2020年浙江省中考数学试卷(金华丽水卷)(清晰版PDF有答案)

合集下载

2020年浙江省金华市、丽水市中考数学试题

2020年浙江省金华市、丽水市中考数学试题

2020年浙江省金华市、丽水市中考数学试题学校:___________姓名:___________班级:___________考号:___________1.有理数3的相反数是( )A .﹣3B .﹣13C .3D .13 2.分式52x x +-的值是零,则x 的值为( ) A .5 B .2 C .-2 D .-5 3.下列多项式中,能运用平方差公式分解因式的是( )A .22a b +B .22a b -C .22a b -D .22a b -- 4.下列四个图形中,是中心对称图形的是( )A .B .C .D . 5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .166.如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b ,理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行7.已知点(-2,a ),(2,b ),(3,c )在函数()0k y k x=>的图象上,则下列判断正确的是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a 8.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则∠EPF 的度数是( )A .65°B .60°C .58°D .50°9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x ,则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .()3205102x x ⨯++=+10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O ,BD 与HC 相交于点P .若GO=GP ,则ABCDEFGH S S 正方形正方形的值是( )A.1B.2+C.5 D .15411.点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可)______.12.数据1,2,4,5,3的中位数是______.13.如图为一个长方体,则该几何体主视图的面积为______cm 2.14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是______°.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β,则tan β的值是______.16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,O E ⊥AC 于点E ,OF ⊥BD 于点F ,OE=OF=1cm ,AC =BD =6cm , CE =DF , CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大值时,以点A ,B ,C ,D 为顶点的四边形的周长是_____ cm . (2)当夹子的开口最大(点C 与点D 重合)时,A ,B 两点的距离为_____cm .17.计算:()0o 2020tan 45+3---18.解不等式:552(2+)x x -<19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,AB的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求AB的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6℃.气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温.(2)求T 关于h 的函数表达式.(3)测得山顶的气温为6℃,求该山峰的高度.22.如图,在△ABC 中,AB =B =45°,∠C =60°.(1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数.②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点C (1,n )在该函数图象上.(1)当m=5时,求n 的值.(2)当n =2时,若点A 在第一象限内,结合图象,求当y 2≥时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.参考答案1.A【解析】【分析】依据相反数的定义求解即可.【详解】解:3的相反数是﹣3.故选:A .【点睛】本题主要考查了相反数的定义.只有符号不同的两个数称互为相反数.2.D【解析】【分析】分式的值为零:分子等于零,且分母不等于零.【详解】解:依题意,得x+5=0,且x-2≠0,解得,x=-5,且x≠2,即答案为x=-5.故选:D .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.C【解析】【分析】根据平方差公式的特点分析即可.【详解】解:A 、22a b +不能运用平方差公式分解,故此选项错误;B 、22a b -不能运用平方差公式分解,故此选项错误:C、22a b-能运用平方差公式分解,故此选项正确:D、22a b--不能运用平方差公式分解,故此选项错误;故答案为C.【点睛】本题考查了平方差公式和因式分解,运用平方差公式分解因式的多项式必须是二项式、两项都能写成平方的形式且符号相反.4.C【解析】【分析】根据中心对称的图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就是中心对称图形.【详解】A选项不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项是中心对称图形,故本选项错误;D选项不是中心对称图形,故本选项错误;故本题答案选C.【点睛】本题主要考查的是中心对称图形的定义,理解定义是解本题的关键.5.A【解析】【分析】根据概率公式直接求解即可.【详解】解:∵共有6张卡片,其中写有1号的有3张,∴从中任意摸出一张,摸到1号卡片的概率是31 62 =,故选:A.【点睛】此题考查了概率的求法,用到的知识点为:可能性等于所求情况数与总情况数之比.6.B【解析】【分析】根据在同一平面内,垂直于同一条直线的两条直线平行判断即可.