环往复的发展过程.也就是说,其中的三个步骤需要往复的执行几次之后,以仿真结果的成功与否判断仿真的结束.六、实验原理1调频波的调制方法1.1 调制信号的产生产生调频信号有两种方法,直接调频法和间接调频法.间接调频法就是可以通过调相间接实现调频的方法.但电路较复杂,频移小,且寄生调幅较大,通常需多次倍频使频移增加.对调频器的基本要求是调频频移大,调频特性好,寄生调幅小.所以本实验中所用的方法为直接调频法.通过一振荡器,使它的振荡频率随输f的正弦波;当输入基带入电压变化.当输入电压为零时,振荡器产生一频率为信号的电压变化时,该振荡频率也作相应的变化.1.2 调频波的调制原理与表达式此振荡器可通过VCO〔压控振荡器〕来实现.压控振荡器是一个电压——频率转化装置,振荡频率随输入控制电压线性变化.在实际应用中有限的线性控制范围体现了压控的控制特性.同时,压控振荡器的输出反馈在鉴相器上,而鉴相器反应的是相位不是频率,而这是压控相位和角频率积分关系固有的,所以需要压控的积分作用,压控输出信号的频率随输入信号幅度的变化而变化,确切的说输出信号频率域输入信号幅度成正比,若输入信号幅度大于零,输出信号频率高于中心频率;若小于零,则输出信号频率低于中心频率.从而产生所需的调频信号.利用压控振荡器作为调频器产生调频信号,模型框图如图1所示:图1 利用压控振荡器作为调制器在本章的调频仿真中,用到的调制信号为单音正弦波信号.因此,这里讨论调制信号为单频余弦波的情况.在连续波的调制中,调制载波的表达式为()cos()C C t A t ωφ=+ (1)如果幅度不变,起始相位为零时,而瞬时角频率时调制信号的线性函数,则这种调制方式为频率调制.此时瞬时角频率偏移为()FM K f t ω∆= (2)瞬时角频率为()C FM K f t ωω=+ (3)其中()f t 为调制信号,FM K 为频偏常数.由于瞬时角频率与瞬时相位之间互为微分或积分关系,即()()C FM d t K f t dtφωω==+...........................〔4〕 ()()C FM t dt t K f t dt φωω==+⎰⎰ (5)故调频信号可表达为()cos[()]FM C FM S t A t K f t dt ω=+⎰ (6)在本章的调频仿真中,用到的调制信号为单音正弦波信号.因此,这里讨论调制信号为单频余弦波的情况.调制信号为()cos m m f t A t ω= (7)如果进行频率调制,则由公式〔6〕可得调频信号表达式为〔8〕调制指数………………………………〔9〕 其中、取具体数值:采样频率fs=10000Hz振荡器的振荡频率〔即调频波的调制信号的频率〕实验要求800Hz ——17KHz初始相位信号灵敏度Kc=0.12 调频波的解调原理和解调方法解调主要方法:调频收音机的核心部件是调频解调器,其中调频解调器有三种:普通鉴频器、调频负反馈解调器和利用锁相环的调频解调器.2.1普通鉴频器的原理图2 普通鉴频器原理框图普通鉴频器是先将调频信号变换为调幅调频信号,使该调幅调频信号幅度与调频信号的瞬时频率成比例,然后再利用调幅解调器提取其包络,恢复出原基带信号.2.2调频负反馈解调器原理图3 调频负反馈解调框图在调频解调器中引入负反馈,使得加于鉴频器输入端的调频信号的调制指数很小,这样使得鉴频器前的带通滤波器的带宽是窄的,它对抑制鉴频前的加性噪声有益处.带通滤波器输出的调频信号,其调制指数远远小于接收输入调频信号的调制指数,因此带通滤波器输出的调频信号是窄带调频信号,所以调频负反馈接收机的带通滤波器与鉴频器的带宽均是窄带,低通滤波器的限制于基带信号的带宽,输出即是所需的原基带信号.调频负反馈解调器可降低门限信噪比大约3dB.2.3利用锁相环作调频解调器原理]sin cos[)(S ϕωω++=t A K t A t m m FM c FM c fmK 2K π=c f πω2c =0=ϕ图4 利用锁相环作调频解调器锁相环解调器一种低门限的解调电路,与调频负反馈不同之处在于该锁相环在锁定时,VCO 输出的调频信号与接收输入的调频信号是同频且几乎是同相的,两者的相位差甚小.