运筹学_18 动态规划基本概念
动态规划(运筹学)
k阶段的允许决策集合
四、状态转移方程 sk+1与sk,xk之间必须能够建立一种明确的数量对应关系,记为
Tk(sk,xk), 即有 sk+1 = Tk(sk,xk)
这种明确的数量关系称为状态转移方程。
五、策略
由各阶段决策xk构成的决策序列,称为全过程策略,简称策略,记为
p1(s1),有
p1(s1) = { x1(s1),x2(s2),… ,xn(sn)} ∈P1
xk∈Xk
f*n+1(sn+1) = 1 积 f*k(sk)xk=∈Xok pt {vk(sk,xk) ×fk+1*(sk+1)}
k = n, n-1, …, 2, 1 k = n, n-1, …, 2, 1
11
三、基本步骤
1°建立模型
(1) 划分阶段,设定 k (2) 设定状态变量 sk
(3) 设定决策变量 xk
3) 阶段指标函数。第k阶段装载 件货物时所创的利润 。 vk xk
4) 函数的基本方程为
fk
sk
opt
xk Dk sk
vk xk fk1 sk wk xk k 1, 2,3
sk 0,1, ,6
f4
s4
0
k=3时
w3 4, v3 18
s3 0,1, , 6
x3
0,1,
六、运输时间须控制在合理范围之内(如集装箱干线船的班期)。
ZH物流公司是一家大型的集装箱多式联运经营企业,在成都设有内 陆集装箱货运站(CFS),经营成都——上海间集装箱货物运输服务,其多式 联运通道的主要节点城市为南京与郑州。现有一个货主需要将2个20英尺的集装 箱从成都运往上海,运输路线为成都-郑州-南京-上海,要求在货物起运后2530小时之内到达目的地。
运筹学教案动态规划
运筹学教案动态规划一、教学目标1. 了解动态规划的基本概念及其在运筹学中的应用。
2. 掌握动态规划的基本原理和方法,能够解决实际问题。
3. 学会使用动态规划解决最优化问题,提高解决问题的效率。
二、教学内容1. 动态规划的基本概念动态规划的定义动态规划与分治法的区别2. 动态规划的基本原理最优解的性质状态转移方程边界条件3. 动态规划的方法递推法迭代法表格法4. 动态规划的应用背包问题最长公共子序列最短路径问题三、教学方法1. 讲授法:讲解动态规划的基本概念、原理和方法。
2. 案例分析法:分析实际问题,引导学生运用动态规划解决问题。
3. 编程实践法:让学生动手编写代码,加深对动态规划方法的理解。
四、教学准备1. 教材:《运筹学导论》或相关教材。
2. 课件:动态规划的基本概念、原理、方法及应用案例。
3. 编程环境:为学生提供编程实践的平台,如Python、C++等。
五、教学过程1. 引入:通过一个实际问题,引出动态规划的概念。
2. 讲解:讲解动态规划的基本原理和方法。
3. 案例分析:分析实际问题,展示动态规划的应用。
4. 编程实践:让学生动手解决实际问题,巩固动态规划方法。
5. 总结:对本节课的内容进行总结,强调动态规划的关键要点。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂讲解:评估学生对动态规划基本概念、原理和方法的理解程度。
2. 案例分析:评估学生运用动态规划解决实际问题的能力。
3. 编程实践:评估学生动手实现动态规划算法的能力。
4. 课后作业:评估学生对课堂所学知识的掌握情况。
七、教学拓展1. 研究动态规划与其他优化方法的联系与区别。
2. 探讨动态规划在运筹学其他领域的应用,如库存管理、生产计划等。
3. 了解动态规划在、数据挖掘等领域的应用。
八、教学反思1. 反思本节课的教学内容、方法和过程,确保符合教学目标。
2. 考虑学生的反馈,调整教学方法和节奏,提高教学效果。
3. 探讨如何将动态规划与其他运筹学方法相结合,提高解决问题的综合能力。
动态规划的基本思想
动态规划的基本思想动态规划是一种常见的解决问题的算法思想,它通过将复杂的问题分解成一个个子问题,逐步求解并记录下每个子问题的解,最终得到原问题的解。
这种思想在很多领域都有广泛的应用,例如计算机科学、经济学、物理学等。
一、动态规划的定义与特点动态规划是一种分治法的改进方法,它主要用于解决具有重叠子问题和最优子结构性质的问题。
它的基本思想可以概括为“记住中间结果,以便在需要的时候直接使用”。
动态规划算法的特点包括:1. 问题可以分解为若干个重叠的子问题;2. 子问题的解可以通过已知的子问题解来求解,且子问题的解可以重复使用;3. 需要使用一个数据结构(通常是一个矩阵)来存储子问题的解,以便在需要时直接取出。
二、动态规划的基本步骤动态规划算法通常可以分为以下几个基本步骤:1. 确定问题的状态:将原问题转化为一个或多个子问题,并定义清楚每个子问题的状态是什么。
2. 定义问题的状态转移方程:找出子问题之间的关系,即如何通过已知的子问题解来解决当前问题。
3. 设置边界条件:确定最简单的子问题的解,即边界条件。
4. 计算子问题的解并记录:按顺序计算子问题的解,并将每个子问题的解记录下来,以便在需要时直接使用。
5. 由子问题的解得到原问题的解:根据子问题的解和状态转移方程,计算得到原问题的解。
三、动态规划的实例分析为了更好地理解动态规划的基本思想,我们以求解斐波那契数列为例进行分析。
问题描述:斐波那契数列是一个经典的数学问题,它由以下递推关系定义:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
解决思路:根据递推关系,可以将问题分解为求解F(n-1)和F(n-2)两个子问题,并将子问题的解累加得到原问题的解。
根据以上思路,可以得到以下的动态规划算法实现:1. 确定问题的状态:将第n个斐波那契数定义为一个状态,记为F(n)。
2. 定义问题的状态转移方程:由递推关系F(n) = F(n-1) + F(n-2)可得,F(n)的值等于前两个斐波那契数之和。
动态规划的基本原理和基本概念
)
=
max/
min
n
d
j
(S
j
,
x
j
)
j=k
7)指标递推方程(动态规划的基本方程):
fk (Sk ) = max/ min{dk (Sk , xk ) + fk+1(Sk+1)}, k = 1,2,..., n
f
n+1
(Sn+1
)
=
0
例 投资金额分配问题.某公司有4百万元资金需要投资,有三个投资 项目可以选择。经市场调查预测,如果向项目 i 投资 j 百万元,则每年
所得到的利润(万元/年)因投资额的不同而有差异,如下表所示。问
应如何投资才能使总的利润最大?
