河南理工大学高电压技术期末考试总结

合集下载

高电压技术考试复习题与答案.总结

高电压技术考试复习题与答案.总结

第一章气体放电的基本物理过程一、选择题1) 流注理论未考虑的现象。

A .碰撞游离B.表面游离C.光游离D.电荷畸变电场2) 先导通道的形成是以的出现为特色。

A .碰撞游离B.表面游离C.热游离D.光游离3) 电晕放电是一种。

A .自持放电B.非自持放电C.电弧放电D.均匀场中放电4)气体内的各样粒子因高温而动能增添,发生互相碰撞而产生游离的形式称为。

A.碰撞游离B.光游离C.热游离D.表面游离5)______型绝缘子拥有破坏后“自爆”的特征。

A.电工陶瓷B.钢化玻璃C.硅橡胶D.乙丙橡胶6)以下哪个不是发生污闪最危险的气象条件?A.大雾B.毛毛雨C.凝露D.大雨7)污秽等级 II 的污湿特色:大气中等污染地域,轻盐碱和炉烟污秽地域,离海岸盐场 3km~10km 地域,在污闪季节中湿润多雾但雨量较少,其线路盐密为mg /cm2 。

A. ≤0.03B.>0.03~0.06C.>0.06~0.10D.>0.10~0.258)以下哪一种资料拥有憎水性?A .硅橡胶 B.电瓷 C. 玻璃 D 金属二、填空题9)气体放电的主要形式:辉光放电、电晕放电、刷状放电、火花放电、电弧放电10)依据巴申定律,在某一 PS值下,击穿电压存在极小值。

11) 在极不均匀电场中,空气湿度增添,空气空隙击穿电压提升。

12) 流注理论以为,碰撞游离和光电离是形成自持放电的主要要素。

13) 工程实质中,常用棒-板或棒—棒电极构造研究极不均匀电场下的击穿特征。

14) 气体中带电质子的消逝有扩散、复合、附着效应等几种形式15) 对支持绝缘子,加均压环能提升闪络电压的原由是改良电场散布。

16) 沿面放电就是沿着固体介质表面气体中发生的放电。

17) 标准参照大气条件为:温度t0 20 C ,压力b0 101.3 kPa,绝对湿度h011g / m318)越易吸湿的固体,沿面闪络电压就越 _低_____19)等值盐密法是把绝缘子表面的污秽密度依据其导电性转变为单位面积上___Nacl_______含量的一种方法20)惯例的防污闪举措有:增添爬距,增强打扫,采纳硅油、地蜡等涂料三、计算问答题21)简要阐述汤逊放电理论。

