95蚁群算法求解TSP的基本思想

合集下载

蚁群算法实现TSP

蚁群算法实现TSP

蚁群算法实现TSP蚁群算法(Ant Colony Optimization, ACO)是一种模拟蚂蚁觅食行为的算法,常被用来解决旅行商问题(Traveling Salesman Problem, TSP)。

旅行商问题是一个经典的组合优化问题,目标是找到一条最短的路径,使得旅行商能够访问所有城市并返回起始城市。

蚁群算法的基本思想是模拟蚂蚁寻找食物的行为,每只蚂蚁在过程中释放信息素,并根据信息素浓度和距离选择下一个城市。

信息素的释放和更新规则是蚁群算法的核心。

蚁群算法的实现步骤如下:1.初始化蚁群:随机放置一定数量的蚂蚁在不同城市。

2.计算路径长度:根据蚂蚁的选择规则,计算每只蚂蚁的路径长度。

3.更新信息素:根据路径长度,更新城市之间的信息素浓度。

4.更新蚂蚁的选择规则:根据信息素浓度和距离,更新蚂蚁的选择规则。

5.重复步骤2-4,直到达到指定的迭代次数或找到最优解。

在蚂蚁的选择规则中,信息素浓度和距离是两个重要的因素。

信息素浓度越高,蚂蚁越有可能选择该路径;距离越短,蚂蚁越倾向于选择该路径。

为了平衡这两个因素,通常使用一个参数来调节它们的权重。

在更新信息素时,一般采用全局信息素更新和局部信息素更新两种方式。

全局信息素更新是将所有蚂蚁路径上的信息素浓度进行更新,以加强优质路径的信息素浓度。

局部信息素更新是只更新最优路径上的信息素浓度,以加强当前最优路径的信息素浓度。

蚁群算法的优点是能够找到近似最优解,并且具有较好的鲁棒性和适应性。

然而,蚁群算法也存在一些问题,例如易陷入局部最优解、收敛速度较慢等。

针对TSP问题,蚁群算法的实现可以按照上述步骤进行。

具体来说,可以通过以下几个方面的设计来优化算法的性能:1.蚂蚁的选择规则:可以采用轮盘赌选择法,即根据信息素浓度和距离计算每个城市被选择的概率,然后根据概率选择下一个城市。

2.信息素更新:可以采用全局信息素更新和局部信息素更新相结合的方式,以平衡全局和局部的效果。

计算智能大作业--蚁群算法解决TSP问题

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业)应用蚁群算法求解TSP问题目录蚁群算法求解TSP问题 (3)摘要: (3)关键词: (3)一、引言 (3)二、蚁群算法原理 (4)三、蚁群算法解决TSP问题 (7)四、解决n个城市的TSP问题的算法步骤 (9)五、程序实现 (11)六、蚁群算法优缺点分析及展望 (18)七、总结 (18)采用蚁群算法解决TSP问题摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。

本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。

关键词:蚁群算法;TSP问题;matlab。

一、引言TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。

TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。

TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。

目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。

本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

20世纪90年代,意大利学者M.Dorigo等人在新型算法研究的过程中,通过模拟自然界蚂蚁的觅食过程:即通过信息素(pheromone)的相互交流从而找到由蚁巢至食物的最短路径,提出了一种基于信息正反馈原理的新型模拟进化算法——蚁群算法(Ant Colony algorithm)。

用蚁群算法解决TSP问题

用蚁群算法解决TSP问题

用蚁群算法解决TSP 问题一、引言蚁群算法是一种受自然界生物行为启发而产生的“自然”算法,产生于对蚂蚁行为的研究。

蚁群中的蚂蚁以“信息素”为媒介,间接异步的相互联系。

蚂蚁在行动中,会在他们经过的地方留下一些化学物质,称为“信息素”。

这些物质能被同一种群众后来的蚂蚁感受到,并作为一种信号影响后者的行动,具体表现在后到的蚂蚁选择有这些物质的路径的可能性比选择没有这些物质的路径的可能性大的多。

后者留下的信息素会对原有的信息素进行加强,并循环下去。

这样,经过蚂蚁多的路径,后到蚂蚁选择这条路径的可能性就越来越大。

由于在一定的时间内,越短的路径会被越多的蚂蚁访问,因而积累的信息素就越多,在下一个时间内被其他的蚂蚁选中的可能性也越大。

这个过程会持续到所有的蚂蚁都走到最短的那一条路径为止。

二、关键技术(1) 解的表达形式在应用蚁群优化算法时,只需要建立一个虚拟的始终点,相当于蚁群的巢穴和食物所在地,这样一个所经过城市的路径的排列就构成了一个解;(2) 信息素的记忆和更新在算法开始时,由于从来没有蚂蚁去寻找过路径,因此可以认为是没有任何先验信息,即每条路上的信息相等。

客观地将,信息素应该都为0,但是由于在蚁群算法中,信息素决定了蚂蚁选择这条路径的概率,因此可以认为初始信息素矩阵为:1/(*(1))0ij N N p -⎧=⎨⎩i j i j ≠=其中N 为城市数 当算法运行过程中,每次放出m 支蚂蚁,每只蚂蚁按照信息素选择路径,将其中路径最短的记录下来,对这条最短路进行信息素的加强;而对于其他路径,因为信息素的挥发,信息素浓度将会降低,更新后的信息素矩阵为: 11(1)//(1)/k ij k ij k ij p N p p ρρρ--⎧-+⎪=⎨-⎪⎩i j i j →→经过路径不经过路径其中N 为城市数,ρ为挥发系数 (3) 蚁群的规模在一般应用中,蚁群中蚂蚁的个数m 是固定数,不超过TSP 图的节点数。

三、算法实现步骤1 设定蚁群规模m ,计算次数n ,挥发系数ρ,初始化信息素矩阵,设定变量best =+∞记录全局最优解;步骤2 若n =0,推出并输出结果;否则n=n-1,分别放出m 只蚂蚁,按照信息素概率选择路径,并找出m 条路径中的当代最优路径cubest ; 步骤3 根据当代最有路径更新信息素;步骤4 如果cubest<best ,best=cubest ,执行步骤2;否则直接执行步骤2;四、结果及分析通过五个城市节点的TSP 问题的求解,其城市间的距离矩阵为:01015621008139158020156132005291550⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭蚁群算法找到的最优路径为A C B D E →→→→,总路程为43;通过试验结果发现,对于小规模的TSP问题,蚁群算法和禁忌搜索、模拟退火算法的计算结果相似,而且耗时很短,因此该算法是合理的。

计算智能大作业--蚁群算法解决TSP问题资料

计算智能大作业--蚁群算法解决TSP问题资料

(计算智能大作业)应用蚁群算法求解TSP问题目录蚁群算法求解TSP问题 (3)摘要: (3)关键词: (3)一、引言 (3)二、蚁群算法原理 (4)三、蚁群算法解决TSP问题 (7)四、解决n个城市的TSP问题的算法步骤 (9)五、程序实现 (11)六、蚁群算法优缺点分析及展望 (18)七、总结 (18)采用蚁群算法解决TSP问题摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。

本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。

关键词:蚁群算法;TSP问题;matlab。

一、引言TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。

TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。

TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。

目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。

本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

20世纪90年代,意大利学者M.Dorigo等人在新型算法研究的过程中,通过模拟自然界蚂蚁的觅食过程:即通过信息素(pheromone)的相互交流从而找到由蚁巢至食物的最短路径,提出了一种基于信息正反馈原理的新型模拟进化算法——蚁群算法(Ant Colony algorithm)。

蚂蚁算法和蚁群算法

蚂蚁算法和蚁群算法

蚂蚁算法(Ant Colony Algorithm)和蚁群算法(Ant Colony Optimization)是启发式优化算法,灵感来源于蚂蚁在觅食和建立路径时的行为。