【详解】解:∵由题意a ⊥AB ,b ⊥AB ,∴∠1=∠2∴a ∥b所以本题利用的是:同一平面内,垂直于同一条直线的两条直线平行,故选:B .【点睛】本题考查平行线的判定,平行公理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7.C【解析】【分析】 根据反比例函数的性质得到函数(0)k y k x=>的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小,则0b c >>,0a <.【详解】解:0k >,∴函数(0)k y k x=>的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, 2023, 0b c ∴>>,0a <,a cb ∴<<.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.8.B【解析】【分析】连接OE,OF.求出∠EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.D【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“□”内数字为x ,根据题意可得: 3×(20+x )+5=10x+2. 故选:D . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键. 10.B 【解析】 【分析】 证明()BPGBCG ASA ,得出PG CG =.设OGPG CGx ,则2EG x =,2FG x ,由勾股定理得出22(422)BC x ,则可得出答案.【详解】 解:四边形EFGH 为正方形,45EGH ,90FGH ∠=︒,OGGP ,67.5GOP OPG ,22.5PBG,又45DBC ∠=︒,22.5GBC , PBG GBC , 90BGP BG,BG BG =,()BPGBCG ASA ,PG CG . 设OGPGCGx ,O 为EG ,BD 的交点,2EGx ,2FGx ,四个全等的直角三角形拼成“赵爽弦图”, BF CG x , 2BGxx ,2222222(21)(422)BC BG CG x x x,∴22422222ABCDEFGHxSS x正方形正方形.故选:B.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握勾股定理的应用是解题的关键.11.-1(答案不唯一,负数即可)【解析】【分析】根据第二象限的点符号是“-,+”,m取负数即可.【详解】∵点P(m,2)在第二象限内,∴0m<,m取负数即可,如m=-1,故答案为:-1(答案不唯一,负数即可).【点睛】本题考查了已知点所在象限求参数,属于基础题,掌握第二象限点坐标的符号是“-,+”是解题的关键.12.3【解析】【分析】先将题目中的数据按照从小到大排列,即可得到这组数据的中位数.【详解】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.【点睛】本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数.13.20【解析】【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【详解】解:该几何体的主视图是一个长为5,宽为4的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.30【解析】【分析】根据平行四边形的性质解答即可.【详解】解:四边形ABCD是平行四边形,D C,18060180(54070140180)30,故答案为:30.【点睛】此题考查平行四边形的性质和多边形的内角和,关键是根据平行四边形的邻角互补解答.15【解析】【分析】作AT//BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为a,边心距,然后再.求出BH 、AH 即可解答. 【详解】解:如图,作AT//BC ,过点B 作BH ⊥AT 于H ,设正六边形的边长为a ,则正六边形的半径为a ,边心距观察图像可知:71967sin 30=622BH a a a a a =+⋅+=535cos30=AH a =⨯⋅所以tan β=19aBH AH == 【点睛】本题考查了正六边形的性质和解直角三角形的应用,解题的关键在于正确添加常用辅助线、构造直角三角形求解. 16.166013【解析】 【分析】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,可得AB=CD=EF=2cm,根据矩形的性质求出周长即可.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,可得CH AB⊥,AH=BH,利用已知先求出125CE cm=,在Rt△OEF中利用勾股定理求出CO的长,由sinOE AHECOCO AAC∠==,求出AH,从而求出AB=2AH的长.【详解】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,∴AB=CD=EF=2cm,∴以点A,B,C,D为顶点的四边形的周长为2+6+2+6=16cm.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,∴CH AB⊥,AH=BH,∵AC=BD=6cm,CE∶AE=2∶3,∴125CE cm=,在Rt△OEF中,135 CO==,∵sinOE AHECOCO AAC∠==,3013AH=,∴AB=2AH=60 13.故答案为16,60 13.【点睛】本题主要考查了勾股定理与旋转的结合,做题时准确理解题意利用已知的直角三角形进行求解是解题的关键.17.5【解析】【分析】利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进行计算,再算加减即可.【详解】解:原式12135.【点睛】此题主要考查了实数运算,关键是掌握零次幂、二次根式的性质、特殊角的三角函数值、绝对值的性质.18.x <3【解析】【分析】去括号,移项、合并同类项,系数化为1求得即可.【详解】解:552(2)x x,5542x x5245x x,39x<,3x<.【点睛】本题考查了解一元一次不等式,熟练掌握解不等式的步骤是解题的关键.19.(1)200;(2)48;(3)1600【解析】【分析】(1)从统计图表中可得,“E 组 其它”的频数为22,所占的百分比为11%,可求出调查学生总数;(2)“开合跳”的人数占调查人数的24%,即可求出最喜爱“开合跳”的人数;(3)求出“健身操”所占的百分比,用样本估计总体,即可求出8000人中喜爱“健身操”的人数. 