投资额
利润
0
1
2
3
4
项目
项目1
0
16 25 30 32
项目2
0
12 17 21 22
项目3
0
10 14 16 17
解:令每给一个项目考虑投资多少资金为一个决策阶段,则该投资
决策问题可分为三个阶段.决策顺序为:
最优 决策
0 1 1
2 2,3
目标 值
0 12 22
27 31
项目1(阶段1):
状态 0 4 0+31
决策
1
2
3
16+27 25+22* 30+12
4 32+0
最优 决策
2
目标 值
47
S1
x1 S2
x2
S3
x3
47 4
31 4
动态规划的基本概念与方法
动态规划的基本概念与方法动态规划(Dynamic Programming,简称DP)是解决一类最优化问题的一种方法,也是算法设计中的重要思想。
动态规划常用于具有重叠子问题和最优子结构性质的问题。
它将问题分解为子问题,并通过求解子问题的最优解来得到原问题的最优解。
动态规划的基本概念是“最优子结构”。
也就是说,一个问题的最优解可以由其子问题的最优解推导出来。
通过分解问题为若干个子问题,可以形成一个递归的求解过程。
为了避免重复计算,动态规划使用一个表格来保存已经计算过的子问题的解,以便后续直接利用。
这个表格也被称为“记忆化表”或“DP表”。
动态规划的基本方法是“状态转移”。
状态转移指的是,通过已求解的子问题的解推导出更大规模子问题的解。
常用的状态转移方程可以通过问题的递推关系定义。
通过定义好状态转移方程,可以通过迭代的方式一步步求解问题的最优解。
在动态规划中,通常需要三个步骤来解决问题。
第一步,定义子问题。
将原问题划分为若干个子问题。
这些子问题通常与原问题具有相同的结构,只是规模更小。
例如,对于计算斐波那契数列的问题,可以定义子问题为计算第n个斐波那契数。
第二步,确定状态。
状态是求解问题所需要的所有变量的集合。
子问题的解需要用到的变量就是状态。
也就是说,状态是问题(解决方案)所需要的信息。
第三步,确定状态转移方程。
状态转移方程通过已求解的子问题的解推导出更大规模子问题的解。
通常情况下,状态转移方程可以通过问题的递推关系确定。
在实际应用中,动态规划常用于求解最优化问题。
最优化问题可以归纳为两类:一类是最大化问题,另一类是最小化问题。
例如,最长递增子序列问题是一个典型的最大化问题,而背包问题是一个典型的最小化问题。
动态规划的优势在于可以解决许多复杂问题,并且具有可行的计算复杂度。
但是,动态规划也有一些限制。
首先,动态规划要求问题具有重叠子问题和最优子结构性质,不是所有问题都能够满足这两个条件。
其次,动态规划需要存储计算过的子问题的解,对于一些问题来说,存储空间可能会非常大。
运筹学教案动态规划
运筹学教案动态规划一、引言1.1 课程背景本课程旨在帮助学生掌握运筹学中的动态规划方法,培养学生解决实际问题的能力。
1.2 课程目标通过本课程的学习,学生将能够:(1)理解动态规划的基本概念和原理;(2)掌握动态规划解决问题的方法和步骤;(3)能够应用动态规划解决实际问题。
二、动态规划基本概念2.1 定义动态规划(Dynamic Programming,DP)是一种求解最优化问题的方法,它将复杂问题分解为简单子问题,并通过求解子问题的最优解来得到原问题的最优解。
2.2 特点(1)最优子结构:问题的最优解包含其子问题的最优解;(2)重叠子问题:问题中含有重复子问题;(3)无后效性:一旦某个给定子问题的解确定了,就不会再改变;(4)子问题划分:问题可以分解为若干个子问题,且子问题之间是相互独立的。
三、动态规划解决问题步骤3.1 定义状态状态是指某一阶段问题的一个描述,可以用一组变量来表示。
3.2 建立状态转移方程状态转移方程是描述从一个状态到另一个状态的转换关系。
3.3 确定边界条件边界条件是指初始状态和最终状态的取值。
3.4 求解最优解根据状态转移方程和边界条件,求解最优解。
四、动态规划应用实例4.1 0-1背包问题问题描述:给定n个物品,每个物品有一个重量和一个价值,背包的最大容量为W,如何选择装入背包的物品,使得背包内物品的总价值最大。
4.2 最长公共子序列问题描述:给定两个序列,求它们的最长公共子序列。
4.3 最短路径问题问题描述:给定一个加权无向图,求从源点到其他各顶点的最短路径。