这两种算法都基于模拟蚂蚁的行为,通过模拟蚂蚁的集体智慧来解决组合优化问题。

蚂蚁算法和蚁群算法的基本原理类似,但应用领域和具体实现方式可能有所不同。

下面是对两者的简要介绍:蚂蚁算法:蚂蚁算法主要用于解决图论中的最短路径问题,例如旅行商问题(Traveling Salesman Problem,TSP)。

其基本思想是通过模拟蚂蚁在环境中寻找食物的行为,蚂蚁会通过信息素的释放和感知来寻找最优路径。

蚂蚁算法的核心概念是信息素和启发式规则。

信息素(Pheromone):蚂蚁在路径上释放的一种化学物质,用于传递信息和标记路径的好坏程度。

路径上的信息素浓度受到蚂蚁数量和路径距离的影响。

启发式规则(Heuristic Rule):蚂蚁根据局部信息和启发式规则进行决策。

启发式规则可能包括路径距离、路径上的信息素浓度等信息。

蚂蚁算法通过模拟多个蚂蚁的行为,在搜索过程中不断调整路径上的信息素浓度,从而找到较优的解决方案。

蚁群算法:蚁群算法是一种更通用的优化算法,广泛应用于组合优化问题。

除了解决最短路径问题外,蚁群算法还可应用于调度问题、资源分配、网络路由等领域。

蚁群算法的基本原理与蚂蚁算法类似,也是通过模拟蚂蚁的集体行为来求解问题。

在蚁群算法中,蚂蚁在解决问题的过程中通过信息素和启发式规则进行路径选择,但与蚂蚁算法不同的是,蚁群算法将信息素更新机制和启发式规则的权重设置进行了改进。

蚁群算法通常包含以下关键步骤:初始化:初始化蚂蚁的位置和路径。

路径选择:根据信息素和启发式规则进行路径选择。

信息素更新:蚂蚁在路径上释放信息素,信息素浓度受路径质量和全局最优解的影响。

全局更新:周期性地更新全局最优解的信息素浓度。

终止条件:达到预设的终止条件,结束算法并输出结果。

蚁群算法——精选推荐

蚁群算法——精选推荐

蚁群算法⼀、蚁群算法蚁群算法是在20世纪90年代由澳⼤利亚学者Marco Dorigo等⼈通过观察蚁群觅⾷的过程,发现众多蚂蚁在寻找⾷物的过程中,总能找到⼀条从蚂蚁巢⽳到⾷物源之间的最短路径。

随后他们在蚂蚁巢⽳到⾷物源之间设置了⼀个障碍,⼀段时间以后发现蚂蚁⼜重新⾛出了⼀条到⾷物源最短的路径。

通过对这种现象的不断研究,最后提出了蚁群算法。

蚁群算法在解决(即TSP问题)时,取得了⽐较理想的结果。

⼆、基本⼈⼯蚁群算法原理运⽤⼈⼯蚁群算法求解TSP问题时的基本原理是:将m个蚂蚁随机地放在多个城市,让这些蚂蚁从所在的城市出发,n步(⼀个蚂蚁从⼀个城市到另外⼀个城市为1步)之后返回到出发的城市。

如果m个蚂蚁所⾛出的m条路经对应的中最短者不是TSP问题的最短路程,则重复这⼀过程,直⾄寻找到满意的TSP问题的最短路径为⽌。

为了说明这⼀个算法下⾯⽤⼀个算法流程图来表⽰⼀下:三、蚁群算法中涉及到的参数及其符号::蚂蚁数量,约为城市数量的1.5倍。

如果蚂蚁数量过⼤,则每条路径上的信息素浓度趋于平均,正反馈作⽤减弱,从⽽导致收敛速度减慢;如果过⼩,则可能导致⼀些从未搜索过的路径信息素浓度减⼩为0,导致过早收敛,解的全局最优性降低:信息素因⼦,反映了蚂蚁运动过程中积累的信息量在指导蚁群搜索中的相对重要程度,取值范围通常在[1, 4]之间。

如果信息素因⼦值设置过⼤,则容易使随机搜索性减弱;其值过⼩容易过早陷⼊局部最优:启发函数因⼦,反映了启发式信息在指导蚁群搜索中的相对重要程度,取值范围在[3, 4.5]之间。

如果值设置过⼤,虽然收敛速度加快,但是易陷⼊局部最优;其值过⼩,蚁群易陷⼊纯粹的随机搜索,很难找到最优解:信息素挥发因⼦,反映了信息素的消失⽔平,相反的反映了信息素的保持⽔平,取值范围通常在[0.2, 0.5]之间。

当取值过⼤时,容易影响随机性和全局最优性;反之,收敛速度降低:信息素常数,表⽰蚂蚁遍历⼀次所有城市所释放的信息素总量。

蚁群算法(ACO)解决TSP问题

蚁群算法(ACO)解决TSP问题

蚁群算法(ACO)解决TSP问题⼀、蚁群算法1.基本原理蚁群算法(Ant Colony Optimization,ACO)是⼀种基于种群寻优的启发式搜索算法,有意⼤利学者M.Dorigo等⼈于1991年⾸先提出。

该算法受到⾃然界真实蚁群集体在觅⾷过程中⾏为的启发,利⽤真实蚁群通过个体间的信息传递、搜索从蚁⽳到⾷物间的最短路径等集体寻优特征,来解决⼀些离散系统优化中的困难问题。

经过观察发现,蚂蚁在寻找⾷物的过程中,会在它所经过的路径上留下⼀种被称为信息素的化学物质,信息素能够沉积在路径上,并且随着时间逐步挥发。

在蚂蚁的觅⾷过程中,同⼀蚁群中的其他蚂蚁能够感知到这种物质的存在及其强度,后续的蚂蚁会根据信息素浓度的⾼低来选择⾃⼰的⾏动⽅向,蚂蚁总会倾向于向信息素浓度⾼的⽅向⾏进,⽽蚂蚁在⾏进过程中留下的信息素⼜会对原有的信息素浓度予以加强,因此,经过蚂蚁越多的路径上的信息素浓度会越强,⽽后续的蚂蚁选择该路径的可能性就越⼤。

通常在单位时间内,越短的路径会被越多的蚂蚁所访问,该路径上的信息素强度也越来越强,因此,后续的蚂蚁选择该短路径的概率也就越⼤。

经过⼀段时间的搜索后,所有的蚂蚁都将选择这条最短的路径,也就是说,当蚁巢与⾷物之间存在多条路径时,整个蚁群能够通过搜索蚂蚁个体留下的信息素痕迹,寻找到蚁巢和⾷物之间的最短路径。

蚁群算法中,蚂蚁个体作为每⼀个优化问题的可⾏解。

⾸先随机⽣成初始种群,包括确定解的个数、信息素挥发系数、构造解的结构等。

然后构造蚁群算法所特有的信息素矩阵每只妈蚁执⾏蚂蚊移动算⼦后,对整个群体的蚂蚁做⼀评价,记录最优的蚂蚁。

之后算法根据信息素更新算⼦更新信息素矩阵,⾄此种群的⼀次选代过程完成。

整个蚂蚁群体执⾏⼀定次数的选代后退出循环、输出最优解。

2.术语介绍(1)蚂蚁个体。

每只蚂蚁称为⼀个单独的个体,在算法中作为⼀个问题的解。

(2)蚂蚁群体。

⼀定数量的蚂蚁个体组合在⼀起构成⼀个群体,蚂蚁是群体的基本单位。

蚁群算法的TSP问题求解策略分析研究

蚁群算法的TSP问题求解策略分析研究

基于蚁群算法的TSP问题求解策略研究摘要TSP问题是计算机网络、路由规划中的经典问题。

而蚁群优化算法作为高效的计算智能的方法,在离散优化领域有着十分广泛的应用,其中最为经典的是最优回路求解问题。

因此,本文在分析蚁群算法发展现状的基础上,针对TSP问题的求解策略,来深入分析蚁群基数的设置对收敛效率的影响。

最后通过MATlAB编程工具运行相关代码,并得到相应的TSP问题解。

实验结果表明:随着蚁群基数的增加,TSP问题求解的时间也会线性增加;当蚁群基数大于等于TSP问题的结点个数的时候,TSP问题的解才会保持稳定且趋近于蚁群基数与节点个数相等时的TSP问题的解。