【详解】解:(1)22÷11%=200. ∴参与问卷调查的学生总人数为200人. (2)200×24%=48. 答:最喜爱“开合跳”的学生有48人.(3)抽取学生中最喜爱“健身操”的初中学生有200-59-31-48-22=40(人), 4080001600200⨯=. ∴最喜爱“健身操”的初中学生人数约为1600人. 【点睛】本题考查统计表、扇形统计图的意义和制作方法,理解统计图表中的数量之间的关是解决问题的关键.20.(1)(2)43π【解析】 【分析】(1)根据题意和垂径定理,可以求得AC 的长,然后即可得到AB 的长; (2)根据60AOC ∠=︒,可以得到AOB ∠的度数,然后根据弧长公式计算即可. 【详解】 解:(1)AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒,3sin 6023ACOA ,2AB AC ∴==(2)OC AB ⊥,60AOC ∠=︒,120AOB ∴∠=︒,2OA =,∴AB的长是:12024 1803ππ⨯=.【点睛】本题考查弧长的计算、垂径定理,解答本题的关键是明确题意,利用数形结合的思想解答.21.(1)12℃;(2)T=-0.6h+15;(2)15;(3)该山峰的高度大约为15百米【解析】【分析】(1)根据高度每增加1百米,气温大约降低0.6℃,由3百米时温度为13.2°C,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)T=-0.6h+15的结论,将T=6代入,解答即可.【详解】解:(1)由题意得高度增加2百米,则温度降低2×0.6=1.2(℃).∴13.2-1.2=12∴高度为5百米时的气温大约是12℃.(2)设T=-0.6h+b(k≠0),当h=3时,T=13.2,13.2=-0.6⨯3+b,解得b=15.∴T=-0.6h+15.(3)当T=6时,6=-0.6h+15,解得h=15.∴该山峰的高度大约为15百米.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.22.(1)4;(2)①90°;②【解析】 【分析】(1)如图1中,过点A 作AD ⊥BC 于D .解直角三角形求出AD 即可. (2)①证明BE=EP ,可得∠EPB=∠B=45°解决问题.②如图3中,由(1)可知:AC=sin 603AD =︒,证明△AEF ∽△ACB ,推出AF AE AB AC =,由此求出AF 即可解决问题. 【详解】解:(1)如图1,过点A 作AD ⊥BC 于点D ,在Rt △ABD 中,sin 45AD AB =⋅︒=(2)①如图2,∵△AEF ≌△PEF , ∴AE =EP . 又∵AE =BE , ∴BE =EP ,∴∠EPB =∠B =45°, ∴∠AEP =90°.②如图3,由(1)可知:在Rt △ADC 中,sin 60AD AC =︒. ∵PF ⊥AC , ∴∠PF A =90°. ∵△AEF ≌△PEF ,∴∠AFE =∠PFE =45°,则∠AFE =∠B . 又∵∠EAF =∠CAB , ∴△EAF ∽△CAB ,∴AFAB =AE AC∴AF =在Rt △AFP 中,AF =PF ,则AP =【点睛】本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.23.(1)-4(2)1≤x ≤5(3)0≤m <1或1<m < 【解析】 【分析】1)利用待定系数法求解即可. (2)求出2y =时,x 的值即可判断. (3)由题意点B 的坐标为21(0,4)2m ,求出几个特殊位置m 的值即可判断.【详解】解:(1)当5m =时,21(5)42y x =--+, 当1x =时,214442n .(2)当2n =时,将(1,2)C 代入函数表达式21()42y x m =--+,得212(1)42m ,解得3m =或1-(舍弃),∴此时抛物线的对称轴3x =,根据抛物线的对称性可知,当2y =时,1x =或5, x 的取值范围为15x .(3)点A 与点C 不重合,1m ∴≠,抛物线的顶点A 的坐标是(,4)m ,∴抛物线的顶点在直线4y =上,当0x =时,2142y m , ∴点B 的坐标为21(0,4)2m , 抛物线从图1的位置向左平移到图2的位置,m 逐渐减小,点B 沿y 轴向上移动, 当点B 与O 重合时,21402m ,解得m =或-,当点B 与点D 重合时,如图2,顶点A 也与B ,D 重合,点B 到达最高点,∴点(0,4)B ,21442m ,解得0m =,当抛物线从图2的位置继续向左平移时,如图3点B 不在线段OD 上,B ∴点在线段OD 上时,m 的取值范围是:01m <或122m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,一次函数的性质等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题.24.(1)证明见解析;(2)48;(3)点P的坐标为(12,0),(24,0),(569,0),(89,0),(16,0)【解析】【分析】(1)结合正方形性质求得△ACE≌△ABD,从而得到AE=AD,根据邻边相等的平行四边形是菱形证明即可.(2)连接DE,求出△ADE的面积即可解决问题.(3)首先证明AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形.③如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.【详解】(1)∵DF∥AE,EF∥AD,∴四边形AEFD是平行四边形.∵四边形ABOC是正方形,∴OB=OC=AB=AC,∠ACE=∠ABD=90°.∵点D,E是OB,OC的中点,∴CE=BD,∴△ACE≌△ABD(SAS),∴AE=AD,∴AEFD是菱形(2)如图1,连结DE∵S△ABD=12AB·BD=184=162⨯⨯,S△ODE=12OD·OE=144=82⨯⨯,∴S△AED=S正方形ABOC-2 S△ABD-S△ODE=64-216⨯-8=24,∴S菱形AEFD=2S△AED=48(3)由图1,连结AF与DE相交于点K,易得△ADK的两直角边之比为1:31)当AP为菱形一边时,点Q在x轴上方,有图2、图3两种情况:如图2,AG与PQ交于点H,∵菱形PAQG∽菱形ADFE,∴△APH的两直角边之比为1:3过点H作HN⊥x轴于点N,交AC于点M,设AM=t∵HN∥OQ,点H是PQ的中点,∴点N是OP中点,∴HN是△OPQ的中位线,∴ON=PN=8-t又∵∠1=∠3=90°-∠2,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴AMHN=MHPN=13,∴HN=3AM=3t,∴MH=MN-NH=8-3t.