5.1 动态规划的基本概念和原理5.2 动态规划解决问题的步骤5.3 动态规划在实际问题中的应用教学方法:本课程采用讲授、案例分析、上机实践相结合的教学方法,帮助学生深入理解和掌握动态规划方法。
教学评估:课程结束后,通过课堂讨论、上机考试等方式对学生的学习情况进行评估。
六、动态规划算法设计6.1 动态规划算法框架介绍动态规划算法的基本框架,包括状态定义、状态转移方程、边界条件、计算顺序等。
动态规划的基本思想
动态规划的基本思想动态规划是一种常用于解决具有重叠子问题和最优子结构特征的问题的算法思想。
它将问题分解成一系列子问题,并通过解决子问题构建出整个问题的最优解。
动态规划的基本思想是将原始问题转化成一个或多个相似的子问题,然后通过解决这些子问题获得原始问题的解。
这种思想在很多实际问题中都能够得到应用。
动态规划的基本流程一般包括以下几个步骤:1. 将原始问题分解为子问题:首先需要将原问题划分为多个子问题,并且确保这些子问题之间有重叠的部分。
2. 定义状态:确定每个子问题需要求解的状态,也即问题需要达成的目标。
3. 确定状态转移方程:根据子问题之间的关系,确定子问题之间的状态转移方程,即如何将子问题的解转移到原问题的解。
4. 解决首个子问题:解决最基本的子问题,获得初始状态下的解。
5. 填充状态表格:根据状态转移方程,依次求解其他子问题,并且填充状态表格。
6. 求解原问题:通过填充状态表格,在保证状态转移方程的基础上求解原问题的最优解。
动态规划的关键在于将原问题转化为子问题,通过递归或者迭代的方式求解子问题,最终获得原问题的最优解。
在这个过程中,重叠子问题的求解是动态规划的特点之一。
由于问题的子问题存在重叠,所以在求解的过程中我们可以保存已经求解过的子问题的解,避免重复计算,从而提高效率。
动态规划还要求问题具有最优子结构特征,即问题的最优解可以通过子问题的最优解构建出来。
通过利用已解决的子问题的最优解,可以有效地解决原问题。
动态规划算法在实际应用中有着广泛的应用。
它可以用于解决很多经典的问题,如最长公共子序列、0-1背包问题、最大子数组和等。
动态规划算法可以有效地解决这些问题,使得它们的时间复杂度得到了有效的降低。
总结来说,动态规划的基本思想是将原始问题转化为子问题,并通过解决子问题构建整个问题的最优解。
动态规划算法通过保存已经解决的子问题的解来避免重复计算,从而提高算法的效率。
动态规划算法在实际应用中具有广泛的应用,是解决具有重叠子问题和最优子结构特征的问题的常用算法思想。
动态规划基本概念
最短路问题(2) 第四阶段 k=4
d4(D1,E)=30 f4(D1)=30
状态变量s4可取D1,D2
d4(D2,E)=40 f4(D2)=40
例1.
s4 D1 D2
u4(s4) E E
f4(s4)=d4 30 40
u4*(s4) E E
最短路问题(3) 第三阶段 k=3 f4(D1)=30 s3 C1 u3
3.确定决策uk,及每个阶段的允许决策集合Dk(sk) 4.写出状态转移方程: sk+1=Tk(sk,uk )
5.列出阶段效益vk(sk,uk)及效益函数 fk(sk)
二.动态规划的基本概念(4) 在不同问题中,最优指标函数fk( sk)表示的意义不一样, 可以是费用,成本,距离
6.状态转移方程:
确定由一个状态到另一个状态的演变过程. 若给定第k阶段状态变量sk的值,且该阶段的决策变量uk 一经确定 ,则第k+1阶段的状态变量sk+1也随之确定, 即sk+1是sk和uk的函数,记为sk+1=Tk(sk,uk), 它描述了由第k阶段到第k+1阶段的状态转移规律,
例1.最短路问题 设某公司自外国进口一台大型机床,由工厂至出口港,有 三港口可供选择,而进口港又有三个可供选择,进口后可 经由两个城市到达目的地,其间的运输路线如下图,试求 总距离最短的路线?
出口港 B1 20 A 40 进口港 70 C1 10 40 C2
40 60 30
B2 20
60 D1
D2
最优策略 在允许策略集合中,使整个问题达到最优效果的策略
k子过程 由第k阶段开始到终点为止的过程,称为原问题的 k后部子过程(或称为k子过程)
k子过程策略 k子过程的决策函数序列。简称子策略
运筹学动态规划
特别注意:动态规划是求解某类问题的一种 方法,是考察问题的一种途径,而不是一种算法 (如线性规划是一种算法)。
因而,动态规划没有标准的数学表达式和明 确定义的一组规则,而必须对具体问题进行具体 分析处理.