关键字蚁群算法蚁群基数 TSPResearch on the TSP Solution based on Ant Colony Optimization [Abstract]The TSP problem is a classic problem in computer network, route planning.And the ant colony optimization algorithm as an efficient method of computational intelligence, has the extremely widespread application in the field of discrete optimization, the most classic is the optimal circuit to solve the problem. Therefore, this article on the basis of analyzing the current situation of the development of ant colony algorithm, TSP problem solving strategy, to analyze ant colony base Settings affect the convergence efficiency. Finally through MATlAB programming tools run the code, and get the corresponding TSP problem solution. The experimental results show that with the increase of base of ant colony, TSP problem solving linear time will also grow。

蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP 中的应用1 蚁群算法(ACA )原理1.1 基本蚁群算法的数学模型以求解平面上一个n 阶旅行商问题(Traveling Salesman Problem ,TSP)为例来说明蚁群算法ACA (Ant Colony Algorithm )的基本原理。

对于其他问题,可以对此模型稍作修改便可应用。

TSP 问题就是给定一组城市,求一条遍历所有城市的最短回路问题。

设()i b t 表示t 时刻位于元素i 的蚂蚁数目,()ij t τ为t 时刻路径(,)i j 上的信息量,n 表示TSP 规模,m 为蚁群的总数目,则1()ni i m b t ==∑;{(),}ij i i t c c C τΓ=⊂是t 时刻集合C 中元素(城市)两两连接ij t 上残留信息量的集合。

在初始时刻各条路径上信息量相等,并设 (0)ij const τ=,基本蚁群算法的寻优是通过有向图(,,)g C L =Γ实现的。

蚂蚁(1,2,...,)k k m =在运动过程中,根据各条路径上的信息量决定其转移方向。

这里用禁忌表(1,2,...,)k tabu k m =来记录蚂蚁k 当前所走过的城市,集合随着k tabu 进化过程作动态调整。

在搜索过程中,蚂蚁根据各条路径上的信息量及路径的启发信息来计算状态转移概率。

()kij p t 表示在t 时刻蚂蚁k 由元素(城市)i 转移到元素(城市)j 的状态转移概率。

()*()()*()()0k ij ij k kij ij ij s allowed t t j allowed t t p t αβαβτητη⊂⎧⎡⎤⎡⎤⎣⎦⎣⎦⎪∈⎪⎡⎤⎡⎤=⎨⎣⎦⎣⎦⎪⎪⎩∑若否则(1)式中,{}k k allowed C tabuk =-表示蚂蚁k 下一步允许选择的城市;α为信息启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间协作性越强;β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的重视程度,其值越大,则该状态转移概率越接近于贪心规则;()ij t η为启发函数,其表达式如下:1()ij ijt d η=(2)式中,ij d 表示相邻两个城市之间的距离。

基于自然选择策略的蚁群算法求解TSP问题

基于自然选择策略的蚁群算法求解TSP问题

基于自然选择策略的蚁群算法求解TSP问题一、本文概述本文旨在探讨基于自然选择策略的蚁群算法在求解旅行商问题(TSP)中的应用。

旅行商问题是计算机科学和运筹学中的经典难题,其目标是在给定一系列城市和城市之间的距离后,找出一个最短的路径,使得旅行商能够访问每个城市一次并返回原点。

蚁群算法作为一种模拟自然界蚂蚁觅食行为的优化算法,具有很强的全局搜索能力和鲁棒性,因此在解决TSP问题中具有广阔的应用前景。

本文首先介绍了TSP问题的定义、特点以及求解难度,然后详细阐述了蚁群算法的基本原理和算法流程。

在此基础上,本文提出了一种基于自然选择策略的蚁群算法,该算法通过引入自然选择的思想,使得蚁群在搜索过程中能够自动适应环境变化,优化搜索策略,从而提高算法的求解效率。

本文的主要研究内容包括:分析TSP问题的数学模型和求解难点,为蚁群算法的应用奠定基础;设计并实现基于自然选择策略的蚁群算法,通过仿真实验验证算法的有效性和优越性;将算法应用于实际TSP问题中,评估其在实际应用中的性能和效果。

本文的研究不仅有助于深入理解TSP问题的求解方法和蚁群算法的优化原理,而且能够为解决其他优化问题提供新的思路和方法。

本文的研究结果也为蚁群算法在实际应用中的推广和应用提供了有力支持。

二、自然选择策略的基本原理自然选择策略,源自达尔文的进化论,是生物进化过程中的核心机制。

在自然界中,生物体通过遗传、变异和选择三个基本过程不断适应和进化。

遗传使得生物体的特征能够传递给后代,变异则引入新的遗传信息,而自然选择则决定了哪些特征在生存和繁衍中更具优势。

经过长时间的演化,适应性强的特征会得到保留和增强,而适应性弱的特征则可能逐渐消失。

将这种自然选择的思想引入算法设计,就形成了自然选择策略。

在算法中,每个解被视为一个个体,而个体的适应度则通过某种评价函数来衡量。

算法通过模拟自然选择的过程,不断迭代生成新的解,并保留适应度高的解,淘汰适应度低的解。

浅谈用蚁群算法求解TSP

浅谈用蚁群算法求解TSP
问题[ 、 2 大规 模集 成 电路设 计 、 讯 网络 中的路 由 ] 通 问题 、 载 平衡 、 负 车辆 调 度 问题 等 , 明该 算 法具 表
个 还 没有 走 过 的 路 口时 , 随 机 地 挑选 一条 路 就
径前 行 , 同时释 放 出与 路径 长度 有关 的信息 素. 蚂 蚁走 的路 径 越 长 , 释 放 的信息 量 越小. 则 当后来 的 蚂蚁 再 次碰 到这 条 路 口的时 候 , 择信 息 量 较 大 选
文 章编 号 :17 ・9 X(0 0 0 —0 10 6 26 1 2 1 】40 6—3
浅谈 用蚁群 算法求解 TS P
李 云
( 迁 高等师范学校 计算机系 , 苏 宿迁 230) 宿 江 28 0
摘 要 : 群 算 法 是 优 化 领 域 中 新 出现 的 一 种 启 发 式 仿 生 类 智 能 进 化 算 法 . 述 了 该 算 法 的 基 本 原 理 、 法 模 蚁 阐 算 型 和 在 旅 行 商 问题 中 的 具 体 实 现 过 程 . 究 表 明该 算 法 具 有 并 行 性 , 棒 性 等 优 良性 质 . 研 鲁 关 键 词 : 群算 法 ; 行 商 问 题 蚁 旅
中 图分 类 号 : 3 30 TP 9 . 1 文献标识 码 : A
0 引 言
自仿 生 学创 立 以来 , 学 家 们 就 根 据 生 物 进 科 化 的机理 先 后提 出 了多种 适合 于现 实世 界 中复杂
问题 优 化 的模 拟 进 化 算 法 , 群 算 法 ( t oo - 蚁 An C ln
旅 行 商 问 题 ( a eig S ls n P o lm) Trv l ae ma rbe n
是 一个 著名 的 NP h r - ad问题 . 即给 定 ,个 城 市 的 z 集 合 ( , , , 及 城 市之 间 的环 游 花 费 ( ≤ 1 2 … ) 1