∵PN=3MH,∴8-t =3(8-3t),解得t=2∴OP=2ON=2(8-t)=12∴点P的坐标为(12,0)如图3,△APH的两直角边之比为1:3过点H作HI⊥y轴于点I,过点P作PN⊥x轴交IH于点N,延长BA交IN于点M∵∠1=∠3=90°-∠2,∠AMH=∠PNH,∴△AMH∽△HNP,∴AMHN=MHPN=13,设MH=t,∴PN=3MH=3t,∴AM=BM-AB=3t-8,∴HN=3AM=3(3t-8) =9t-24又∵HI是△OPQ的中位线,∴OP=2IH,∴HI=HN,∴8+t=9t-24,解得t=4∴OP=2HI=2(8+t)=24,∴点P的坐标为(24,0)2)当AP为菱形一边时,点Q在x轴下方,有图4、图5两种情况:如图4,△PQH 的两直角边之比为1:3过点H 作HM ⊥y 轴于点M ,过点P 作PN ⊥HM 于点N∵MH 是△QAC 的中位线,∴HM =2AC =4 又∵∠1=∠3=90°-∠2,∠HMQ =∠N ,∴△HPN ∽△QHM , ∴NP HM =HN MQ =13,则PN =13HM =43, ∴OM =43设HN =t ,则MQ =3t∵MQ =MC ,∴3t =8-43,解得t =209∴OP =MN =4+t =569, ∴点P 的坐标为(569,0) 如图5,△PQH 的两直角边之比为1:3过点H 作HM ⊥x 轴于点M ,交AC 于点I ,过点Q 作NQ ⊥HM 于点N∵IH是△ACQ的中位线,∴CQ=2HI,NQ=CI=4∵∠1=∠3=90°-∠2,∠PMH=∠QNH,∴△PMH∽△HNQ,∴MHNQ=PMHN=PHHQ=13,则MH=13NQ=43设PM=t,则HN=3t,∵HN=HI,∴3t=8+43,解得t=289∴OP=OM-PM=QN-PM=4-t=89,∴点P的坐标为(89,0)3)当AP为菱形对角线时,有图6一种情况:如图6,△PQH的两直角边之比为1:3过点H作HM⊥y轴于点M,交AB于点I,过点P作PN⊥HM于点N∵HI∥x轴,点H为AP的中点,∴AI=IB=4,∴PN=4∵∠1=∠3=90°-∠2,∠PNH=∠QMH=90°,∴△PNH∽△HMQ,∴PNMH=PMHN=PMHN=13,则MH=3PN=12,HI=MH-MI=4∵HI是△ABP的中位线,∴BP=2HI=8,即OP=16,∴点P的坐标为(16,0)综上所述,点P的坐标为(12,0),(24,0),(569,0),(89,0),(16,0).【点睛】本题属于相似形综合题,考查了正方形的性质,菱形的判定和性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会寻找相似三角形,利用相似三角形的性质构建方程解决问题,属于中考压轴题.。

2020年浙江省丽水市中考数学试卷 (解析版)

2020年浙江省丽水市中考数学试卷 (解析版)

2020年浙江省丽水市中考数学试卷一、选择题(共10小题,每小题3分,共30分).1.实数3的相反数是()A.3-B.3C.13-D.132.分式52xx+-的值是零,则x的值为()A.2B.5C.2-D.5-3.下列多项式中,能运用平方差公式分解因式的是()A.22a b+B.22a b-C.22a b-D.22a b--4.下列四个图形中,是中心对称图形的是()A.B.C.D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.12B.13C.23D.166.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到//a b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c <<B .b a c <<C .a c b <<D .c b a <<8.如图,O 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22C .52D .154二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) .12.数据1,2,4,5,3的中位数是 .13.如图为一个长方体,则该几何体主视图的面积为 2cm .14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 ︒.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.计算:0(2020)4tan 45|3|-+︒+-.18.解不等式:552(2)x x -<+.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题: 抽取的学生最喜爱体育锻炼项目的统计表 类别 项目 人数(人)A 跳绳 59B 健身操 ▲C 俯卧撑 31D 开合跳 ▲ E其它22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒. (1)求弦AB 的长. (2)求AB 的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆. ①如图2,当点P 落在BC 上时,求AEP ∠的度数. ②如图3,连结AP ,当PF AC ⊥时,求AP 的长23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上. (1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y 时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分OB .别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知8(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点)D,点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分) 1.实数3的相反数是( ) A .3-B .3C .13-D .13解:实数3的相反数是:3-. 故选:A . 2.分式52x x +-的值是零,则x 的值为( ) A .2B .5C .2-D .5-解:由题意得:50x +=,且20x -≠, 解得:5x =-, 故选:D .3.