第八章 糖代谢

合集下载

糖类代谢—糖的酶促降解

糖类代谢—糖的酶促降解
大分子,多糖是分子的主要成分。
18、酵解(glycolysis): 一个由10步酶促反应组成的糖分解代谢途径,通过该途
径,一分子葡萄糖转换为两分子丙酮酸,同时净生成两分子 ATP和两分子NADH。
19、发酵(fermentation): 营养分子(例如葡萄糖)产能的厌氧降解,在乙醇发酵
中,丙酮酸转化为乙醇和CO2。
4、异头碳(anomeric carbon): 一个环化单糖的氧化数最高的碳原子。异头碳具
有一个羰基的化学反应性。
• 5、变旋(mutarotation): 一个吡喃糖、呋喃糖或糖苷伴随着它们的α-
和β-异构形式的平衡而发生的比旋度变化。
6、单糖(monosaccharide):由三个或更多 碳原子组成的具有经验公式(CH2O)n的简单 糖。
13、糖原(glycogen): 是含有分支的α-(1→4)糖苷键连接在一起的葡
萄糖的同聚物,支链在分支点处通过α-(1→6)糖苷 键与主链相连。
• 14、极限糊精(limit dexitrin): 是指支链淀粉中带有支链的核心部分,该部分
在支链淀粉经淀粉酶水解作用、糖原磷酸化酶或淀 粉磷酸化酶作用后仍然存在。糊精的进一步降解需 要α(1→6)糖苷键的水解。
7、糖苷(glycosides): 单糖半缩醛羟基与另一个分子(例如醇、糖、
嘌呤或嘧啶)的羟基、胺基或巯基缩合形成的含 糖衍生物。
• 8、糖苷键(glycosidic bond): 一个糖半缩醛羟基与另一个分子(例如醇、糖、
嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的 缩醛或缩酮键,常见的糖苷键有O-糖苷键和N-糖苷 键。
9、寡糖(oligoccharide):由2个~20个单糖残基 通过糖苷键连接形成的聚合物。

生物化学-糖代谢

生物化学-糖代谢

2021/3/29
25
G
G-6-P F-6-P F-1,6-BP 3-磷酸甘油醛
磷酸戊糖途径
NADPH 5-磷酸核糖
丙酮酸
2021/3/29
乙酰CoA
TAC
CO2+H2O+ ATP
26
整个代谢途径在胞液(cytoplasm)中进行。 关键酶是6-磷酸葡萄糖脱氢酶(glucose-6phosphate dehydrogenase)。
内 膜 折 叠 成 嵴
,
有 双 层 膜 结 构
,
2021/3/29
节首
33
章首
线粒体的功能特点
呼吸链(respiratatory chain)由供氢体、传递体、受氢体以 及相应的酶系统所组成的这种代谢途径一般称为生物氧化还原 链。如果受氢体是氧,则称为呼吸链。
外膜对大多数小分子物质和离子可通透,
NADPH在体内可用于: ⑴ 作为供氢体,参与体内的合成代谢:如参与合
成脂肪酸、胆固醇,一些氨基酸。 ⑵ 参与羟化反应:作为加单氧酶的辅酶,参与对
代谢物的羟化。
2021/3/29
29
⑶ 使氧化型谷胱甘肽还原。 ⑷ 维持巯基酶的活性。 ⑸ 维持红细胞膜的完整性:由于6-磷酸葡萄
糖脱氢酶遗传性缺陷可导致蚕豆病,表现为 溶血性贫血。
2021/3/29
30
2. 是体内生成5-磷酸核糖的惟一代谢途径:
体内合成核苷酸和核酸所需的核糖或脱氧核糖均以5-磷酸核糖的 形式提供,这是体内惟一的一条能生成5-磷酸核糖的代谢途径。
磷酸戊糖途径是体内糖代谢与核苷酸及核酸代谢的交汇途径。
2021/3/29
31
能量变化(3)
有氧氧化能量变化:以每分子葡萄糖计

第八章 糖代谢(1)

第八章 糖代谢(1)

第八章糖代谢知识点:一、糖类的消化知识点:糖原的降解、淀粉的降解、了解体内血糖的来源与去路二、糖酵解知识点:糖酵解途径的发现历史及实验依据,糖酵解反应历程,限速步骤及其酶;能量结算;乙醇发酵和乳酸发酵的原理;糖酵解的意义三、有氧氧化知识点:丙酮酸脱氢酶系,TCA循环的步骤,ATP生成部位,脱氢,底物水平磷酸化位点,限速酶,意义四、磷酸己糖旁路知识点:磷酸戊糖途径的两个阶段,磷酸戊糖途径的生理意义。