《高电压技术》结课试题及答案

《高电压技术》结课试题及答案

《高电压技术》结课试题及答案一、单选题1.(2分)电压波沿电缆线路的传播速度为光速的()。

A. 2倍B. 3倍C. 0.5倍D. 1倍答案:C2.(2分)末端开路的变压器绕组,绕组上出现的电压最大值约为来波电压的()倍。

A. 1B. 2C. 1.4D. 1.2答案:B3.(2分)表示某地区雷电活动强度的主要指标是指雷暴小时与()。

A. 耐雷水平B. 雷暴日C. 跳闸率D. 大气压强答案:B4.(2分)空载线路自动重合闸,产生的过电压最大值为电源电压的()倍。

A. 3B. 1C. 4D. 2答案:A5.(2分)断续电弧接地过电压产生的根本原因是()。

A. 断续电弧的存在B. 电弧重燃C. 断路器性能太好D. 电流在过零点之前被强行截断答案:A6.(2分)极化时间最短的是()。

A. 空间电荷极化B. 电子式极化C. 偶极子极化D. 离子式极化答案:B7.(2分)输电线路的波阻抗的大小与线路的长度()。

A. 成正比B. 成反比C. 无关D. 不确定答案:C8.(2分)电压波沿架空线路的传播速度为光速的()。

A. 3倍B. 1倍C. 0.5倍D. 2倍答案:B9.(2分)电晕放电是一种()。

A. 自持放电B. 非自持放电C. 沿面放电D. 滑闪放电答案:A10.(2分)流注理论未考虑()的现象。

A. 碰撞游离B. 表面游离C. 光游离D. 电荷畸变电场答案:B11.(2分)下列仪器中,不能用来测量直流高压的是()。

A. 静电电压表B. 球隙C. 电阻分压器D. 电压互感器答案:D12.(2分)下列不属于输电线路防雷措施的是()。

A. 架设避雷线B. 架设耦合地线C. 加设浪涌吸收器D. 装设自动重合闸答案:C13.(2分)为防止避雷针对构架发生反击,它们空气间距离应()。

A. ≥5mB. ≤5mC. ≥3mD. ≤3m答案:A14.(2分)不均匀的绝缘试品,如果绝缘受潮,则吸收比K将()。

A. 远小于1B. 不宜确定C. 远大于1D. 约等于1答案:D15.(2分)下面属于极不均匀电场的是()。

高电压期末总结心得

高电压期末总结心得

高电压期末总结心得一、引言转瞬间,大学生活中的高电压课程已经进入尾声。

这门课是我大学期间必修的一门专业课,它对我的专业知识及技能的培养起到了重要的作用。

通过这门课的学习,我深刻理解到了高电压的基本概念、原理及应用。

期末考试接近尾声,我认真反思自己的学习过程及成果,下文将对我在高电压期末考试中所取得的收获及不足进行总结和反思。

二、我的收获在高电压期末考试中,我取得了一定的成绩。

这主要得益于我在学期中的努力学习和积极备考。

以下是我在这门课中所取得的三点收获。

1. 理论知识的掌握通过课堂的学习、教材的阅读和作业的完成,我对高电压的理论知识有了较为深入的了解。

我掌握了高电压的基本概念、原理及其在电力系统中的应用。

我能够理解高电压的产生原因、传输方式及其对人体和设备的危害性。

这些理论知识对于我今后的工作和学习都将起到重要的指导作用。

2. 实验技能的提升在高电压课程的学习中,实验是不可或缺的一环。

通过实验,我掌握了高电压实验仪器的使用方法,学习了实验操作的技巧和注意事项。

我能够独立完成高电压实验的搭建和数据记录,对高电压的实际应用情况有了更深入的了解。

3. 解题能力的提高在期末考试准备过程中,我通过大量的习题练习,提高了自己的解题能力。

我学会了分析问题、分清题目中的关键信息、寻找解题思路,并能够运用所学知识解决实际问题。

这为我今后的工作和学习奠定了基础。

三、我的不足尽管我在高电压期末考试中取得了一定的成绩,但我仍然意识到自己存在一些不足之处。

1. 学习方法不够科学在课程学习过程中,我没有很好地调整自己的学习方法。

我常常过于依赖课堂讲授,没有充分发挥自己的主动性和积极性。

我觉得这对于我今后的学习习惯和方法的培养是一个值得反思和改进的问题。

2. 自学能力有待提高尽管我参加了课堂教学和实验环节,但我没有充分利用自己的时间进行自主学习。

仅仅依靠老师的教导是远远不够的,我应该更加注重自主学习,进行更深入的学习和思考。

高电压技术总结(考试资料)

高电压技术总结(考试资料)

高电压技术总结专题一:高电压下气体、液体、固体放电原理1、绝缘的概念:将不同电位的导体分开,使之在电气上不相连接。

具有绝缘作用的材料称为电介质或绝缘材料。

2、电介质的分类:按状态分为气体、液体和固体三类。

3、极化的概念:在外电场作用下,电介质的表面出现束缚电荷的现象叫做电介质极化。

4、极化的形式:电子式极化、离子式极化、偶极子式极化;夹层式极化。

(前三种极化均是在单一电介质中发生的。

但在高压设备中,常应用多种介质绝缘,如电缆、变压器、电机等)5、电子式极化:由于电子发生相对位移而发生的极化。

特点:时间短,弹性极化,无能量损耗。

[注]:存在于一切材料中。

6、离子式极化:离子式极化发生于离子结构的电介质中。

固体无机化合物(如云母、陶瓷、玻璃等)多属于离子结构。

特点:时间短,弹性极化,无能量损耗。

[注]:存在于离子结构物质中。

7、偶极子极化:有些电介质具有固有的电矩,这种分子称为极性分子,这种电介质称为极性电介质(如胶木、橡胶、纤维素、蓖麻油、氯化联苯等)。

特点:时间较长,非弹性极化,有能量损耗。

[注]:存在于极性材料中。

8、夹层式极化特点:时间很长,非弹性极化,有能量损耗。

[注]:存在于多种材料的交界面;当绝缘受潮时,由于电导增大,极化完成时间将大大下降;对使用过的大电容设备,应将两电极短接并彻底放电,以免有吸收电荷释放出来危及人身安全。