环路滤波器频率相应的带宽与基带信号的带宽相同,因而对在环路滤波器输出端的噪声也进行了限带,而VCO 的输出是宽带调频信号,它的瞬时频率跟随接收频率信号的瞬时频率而变.2.4 利用锁相环解调器解调调频信号原理:在锁相环中,PFD 鉴相器检测参考信号与反馈信号之间的误差信号,是一个具有抽样性质的电路.当PFD 〔鉴相器〕检测到两个信号均有一次下降沿是,PFD 〔鉴相器〕输出一次相位误差,随后相位误差被送到低通滤波器,低通滤波器滤除其中的高频信号,计算出控制信号送入压控震荡器,压控根据控制信号输出合成信号,在反馈给PFD 〔鉴相器〕,与参考信号比较相位误差.相位误差输出一次,锁相环状态改变一次,同理不输出相位误差,则锁相环信号均不改变.其中调频负反馈以与锁相环解调器与普通鉴频器相比,它们的主要优点是可以扩展门限、降低门限信噪比,是低门限解调电路.所以首选调频负反馈以与锁相环解调器作为普通鉴频器的升级版.就本实验而言以锁相环解调器为核心器件.非相干解调器由限幅器、鉴频器和低通滤波器等组成,其方框图如图2-3所示.限幅器输入为已调频信号和噪声,限幅器是为了消除接收信号在幅度上可能出现的畸变;带通滤波器的作用是用来限制带外噪声,使调频信号顺利通过.鉴频器中的微分器把调频信号变成调幅调频波,然后由包络检波器检出包络,最后通过低通滤波器取出调制信号.设输入调频信号为: (10)〔一〕微分器的作用是把调频信号变成调幅调频波.微分器输出为 (11)))(cos()()(S ττωd m K t A t S t tf c FM t ⎰∞-+==dt t dS dt t dS t FM i d )()()(S ==))(sin()]([ττωωd m K t t K tf c fm c ⎰∞-++-=〔二〕包络检波的作用是从输出信号的幅度变化中检出调制信号.包络检波器输出为: (12)K d称为鉴频灵敏度〔V/Hz〕,是已调信号单位频偏对应的调制信号的幅度,经低通滤波器后加隔直流电容,隔除无用的直流,得: (13)连续傅里叶变换是一个特殊的把一组函数映射为另一组函数的线性算子.傅里叶变换就是把一个函数分解为组成该函数的连续频率谱.在数学分析中,信号f<t>的傅里叶变换被认为是处在频域中的信号.离散傅里叶变换的一种快速算法,简称FFT.为了节省电脑的计算时间,实现数字信号的实时处理,减少离散傅里叶变换〔DFT〕的计算量.七、实验步骤1 调频波调制Matlab仿真模拟第一步,设计原理框图:第二步,首先需要对调制信号进行积分,然后将积分过后的信号对载频信号进行调相,输出得到调频信号.第三步,具体操作:<1>通过sine wave模块〔正弦信号源〕输入幅度为5,角频率为200*pi rad/s,周期为200Hz,初始相位为90度以满足输出为单频余弦信号;<2>后跟着积分器integrator模块;作为调相的输入.<3>同时在两侧高频载波由正弦与余弦cos<2*pi*u>,sin<2*pi*u>产生,然后乘上高频载波,得到了两路载波,相乘后利用积化和差原理得到调频信号.第四步,SIMULINK模型的连接与参数配置)()]([)(S tKKKtKKt fmdcdfmcdo+=+=ωω)()(m0tKKt fmd=图6第四步,具体参数设置如下:图7 Sine wave 单频余弦信号源的参数图8 Sine wave1单频余弦信号源的参数配置图9 Sine wave2单频正弦信号源的参数配置2、解调设计的步骤与参数要求第一步,设计原理框图非相干解调器有限幅器、鉴频器和低通滤波器组成,(1)原信号的幅度为5,所以限幅器saturation 模块参数设置上下限为5,是为了消除接受信号在幅度上可能出现的畸变;(2)带通滤波器Analog Filter Design 模块截止频率为语音信号的两倍即800Hz-10000Hz,换算为角频率为2pi*f 是用来限制带外噪声.