分层递进的改进聚类蚁群算法解决TSP问题

分层递进的改进聚类蚁群算法解决TSP问题

分层递进的改进聚类蚁群算法解决TSP问题分层递进的改进聚类蚁群算法是一种用于解决旅行商问题(TSP)的算法。

本文将详细介绍该算法的原理和步骤。

我们需要了解一下TSP问题的背景。

TSP问题是一个经典的组合优化问题,在旅行商问题中,我们需要找到一条路径,使得旅行商依次访问所有城市并最终回到起点,使得总路径的长度最小。

聚类蚁群算法是一种基于蚁群智能的启发式算法,可以用于解决TSP问题。

其基本思想是通过模拟蚂蚁找食物的行为来搜索最优解。

聚类蚁群算法通过将城市进行分组来提高搜索效率,每个分组称为一个聚类。

然后,蚂蚁在每个聚类中按照一定的策略选择下一个要访问的城市,并更新路径和信息素。

从所有蚂蚁的路径中选择出最优解。

分层递进的改进聚类蚁群算法是对传统的聚类蚁群算法的改进。

该算法分为多个层次,每个层次对应一个聚类。

在每个层次中,都会运行一遍传统的聚类蚁群算法来得到一个聚类的解。

然后,将这个聚类的解作为下一个层次的输入,并将城市分配给不同的聚类组。

重复这个过程,直到达到预定的层次数。

接下来,我们将详细介绍分层递进的改进聚类蚁群算法的步骤。

1. 初始化参数:包括蚂蚁数量、迭代次数、信息素的初始浓度等。

2. 初始化城市分组:将所有城市根据一定的策略分配到不同的聚类组中。

3. 每个蚂蚁选择下一个要访问的城市:根据一定的策略,每个蚂蚁根据当前所在的聚类组中的信息素浓度和距离来选择下一个要访问的城市。

4. 更新路径和信息素:每个蚂蚁完成一次路径后,根据路径的长度更新路径和信息素。

更新路径的方法可以是全局最优路径、局部最优路径或一些其他的策略。

5. 更新信息素浓度:根据路径的长度和信息素的更新策略,更新信息素浓度。

6. 判断终止条件:判断是否达到了指定的迭代次数,如果没有达到则返回步骤3,否则进入下一步。

7. 选择最优解:从所有蚂蚁得到的路径中选择出最优解。

通过分层递进的改进聚类蚁群算法,我们可以充分利用聚类信息来提高搜索效率,从而得到更好的TSP问题的解。

分层递进的改进聚类蚁群算法解决TSP问题

分层递进的改进聚类蚁群算法解决TSP问题

分层递进的改进聚类蚁群算法解决TSP问题改进聚类蚁群算法是一种针对旅行商问题(TSP)的优化算法,通过分层递进的方式不断改进蚁群算法来解决TSP问题。

下面将详细介绍这种算法的原理和步骤。

首先,需要了解蚁群算法的基本原理。

蚁群算法受到蚂蚁在寻找食物路径上的行为启发,通过模拟蚂蚁在地图上选择路径的行为,来求解最优路径。

蚂蚁在搜索过程中会释放信息素,其他蚂蚁通过感知到这些信息素来进行选择。

改进聚类蚁群算法的第一步是进行初始化。

初始化过程中,将问题分为多层,每层包含若干个聚类,每个聚类包含若干个蚂蚁。

每层的聚类个数和蚂蚁个数可以根据问题规模和实验经验进行确定。

接下来,需要进行分层聚类。

通过将问题分解为多个聚类,可以减少问题规模,简化计算过程。

每个聚类中的蚂蚁只搜索当前聚类中的解空间,并释放相应的信息素。

同时,每个聚类都会记录当前最优解。

在每个聚类中,蚂蚁通过模拟选择路径来搜索最优解。

蚂蚁根据当前位置和信息素浓度来选择下一个位置,并更新蚂蚁走过的路径和解的质量。

在每个位置选择之后,蚂蚁还会释放信息素,用于后续蚂蚁的选择。

在每个聚类中的蚂蚁完成搜索后,将选择最优解的蚂蚁移动到上一层。

这样,上一层的聚类就可以得到一个更好的初始解,并进行下一轮的搜索。

这个过程不断迭代,直到达到最高层。

最后,将最高层得到的优化解进行整理和调整,得到最终的TSP路径。

根据每个聚类中记录的最优解,可以确定每一层中每个聚类的初始路径。

然后,通过蚁群算法进行一定轮数的搜索和迭代,可以得到更优的路径。

通过分层递进的改进聚类蚁群算法,可以通过简化问题,减少搜索空间,提高搜索效率,从而得到更优的TSP路径。

该算法在解决TSP问题时具有较好的效果,并且可以通过调整和优化不同层的参数和设置来进一步提升算法的性能。

蚁群算法求解TSP问题

蚁群算法求解TSP问题

HUNAN UNIVERSITY 课程作业课程题目智能优化算法学生姓名李小燕学生学号 S131020016专业班级计算机科学与技术学院名称信息科学与工程学院指导老师杨圣洪2014 年6月 8日蚁群算法求解TSP问题摘要:蚁群算法是一种分布式内在并行算法。

单个蚂蚁的搜索过程是彼此独立的,易于局部最优,通过个体间不断的信息交流和传递有利于发现较好解;并且该算法是一种正反馈算法。

路径上的信息素浓度较高,将吸引更多的蚂蚁沿这条路径运动,又使得信息素浓度增加,加快了算法的进化过程。

本文通过求解TSP问题,通过在特定情况下对路径进行逐步遍历比较来降低陷入局部最优解的可能性, 找出最优解。

关键词:蚁群算法;TSP;信息素;遍历1. 引言TSP问题又称最短路径问题,还称为旅行商问题,是一种比较经典的 NP 难题,问题描述较简单,而获得最优解却十分困难。

求解 TSP 问题不仅为其他算法提供了使用平台,而且算法的优劣性能也可通过其求得 TSP 问题的解集来验证。

旅行商问题的经典描述为:已知N 个城市及相互间的距离,旅行商从某城市出发遍历这 N 个城市后再回到原点,在旅行商每个城市都只访问一次的前提下确定一条最短路径。

蚁群算法是一种基于种群的启发式仿生进化系统。

该算法通过模拟自然界的蚂蚁觅食过程对目标进行搜索,而在搜索过程中人工蚂蚁会在其经过的路径上释放信息素,蚁群依赖于同类散发在周围环境中的特殊物质—信息素的轨迹来决定自己的去向。

当某些路径上走过的蚂蚁越来越多时,留下的信息素也会越来越多,以致后蚂蚁选择该路径的概率也越来越高,从而更增加了该路径的吸引强度,逐渐形成了一条它们自己事先并未意识到的最短路线。

蚁群算法实现TSP 过程为:将 m 只蚂蚁放入到 n 个随机选择的城市中,那么每个蚂蚁每步的行动是:根据一定的依据选择下一个它还没有访问的城市;同时在完成一步(从一个城市到达另一个城市)或者一个循环(完成对所有 n 个城市的访问)后,更新所有路径上的信息素浓度。

基于蚁群算法的TSP问题研究

基于蚁群算法的TSP问题研究

基于蚁群算法的TSP问题研究TSP问题(Traveling Salesman Problem)是指给定n个城市和每对城市之间的距离,求解出访问每个城市恰好一次并回到起点的最短路径。

这个问题是一个经典的组合优化问题,同时也是NP完全问题。

在各个领域都有广泛的应用,例如物流规划、工程设计、生物信息学等领域。

蚁群算法是一种仿生算法,是指模拟蚂蚁搜索食物的行为,通过集体行为实现全局优化的算法。

蚁群算法的基本思想是将多个个体组成一个群体,通过信息交流和合作来完成任务,每个个体根据自身经验和与其他个体的交流,对整体所探索的领域进行逐步探索,最终找出最优解。