9、为便于比较,将上述各种极化列为下表:10、介电常数:[注]:用作电容器的绝缘介质时,希望大些好。

用作其它设备的绝缘介质时,希望小些好。

11、电介质电导:电介质内部带点质点在电场作用下形成电流。

金属导体:温度升高,电阻增大,电导减小。

绝缘介质:温度升高,电阻减小,电导增大。

12、绝缘电阻:在直流电压作用下,经过一定时间,当极化过程结束后,流过介质的电流为稳定电流称为泄漏电流,与其对应的电阻称为绝缘电阻。

(1)介质绝缘电阻的大小决定了介质中泄漏电流的大小。

(2)泄漏电流大,将引起介质发热,加快介质的老化。

高电压技术知识点总结

高电压技术知识点总结

高电压技术知识点总结高电压技术,那可真是个超级有趣又超级重要的领域啊!高电压是什么?就好比是电力世界里的大力士,拥有超强的能量和威力!先来说说绝缘吧。

这就像是给电力系统穿上一层坚固的铠甲,保护它不受外界的干扰和破坏。

没有良好的绝缘,那可不得了,就像没有城墙的城堡,随时可能被敌人攻破。

你想想看,要是电线没有好的绝缘,那岂不是到处漏电,多危险啊!然后就是高电压的产生。

就好像是一场神奇的魔术,通过各种设备和技术,把普通的电压变得超级强大。

这可不是随便就能做到的,需要精湛的技术和严谨的操作。

就像一个优秀的魔术师,每一个动作都要恰到好处。

还有高电压的测量。

这可真是个精细活,要像侦探一样,准确地捕捉到每一个细微的信号。

测量工具就像是侦探的放大镜,帮助我们看清高电压的真面目。

要是测量不准确,那后果可不堪设想,就像侦探抓错了犯人一样。

高电压的应用那可真是广泛得让人惊叹!在电力输送中,它就像一列高速列车,把电能快速、高效地送到远方。

在工业生产中,它能驱动各种大型设备,就像大力士推动巨石一样轻松。

在科研领域,高电压更是发挥着重要的作用,帮助科学家们探索未知的世界。

高电压技术的发展也是日新月异啊!新的材料、新的设备不断涌现,就像雨后春笋一样。

这让高电压技术变得越来越强大,越来越先进。

难道我们不应该为人类的智慧感到骄傲吗?高电压技术就像是一把双刃剑,用好了能造福人类,用不好可就会带来灾难。

所以我们要不断学习,不断进步,让高电压技术更好地为我们服务。

我们要像驾驭烈马一样,牢牢地掌握住它,让它带着我们奔向美好的未来。

总之,高电压技术是一个充满挑战和机遇的领域,它值得我们去深入研究和探索。

让我们一起加油,为高电压技术的发展贡献自己的力量吧!。

高电压技术实训总结

高电压技术实训总结

高电压技术实训总结
高电压技术实训总结
在高电压技术实训中,我学到了许多基础的高电压技术知识和实践技能。

通过实际操作和实验,我对高电压设备的原理和工作过程有了更深入的了解。

首先,我学会了如何正确使用高电压设备和工具。

在实训中,我们使用了不同类型的高电压设备,如高压发生器、高压开关和绝缘测量仪等。

我们学习了如何正确连接电路,如何调整和控制电压,以及如何进行安全操作。

这些实践经验对于将来工作中正确操作和维护高电压设备至关重要。

其次,我了解了高电压设备的保护和绝缘检测方法。

在实践中,我们学习了如何使用绝缘测量仪来检测电器设备的绝缘状况。

我们还学习了不同类型的绝缘材料和其特性,如何选择合适的绝缘材料,并使用绝缘材料进行绝缘修复。

这些知识对于确保高电压设备的安全运行至关重要。

我学会了高电压事故的应急处理和故障排除。