动态规划
8.1 多阶段决策过程及实例 8.2 动态规划的基本概念和
基本方程 8.3 动态规划的最优性定理 8.4 动态规划与静态规划关系
综述
动态规划是运筹学的一个分支,是解决多 阶段决策过程最优化问题的一种数学方法。
该方法是由美国数学家贝尔曼(R.Bellman)等 人在本世纪50年代初提出的。
他们针对多阶段决策问题的特点,把多阶段 决策问题变换为一系列互相联系单阶段问题,然 后逐个加以解决。
1
2
3
始点
5
B1
6 3
A
4 B2 4 6
2
5
B3 6
C1
1 2
2
C2 2
3
C3
3
4 终点
D1 2
D2 3
E
4
D3
2、状态
5
B1
6 3
A 4 B246
25
B3 6
C1
1 2
2
C2 2
C3 3 3
D1 2
D2 3 E 4
D3
各个阶段开始时所处的自然状况和客观条件称为
状态,描述了研究问题过程的状况(称不可控因素).
一些与时间没有关系的静态规划(如线性 规划,非线性规划)问题,只要人为地引进 “时间”因素,也可把它视为多阶段决策问题, 用动态规划方法去处理。
动态规划的基本概念
优指标函数(k=1,2,…,n)。
§2 动态规划的最优性原理
多阶段决策过程的特点是每个阶段都要进行决策,具有 n个阶段的决策过程的策略是由n个相继进行的阶段决策构成 的决策序列。由于前阶段的终止状态又是后一阶段的初始状态 ,因此确定阶段最优决策不能只从本阶段的效应出发,必须通 盘考虑,整体规划。就是说,阶段k的最优决策不应只是本阶 段的最优,而必须是本阶段及其所有后续阶段的总体最优,即 关于整个后部子过程的最优决策。
运筹学
动态规划
L/O/G/O
第五章 动态规划
动态规划是运筹学的一个重要分支,它是从1951年开始,由美国人贝 尔曼(R.Belman)为首的一个学派发展起来的。动态规划在经济、管理、 军事、工程技术等方面都有广泛的应用。
动态规划是解决多阶段决策过程的最优化问题的一种方法。所谓多阶段 决策过程是指这样一类决策过程:它可以把一个复杂问题按时间(或空间) 分成若干个阶段,每个阶段都需要作出决策,以便得到过程的最优结局。由 于在每个阶段采取的决策是与时间有关的而且前一阶段采取的决策如何,不 但与该阶段的经济效果有关,还影响以后各阶段的经济效果,可见这类多阶 段决策问题是一个动态的问题,因此,处理的方法称为动态规划方法。然而 ,动态规划也可以处理一些本来与时间没有关系的静态模型,这只要在静态 模型中人为地引入“时间”因素,分成时段,就可以把它看作是多阶段的动 态模型,用动态规划方法去处理。
动态规划讲解大全(含例题及答案)
多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在 它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不 是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个 决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问 题就称为多阶段决策问题。
在前面的例子中,第一个阶段就是点 A,而第二个阶段就是点 A 到点 B,第三个阶段是点 B 到点 C,而第四个阶段是点 C 到点 D。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称 为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前 一阶段某支路的终点。
fout.close(); return 0; }
USACO 2.3 Longest Prefix
题目如下: 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序 列分解成较短的(称之为元素的)序列很感兴趣。 如果一个集合 P 中的元素可以通过串联(允许重复;串联,相当于 Pascal 中的 “+” 运算符) 组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。并不是所有的元素都必须出现。 举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素: {A, AB, BA, CA, BBC} 序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一 个大写字母序列,计算这个序列最长的前缀的长度。 PROGRAM NAME: prefix INPUT FORMAT 输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字 符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.” 的行。 集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串 来表示,每行不超过 76 个字符。换行符并不是序列 S 的一部分。 SAMPLE INPUT (file prefix.in) A AB BA CA BBC . ABABACABAABC OUTPUT FORMAT 只有一行,输出一个整数,表示 S 能够分解成 P 中元素的最长前缀的长度。 SAMPLE OUTPUT (file prefix.out) 11 示例程序如下: #include <stdio.h>
运筹学中的动态规划原理-教案
运筹学中的动态规划原理-教案一、引言1.1动态规划的基本概念1.1.1动态规划的定义:动态规划是一种数学方法,用于求解多阶段决策过程的最优化问题。
1.1.2动态规划的特点:将复杂问题分解为简单的子问题,通过求解子问题来得到原问题的最优解。
1.1.3动态规划的应用:广泛应用于资源分配、生产计划、库存控制等领域。
1.2动态规划的基本原理1.2.1最优性原理:一个最优策略的子策略也是最优的。