(3)鉴频器包括微分器Derivative 和包络检波器,其中的微分器把调频信号变成调幅调频波.(4)然后又通过包络检波器检出包络,包络检波器包括限幅器上下限为2和低通截止频率为300Hz,再换算成角频率填入参数(5)最后通过带通滤波器取50-150Hz,取出调制的源信号.解调的主要过程就是:非相干解调器由限幅器、鉴频器和低通滤波器组成.已调信号首先经过限幅器1,通过带通滤波器1,经包络检波器<即限幅器和低通滤波器组成>检出包络,经过带通滤波器得到解调出的信号.第二步,simulink模块的连接与参数设置图12 第一个限幅器的参数配置图13第一个带通滤波器的参数配置图14 包络检波器中的限幅器的参数配置图15 包络检波器中的低通滤波器参数配置图16 带通滤波器的参数配置调频波的仿真构建与结果分析两个仿真模块连接起来就成了调频波的调制与解调,见下图:图17 调频波的调制与解调simulink模块图18 各项仿真结果1.输入的余弦信号2.调频波3.解调后的信号图18〔2〕仿真结果1.输入的余弦信号2.调频波3.解调后的信号上面两幅图第一个调制波失真较为严重,恢复的较为理想,在积分器后插入示波器,未失真,那么是调相时的失真.第二幅图是更改了调相的两个正余弦高频载波的频率,可能是带通滤波器的参数设置超出了恢复信号的频率范围造成的,第二幅图符合解调的结果 .调频波的调制解调系统仿真分析:在此次仿真过程中,依照原有的通信Fm调频信号的调制解调原理,通过对相关模块参数的配置,经过间接调频,中心频率较为稳定,但是实现有点复杂,可能参数还是不够细腻,得到的调频波仍有一定的失真,但经过非相干解调还是能够很好地恢复,在其间不免有过很多次的更改参数,甚至有过想删除模块的冲动,但还是克服了很多的错误与不足,最后得到了比较理想的结果.八、实验报告要求1、结合实验要求,写明实验所需模块、实验原理、实验内容、画出仿真图以与步骤.2、分析实验结果.分析调频收音机输入输出信号的变化.3、通过调节不同的参数观察输出波形的变化.九、参考资料1、《通信原理教程》秦静主编中国人民公安大学 2014年9月出版2、《基于MATLAB/Simulink的系统仿真技术与应用》薛定宇,陈阳泉著清华大学 2011年出版十、思考题1、观测并分析调频波的频谱特点?2、调频波的时域波形与调幅波的时域波形有什么异同?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调频波的平均功率等于载波的平均功率。
7.1.5 调频波与调相波的比较
1.调相波
(1)概念 调相波是其瞬时相位以未调载波相位φc为中心按
调制信号规律变化的等幅高频振荡。 (2)表达式
uΩ(t)=UΩcosΩt, uC(t)=UCcosωct 则调相波其瞬时相位为:
φ(t)=ωct+Δφ(t)=ωct+kpuΩ(t) =ωct+ΔφmcosΩt=ωct+mpcosΩt
和,
PPPFFM FMM2221R1R1RLLLUUUc2c2c2nnn JJJn2n2n2((m(mmfff)))
JJJn2n2n2((m(mmfff)))111
nnn
PPPFFM FMM 2221R1R1RLLLUUUc2c2c2PPPccc
调相信号为:uPM(t)=UCcos(ωct+mpcosΩt)
瞬时频率为:
(t)
d dt
(t)
c
mpsin t
c
m
sin t
(3)主要参数
k p ——调相灵敏度
m k pU ——最大相偏
mp m ——调相指数
m mp k pU ——最大频偏
角度调制的优点: 抗干扰和噪声的能力较强
角度调制的缺点: (1)频带利用率不高 (2)原理和电路实现上都要困难一些
7.1 调频信号分析
7.1.1 调频信号的参数与波形
1.调频信号分析
调制信号:uΩ(t)=UΩcosΩt 载波电压:uC=Uccosωct 瞬时角频率:
调频灵敏度
最大角频偏
(t) c (t) c k f u (t) c m cos t 调频指数
单频的调频波是由许多频率分量构成,属非线性调制