在实训中,我们学习了如何应对高电压事故,如何快速断电和切断电源,并进行紧急救援。

我们还学习了如何利用故障排除技巧和工具,找出设备故障的原因,并进行修复和更换。

通过高电压技术实训,我不仅学到了实践操作的技能,还加深了对高电压设备原理和工作过程的理解。

这些知识和技能在我的未来工作中将会起到重要的作用,让我能够更加安全和高效地进行高电压设备的操作和维护。

高电压技术期末总结

高电压技术期末总结

高电压技术期末总结一、引言高电压技术是现代电力系统中重要的一个领域,涉及到电力输电、变压器、继电保护等诸多方面。

在本学期的高电压技术课程中,我们学习了高电压技术的基本原理和应用技术,通过理论课程的学习和实验实践,深入了解了高电压技术的工作原理以及在电力系统中的重要应用。

在本文中,我将对本学期所学的高电压技术进行总结。

二、高电压技术的基本概念高电压技术是研究和应用高电压下的电气设备和电力系统的一门学科。

高电压技术包括高电压设备的设计、运行和维护等方面,涉及到高电压绝缘、电弧和击穿等现象。

高电压技术的发展对于电力系统的稳定运行和电力设备的可靠工作具有重要意义。

三、高电压技术的应用领域高电压技术的应用主要集中在以下几个方面:1. 电力输电:高电压输电可以减小电流,降低输电损耗,提高电力输送的效率。

如交流输电系统中的110kV、220kV和500kV输电线路。

2. 变压器:变压器是电力系统中常见的设备,用于实现电压的变换和电力的传输。

在高电压技术中,高压侧的绝缘和电场控制是关键问题。

3. 发电机:发电机是将机械能转换为电能的设备。

在高电压技术中,发电机的绝缘和电弧问题是需要重点关注的。

4. 继电保护:继电保护是电力系统中的关键环节,用于实现对电力设备的保护和故障检测。

高电压技术在继电保护中的应用主要包括保护装置的设计和电弧灭弧等方面。

四、高电压技术的主要原理高电压技术的主要原理包括绝缘和电弧控制两个方面。

1. 绝缘:绝缘是高电压技术中的重要内容,主要用于防止电流通过绝缘物体,避免电压的漏电和击穿。

在高电压设备中,通常采用绝缘材料来实现绝缘的目的。

2. 电弧:电弧是高电压设备中一个常见的现象,会产生大量的热量和光能。

在高电压技术中,主要研究电弧的形成、传播和灭弧等问题,以保证设备的安全运行。

五、高电压技术的挑战与发展高电压技术在电力系统中的应用越来越广泛,但也面临着一些挑战。

1. 设备的绝缘:在高电压设备中,绝缘是保证安全运行的关键。

高电压技术知识点(期末复习)

高电压技术知识点(期末复习)

气体放电1.气体中带电质点产生和消失的形式带电粒子的产生:产生带电粒子的物理过程称为电离,源于气体内部的如光电离(外界的高能辐射线和气体放电本身)、热电离(温度超过10000K)、碰撞电离(是气体中产生带电粒子最主要的形式)外部的如电极表面的电离(正离子碰撞、光电子发射、热电子发射、强场发射)等。

负离子(电子与中性分子相结合)的形成过程称为附着,对气体放电的发展起抑制作用带电粒子的消失:(1)中和(2)扩散(3)复合‘2.简述气体的放电机理。

外界电离因子在阴极附近产生了一个初始电子,若空间电场强度足够大,该电子就会引起碰撞电离,产生出一个新电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生出更多电子,最终形成电子崩,产生电流。