下列多项式中,能运用平方差公式分解因式的是( ) A .22a b +B .22a b -C .22a b -D .22a b --解:A 、22a b +不能运用平方差公式分解,故此选项错误; B 、22a b -不能运用平方差公式分解,故此选项错误; C 、22a b -能运用平方差公式分解,故此选项正确;D 、22a b --不能运用平方差公式分解,故此选项错误;故选:C .4.下列四个图形中,是中心对称图形的是( )A .B .C .D .解:A 、该图形不是中心对称图形,故本选项不合题意; B 、该图形不是中心对称图形,故本选项不合题意; C 、该图形是中心对称图形,故本选项符合题意;D 、该图形不是中心对称图形,故本选项不合题意;故选:C .5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12 B .13C .23D .16解:共有6张卡片,其中写有1号的有3张, ∴从中任意摸出一张,摸到1号卡片的概率是3162=; 故选:A .6.如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到//a b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 解:由题意a AB ⊥,b AB ⊥,//a b ∴(垂直于同一条直线的两条直线平行),故选:B .7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c << B .b a c << C .a c b << D .c b a <<解:0k >, ∴函数(0)ky k x=>的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, 2023-<<<, 0b c ∴>>,0a <,a cb ∴<<.故选:C .8.如图,O 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒解:如图,连接OE ,OF .O 是ABC ∆的内切圆,E ,F 是切点, OE AB ∴⊥,OF BC ⊥, 90OEB OFB ∴∠=∠=︒, ABC ∆是等边三角形, 60B ∴∠=︒, 120EOF ∴∠=︒,1602EPF EOF ∴∠=∠=︒, 故选:B .9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+解:设“□”内数字为x ,根据题意可得: 3(20)5102x x ⨯++=+.故选:D .10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22C .52D .154解:四边形EFGH 为正方形, 45EGH ∴∠=︒,90FGH ∠=︒, OG GP =,67.5GOP OPG ∴∠=∠=︒, 22.5PBG ∴∠=︒,又45DBC ∠=︒, 22.5GBC ∴∠=︒, PBG GBC ∴∠=∠,90BGP BG ∠=∠=︒,BG BG =,()BPG BCG ASA ∴∆≅∆, PG CG ∴=.设OG PG CG x ===, O 为EG ,BD 的交点,2EG x ∴=,2FG x =, 四个全等的直角三角形拼成“赵爽弦图”, BF CG x ∴==,2BG x x ∴=+,2222222(21)(422)BC BG CG x x x ∴=+=++=+,∴()22422222ABCDEFGH x S S x +==+正方形正方形.故选:B .二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) 1-(答案不唯一). . 解:点(,2)P m 在第二象限内,0m ∴<,则m 的值可以是1-(答案不唯一).故答案为:1-(答案不唯一).12.数据1,2,4,5,3的中位数是 3 .解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.13.如图为一个长方体,则该几何体主视图的面积为 20 2cm .解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为220cm .故答案为:20.14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 30 ︒.解:四边形ABCD 是平行四边形,18060D C ∴∠=︒-∠=︒,180(54070140180)30α∴∠=︒-︒-︒-︒-︒=︒,故答案为:30.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 19315.解:如图,作//AT BC ,过点B 作BH AT ⊥于H ,设正六边形的边长为a ,则正六边形的半径为,边心距32a =.观察图象可知:192BH a =,532AH =, //AT BC , BAH β∴∠=,191932tan 15532a BH AH a β∴===. 故答案为19315. 16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 16 cm .(2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形, 1OE OF cm ==,2EF cm ∴=,2AB CD cm ∴==,∴此时四边形ABCD 的周长为226616()cm +++=,故答案为16.(2)如图3中,连接EF 交OC 于H .由题意2126()55CE CF cm ==⨯=,1OE OF cm ==,CO ∴垂直平分线段EF ,13()5OC CE cm ===, 1122OE EC CO EH =, 121125()13135EH cm ⨯∴==, 242()13EF EH cm ∴== //EF AB ,∴25EF CE AB CB ==, 52460()21313AB cm ∴=⨯=. 故答案为6013. 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:0(2020)tan 45|3|-+︒+-.解:原式12135=+-+=.18.解不等式:552(2)x x -<+.解:552(2)x x -<+,5542x x -<+5245x x -<+,39x <,3x <.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表B健身操 ▲ C俯卧撑 31 D开合跳 ▲ E 其它 22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.