1.2.2无后效性:某阶段的状态一旦确定,就不受这个状态以后决策的影响。
1.2.3子问题的重叠性:动态规划将问题分解为子问题,子问题之间往往存在重叠。
1.3动态规划与静态规划的关系1.3.1静态规划:研究在某一特定时刻的最优决策。
1.3.2动态规划:研究在一系列时刻的最优决策。
1.3.3动态规划与静态规划的区别:动态规划考虑时间因素,将问题分解为多个阶段进行求解。
二、知识点讲解2.1动态规划的基本模型2.1.1阶段:将问题的求解过程划分为若干个相互联系的阶段。
2.1.2状态:描述某个阶段的问题情景。
2.1.3决策:在每个阶段,根据当前状态选择一个行动。
2.1.4状态转移方程:描述一个阶段的状态如何转移到下一个阶段的状态。
2.2动态规划的基本算法2.2.1递归算法:通过递归调用求解子问题。
2.2.2记忆化搜索:在递归算法的基础上,保存已经求解的子问题的结果,避免重复计算。
2.2.3动态规划算法:自底向上求解子问题,将子问题的解存储在表格中。
2.2.4动态规划算法的优化:通过状态压缩、滚动数组等技术,减少动态规划算法的空间复杂度。
2.3动态规划的经典问题2.3.1背包问题:给定一组物品,每种物品都有自己的重量和价值,求解在给定背包容量下,如何选择物品使得背包中物品的总价值最大。
2.3.2最长递增子序列问题:给定一个整数序列,求解序列的最长递增子序列的长度。
2.3.3最短路径问题:给定一个加权有向图,求解从源点到目标点的最短路径。
动态规划的基本概念与算法设计
动态规划的基本概念与算法设计动态规划(Dynamic Programming)是一种解决复杂问题的优化方法,常用于计算机科学和数学领域。
它的基本思想是将一个复杂问题分解为若干个相互重叠的子问题,并通过求解子问题的最优解来构建原问题的最优解。
一、动态规划的基本概念动态规划中的概念主要包括以下几个方面:1. 最优子结构(Optimal Substructure):一个问题的最优解可以由其子问题的最优解来构建。
也就是说,问题的最优解具备递归性质。
2. 无后效性(无后效性):一个阶段的状态一旦确定,就不受之后决策的影响。
也就是说,在解决某个阶段的问题时,只需要考虑当前阶段的状态和选择,无需关心之后的情况。
3. 重叠子问题(Overlapping Subproblems):子问题之间可能会出现重叠的情况,即不同的子问题具有相同的子问题。
二、动态规划的算法设计步骤动态规划的算法设计通常包括以下步骤:1. 确定状态:首先要明确问题的求解需要哪些状态量,并将问题抽象化,将问题的每个阶段的状态定义清楚。
2. 确定状态转移方程:根据问题的最优子结构,利用递归的思想,确定问题的状态转移方程。
状态转移方程描述了问题从一个阶段到下一个阶段的状态转移过程。
3. 确定初始条件和边界条件:确定问题的初始状态和边界状态,也就是递归的终止条件。
4. 确定计算顺序:确定问题的计算顺序,通常是从小规模的子问题开始,逐渐扩展到原问题的规模。
5. 填表计算:根据状态转移方程和初始条件,填充计算表格,记录子问题的最优解。
6. 求解原问题:根据计算表格中的最优解,推导出原问题的最优解。
三、动态规划的示例应用为了更好地理解动态规划的基本概念和算法设计步骤,下面以一个经典的示例问题来说明。
问题描述:给定一个数组nums,其中的元素表示一系列可抢劫的房屋的价值。
要求求解出在不触发警报的情况下,可以获得的最大抢劫价值。
解决思路:1. 状态定义:定义一个一维数组dp,其中dp[i]表示前i个房屋能够获得的最大抢劫价值。
动态规划的基本概念和基本原理
史的一个完整总结。只有具有无后效性的多阶段决策过程
才适合于用动态规划方法求解。
2 A1
3
5 B1 4
7
6
B2
5
3
2
C1 2 5 6
C2 3
2
C3 1
D3
1
E 5 D
2
B3 2
3.决策(decision)
C4 7
当各阶段的状态选定以后可以做出不同的决定(或选择)从
而确定下一个阶段的状态,这种决定(或选择)称为决策。
5.状态转移方程(state transfer equation) 设第k阶段状态为sk,做出的决策为uk(sk),则第k+1阶段 的状态sk+1随之确定,他们之间的关系可以表示为:
sk+1=Tk(sk,uk) 表示从第k阶段到第k+1阶段状态转移规律的方程称为状态 转移方程,它反映了系统状态转移的递推规律。
f3
(C3
)
min
d d
3 3
(C3 (C3
, ,
D1) D2 )
f4 (D1) f4 (D2 )
2 3
min1
5
5
u3(C3)=D1
f3(C4)= d3(C4,D2)+ f4(D2)=7+5=12
u3(C4)=D2
5
C1 2
2
A
1
3
B1 4
7
6
B2
5
3
2
5 6 C2 3 2
C3 1
D1 3
4.策略(policy)
当各个阶段的决策确定以后,各阶段的决策形成一个决策序 列,称此决策序列为一个策略。
运筹学课件(动态规划)
(二)、动态规划的基本思想 1、动态规划方法的关键在于正确地写出基本的递推 关系式和恰当的边界条件(简称基本方程)。要做到 这一点,就必须将问题的过程分成几个相互联系的阶 段,恰当的选取状态变量和决策变量及定义最优值函 数,从而把一个大问题转化成一组同类型的子问题, 然后逐个求解。即从边界条件开始,逐段递推寻优, 在每一个子问题的求解中,均利用了它前面的子问题 的最优化结果,依次进行,最后一个子问题所得的最 优解,就是整个问题的最优解。
d( B1,C1 ) + f1 (C1 ) 3+1 f2 ( B1 ) = min d( B1,C2 ) + f1 (C2 ) = min 3+3 d( B1,C3 ) + f1 (C3 ) 1+4 4 = min 6 = 4 (最短路线为B1→C1 →D) 5
3
2 A 4 B2 B1 2 1 3
最优策略为(30,20),此时最大利润为105万元。
f 2 ( 40)
g2 ( y) y 0 ,10 ,, 40
max
f1 ( 40 y )
90
最优策略为(20,20),此时最大利润为90万元。
f 2 (30)
g2 ( y) y 0 ,10 , 20 , 30