基于蚁群算法的TSP问题研究通过模拟蚂蚁在城市间寻找最短路径的过程来解决问题。

蚂蚁在寻找路径时会根据当前位置和距离信息来选择下一个城市,同时会在其路径上释放信息素,其他蚂蚁通过检测信息素来发现更优的路径,进而跟随该路径前进,最终形成一条整体最优解。

在基于蚁群算法的TSP问题研究中,主要需要考虑的问题包括信息素更新、路径选择策略、参数设置等问题。

其中,信息素更新可以是全局更新或局部更新,全局更新包括将所有路径上的信息素进行更新;局部更新则仅限于最优解路径。

路径选择策略可以考虑根据信息素浓度选择、根据距离选择等,不同的路径选择策略对结果的影响也不同。

参数设置可以根据实验数据进行调整,包括信息素浓度、信息素挥发率等。

基于蚁群算法的TSP问题研究已经有了很多成果,其优点包括收敛速度快、解决大规模问题能力强、容易实现等。

但是也存在着一些问题,例如容易陷入局部最优解、难以控制搜索精度等。

因此,在实际应用过程中需要结合具体问题进行调整和优化。

综上所述,基于蚁群算法的TSP问题研究是一个具有重要应用价值的领域,可以通过模拟蚂蚁搜索最短路径的行为来实现全局优化。

虽然该算法存在一些问题,但在实际应用中已经取得了广泛的成功,未来也有很多的研究优化方向。

基于蚁群算法的TSP问题

基于蚁群算法的TSP问题

基于蚁群算法的TSP问题求解1引言1.1 问题描述设计求解以下两个TSP问题的蚁群优化(ACO)算法。

其中城市的坐标见附件(kroA100.tsp和kroB100.tsp)。

1.2 理论基础1.2.1 蚁群算法简介蚁群算法是由意大利学者M.Dorigo等人于20世纪90年代初提出的一种新的模拟进化算法,其真实地模拟了自然界蚂蚁群体的觅食行为。

M.Dorigo等人将其用于解决旅行商问题(traveling salesman problem, TSP),并取得了较好的实验结果。

近年来,许多专家学者致力于蚁群算法的研究,并将其应用于交通、通信、化工、电力等领域,成功解决了许多组合优化问题,如调度问题(job–shop scheduling problem)、指派问题(quadratic assignment problem)、旅行商问题(traveling salesman problem)等。

1.2.2 蚁群算法基本思想生物学家研究发现,自然界中的蚂蚁觅食是一种群体性行为,并非单只蚂蚁自行寻找食物源。

蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。

信息素浓度的大小表征路径的远近,信息素浓度越高,表示对应的路径距离越短。

通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放一定量的信息素,以增强该条路径上的信息素浓度,这样会形成一个正反馈。

最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即是最短距离。

值得一提的是,生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减。

将蚁群算法应用于解决优化问题的基本思路为:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。

较短的路径上蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上积累的信息素浓度逐渐增高,选择该路径的蚂蚁个数也愈来愈多。

最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。

蚁群算法解决TSP问题(DOC)

蚁群算法解决TSP问题(DOC)

蚁群算法解决TSP问题一、论述1、算法来源蚁群算法的基本原理来源于自然界蚂蚁觅食的最短路径原理,根据昆虫学家的观察,发现自然界的蚂蚁虽然视觉不发达,但它可以在没有任何提示的情况下找到从食物源到巢穴的最短路径,并且能在环境发生变化(如原有路径上有了障碍物)后,自适应地搜索新的最佳路径。

2、单个蚂蚁寻找路径正反馈:单个的蚂蚁为了避免自己迷路,它在爬行时,同时也会释放一种特殊的分泌物——信息素(Pheromone),而且它也能觉察到一定范围内的其它蚂蚁所分泌的信息素,并由此影响它自己的行为。

当一条路上的信息素越来越多(当然,随着时间的推移会逐渐减弱),后来的蚂蚁选择这条路径的概率也就越来越大,从而进一步增加了该路径的信息素浓度,这种选择过程称为蚂蚁的自催化过程。

多样性:同时为了保证蚂蚁在觅食的时候不至走进死胡同而无限循环,蚂蚁在寻找路径的过程中,需要有一定的随机性,虽然在觅食的过程中会根据信息素的浓度去觅食,但是有时候也有判断不准,环境影响等其他很多种情况,还有最终要的一点就是当前信息素浓度大的路径并不一定是最短的路径,需要不断的去修正,多样性保证了系统的创新能力。