解:(1)2211%200÷=(人),答:参与调查的学生总数为200人;(2)20024%48⨯=(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为2005931482240----=(人),4080001600200⨯=(人), 答:最喜爱“健身操”的学生数大约为1600人.20.如图,AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒.(1)求弦AB 的长.(2)求AB 的长.解:(1)AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒,3sin 60232AC OA ∴=︒==,223AB AC ∴==;(2)OC AB ⊥,60AOC ∠=︒,120AOB ∴∠=︒,2OA =,∴AB 的长是:120241803ππ⨯=. 21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.解:(1)由题意得,高度增加2百米,则气温降低20.6 1.2()C ⨯=︒,13.2 1.212∴-=,∴高度为5百米时的气温大约是12C ︒;(2)设T 关于h 的函数表达式为T kh b =+,则:313.2512k b k b +=⎧⎨+=⎩, 解得0.615k b =-⎧⎨=⎩, T ∴关于h 的函数表达式为0.615T h =-+;(3)当6T =时,60.615h =-+,解得15h =.∴该山峰的高度大约为15百米.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒.(1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆.①如图2,当点P 落在BC 上时,求AEP ∠的度数.②如图3,连结AP ,当PF AC ⊥时,求AP 的长解:(1)如图1中,过点A 作AD BC ⊥于D .在Rt ABD ∆中,2sin 454242AD AB =︒=⨯=.(2)①如图2中,AEF PEF ∆≅∆,AE EP ∴=,AE EB =,BE EP ∴=,45EPB B ∴∠=∠=︒,90PEB ∴∠=︒,1809090AEP ∴∠=︒-︒=︒.②如图3中,由(1)可知:83sin 603AD AC ==︒,PF AC ⊥,90PFA ∴∠=︒,AEF PEF ∆≅∆,45AFE PFE ∴∠=∠=︒,AFE B ∴∠=∠,EAF CAB ∠=∠,AEF ACB ∴∆∆∽, ∴AF AE AB AC =2242833AF =, 23AF ∴=在Rt AFP ∆,AF FP =,226AP ∴==.23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上.(1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y 时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.解:(1)当5m =时,21(5)42y x =--+, 当1x =时,214442n =-⨯+=-.(2)当2n =时,将(1,2)C 代入函数表达式21()42y x m =--+,得212(1)42m =--+, 解得3m =或1-(舍弃),∴此时抛物线的对称轴3x =,根据抛物线的对称性可知,当2y =时,1x =或5,x ∴的取值范围为15x .(3)点A 与点C 不重合,1m ∴≠,抛物线的顶点A 的坐标是(,4)m ,∴抛物线的顶点在直线4y =上,当0x =时,2142y m =-+, ∴点B 的坐标为21(0,4)2m -+, 抛物线从图1的位置向左平移到图2的位置,m 逐渐减小,点B 沿y 轴向上移动,当点B 与O 重合时,21402m -+=, 解得22m =或22-当点B 与点D 重合时,如图2,顶点A 也与B ,D 重合,点B 到达最高点, ∴点(0,4)B ,21442m ∴-+=,解得0m =, 当抛物线从图2的位置继续向左平移时,如图3点B 不在线段OD 上,B ∴点在线段OD 上时,m 的取值范围是:01m <或122m <<.24.如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F ,已知8OB =. (1)求证:四边形AEFD 为菱形.(2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点)D ,点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P ,Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,//AE DF ,//AD EF ,∴四边形AEFD 是平行四边形,四边形ABCD 是正方形,AC AB OC OB ∴===,90ACE ABD ∠=∠=︒, E ,D 分别是OC ,OB 的中点,CE BD ∴=,()CAE ABD SAS ∴∆≅∆,AE AD ∴=,∴四边形AEFD 是菱形.(2)解:如图1中,连接DE .184162ADB ACE S S ∆∆==⨯⨯=, 14482EOD S ∆=⨯⨯=, 264216824AED ABD EOD ABOC S S S S ∆∆∆∴=--=-⨯-=正方形,248AED AEFD S S ∆∴==菱形.(3)解:如图1中,连接AF ,设AF 交DE 于K ,4OE OD ==,OK DE ⊥,KE KD ∴=,2OK KE KD ∴===,82AO =,62AK ∴=,3AK DK ∴=,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形: 如图2中,设AG 交PQ 于H ,过点H 作HN x ⊥轴于N ,交AC 于M ,设AM t =.菱形PAQG ∽菱形ADFE ,3PH AH ∴=, //HN OQ ,QH HP =,ON NP ∴=,HN ∴是PQO ∆的中位线,8ON PN t ∴==-,90MAH PHN AHM ∠=∠=︒-∠,90PNH AMH ∠=∠=︒,HMA PNH ∴∆∆∽,∴13AM MH AH NH PN PH ===, 33HN AM t ∴==,83MH MN NH t ∴=-=-,3PN MH =,83(83)t t ∴-=-,2t ∴=,22(8)12OP ON t ∴==-=,(12,0)P ∴.如图3中,过点H 作HI y ⊥轴于I ,过点P 作PN x ⊥轴交IH 于N ,延长BA 交IN 于M .