五、糖异生知识点:糖异生途径;与糖酵解对照关键酶;糖异生的前体;生糖氨基酸;丙酮酸羧化支路;Cori循环;葡萄糖-丙氨酸循环六、糖原合成知识点:糖原合成酶、UDPG、分枝酶七、光合作用知识点:光合作用,光反应,暗反应,光合磷酸化,Calvin(卡尔文)循环八、代谢调节发酵知识点:代谢调节发酵的思路;甘油发酵原理;柠檬酸发酵原理五、糖类的消化知识点:糖原的降解、淀粉的降解、了解体内血糖的来源与去路选择题:1.催化直链淀粉转化为支链淀粉的酶是:A、R酶B、D酶C、Q酶D、α-1,6糖苷酶2.支链淀粉降解分支点由下列那个酶催化?A、α和β-淀粉酶B、Q酶C、淀粉磷酸化酶D、R-酶3.高等植物体内蔗糖水解由下列那种酶催化?A、转化酶B、磷酸蔗糖合成酶C、ADPG焦磷酸化酶D、蔗糖磷酸化酶4. α-淀粉酶的特征是:A、耐70℃左右的高温B、不耐70℃左右的高温C、在pH7.0时失活D、在pH3.3时活性高5.支链淀粉中的α-1,6支点数等于:A、非还原端总数B、非还原端总数减1C、还原端总数D、还原端总数减1填空题:1.α和β淀粉酶只能水解淀粉的键,所以不能够使支链淀粉彻底水解。

2.淀粉磷酸化酶催化淀粉降解的最初产物是。

3.淀粉的磷酸解通过降解α-1,4糖苷键,通过酶降解α-1,6糖苷键。

4、糖原的降解主要是糖原非还原性末端进行磷酸解,反应由糖原磷酸化酶和脱支酶共同催化生成1-磷酸葡萄糖。

问答题:简述体内血糖的来源和去路。

生物化学总结下生科第八章糖代谢一名词

生物化学总结下生科第八章糖代谢一名词

⽣物化学总结下⽣科第⼋章糖代谢⼀名词⽣物化学总结下————By ⽣科2005 狐狸Z第⼋章糖代谢⼀、名词解释:糖酵解途径:是指糖原或葡萄糖分⼦分解⾄⽣成丙酮酸的阶段。

是体内糖代谢的最主要的途径。

糖酵解:是指糖原或葡萄糖分⼦在⼈体组织中,经⽆氧分解为乳酸和少量ATP的过程,和酵母菌使葡萄⽣醇发酵的过程基本相同,故称为糖酵解作⽤。

糖的有氧氧化:指糖原或葡萄糖分⼦在有氧条件下彻底氧化成⽔和⼆氧化碳的过程。

巴斯德效应:指有氧氧化抑制⽣醇发酵的作⽤糖原储积症:是⼀类以组织中⼤量糖原堆积为特征的遗传性代谢病。

引起糖原堆积的原因是患者先天性缺乏与糖代谢有关的酶类。

底物循环:是指两种代谢物分别由不同的酶催化的单项互变过程。

催化这种单项不平衡反应的酶多为代谢途径中的限速酶。

乳酸循环:指肌⾁收缩时(尤其缺氧)产⽣⼤量乳酸,部分乳酸随尿排出,⼤部分经⾎液运到肝脏,通过糖异⽣作⽤和成肝糖原或葡萄糖补充⾎糖,⾎糖可在被肌⾁利⽤,这样形成的循环(肌⾁-肝-肌⾁)称为乳酸循环。

磷酸戊糖途径:指机体某些组织(如肝,脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进⽽代谢⽣成磷酸戊糖为中间代谢物的过程,⼜称为⼰糖磷酸⽀路。