正是这两点小心翼翼的巧妙结合才使得蚁群的智能行为涌现出来。

3、具体实现需要解决的两个首要问题(1)如何实现单个蚂蚁寻路的过程(2)如何实现信息素浓度的更新二、具体实现代码如下所示:[cpp] view plain copy 在CODE上查看代码片派生到我的代码片#include <iostream>#include <algorithm>#include <cstring>#include <windows.h>#include <stdio.h>#include <stdlib.h>#include <math.h>#include <time.h>using namespace std;/*int CityPos[10][2]= {{87,7},{91,38},{83,46},{71,44},{64,60},{68,58},{83,69}, {87,76},{74,78},{71,71}}; //10个城市的坐标*/unsigned seed=(unsigned)time(0);//原型:void srand(unsigned seed);//30个城市的坐标intCityPos[30][2]={{87,7},{91,38},{83,46},{71,44},{64,60},{68,58},{83,69},{87,76},{74,78},{71, 71},{58,69},{54,62},{51,67},{37,84},{41,94},{2,99},{7,64},{22,60},{25,62},{18,54},{4,50},{1 3,40},{18,40},{24,42},{25,38},{41,26},{45,21},{44,35},{58,35},{62,32}};#define CITY_NUM 30 //城市数量#define ANT_NUM 30 //蚁群数量#define TMAC 1000 //迭代最大次数#define ROU 0.5 //误差大小#define ALPHA 1 // 信息素重要程度的参数#define BETA 4 // 启发式因子重要程度的参数#define Q 100 //信息素残留参数const int maxn = 100;double dis[maxn][maxn]; //距离double info[maxn][maxn]; //信息素矩阵double E[CITY_NUM][CITY_NUM]; //启发因子矩阵int vis[CITY_NUM][CITY_NUM];double Bestlength;double ans[CITY_NUM];const double mmax = 10e9;//返回指定范围内的随机整数int rnd(int nLow,int nUpper){return nLow+(nUpper-nLow)*rand()/(RAND_MAX+1);}//返回指定范围内的随机浮点数double rnd(double dbLow,double dbUpper){double dbTemp=rand()/((double)RAND_MAX+1.0);return dbLow+dbTemp*(dbUpper-dbLow);}//返回浮点数四舍五入取整后的浮点数double ROUND(double dbA){return (double)((int)(dbA+0.5));}struct Ant{int Path[CITY_NUM]; //蚂蚁走的路径double length; //路径总长度int vis[CITY_NUM]; //走过城市标记int cur_cityno; //当前城市int moved_cnt; //已走的数量//初始化void Init(){memset(vis, 0, sizeof(vis));length = 0;cur_cityno = rnd(0, CITY_NUM);//随机选择一个出发城市Path[0] = cur_cityno;vis[cur_cityno] = 1;moved_cnt = 1;//printf("Init %d \n", cur_cityno);}//选择下一个城市//返回值为城市编号int chooseNextCity(){int nSelectedCity=-1; //返回结果,先暂时把其设置为-1//计算当前城市和没去过的城市之间的信息素总和double dbTotal=0.0;double prob[CITY_NUM]; //保存各个城市被选中的概率for(int i = 0; i < CITY_NUM; i++){if (!vis[i]){prob[i]=pow(info[cur_cityno][i],ALPHA)*pow(1.0/dis[cur_cityno][i], BETA);dbTotal += prob[i];}else{prob[i] = 0;}}//进行轮盘选择double dbTemp=0.0;if (dbTotal > 0.0) //总的信息素值大于0{dbTemp = rnd(0.0, dbTotal);for (int i = 0; i < CITY_NUM; i++){if (!vis[i]){dbTemp -= prob[i];if (dbTemp < 0.0){nSelectedCity = i;break;}}}}//如果城市间的信息素非常小( 小到比double能够表示的最小的数字还要小) //出现这种情况,就把第一个没去过的城市作为返回结果if (nSelectedCity == -1){for (int i=0; i<CITY_NUM; i++){if (!vis[i]) //城市没去过{nSelectedCity=i;break;}}}return nSelectedCity;}//蚂蚁在城市间移动void Move(){int nCityno = chooseNextCity();//选择下一个城市Path[moved_cnt] = nCityno;//保存蚂蚁走的路径vis[nCityno] = 1;//把这个城市设置成已经去过cur_cityno = nCityno;//更新已走路径长度length += dis[Path[moved_cnt-1]][Path[moved_cnt]];moved_cnt++;}//蚂蚁进行搜索一次void Search(){Init();//如果蚂蚁去过的城市数量小于城市数量,就继续移动while(moved_cnt < CITY_NUM){Move();}length += dis[Path[CITY_NUM-1]][Path[0]];}};struct TSP{Ant ants[ANT_NUM]; //定义一群蚂蚁Ant ant_best; //保存最好结果的蚂蚁void Init(){//初始化为最大值ant_best.length = mmax;puts("al dis");//计算两两城市间距离for (int i = 0; i < CITY_NUM; i++){for (int j = 0; j < CITY_NUM; j++){double temp1=CityPos[j][0]-CityPos[i][0];double temp2=CityPos[j][1]-CityPos[i][1];dis[i][j] = sqrt(temp1*temp1+temp2*temp2);}}//初始化环境信息素puts("init info");for (int i=0; i<CITY_NUM; i++){for (int j=0; j<CITY_NUM; j++){info[i][j]=1.0;}}}//更新信息素,当前每条路上的信息素等于过去保留的信息素//加上每个蚂蚁这次走过去剩下的信息素void Updateinfo(){//puts("update info");double tmpinfo[CITY_NUM][CITY_NUM];memset(tmpinfo, 0, sizeof(tmpinfo));int m = 0;int n = 0;//遍历每只蚂蚁for (int i = 0; i < ANT_NUM; i++) {//puts("****");// for (int j = 0; j < CITY_NUM; j++) {// printf("%d ", ants[i].Path[j]);// }//puts("");for (int j = 1; j < CITY_NUM; j++){m = ants[i].Path[j];n = ants[i].Path[j-1];//printf("%d %d\n", m, n);tmpinfo[n][m] = tmpinfo[n][m]+Q/ants[i].length;tmpinfo[m][n] = tmpinfo[n][m];}//最后城市和开始城市之间的信息素n = ants[i].Path[0];tmpinfo[n][m] = tmpinfo[n][m]+Q/ants[i].length;tmpinfo[m][n] = tmpinfo[n][m];}//更新环境信息素for (int i = 0; i < CITY_NUM; i++){for (int j = 0; j < CITY_NUM; j++) {//最新的环境信息素= 留存的信息素+ 新留下的信息素info[i][j] = info[i][j]*ROU + tmpinfo[i][j];}}}//寻找路径,迭代TMAC次void Search(){for (int i = 0; i < TMAC; i++) {printf("current iteration times %d\n", i);for (int j = 0; j < ANT_NUM; j++) {ants[j].Search();}//保存最佳结果for (int j = 0; j < ANT_NUM; j++) {if (ant_best.length > ants[j].length) {ant_best = /nts[j];}}//更新环境信息素Updateinfo();printf("current minimum length %lf\n", ant_best.length);}}};int main(){//freopen("output.txt", "w", stdout);srand(seed);TSP tsp;//初始化蚁群tsp.Init();//开始查找tsp.Search();puts("The Minimum length route is :\n");for (int i = 0; i < CITY_NUM; i++) {if (i != 0 && i % 20 == 0) {puts("");}printf("%d ", tsp.ant_best.Path[i]);}return 0;}<strong></strong>运算结果(1)选择老师所给10个城市的数据,结果如下所示,经过50次迭代就能得到最优解,而且算法相当稳定,多次尝试都是50次就能得到最优解,相比于遗传算法的500次迭代在时间上有了很大的改进。

蚁群算法解决TSP问题的浅析

蚁群算法解决TSP问题的浅析

蚁群算法解决TSP问题的浅析作者:朱杰来源:《电脑知识与技术·学术交流》2008年第22期摘要:介绍了一种求解复杂组合优化问题的新的拟生态算法—蚁群算法。

阐述了该算法的基本原理,以及蚁群算法在TSP问题上的应用,并提出了改进算法,使得算法有更好的全局性。

关键词:蚁群算法;TSP;改进中图分类号:TP311文献标识码:A文章编号:1009-3044(2008)22-724-02Research on Ant Colony Algorithm for TSPZHU Jie(Scool of Software,Tongji University,Shanghai 201804,China)Abstract:Ant colony algorithm was a novel simulated ecosystem evolutionary algorithm. After introducing the essence of the ant colony algorithm.this paper its application in the complicated combinatorial opitimization problem such as TSP.Then suggested a improved ant colony algorithm to solve TSP problems more effiently.Key words:ant colony algorithm;TSP; improved1 引言现实生产生活中有很多组合优化问题,这类问题随着规模的扩大,问题空间呈现组合爆炸的特征,大多数这类问题在多项式时间内无法求解,对这类问题的处理目前多用启发式算法来求解。

旅行商(TSP)问题就是典型的组合优化问题, 直观地说,TSP问题就是指一位商人从自己的家乡出发。

希望能找到一条最短的路径,途经给定的城市集合中的所有城市,最后返回家乡。

浅谈用蚁群算法求解TSP

浅谈用蚁群算法求解TSP

6 2 甘肃联合大学学报 (自然科学版) 第 24 卷
周游完成时 ,才允许蚂蚁游走已访问的城市 ;3) 当
完成一次周游 ,每只蚂蚁在每条访问过的支路上
留下信息素.
我们以求解平面上 n 个城市的 TSP 问题 (1 ,
2 , . . . , n 表示城市序号) 为例说明 ACA 的模型. n
2 基本蚁群算法解决旅行商问题的 软件实现
基于不同开发环境的基本蚁群算法软件 ,一 是 Eyckelhof CJ 基于 Delp hi 开发的“简单蚁群算 法仿真软件”,二是陈烨基于 VisualBasic 开发的 “蚁群算法试验室”.
Delp hi 开发所示的软件界面简洁 ,所实现的 功能也比较简单 ,只能实现显示城市的路径状态. VisualBasic 开发的“蚁群算法试验室”可以实时 显示程序的当前运行状态 ,即城市的路径状态 、最 优路径上城市排序的序号以及当前最短路径的总 长度等 ,用户根据需要可在城市状态图和最优路径 演化图之间进行切换 ,并可在程序运行过程中随时 停止运行 ,此外还具有良好、开放的可扩展性.
量要根据下式作调整 : τij ( t + n) = (1 - ρ) ·τij ( t) + Δτij ( t) , (3)
m
∑ Δτij ( t) =
τk ij
(
t)
.
(4)
k =1
其中ρ表示了 t 时刻和 t + n 时刻之间信息素的挥
发程度 ,Δτij ( t) 表示本次循环中路径 ( i , j) 上的信
引言
自仿生学创立以来 ,科学家们就根据生物进 化的机理先后提出了多种适合于现实世界中复杂 问题优化的模拟进化算法 ,蚁群算法 ( A nt Colo n2 yAlgo rit hm ,简称 ACA) 是由意大利学者 Dorigo 等人于 20 世纪 90 年代初首先提出来的一种基于 种群的启发式仿生类并行智能进化算法的新型的 模拟进化算法[1] . 其主要特点就是 :通过正反馈分 布式并行计算机制来寻找最优路径. 它充分利用 了自然界蚁群能通过个体间简单的信息传递 ,从 而能相互协作 ,搜索从蚁穴至食物间最短路径的 集体寻优特征 ,以及该过程与旅行商问题求解之 间的相似性 ,得到了具有 N P 难度的旅行商问题 的最优解答. 同时 ,该算法还被成功应用在图着色 问题[2] 、大规模集成电路设计 、通讯网络中的路由 问题 、负载平衡 、车辆调度问题等 ,表明该算法具 有良好的解决复杂问题的能力.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ch9 蚁群算法9.1生物学知识1、蚁群算法(Ant Colony Algorithm ,ACA)是由意大利M. Dorigo等人于1990到2000发展起来的,模拟进化算法。