同法可证:AMH HNP ∆∆∽, ∴13AM MH AH HN PN HP ===,设MH t =, 33PN MH t ∴==,38AM BM AB t ∴=-=-, HI 是OPQ ∆的中位线,2OP IH ∴=,HIHN ∴,8924t t ∴+=-,4t ∴=,22(8)24OP HI t ∴==+=,(24,0)P ∴.②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形: 如图4中,3QH PH =,过点H 作HM OC ⊥于M ,过D 点P 作PN MH ⊥于N .MH 是QAC ∆的中位线,142MH AC ∴==, 同法可得:HPN QHM ∆∆∽, ∴13NP HN PH HM MQ QH ===, 1433PN HM ∴==, 43OM PN ∴==,设HN t =,则3MQ t =, MQ MC =,4383t ∴=-, 209t ∴=, 5649OP MN t ∴==+=, ∴点P 的坐标为56(9,0).如图5中,3QH PH =,过点H 作HM x ⊥轴于M 交AC 于I ,过点Q 作QN HM ⊥于N .IH 是ACQ ∆的中位线,2CQ HI ∴=,4NQ CI ==,同法可得:PMH HNQ ∆∆∽, ∴13MH PM PH NQ HN HQ ===,则1433MH NQ ==, 设PM t =,则3HN t =,HN HI =,4383t ∴=+, 289t ∴=, 849OP OM PM QN PM t ∴=-=-=-=, 8(9P ∴,0). ③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM y ⊥轴于于点M ,交AB 于I ,过点P 作PN HM ⊥于N . //HI x 轴,AH HP =,4AI IB ∴==,4PN IB ∴==,同法可得:PNH HMQ ∆∆∽, ∴13PN HN PH HM MQ HQ ===, 312MH PN ∴==,4HI MH MI =-=, HI 是ABP ∆的中位线,28BP IH ∴==,16OP OB BP ∴=+=,(16,0)P ∴,综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或56(9,0)或8(9,0)或(16,0).。

2020届浙江省丽水市中考数学试卷含答案

2020届浙江省丽水市中考数学试卷含答案

2020年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.实数3的相反数是()A.﹣3B.3C .﹣D .2.分式的值是零,则x的值为()A.2B.5C.﹣2D.﹣53.下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b24.下列四个图形中,是中心对称图形的是()A .B .C .D .5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A .B .C .D .6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.已知点(﹣2,a)(2,b)(3,c)在函数y =(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a第1页(共28页)8.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P 是上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2 10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD 相交于点O、BD与HC相交于点P.若GO=GP ,则的值是()A.1+B.2+C.5﹣D .二、填空题(本题有6小题,每小题4分,共24分)11.点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.数据1,2,4,5,3的中位数是.13.如图为一个长方体,则该几何体主视图的面积为cm2.第2页(共28页)。

2020年浙江省丽水市中考数学试卷有答案

2020年浙江省丽水市中考数学试卷有答案

2020年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)实数3的相反数是( ) A .﹣3 B .3C .−13D .132.(3分)分式x+5x−2的值是零,则x 的值为( )A .2B .5C .﹣2D .﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是( ) A .a 2+b 2B .2a ﹣b 2C .a 2﹣b 2D .﹣a 2﹣b 24.(3分)下列四个图形中,是中心对称图形的是( )A .B .C .D .5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .166.(3分)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a )(2,b )(3,c )在函数y =kx(k >0)的图象上,则下列判断正确的是( ) A .a <b <cB .b <a <cC .a <c <bD .c <b <a8.(3分)如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF ̂上一点,则∠EPF 的度数是( )A .65°B .60°C .58°D .50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形ABCD S 正方形EFGH的值是( )A .1+√2B .2+√2C .5−√2D .154二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) . 12.(4分)数据1,2,4,5,3的中位数是 .13.(4分)如图为一个长方体,则该几何体主视图的面积为 cm 2.14.(4分)如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 °.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF =1cm ,AC =BD =6cm ,CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+√4−tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.