糖蛋⽩:由糖链以共价键与肽链连接形成的结合蛋⽩质。

蛋⽩聚糖:由糖氨聚糖和蛋⽩质共价结合形成的复合物。

别构调节:指某些调节物能与酶的调节部位以次级键结合,使酶分⼦的构想发⽣改变,从⽽改变酶的活性,称为酶的别构调节。

共价修饰:指⼀种酶在另⼀种酶的催化下,通过共价键结合或⼀曲某种集团,从⽽改变酶的活性,由此实现对代谢的快速调节。

底物⽔平磷酸化:底物⽔平磷酸化指底物在脱氢或脱⽔时分⼦内能量重新分布形成的⾼能磷酸根直接转移ADP给⽣成ATP的⽅式。

激酶:使底物磷酸化,但必须由ATP提供磷酸基团催化,这样反应的酶称为激酶。

三羧酸循环:⼄辅酶A的⼄酰基部分是通过三羧酸循环,在有氧条件下彻底氧化为⼆氧化碳和⽔的。

生物化学第八章糖代谢

生物化学第八章糖代谢

第八章 糖代谢 (saccharometabolism) 糖是生物体内主要能源 生命过程 消耗能量
第八章:糖代谢
01
02
03
1 多糖和底聚糖的酶促降解
2 糖的分解代谢
3 糖的合成代谢
葡萄糖的主要代谢细胞定位
细胞膜
细胞质
线粒体
高尔基体
细胞核
内质网
溶酶体
细胞壁
叶绿体
有色体
白色体
液体
晶体
分泌物
01
02
03
04
糖酵解过程: 10步反应 葡萄糖 丙酮酸 乳酸 能量转换发生在前10步. 可划分为两个主要阶段: 前五步为准备阶段,葡萄糖通过磷酸化、异构化裂解为三碳糖。每裂解一个已糖分子,共消耗2分子ATP。使己糖分子的1,6位磷酸化。最后形成一个共同的中间产物甘油醛-3-磷酸。 后五步为产生ATP的贮能阶段。磷酸三碳糖转变成丙酮酸,每分子三碳糖产生2分子ATP。 整个过程需要10种酶,这些酶都在细胞质中,所以 , EMP途径的发生部位在细胞质中。
8反应图
甘油酸-3-磷酸
磷酸甘油酸变位酶
甘油酸-2-磷酸
9、2-磷酸甘油酸脱水烯醇化
9反应图 烯醇化酶 甘油酸-2-磷酸 磷酸烯醇式丙酮酸
2-磷酸甘油酸的脱水生成磷酸烯醇式丙酮酸
烯醇化酶(enolase) 这一步反应也可看作分子内氧化还原反应,分子内能量重新分布,又一次产生了高能磷酯键。 反应可以被氟离子抑制,取代天然情况下酶分子上镁离子的位置,使酶失活。
二次磷酸化。形成果糖-1,6-二磷酸。
该反应不可逆
酶:称为磷酸果糖激酶(PFK),
该酶需要Mg2+参加反应。
ATP可降低该酶对果糖-6-磷酸的亲和力,但ATP对该酶的这种变构抑制效应可被AMP解除。因此ATP/AMP的比例关系对此有明显的调节作用。H+对酶活性也有很大影响。

第八章糖代谢-有氧分解

第八章糖代谢-有氧分解

NADH
异柠檬酸 – ATP
脱氢酶
+ ADP Ca2+
制前面反应中的酶
α-酮戊二酸
α-酮戊二酸
脱氢酶复合体 + Ca2+
④ 其他,如Ca2+可
琥珀酰CoA – 琥珀酰CoA NADH
激活许多酶
GTP
ATP
3. 有氧分解的调节特点
⑴ 有氧分解的调节通过对其关键酶的调节实现。 ⑵ ATP/ADP或ATP/AMP比值全程调节,其中
5、TCA小结
TCA部位:线粒体。 三羧酸循环的要点: – 消耗一分子乙酰CoA, – 经四次脱氢,二次脱羧,一次底物水平磷酸化。 – 生成1分子FADH2,3分子NADH+H+,2分子CO2,
1分子GTP。 关键酶:柠檬酸合酶、α-酮戊二酸脱氢酶复合体、 异柠檬酸脱氢酶 整个循环反应为不可逆反应
3NADP+
6-磷酸葡萄糖酸脱氢酶
3NADP+3H+
CO2
5-磷酸核酮糖(C5) ×3
5-磷酸木酮糖 5-磷酸核糖
C5
C5
7-磷酸景天糖
C7 4-磷酸赤藓糖
3-磷酸 甘油醛
C4 6-磷酸果糖
C3
C6
5-磷酸木酮糖 C5
3-磷酸甘油醛 C3
6-磷酸果糖 C6
第一阶段 第二阶段
二、磷酸戊糖途径的调节
* 6-磷酸葡萄糖脱氢酶 此酶为磷酸戊糖途径的关键酶,其活性
第八章 糖代谢-有氧分解
Aerobic Oxidation of Carbohydrates
糖的有氧分解概念
指在机体氧供充足时,葡萄糖彻底氧化成 H2O和CO2,并释出许多能量的过程。是机 体主要供能方式。 部位:胞液及线粒体