模拟了自然界蚂蚁群体的觅食行为。

2、蚁群社会在昆虫世界中,蚂蚁的组成是一种群居的蓼袭大家庭,称为蚁群。

蚁群中除了亲缘上的互助关系外,成蚁划分为世袭制的蚁王和工蚁两个等级,蚁群的大小从几十个到几千万个,蚁群具有高度组织的社会性,彼此间的沟通不仅可以借助触觉的的联系,在大规模的协调行动上,借助外激素之类的生化信息介质。

其中每个工蚁具有如下的职能:平时在巢穴附近作无规则行走;一旦发现食物,如果独自能搬的就往回搬,否则就回巢穴搬兵;一路上它会留下外激至少的嗅迹,其强度与食物的品质和数量成正比;其他工蚁遇到嗅迹,就会循迹前进,也会有一定的走失率(选择其他路径),走失率与嗅迹的强度成反比。

蚁群的行为表现出一种信息正反馈的现象;某一路径上走过的蚂蚁越多,则后来选择该路径的概率就大,蚂蚁个体间就是通过这种信息的交流达到搜索食物的目的。

3、蚁群觅食过程意大利学者M. Dorigo是最早发现蚂蚁的觅食习性的,蚂蚁总能找到巢穴与食物源之间的最短路径。

蚂蚁在寻找食物源后,会在其经过的路径上释放一种信息素,并能够感知其他蚂蚁释放的信息素。

当某些路径上走过的蚂蚁越来越多时,留下的信息素也会越来越多,以致后蚂蚁选择该路径的概率也越来越高,从而更增加了该路径的吸引强度,逐渐形成了一条它们自己事先并未意识到的最短路线。

蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放一定量的信息素,以增强该条路径的信息素的浓度,形成一个正反馈。

路径上的信息浓度会随时间的推进,而不断挥发,从而不断降低,这似乎也是变异。

9.2ACA算法的基本思想左图表示初始状态中,在结点A与C有30只蚂蚁,线上的数字(1,0)表示距离为1,信息素为0。

此时每条边上的信息素均为0,故蚂蚁按随机行走,A 、C 出发时,走两边的概率相等。

单位时间后,A 出发的蚂蚁,15只达到了B 、15只经D 到达C 。

C 出发的蚂蚁,15只达到了B,15只经D 到达了A ,如右上图所示。

各边的信息素如右图所示,A-B 有15只蚂蚁走过,留下的信息素是15个单位,C-B 也是15只蚂蚁,留下的信息素也是15,此时到B 的蚂蚁是15+15=30只。

A-D-C 的蚂蚁是15只,C-D-A 的也是15只,故该条较短路线上的信息素为30个单位。

蚂蚁再往前走:A 点:由于A-B 的信息素是15个单位,A-D 是30单位,故A-D 的蚂蚁数是A-B 的2倍,因此A-B 的蚂蚁5只,A-D 是10只C 点:C-B 是5只,C-D 是10只 B 点:B-A 是15只,B-C 是15只 单位时间后: A 点:10+15=25 C 点:10+15=25 B 点:5+5=10 信息素:A-B 为15+15+5=35,C-B 为15+15+5=35, A-D=30+10+10=50,C-D 为30+10+10=50再出发A 点:A-B 方向=25*35/85=10 A-D 方向为15只。

两边各占0.41:0.59C 点:C-B 是10只,C-D 是15只 B 点:B-A 是5只,B-C 是5只 单位时间后: A 点:5+15=20 C 点:5+15=20 B 点:10+10=20 信息素:A-B 为35+10+5=50,C-B 为35+5+10=50, A-D=50+15+15=80,C-D 为50+15+15=80再出发50/130=0.46 80/130=0.54A点:A-B方向=20*50/130=6 A-D方向为14只。

C点:C-B是6只,C-D是14只B点:B-A是10只,B-C是10只单位时间后:A点:10+14=24C点:10+14=24B点:6+6=12信息素:A-B为50+6+10=66,C-B为50+6+10=66,A-D=80+14+14=108,C-D为80+14+14=108两边浓度比为66/174=0.38 108/174=0.629.3优缺点优点:(1)蚁群算法是一种分布式内在并行算法。

单个蚂蚁的搜索过程是彼此独立的,易于局部最优,通过个体间不断的信息交流和传递有利于发现较好解。

(2)蚁群算法是一种正反馈算法。

路径上的信息素浓度较高,将吸引更多的蚂蚁沿这条路径运动,又使得信息素浓度增加,加快了算法的进化过程。

(3)蚁群算法具有较强的自适应性,对其模型稍做修改,可应用于其他问题。

(4)易于其他方法组合,以改善算法的效率。

缺点:(1)需要较长时间搜索。

主要是因为各蚂蚁的运动是随机的,当群体规模稍大时,需要很长时间才能收敛。

(2)易出现停滞现象,早熟现象。

9.4蚁群算法的研究进展1、20世纪90年代意大利Dorigo、Maniezzo等人提出该算法。

2、1999年,Dorigo提出了蚁群优化(Ant Colony Optimization)的通用框架。

3、2002年8月,出版蚁群优化算法的特刊。

4、从1998年起,每隔二年在比利时的布鲁塞尔举行一次蚁群算法的国际会议。

5、涉及到领域有生物学、物理学、工程学、计算机科学。

6、Bichev和parmee提出了求解连续空间的蚁群算法模型。

7、2004年李士勇等蚁群算法的专著8、2005年段海滨《蚁群算法原理及应用》专著9、2006年吴启迪《智能蚁群算法及应用》9.5蚁群算法求解TSP的基本思想1、基本参数、信息素浓度公式、择路概率设蚂蚁的数量为m,城市的数量为n,城市i与城市j之间的距离为dij,t 时刻城市i 与城市j 之间的信息素浓度为t ij (t),初始时刻,各个城市间连接路径上的信息素浓度相同,不妨记为t ij (0)=t0.蚂蚁k(k=1,2,..,m)根据各城市间连接路径上的信息素浓度,决定其下一个要访问的城市,设P ij k (t)表示t 时刻,蚂蚁k 从城市i 到城市j 的概率,其计算公式为如下:ij [()][()][()][()]P 0ij ij k kij ij s allowkt t t s allow t t t s allow αβαβηη∈⎧•∈⎪⎪•=⎨⎪∉⎪⎩∑其中:ηij (t)为启发式函数,ηij (t)=1/dij ,表示蚂蚁从城市i 转移到城市j 的期望程序allow k (k=1,2,…,m)表示蚂蚁k 待访问的城市的集合,开始时allow k 为其他n-1城市,随着时间推进,其中的元素不断减少,直至为空,表示所有城市访问完,即遍历所有城市。

α为信息素的重要程度因子,其值越大,转移中起的作用越大β为启发函数的重要程度因子,其值越大,表示启发函数在转移中的作用越大,即蚂蚁以较大的概率转移到距离短的城市。