气体放电的主要形式:辉光放电、火花放电、电晕放电、刷状放电、电弧放电3.汤森德放电机理与流注放电机理的差别,联系和适用范围。

汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。

所逸出的电子能否接替起始电子的作用是自持放电的判据。

流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸变,流注理论认为二次电子的主要来源是空间的光电离。

汤逊理论的适用范围是低气压短间隙的气隙放电;流注理论适用于高气压、长间隙电场放电。

4.帕型定律均匀电场气隙的击穿电压Ub等于它的自持放电电压U0,Ub是气压和极间距离的乘积(pd)的函数。

如果在改变极间距离d的同时,也相应地改变气压p,而使pd的乘积保持不变,则极间距离不等的气隙的击穿电压却彼此相等。

5.电晕放电概念,产生的效应以及防治措施电晕放电:气体介质在极不均匀电场中的局部自持放电现象。

(淡紫色辉光、嘶嘶作响的噪声、臭氧气味)产生多种派生效应,如电晕损耗、谐波电流和非正弦电压、无线电干扰、可闻噪声、空气的有机合成等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南理工大学高电压技术期末考试总结名词解释1电介质:在电场中能产生极化的物质通常条件下导电性能极差、在电力系统用作绝缘的材料。

2电介质的极化种类:电子位移极化:当外加一电场,电场力将使荷正电的原子核像电场方向位移,荷负电的电子云中心向电场反方向位移,但原子核对电子云的引力达到平衡时,感应电距也达到稳定。

离子位移极化在有离子结合成的介质中,外电厂的作用除了促使各个离子内部产生电子位移极化外,还产生正负离子相对位移而形成的极化。

转向极化(偶极子极化): 出现外电场后偶极子沿电场方向转动,作较有规则的排列,因而显出极性,这种极化称为偶极子极化或转向极化。

空间电荷极化(夹层极化):空间电荷极化常常发生在不均匀介质中,在外电场的作用下,不均匀电介质中的正负间隙离子分别向负、正极移动,引起电介质内各点离子密度的变化,产生电偶极矩,这种极化称为空间电荷极化。

3电介质损耗:任何电介质在电场作用下都有能量损耗,包括由电导引起的损耗和某些极化过程引起的损耗。

电介质的能量损耗简称介质损耗。

4碰撞电离:气体介质中粒子相撞,撞击粒子传给被撞粒子能量,使其电离。

5光电离:在光照射下,将光子能量传给粒子,游离出自由电子。

由光电离而产生的自由电子称为光电子必要条件:光子的能量大于气体粒子的电离能。

6热电离:是热状态下碰撞电离和光电离的综合.7电极表面电离:气体中的电子也可从金属电极表面游离出来。

8电子崩:外界电离因子在阴极附近产生了一个初始电子,如果空间电场强度足够大,该电子在向阳极运动时就会引起碰撞电离,产生一个新的电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生更多电子。

依此,电子将按照几何级数不断增多,类似雪崩似地发展,这种急剧增大的空间电子流被称为电子崩。

结论:由于碰撞电离引起电子崩过程,导致气隙中电子数迅速增加。

9自持放电:撤除外界电离因素后,能仅由电场的作用而维持的放电.10非自持放电:必须依靠外界电离因素的作用提供自由电子作为电子崩的初始电子,一旦外界电离因素停止发生作用,则放电中止.11极化效应:将电介质放入电场,表面出现电荷。

这种在外电场作用下电介质表面出现电荷的现象叫做电介质的极化12电晕放电:极不均匀电场中,在外加电压下,小曲率半径电极附近的电场强度首先达到起始场强E0,在此局部区域先出现碰撞电离和电子崩,甚至出现流注,这种仅仅发生在强场区的局部放电称为电晕放电,在外观上表现为环绕电极表面出现蓝紫色晕光。

12极性效应:在极不均匀电场中,高场强电极的不同,空间电荷的极性也不同,对放电发展的影响也不同,这就造成了不同极性的高场强电极的电晕起始电压的不同,以及间隙击穿电压的不同,称为极性效应。

13沿面放电:沿着固体介质表面发展的气体放电现象;14闪络:沿面放电发展到跨接两级的贯穿性的空气击穿称为闪络。

15伏秒特性:在电压波形一定的情况下,气隙击穿时的外加电压峰值与击穿时间的关系气,称为该气隙的伏秒特性Ub=f(tb)表示该气隙伏秒特性的曲线,称为伏秒特性曲线。