生物化学第八章 糖代谢 (1)

生物化学第八章 糖代谢 (1)

葡萄糖经过糖酵解生成 丙酮酸,在线粒体内由 丙酮酸脱氢酶系催化丙 酮酸不可逆的氧化脱羧, 并与CoA结合形成乙酰CoA和CO2
1、丙酮酸乙酰-CoA的过程
(1)丙酮酸脱羧(丙酮酸脱氢酶 )
a、发生在TPP辅基上的催化反应
b、羟乙基形成乙酰基
(2)乙酰基转移到CoA分子上形成乙酰-CoA
B、异柠檬酸脱氢酶催化脱羧在生物化学酶催反应 中具有代表性:先由β-羟酸氧化为β-酮酸,引起 脱羧反应,促进了相邻的C-C键断裂,解决了具有两 个碳原子的乙酰基氧化和降解问题,这种反应类型称 为β-裂解。
C、在植物和一些细菌中异柠檬酸的转化有两条途径: 当需要能量时进行氧化脱羧生成α-酮戊二酸 ;当 能量充足时裂解为琥珀酸和乙醛酸,需要异柠檬酸 裂解酶催化。
F-6-P

PFK2 F-2,6-BP
果糖二磷酸酶2
二E组成相同,仅因-Ser的磷酸化与否而活性不 同。 +Pi:PFK2↓ —Pi: PFK2↑
4)FPK2/果糖二磷酸酶2的活性受胰高血糖 素共价修饰。cAMP促进磷酸化。
2、己糖激酶:反应1
受F-6-P反馈抑制 G-6-P和ADP变构抑制 3、丙酮酸激酶:反应10 被F-1,6-BP活化;ATP和Ala变构抑制。
磷酸甘油酸激酶
8、3-P-甘油酸
2 -P-甘油酸
同分异构体的相互转变,反应可逆,需要Mg2+参加 磷酸甘油酸变位酶(phosphglycerate mutase)
磷酸甘油酸变位酶
9、 2 -P-甘油酸
磷酸烯醇丙酮酸(PEP)
烯醇化酶(enolase)催化;此反应引起分子内电子重排 和能量重分布,形成一个高能磷酸键,为下一步底物 水平磷酸化作准备。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反应式:
磷酸甘油酸变位酶催化,磷酰基从C3移至C2。
(9)、 2—磷酸甘油酸脱水生成磷酸烯醇式丙酮酸
反应式:
烯醇化酶
2—磷酸甘油酸中磷脂键是一个低能键(△G= -17.6Kj /mol)而磷酸烯醇式丙酮酸中的磷酰烯醇键是高能键(△G= -62.1Kj /mol),因此,这一步反应显著提高了磷酰基的转移势能。
经苹果酸穿梭,胞液中NADH进入呼吸链氧化,产生3个ATP。

苹果酸脱氢酶(胞液)
α—酮戊二酸转位酶
苹果酸脱氢酶(线粒体基质)
谷—草转氨酶
Glu—Asp转位酶
谷—草转氨酶
草酰乙酸:
苹果酸:
α—酮戊二酸:
3、 糖酵解中酶的反应类型
P88 表13-1 糖酵解反应
氧化还原酶(1种):3—磷酸甘油醛脱氢酶
糖的磷酸衍生物可以构成多种重要的生物活性物质:NAD、FAD、DNA、RNA、ATP。
分解代谢:酵解(共同途径)、三羧酸循环(最后氧化途径)、磷酸戊糖途径、糖醛酸途径等。
合成代谢:糖异生、糖原合成、结构多糖合成以及光合作用。
分解代谢和合成代谢,受神经、激素、别构物调节控制。
第一节 糖酵解 glycolysis
①:胞液中磷酸甘油脱氢酶。
②:线粒体磷酸甘油脱氢酶。
《罗纪盛》P 259 P 260。
★苹果酸穿梭机制:
胞液中的NADH可经苹果酸脱氢酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸—2—酮戊二酸载休转运,进入线粒体内,由线粒体内的苹果酸脱氢酶催化,生成NADH和草酰乙酸。
而草酰乙酸经天冬氨酸转氨酶作用,消耗Glu而形成Asp。Asp经线粒体上的载体转运回胞液。在胞液中,Asp经胞液中的Asp转氨酶作用,再产生草酰乙酸。
在厌氧酵解时(乳酸菌、剧烈运动的肌肉),丙酮酸接受了3—磷酸甘油醛脱氢酶生成的NADH上的氢,在乳酸脱氢酶催化下,生成乳酸。
总反应: Glc + 2ADP + 2Pi → 2乳酸 + 2ATP + 2H2O
动物体内的乳酸循环 Cori 循环:

肌肉收缩,糖酵解产生乳酸。乳酸透过细胞膜进入血液,在肝脏中异生为Glc,解除乳酸积累引起的中毒。
第八章 糖代谢
自养生物
分解代谢
糖代谢包括 异养生物
自养生物
合成代谢
异养生物
能量转换(能源)
糖代谢的生物学功能
物质转换(碳源)
可转化成多种中间产物,这些中间产物可进一步转化成氨基酸、脂肪酸、核苷酸。
4、 丙酮酸进行糖异生
五、 其它单糖进入糖酵解途径
除葡萄糖外,其它单糖也可进行酵解
P 91 图 13-6 各种单糖进入糖酵解的途径
1.糖原降解产物G—1—P
2.D—果糖 有两个途径
3.D—半乳糖
4.D—甘露糖
第二节 三羧酸循环
葡萄糖的有氧氧化包括四个阶段。
①糖酵解产生丙酮酸(2丙酮酸、 2ATP、2NADH)
此外,还需要CoA、Mg2+作为辅因子
这些肽链以非共价键结合在一起,在碱性条件下,复合体可以解离成相应的亚单位,在中性时又可以重组为复合体。所有丙酮酸氧化脱羧的中间物均紧密结合在复合体上,活性中间物可以从一个酶活性位置转到另一个酶活性位置,因此,多酶复合体有利于高效催化反应及调节酶在反应中的活性。
葡萄糖激酶:对Glc有专一活性,存在于肝脏中,不被G-6-P抑制。Glc激酶是一个诱导酶,由胰岛素促使合成,
肌肉细胞中已糖激酶对Glc的Km为0.1mmol/L,而肝中Glc激酶对Glc的Km为10mmol/L,因此,平时细胞内Glc浓度为5mmol/L时,已
催化此反应的激酶有,已糖激酶和葡萄糖激酶。
激酶:催化ATP分子的磷酸基(r-磷酰基)转移到底物上的酶称激酶,一般需要Mg2+或Mn2+作为辅因子,底物诱导的裂缝关闭现象似乎是激酶的共同特征。
P 80 图13-2己糖激酶与底物结合时的构象变化
已糖激酶:专一性不强,可催化Glc、Fru、Man(甘露糖)磷酸化。己糖激酶是酵解途径中第一个调节酶,被产物G-6-P强烈地别构抑制。
H+:可防止肌肉中形成过量乳酸而使血液酸中毒。
3、 丙酮酸激酶调节
抑制剂:乙酰CoA、长链脂肪酸、Ala、ATP