蚂蚁释放的信息素会随时间的推进而减少,设参数ρ(0<ρ<1)表示信息素的挥发度,当所有蚂蚁完成一次循环后,各个城市间连接路径上的信息素浓度,需要实时更新。

t ij (t+1)=(1-ρ)t ij (t)+∆t ij ,∆t ij =1nk ij k t =∆∑其中:∆t ij k 表示蚂蚁k 在城市i 与城市j 的连接路径上,释放的信息素浓度 ∆t ij 表示所有蚂蚁在城市i 与城市j 的连接路径上,释放的信息素浓度。

2、∆t ij k 的计算方法Dorigo 曾给出了3种不同的模型,分别如下: (1)ant cycle system ∆t ij k =/0k Q L k ⎧⎨⎩第只蚂蚁从城市i访问城市j其他其中:Q 为常数,表示蚂蚁循环一次释放的信息素的总量 d ij 为第k 只蚂蚁经过路径的长度,Length 一般选用该模型(2)ant quantity system ∆t ij k =/0Q dij k ⎧⎨⎩第只蚂蚁从城市i访问城市j其他其中:Q 为常数,表示蚂蚁循环一次释放的信息素的总量 dij 为城市i 到城市j 的距离。

(3)ant density system ∆t ij k =0Q k ⎧⎨⎩第只蚂蚁从城市i访问城市j其他其中:Q 为常数,表示蚂蚁循环一次释放的信息素的总量9.6蚁群算法解决TSP 问题的基本步骤1、初始化参数蚂蚁数量m ,信息素重要程度α,启发函数重要程度β,信息素挥发因子ρ,信息素释放总量Q ,最大迭代次数iter_max 。

获取各城市之间的距离dij ,为了保证启发式函数ηij =1/dij 能顺利进行,对于i=j 即自己到自己的距离不能给为0,而是给成一个很小的距离,如10-4或10-5。

2、构建解空间将各个蚂蚁随机地置于不同出发点,对每个蚂蚁按归照下式,确定下一城市。

ij [()][()][()][()]P 0ij ij k k ij ij s allowkt t t s allow t t t s allow αβαβηη∈⎧•∈⎪⎪•=⎨⎪∉⎪⎩∑3、更新信息素计算各个蚂蚁经过的路径长度Lk ,记录当前迭代次数中的最优解(即最短路径),根据如下公式更新信息素:t ij (t+1)=(1-ρ)t ij (t)+∆t ij ,∆t ij =1nk ij k t =∆∑∆t ij k =/0k Q L k ⎧⎨⎩第只蚂蚁从城市i访问城市j其他4、判断是否终止若没有到最大次数,则清空蚂蚁经过路径的记录表,返回步骤2。

9.7TSP 实例1、访问我国每个省会城市一次也仅一次的最短路径,共有31个2、如果采用枚举法,巡回路径可能1.326⨯1032种。

3、城市的坐标citys ,这是直角坐标,根据二个城市的坐标值,可以用citys = 1304 2312 3639 1315 4177 2244 3712 1399 3488 1535 3326 1556 3238 1229 4196 1004 4312 790 4386 570 3007 1970 2562 1756 2788 1491 2381 16761332 6953715 16783918 21794061 23703780 22123676 25784029 28384263 29313429 19083507 23673394 26433439 32012935 32403140 35502545 23572778 28262370 2975程序清单%% 蚁群算法计算旅行商问题(TSP)%% 清空环境变量clear allclc%% 导入数据load citys_data.mat%% 计算城市间相互距离n = size(citys,1); %城市的个数D = zeros(n,n); %n行n列的矩阵,即任意二个城市之间的距离for i = 1:nfor j = 1:nif i ~= jD(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));elseD(i,j) = 1e-4;endendend%% 初始化参数m = 50; % 蚂蚁数量alpha = 1; % 信息素重要程度因子beta = 5; % 启发函数重要程度因子rho = 0.1; % 信息素挥发因子Q = 1; % 常系数Eta = 1./D; % 启发函数Tau = ones(n,n); % 信息素矩阵,全1矩阵Table = zeros(m,n); % 路径记录表,全0矩阵,每只蚂蚁依次走过的城市iter = 1; % 迭代次数初值iter_max = 200; % 最大迭代次数Route_best = zeros(iter_max,n); % 各代最佳路径Length_best = zeros(iter_max,1); % 各代最佳路径的长度Length_ave = zeros(iter_max,1); % 各代路径的平均长度%% 迭代寻找最佳路径while iter <= iter_max% 随机产生各个蚂蚁的起点城市start = zeros(m,1); %m是蚂蚁的个数,m行1列的矩阵,记录每个蚂蚁的城市编号for i = 1:mtemp = randperm(n);start(i) = temp(1);endTable(:,1) = start; %路径记录表的1列,为每个蚂蚁的起点城市% 构建解空间citys_index = 1:n;% 逐个蚂蚁路径选择for i = 1:m% 逐个城市路径选择for j = 2:ntabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表)allow_index = ~ismember(citys_index,tabu);%不是tabu城市就是要访问的城市allow = citys_index(allow_index); % 待访问的城市集合P = allow;% 计算城市间转移概率for k = 1:length(allow)P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;endP = P/sum(P);%规一化% 轮盘赌法选择下一个访问城市Pc = cumsum(P);%依次累加,是实现轮盘赌法选择的方法target_index = find(Pc >= rand);target = allow(target_index(1));Table(i,j) = target;endend% 计算各个蚂蚁的路径距离Length = zeros(m,1);%m行1列的矩阵for i = 1:mRoute = Table(i,:);%第i只蚂蚁的路线for j = 1:(n - 1)%依次计算第i只蚂蚁所走过的各城市间的距离j-j+1Length(i) = Length(i) + D(Route(j),Route(j + 1));endLength(i) = Length(i) + D(Route(n),Route(1));%加上最后城市到首个城市的距离end% 计算最短路径距离及平均距离if iter == 1[min_Length,min_index] = min(Length); %各只蚂义中路长的最小值Length_best(iter) = min_Length;Length_ave(iter) = mean(Length);Route_best(iter,:) = Table(min_index,:);%取取最短路线else[min_Length,min_index] = min(Length);%如果不是第一轮,则要与上轮最小路长进行比较Length_best(iter) = min(Length_best(iter - 1),min_Length);Length_ave(iter) = mean(Length);if Length_best(iter) == min_LengthRoute_best(iter,:) = Table(min_index,:);elseRoute_best(iter,:) = Route_best((iter-1),:);endend% 更新信息素Delta_Tau = zeros(n,n);% 逐个蚂蚁计算for i = 1:m% 逐个城市计算for j = 1:(n - 1)Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);endDelta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);endTau = (1-rho) * Tau + Delta_Tau;% 迭代次数加1,清空路径记录表iter = iter + 1;Table = zeros(m,n);end%% 结果显示[Shortest_Length,index] = min(Length_best);Shortest_Route = Route_best(index,:);disp(['最短距离:' num2str(Shortest_Length)]);disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);%% 绘图figure(1)plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');grid onfor i = 1:size(citys,1)text(citys(i,1),citys(i,2),[' ' num2str(i)]);endtext(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点');text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');xlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])figure(2)plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')legend('最短距离','平均距离')xlabel('迭代次数')ylabel('距离')title('各代最短距离与平均距离对比')结果最短距离:15828.7082最短路径:15 14 12 13 11 23 16 4 2 5 6 7 8 9 10 3 18 17 19 24 25 20 21 22 26 28 27 30 31 29 1 15依次为城市的序号为了研究参数:蚂蚁数目m,信息素重要程度α,启发式函数β,信息素挥发度ρ对算法的影响,可以做系列实验固定其他参数,让蚂蚁数目m从5~50,对于每个m运行20次,记录这20次中每次的最小路径长度,除以20做为平均值,同时记录这20个数中最大与最小值,从而得到一个实验数据表,会发现最短距离出现的位置。

相关文档
最新文档