max
f1 (30 y )
70
最优策略为(20,10),此时最大利润为70万元。
f 2 ( 20) ma 0 ,10 , 20
50
最优策略为(20,0),此时最大利润为50万元。
f 2 (10) maxg 2 ( y ) f1 (10 y )
3 2 A 4 B2 B1 2 3 1 3 1
C1 C2 4 3
运筹学动态规划的概念
运筹学动态规划的概念运筹学中的动态规划是一种解决多阶段决策问题的数学方法。
它适用于需要做出一系列决策才能获得最优解的情况。
在这种情况下,每个决策都会对接下来的决策产生影响,因此需要考虑整个过程的影响。
动态规划的实质是将多阶段决策过程拆解成一系列子问题,每个子问题都可以用一个状态来描述。
通过求解每个子问题的最优解,就可以逐步得到整个过程的最优解。
动态规划的基本思想是以最优子结构为基础,避免重复计算已经求解过的子问题的过程。
也就是说,如果我们已经知道了子问题的最优解,那么整个问题的最优解就可以通过这些子问题的最优解推导出来。
通常情况下,动态规划问题需要满足以下几个条件:1.具有最优子结构特征:问题的最优解是由子问题的最优解组合而成的。
2.无后效性:子问题的解一旦确定,就不会被改变。
3.子问题重复性:不同的子问题可能会对应相同的状态。
4.边界性:即为问题的较小的子问题需要单独处理。
通过以上条件,我们就可以将动态规划问题分解为一个个子问题,并求解每个子问题所对应的最优值。
动态规划的基本流程分为三个步骤:1.定义状态:构建状态转移方程需要定义状态,状态通常用一个或多个变量来表示,变量的取值代表状态。
2.写出状态转移方程:根据定义好的状态,写出各个状态之间的转移方程。
3.确定边界条件:对较小的子问题需要单独处理,因此当状态变量为边界值时,需要特殊处理。
动态规划的应用广泛,它可以用于解决大量的问题。
例如,求解最长公共子序列问题、背包问题、最短路问题、字符串编辑距离问题等等。
它在图像处理、自然语言处理、生物信息学等领域中也有广泛的应用,如图像去噪、序列比对、DNA 序列匹配等。
总之,动态规划是运筹学中一种解决多阶段决策问题的重要方法,它通过将问题分解成子问题,并求解每个子问题的最优解,得出整个问题的最优解。
在实际应用中,我们需要根据具体问题特点,定义好状态,写出好的状态转移方程,才能有效地解决问题。
动态规划的基本概念和相关符号
下面引进几个动态规划的基本概念和相关符号。
(1)阶段(Stage)把所给问题的过程,按时间和空间特征划分成若干个相互联系的阶段,以便按次序去求每个阶段的解,阶段总数一般用字母n表示,用字母k表示阶段变量。
如例l中 (最短路线问题)可看作是n=4阶段的动态规划问题,k=2表示处于第二阶段。
(2)状态(State)状态表示每个阶段开始时系统所处的自然状况或客观条件,它描述了研究问题过程状况。
描述各阶段状态的变量称为状态变量,常用字母sk表示第k阶段的状态变量,状态变量的取值范围称为状态集,用Sk表示。
如例l中,第一阶段的状态为A(即出发位置)。
第二阶段有三个状态:B1 、B2、B3,状态变量s2=B2表示第2阶段系统所处的位置是B2。
第2阶段的状态集S2={ B1 、B2、B3}。
动态规划中的状态变量应具有如下性质:当某阶段状态给定以后,在这个阶段以后过程的发展不受这个阶段以前各个阶段状态的影响。
也就是说,未来系统所处的状态只与系统当前所处的状态有关,而与系统过去所处的状态无关,即过去历史只能通过当前的状态去影响它未来的发展,这种特点称为无后效性(又称马尔可夫性)。
如果所选定的状态变量不具备无后效性,就不能作为状态变量来构造动态规划模型。
如例1中,当某阶段的初始状态即所在的城市选定以后,从这个状态以后的运货路线只与这个城市有关,不受以前的运货路线影响,所以是满足状态的无后效性的。
(3)决策(Decision)当系统在某阶段处于某种状态,可以采取的行动(或决定、选择),从而确定下一阶段系统将到达的状态,称这种行动为决策。
描述决策的变量,称为决策变量。
常用字母uk (sk)表示第k阶段系统处于状态sk 时的决策变量。
决策变量的取值范围称为决策集,用Dk(sk)表示。
在例l的第二阶段中,若从状态B2出发,可以做出三种不同的决策,其允许的决策集为D2(B2)={ C1、C2、C3},决策u 2(B2)= C2表示第二阶段处于状态B2,选择的确行动下一阶段是走到C2。
运筹学――动态规划课件
8
指标函数的常见形式:
(1)过程和它的任一子过程的指标是它所包n 含的各阶段
(2的)指过标程的和和它。的Vk任,n(一sk子, u过k程, s的k+指1,标… 是sn它+1所)=包含jk 的v j (各s j阶,u段j) 的1
指标的乘积。Vk,n(sk,
23
1、动态规划模型的建立
建立动态模型的6个要素: 1)阶段k 2)状态SK 3)决策uk(sk) 4)状态转移方程 5)阶段指标函数 6)指标递推方程
24
2、动态规划模型的解法
动态规划的求解方法有两种: 逆序解法与顺序解法
1、在已知初始状态S1下,采用逆序解法:(反向递归) 2、在已知终止状态Sn下,采用顺序解法(正向递归)
fk (Sk )
dk Dk
OPt{vk (Sk , dk ) fk1( Sk1 )} fk (sk ) 0Pt Uk (sk , dk )
(k n, n 1,1)
dk Dk (k 1,2,n)
fk1(sk1 )
fn1( Sn1 ) 1
f0 (s0 ) 1
26
计 k 算 顺1如 序时下 解,: 法按解kuff( ( ( 111例0BsB1, 2) 11) ) :f的 ( 0 4A定 sA1)义45有f( 0: uf( ( A11BB) B1B2222) ) 538077,5A这C是 CCC1234边 845835界 44 条DDD件123156。 323
13
二、动态规划的基本思想和基本方程
最短路线有一个重要特性:如果由起点A经P点和H点 最终到达F点是一条最短路线,则由P点出发经过H点 最终到达F点的这条路线必定也是从P点到F点的最短路 。
动态规划(运筹学讲义).