活剂:F-1.6-P、
四、 丙酮酸的去路
1、 进入三羧酸循环
2、 乳酸的生成
Cori循环是一个耗能过程:2分子乳酸生成1分子Glc,消耗6个ATP。
3、 乙醇的生成
酵母或其它微生物中,经糖酵解产生的丙酮酸,可以经丙酮酸脱羧酶催化,脱羧生成乙醛,在醇脱氢酶催化下,乙醛被NADH还原成乙醇。
总反应:Glc+2pi+2ADP+2H+→2乙醇+2CO2+2ATP+2H20
在厌氧条件下能产生乙醇的微生物,如果有氧存在时,则会通过乙醛的氧化生成乙酸,制醋。
糖激酶催化的酶促反应已经达最大速度,而肝中Glc激酶并不活跃。进食后,肝中Glc浓度增高,此时Glc激酶将Glc转化成G-6-P,进一步转化成糖元,贮存于肝细胞中。
(2)、 G-6-P异构化为F-6-P
反应式:
由于此反应的标准自由能变化很小,反应可逆,反应方向由底物与产物的含量水平控制。
(4)、 F-1.6-P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP)
反应式:
该反应在热力学上不利,但是,由于具有非常大的△G0负值的F-1.6-2P的形成及后续甘油醛-3-磷酸氧化的放能性质,促使反应正向进行。同时在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行。
该反应由醛缩酶催化,反应机理
反应式:
由磷酸甘油醛脱氢酶催化。
此反应既是氧化反应,又是磷酸化反应,氧化反应的能量驱动磷酸化反应的进行。
反应机理:
P84 图 13-4 3-磷酸甘油醛脱氢酶的催化机理
碘乙酸可与酶的-SH结合,抑制此酶活性,砷酸能与磷酸底物竞争,使氧化作用与磷酸化作用解偶连(生成3-磷酸甘油酸)
一、 丙酮酸脱羧生成乙酰CoA
1、 反应式:
此反应在真核细胞的线粒体基质中进行,这是连接糖酵解与TCA的中心环节。
2、 丙酮酸脱氢酶系
丙酮酸脱氢酶系是一个十分庞大的多酶体系,位于线粒体膜上,电镜下可见。
E.coli丙酮酸脱氢酶复合体:
分子量:4.5×106,直径45nm,比核糖体稍大。
若供氧不足,NADH把丙酮酸还原成乳酸(乳酸发酵)。
2、 发酵fermentation
厌氧有机体(酵母和其它微生物)把酵解产生的NADH上的氢,传递给丙酮酸,生成乳酸,则称乳酸发酵。
若NAPH中的氢传递给丙酮酸脱羧生成的乙醛,生成乙醇,此过程是酒精发酵。
有些动物细胞即使在有O2时,也会产生乳酸,如成熟的红细胞(不含线粒体)、视网膜。
酶 辅酶 每个复合物亚基数
丙酮酸脱羧酶(E1) TPP 24
二氢硫辛酸转乙酰酶(E2) 硫辛酸 24
二氢硫辛酸脱氢酶(E3) FAD、NAD+ 12
二、 糖酵解过程(EMP)
Embden-Meyerhof Pathway ,1940
在细胞质中进行
1、 反应步骤
P79 图 13-1 酵解途径,三个不可逆步骤是调节位点。
(1)、 葡萄糖磷酸化形成G-6-P
反应式
此反应基本不可逆,调节位点。△G0= - 4.0Kcal/mol使Glc活化,并以G-6-P形式将Glc限制在细胞内。
1分子NADH→3ATP
1分子FAD →2ATP
因此,净产生8ATP(酵解2ATP,2分子NADH进入呼吸氧化,共生成6ATP)。
但在肌肉系统组织和神经系统组织:一个Glc酵解,净产生6ATP(2+2*2)。
★甘油磷酸穿梭:
2分子NADH进入线粒体,经甘油磷酸穿梭系统,胞质中磷酸二羟丙酮被还原成3—磷酸甘油,进入线粒体重新氧化成磷酸二羟丙酮,但在线粒体中的3—磷酸甘油脱氢酶的辅基是FAD,因此只产生4分子ATP。
(7)、 1.3—二磷酸甘油酸转化成3—磷酸甘油酸和ATP
反应式:
由磷酸甘油酸激酶催化。
这是酵解过程中的第一次底物水平磷酸化反应,也是酵解过程中第一次产生ATP的反应。
一分子Glc产生二分子三碳糖,共产生2ATP。这样可抵消Glc在两次磷酸化时消耗的2ATP。
(8)、 3—磷酸甘油酸转化成2—磷酸甘油酸
P 83
(5)、 磷酸二羟丙酮(DHAP)异构化成3-磷酸甘油醛
反应式:(注意碳原子编号的变化)
由磷酸丙糖异构酶催化。
已糖转化成3-磷酸甘油醛后,C原子编号变化:F-1.6-P的C1-P、C6-P都变成了3-磷酸甘油醛的C3-P
图解:
(6)、 3-磷酸甘油醛氧化成1.3—二磷酸甘油酸
此反应由磷酸Glc异构酶催化,将葡萄糖的羰基C由C1移至C2 ,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的β断裂,形成三碳物是必需的。
(3)、 F-6-P磷酸化,生成F-1.6-P
反应式:
此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。
磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶
(10)、 磷酸烯醇式丙酮酸生成ATP和丙酮酸。
反应式:
不可逆,调节位点。
由丙酮酸激酶催化,丙酮酸激酶是酵解途径的第三个调节酶,
这是酵解途径中的第二次底物水平磷酸化反应,磷酸烯醇式丙酮酸将磷酰基转移给ADP,生成ATP和丙酮酸
相关文档
最新文档