单频调制时FM波的振幅谱: Ω为常数: Δ ω m为常数:
uFM(t)=UC[J0(mf)cosωct+ J1(mf)cos(ωc+Ω)t -J1(mf)cos(ωc-Ω)t +J2(mf)cos(ωc+2Ω)t +J2(mf)cos(ωc-2Ω)t +J3(mf)cos(ωc+3Ω)t -J3(mf)cos(ωc-3Ω)t+…]
7.1.3 调频波的信号带宽
信号的频带宽度应包括幅度大于未调载波1%以上的边频分
量,即
|Jn(mf)| ≥0.01
当mf »1时,应包括n=mf 的边频:
Bs=2nF =2mf F =2Δf m
n/mf 4
当mf<0.5时为窄频带调频:
3
2
Bs=2F
1
一般情况,卡森(Carson)公式确 定:
0 4 8 12 16 20
mf
图7―6 |Jn(mf)|≥0.01时的n/mf曲线
Bs=2(mf+1)F=2(Δfm+F)
7.1.4 调频波的功率 uFM (t) UC
Jn (m f ) cos(c n)t
n
调频信号uFM(t)在电阻RL上消耗的平均功率为
PFM
uF 2M (t ) RL
由于余弦项的正交性,总和的均方值等于各项均方值的总
1.调频波的展开式
uFM (t) UC cos(ct mf sin t) Re[UCe jCte jmf ] sint
e jm f sin t
J n (m f )e jnt
nபைடு நூலகம்
调频波的级数展开式为:
uFM (t) UC Re[
J n (m f )e ] j(ctnt)
n
UC Jn (m f ) cos(c n)t
n
Jn(mf)是宗数为mf的n阶第一类贝塞尔函数:
Jn(mf )
m0
(1)n ( m f )n2m 2
m!(n m)!
特性:
Jn(mf)=J-n(mf) n为偶数 Jn(mf)=-J-n(mf) n为奇数
3. 调频波的波形
uC
uC UC cosCt
u U cos t
u
(t) C m cos t
(t)
u FM UC cos(Ct m f sin t) uFM (t) (t) Ct m f sin t C (t)
7.1.2 调频波的频谱
相位调制(调相PM):使高频载波信号的相位按调
制信号的规律变化,得到调
相波信号
调频信号的解调(鉴频FD):从调频波信号中恢复出调制
信号
调相信号的解调(鉴相PD):从调相波信号中恢复出调制
信号
波形: 载波信号: 调制信号: 调频波信号:
调相波信号:
调频与调相的关系: (1)调频必调相,调相必调频 (2)鉴频和鉴相也可以相互利用
ct
m
sin t
ct
mf
sin t
kf m——k f调U频灵—敏—度最大角(ut)F频M(偏t)c
k f u (t) c UC cos(ct
m
m
f sin
cos t)
t
fm
m 2
——最大频偏
mf
m
fm F
——调频指数,调制深度
第7章 频率调制与解调
7.1 调频信号分析 7.2 调频器与调频方法 7.3 调频电路 7.4 鉴频器与鉴频方法 7.5 鉴频电路 7.6 调频收发信机及特殊电路(了解) 7.7 调频多重广播(了解)
频谱的非线 性变换
概述
频率调制(调频FM):使高频载波信号的频率按调
角度调制
制信号的规律变化,得到调 频波信号
第一类贝塞尔函数曲线:
2.调频波的频谱结构和特点
级数展开式进一步写成 uFM(t)=UC[J0(mf)cosωct+J1(mf)cos(ωc+Ω)t -J1(mf)cos(ωc-Ω)t+J2(mf)cos(ωc+2Ω)t +J2(mf)cos(ωc-2Ω)t+J3(mf)cos(ωc+3Ω)t -J3(mf)cos(ωc-3Ω)t+…]
瞬时相位:
调制深度
(t)
t 0
( )d
ct
m
sin t
ct
mf
sin t
c
(t)
FM波的表示式:
uFM (t) UC cos(ct mf sin t) Re[UCe jcte jmf ] sint
2. 主要调频参数
(t )