50%击穿电压:在一定波形的冲击电压作用下,外加电压的幅值变化,导致间隙击穿概率为50%时的电压。

16电击穿:在强电场下电介质内部电子剧烈运动,发生碰撞电离,破坏了固体介质的晶格结构,使电导增大而导致击穿。

17热击穿:由于固体介质内部热不稳定性造成。

18电化学击穿:固体介质在长期工作电压下,由于介质内部发生局部放电等原因,使绝缘劣化,电气强度逐渐下降并引起的击穿。

19小桥击穿:若杂质小桥接通电极,因小桥的电导大而导致泄露电流增大,发热会促使水分汽化,气泡扩大,发展下去也会出现气体小桥,使油隙发生击穿的现象,就是小桥击穿。

20耐压试验(破坏性试验):模仿设备绝缘在运行中可能收到的各种电压,对绝缘施加与之等价或更为严峻的电压,从而考验绝缘耐受这类电压的能力,这类实验有可能导致绝缘的破坏。

21检查性试验(非破坏性实验):测定绝缘某些方面的特性,并据此间接地判断绝缘的状况,这类实验一般在较低电压下进行,通常不会导致绝缘的击穿损毁。

22绝缘电阻:施加直流电压时测得的电阻,通常指吸收电流衰减完毕后测得的稳态电阻值。

23介质吸收比:电流衰减过程中,两个瞬间测得的电流值或两个相应的绝缘电阻之比,通常用时间60s与15s时所测的绝缘电阻之比。

24耦合系数在电路中,为表示元件间耦合的松紧程度,把两电感元件间实际的互感(绝对值)与其最大极限值之比定义为耦合系数。

25气体击穿:气体由绝缘状态变为导电状态的现象称为击穿。

26波阻抗:是表征分布参数电路特点的最重要的参数,它是储能元件,表示导线周围介质获得电磁能的大小,具有阻抗的量纲,其值决定于单位长度导线的电感和电容,与线路长度无关。

27雷暴日(Td):一年中发生雷电的天数(30-40)。

雷暴小时(Th):一年中发生雷电的小时数(100)。

地面落雷密度:每一雷暴日每平方公里地面遭受雷击的次数。

即100km线路每年约受到0.28(b+4h)次雷击。

20-30次;b为两避雷线之间的距离;h为避雷线的平均高度。

28绕击率:指雷电绕过避雷装置而击中被保护物体的概率。

29保护角:避雷线和边相导线的连线与经过避雷线的垂直线之间的夹角。

30耐雷水平:雷击线路时线路绝缘不发生闪络的最大雷电流幅值,以kA为单位。

31雷击跳闸率:每100km线路每年由雷击引起的跳闸次数。

32绕击率:一次雷击线路中出现绕击的概率。

33击杆率:雷击杆塔次数与落雷总数的比值。

34接地电阻:就是电流由接地装置流入大地再经大地流向另一接地体或向远处扩散所遇到的电阻,它包括接地线和接地体本身的电阻、接地体与大地的电阻之间的接触电阻以及两接地体之间大地的电阻或接地体到无限远处的大地电阻。

35变电所的进线段保护:作用在于限制流经避雷器的雷电流和限制入侵波的陡度。

采用装设串联电抗器即电抗线圈既能限制流过避雷器的雷电流又能限制入侵波陡度。

定义:指临近变电所1~2km的一段路上加强防雷保护措施。

当线路全线无避雷线时,此段必须架设避雷线;当线路全线有避雷线时,应使此段线路具有较高耐雷水平,减小该段线路内由于绕击和反击所形成侵入波的概率。

36电力系统内部过电压:在电力系统中,由于断路器操作、故障或其他原因,使系统参数发生变化,引起系统内部电磁能量的振荡转化或传递所造成的电压升高。

37操作过电压:因操作或故障引起的瞬间(以毫秒计)电压升高。

38暂时过电压:在瞬间过程完毕后出现的稳态性质的工频电压升高或谐振现象。

又包括工频电压升高和谐振过电压。

39工频电压升高:电力系统在正常或故障运行时可能出现幅值超过最大工作相电压、频率为工频或接近工频的电压升高。

40容升效应:在集中参数L、C串联电路中,如果容抗大于感抗,即1/ωC>ωL,电路中将流过容性电流。

电容上的电压等于电源电动势加上电容电流流过电感造成的电压升。

这种电容上的电压高于电源电动势的现象,称为电容效应。

为了限制电容效应引起的工频电压升高,在超高压电网中,广泛采用并联电抗器来补偿线路的电容电流,以削弱其电容效应。

41间歇电弧过电压:在中性点不接地的系统中,发生稳定性单相接地时,当单相接地电弧不稳定处于时燃时灭的状态时,这种间歇性电弧接地使系统工作状态时刻在变化,导致电感电容元件之间的电磁振荡,形成遍及全系统的过电压。