)
min
d d
( (
E2 E2
, ,
F1) F2 )
f6 (F1) f6 (F2 )
min
5 2
4 3
5
u*5 (E2 )= F2
f5
(E3
)
min
d d
( (
E3 E3
, ,
F1) F2 )
f6 (F1) f6 (F2 )
min
fk
(sk
)
opt
uk Dk ( sk
)
vk (sk ,uk ) fk1(sk1)
fn1(sn1) 0
k=n, n 1, ,1
(8.4a) (8.4b)
Opt 可根据题意取 min 或 max
11
动态规划的基本思想如下:
(1)动态规划方法的关键在于正确写出基本递推关系式和恰当的边界条 件,因此必须将多阶段决策过程划分为n个相互联系的阶段,恰当地选取 状态变量、决策变量及定义最优指标函数,从而把问题化为一族同类型 的子问题,然后逐个求解 (2)求解时从边界条件开始,逆(或顺)过程逐段递推寻优。在每一个 子问题求解中,均利用了它前面子问题的最优结果,最后一个子问题的 最优解,就是这个问题的最优解。 (3)动态规划方法既把当前阶段与未来阶段分开,又把当前效益和未来 效率结合,因此每段的最优决策选取是从全局来考虑。 (4)在求这个问题的最优解时,由于初始状态是已知,而每阶段的决策 都是该段状态的函数,故最优策略所经过的各各阶段状态可逐次变换得 到,从而确定最优路线。
量最高。
决策
决策
决策
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Operational Research
23
动态规划的数学模型
动态规划的函数方程
f k ( xk ) opt
{ Dk S k }
rk Sk , xk rk 1 Sk 1, xk 1 rn Sn , xn
f k ( xk ) opt
{ Dk S k }
• 动态规划方法丌能解决所有的多阶段决策问题,只解决符合无后效性
的问题
• 无后效性:指系统从某个阶段往后的发展演变,完全由系统本阶段所
处的状态不策略决定,不系统以前的状态及决策无关
xk (Sk )
xk (Sk , Sk 1 )
Operational Research
7
动态规划方法的术语
(一)阶段
注意:最优性原理起作 用了! d C1 , D1 f 4 D1 2 3 C1状态下: f 3 C1 min min 5 5 5 d C1 , D2 f 4 D2
C1 B1 A 4 3 B2 3 5 B3
5
4 C2 5 6 5 2 2 C4 C3 3 2 1
D2状态下: f 4 D2 d D2 , E f5 E 5 0 3
C1 B1 A 4 3 5 B3 B2 3 5 7 5 5 4 6 C3 C2 5 3 2 1 D2 7 C4 2 6
D1
3 E
5
2
2
Operational Research
动态规划中的最短路问题
xk (Sk )
表示k阶段,Sk状态下决策选择
策略:从初始阶段到终止阶段,系统的每个阶段都有一个决策,将多个 决策按顺序排列组成的序列或集合,称为系统的一个策略
Operational Research
10
动态规划方法的术语
(四)状态转移方程(state transfer equation)
对于无后效性的多阶段决策过程,系统由k到k+1的状态转移方程是
2 6 D1
7
3
E
5
5
D2 7
Operational Research
动态规划中的最短路问题
6 3 2 3 C 2状态下: f 3 C2 min 8; C3状态下: f 3 C3 min 5 3 5 1 5 C4状态下: f 3 C4 7 5 12
(五)阶段效应
状态转移了,但是考察什么呢?