42极化:在外加电场的作用下,电介质中的正、负电荷沿电场方向作有限位移或转向,形成偶极矩子的过程。

43电介质的极化特点电子位移极化:存在于一切电介质,极化所需时间短,不随频率变化;极化具有弹性,不损耗能量。

离子位移极化:存在于离子结构电介质中,极化所需时间也很短;极化具有弹性,有极微量能量损耗;随温度升高而增大。

转向极化:存在于极性电介质中,极化所需时间较长, 与电源频率有很大关系;极化消耗能量, 温度过高或过低, 都会减小。

空间电荷极化(夹层极化):存在于复合介质、不均匀介质中;极化过程很缓慢,只在直流和低频交流下表现出来;极化伴随着能量损耗。

44电介质的电阻率具有负的温度系数;金属的电阻率具有正的温度系数。

45介质损耗角δ 为功率因数角φ 的余角,其正切tgδ 又可称为介质损耗因数,常用百分数(%)来表示。

tgδ 的增大,意味着介质绝缘性能变差,实践中常通过测量tgδ来判断设备绝缘的好坏。

46带电粒子的产生(电离过程)碰撞电离:条件:⑴撞击粒子的总能量>被撞粒子的电离能⑵一定的相互作用的时间和条件,通过复杂的电磁力的相互作用达到两粒子间能量转换。

47帕邢定律:表征均匀电场气体间隙击穿电压、间隙距离和气压间关系的定律。

48电晕的危害及作用:(1)有光、声、热效应造成能量损耗;电晕损耗在超高压输电线路设计中必须考虑(2)产生的高频脉冲电流含有许多高次谐波,造成无线电干扰(3)使空气局部游离,产生的臭氧和氧化氮等会腐蚀金属设备(4)产生可闻噪声;49避雷针线的保护范围:指具有0.1%左右雷击概率的空间范围(折线法45度)。

50避雷针的保护原理是:能使雷云电场发生突变,使雷电流先导的发展沿着避雷针的方向发展,直击于其上,雷电流通过避雷针及接地装置泄入大地而防止避雷针周围设备受到雷击。

简答题2电介质电导与金属电导的区别?带电质点:电介质中为 ionic conduction(固有及杂质离子);金属中为 ele ctronic conduction。

数量级:电介质的γ小,泄漏电流小;金属的电导电流很大。

电导电流影响因素:电介质中由离子数目决定,对所含杂质、温度很敏感;金属中主要由外加电压决定,杂质、温度不是主要因素。

3汤逊放电理论和流注理论及其区别和适用范围流注理论和汤逊理论比较:1. 汤逊理论适用于低气压、短气隙的情况(pd<26.66kPa•cm)2. 流注理论适用于高气压、长气隙的情况(pd>>26.66kPa•cm)3.汤逊理论认为电子崩和阴极上的二次发射过程是气体自持放电的决定性因素;流注理论认为电子碰撞电离及空间光电离是维持自持放电的主要因素,并强调了空间电荷畸变电场的作用。

气体放电的流注理论:Pd>>26.66kPa•cm(200mmHg•cm)时,一些无法用汤逊理论解释的现象;(1)放电外形:在大气压下放电不再是辉光放电,而是火花通道(2)放电时间:放电时间短于正离子在通道中到达阴极的行程时间(3)阴极材料的影响:阴极材料对放电电压影响不大;流注的特点:电离强度很大,传播速度很快,导电性能良好。

形成流注后,放电就可以由本身产生的空间光电离自行维持,即转为自持放电,形成流注的条件(即自持放电条件)4简要解释小桥理论工程中实际中使用的液体电介质不可能是纯净的,不可避免地混入气体(即气泡)、水分、纤维等杂质。

这些杂质的介电常数小于液体的介电常数,在交流电场作用下。

相关文档
最新文档