• 在阶段k状态为Sk,同时得到一个反映效应的数量指标——rk(sk,xk) • rk完全是由本阶段的状态和效应决定的,可能是利润、成本、距离等 (六)最优指标函数 k阶段到n阶段可获得的效应:
f k ( xk ) opt
{ Dk S k }
rk Sk , xk rk 1 Sk 1, xk 1 rn Sn , xn
B1 A 4 3 5 B3 B2 7 5 2 C2 5 6 5 2 2 C4 C3 3 2 1 D2 7 6 D1 4
3
E
3 5
5
Operational Research
22
动态规划的步骤
(1)划分阶段 (2)确定状态变量及取值范围 (3)确定决策变量及其取值范围 (4)建立状态转移方程 (5)确定阶段效应和最优指标函数 动态规划建模的过程比静态规划更为复杂多变
• 对于一个多阶段决策问题,根据问题的性质和特点,将其划
分为若干个相互联系的部分,各部分按照一定的逻辑关系组 成给定的多阶段决策过程,每一个部分称为一个阶段。
• 阶段变量 k • k=4
Operational Research
8
动态规划方法的术语
(二)状态 • 多阶段决策中,各阶段的初始状况称为“状态”
• 是一类问题,而非一个问题 • 分为离散确定、连续确定、离散随机、连续随机四类问题
Operational Research
5
动态规划方法
启示 • 我们的生活也许是这一类问题中的一个 • 是每一步都看最短路?还是在整个过程中最优?
Operational Research
6
动态规划方法
• 适用条件
• •
状态变量
sk,每个状态编号sk (1) , sk (2)……,允许状态集合
、B3,即s3=
对于例题来说,第一阶段有一个状态A,第二阶段有三个状态B1、B2
{s3 (1) , s3 (2)}={C1,C2}
Operational Research
9
动态规划方法的术语
(三)决策与策略 决策:当某个阶段状态给定后,从该状态演变到下阶段某种状态的选择 决策变量:描述决策的变量,称为决策变量。决策变量是状态变量的函 数,通常表示为
• •
Operational Research
3
举例
交通网络图
•
两点之间的数字表示距离,试求从起点到终点的最短距离
Operational Research
4
多阶段决策问题总结
多阶段决策问题
• 这些问题可以划分成几个相互联系的阶段,每个阶段都有若
干方案可供选择,而决策的任务是在每个阶段选择一个适当 的方案,使整个过程取得最优效果
B1 A 4 3 5 B3 B2 7 5 2 C2 5 6 5 2 2 C4 C3 3 2 1 D2 7 6 D1 4
3
E
3 5
5
Operational Research
动态规划中的最短路问题
4 10 A状态下: f1 A min3 10 12 5 7C1
rk Sk , xk f k 1 ( xk 1 )
f n1 Sn1 0or1 加法运算时取 0,乘法运算时取 1
Operational Research
24
动态规划的求解方法
逆序解法:backward induction 顺序解法:forward induction
Operational Research
Operational Research
动态规划中的最短路问题
设从A到E铺设输油管道,中间经过三个站。
•几个阶段?每阶段各有几个状态?几种决策?效应指标r与最优指标 函数f? C1
B1
4 A 3 5 B2 3 5 5 2 7 5 2
4
6 C3
C2
3 2Байду номын сангаас
5 6
D1 3 E
1
5
D2 7
C4
B3
2
Operational Research
B1
2 6 D1
4 A 4 3 5 B3 B2 7 6 5 2 2 C4
C2 5 3 2 1
3
E
C3
3 5
5 D2 7
Operational Research
动态规划中的最短路问题
4 10 A状态下: f1 A min3 10 12 5 7C1
13
动态规划方法的术语:最优性原理
最优性原理
• “作为整个过程的最优策略具有这样的性质:无论过去的状态和决策
如何,相对于前面决策所形成的状态而言,余下的决策序列必然构成
最优子策略。”
• 这是处理动态规划这一“类”问题的基础性原理
A-B3-C3-D1-E 如果是最优策略,
单独看C3-D1-E,一定是C3和E之间的最优策略
S 2 T1 (S1 , x1 S1 ) S3 T2 ( S 2 , x2 S 2 ) S k 1 Tk ( S k , xk S k )
x1 1 S1
x2 2 S2
即:下一阶段的状态是由本状态和本状态下的决策确定的
Operational Research
11
动态规划方法的术语
动态规划中的最短路问题
E状态下: f5 E 0
C1
E之后最优是0
B1
4 A 3 5 B2 3 5 7
5
2
4
6 5 2 C3
C2
3 2
5 6
D1 3 E
1
5
D2 7
C4
B3
2
Operational Research
动态规划中的最短路问题
D1状态下: f 4 D1 d D1 , E f5 E 3 0 3
Operational Research
12
动态规划方法的术语:最优性原理
最优性原理
• “作为整个过程的最优策略具有这样的性质:无论过去的状态和决策
如何,相对于前面决策所形成的状态而言,余下的决策序列必然构成
最优子策略。”
• 这是处理动态规划这一“类”问题的基础性原理
Operational Research
25
动态规划可以求解哪些问题
• 运输路线 • 工序安排 • 库存管理 ……
Home
Operational Research 动态规划
2011.12
ZHU Tong Chang’an University E-mail: zhutongtraffic@
Operational Research
2
什么是动态规划问题
问题 —— 方法
•
前面研究的优化问题,没有随着时间的变化而变化。其解法, 如线性规划、整数规划等方法通称为“静态规划方法”,丌存在 阶段的概念 事实上,很多问题是“多阶段的决策问题” “动态规划方法”是处理“多阶段决策问题”的方法
C1 B1 A 4 3 5 B3 B2 7 5 4 6 5 2 2 C4 C3 C2 5 3 2 1 D2 7 2 6 D1
3
E
3 5
5
Operational Research