̂的半径OA=2,OC⊥AB于点C,∠AOC=60°.20.(8分)如图,AB(1)求弦AB的长.̂的长.(2)求AB21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y=−12(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)实数3的相反数是( ) A .﹣3B .3C .−13D .13【解答】解:实数3的相反数是:﹣3. 故选:A . 2.(3分)分式x+5x−2的值是零,则x 的值为( )A .2B .5C .﹣2D .﹣5【解答】解:由题意得:x +5=0,且x ﹣2≠0, 解得:x =﹣5, 故选:D .3.(3分)下列多项式中,能运用平方差公式分解因式的是( ) A .a 2+b 2B .2a ﹣b 2C .a 2﹣b 2D .﹣a 2﹣b 2【解答】解:A 、a 2+b 2不能运用平方差公式分解,故此选项错误; B 、2a ﹣b 2不能运用平方差公式分解,故此选项错误; C 、a 2﹣b 2能运用平方差公式分解,故此选项正确; D 、﹣a 2﹣b 2不能运用平方差公式分解,故此选项错误; 故选:C .4.(3分)下列四个图形中,是中心对称图形的是( )A .B .C .D .【解答】解:A 、该图形不是中心对称图形,故本选项不合题意; B 、该图形不是中心对称图形,故本选项不合题意; C 、该图形是中心对称图形,故本选项符合题意; D 、该图形不是中心对称图形,故本选项不合题意;5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .16【解答】解:∵共有6张卡片,其中写有1号的有3张, ∴从中任意摸出一张,摸到1号卡片的概率是36=12;故选:A .6.(3分)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 【解答】解:由题意a ⊥AB ,b ⊥AB , ∴a ∥b (垂直于同一条直线的两条直线平行), 故选:B .7.(3分)已知点(﹣2,a )(2,b )(3,c )在函数y =kx (k >0)的图象上,则下列判断正确的是( ) A .a <b <cB .b <a <cC .a <c <bD .c <b <a【解答】解:∵k >0,∴函数y =kx (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3, ∴b >c >0,a <0,故选:C.8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF̂上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【解答】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +2【解答】解:设“□”内数字为x ,根据题意可得: 3×(20+x )+5=10x +2. 故选:D .10.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形ABCD S 正方形EFGH的值是( )A .1+√2B .2+√2C .5−√2D .154【解答】解:∵四边形EFGH 为正方形, ∴∠EGH =45°,∠FGH =90°, ∵OG =GP ,∴∠GOP =∠OPG =67.5°, ∴∠PBG =22.5°, 又∵∠DBC =45°, ∴∠GBC =22.5°, ∴∠PBG =∠GBC ,∵∠BGP =∠BG =90°,BG =BG , ∴△BPG ≌△BCG (ASA ), ∴PG =CG .设OG =PG =CG =x , ∵O 为EG ,BD 的交点, ∴EG =2x ,FG =√2x ,∵四个全等的直角三角形拼成“赵爽弦图”, ∴BF =CG =x , ∴BG =x +√2x ,∴BC 2=BG 2+CG 2=x 2(√2+1)2+x 2=(4+2√2)x 2, ∴S 正方形ABCD S 正方形EFGH=(4+2√2)x 22x =2+√2.故选:B .二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) ﹣1(答案不唯一). .【解答】解:∵点P (m ,2)在第二象限内, ∴m <0,则m 的值可以是﹣1(答案不唯一). 故答案为:﹣1(答案不唯一).12.(4分)数据1,2,4,5,3的中位数是 3 .【解答】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5, 则这组数据的中位数是3, 故答案为:3.13.(4分)如图为一个长方体,则该几何体主视图的面积为 20 cm 2.【解答】解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm 2. 故答案为:20.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是30°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=180°﹣∠C=60°,∴∠α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,故答案为:30.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是19√315.【解答】解:如图,作AT∥BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=√32a.观察图象可知:BH=192a,AH=5√32a,∵AT∥BC,∴∠BAH =β,∴tan β=BH AH =192a 532a=19√315. 故答案为19√315.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF =1cm ,AC =BD =6cm ,CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 16 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为6013cm .【解答】解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形,∵OE =OF =1cm , ∴EF =2cm , ∴AB =CD =2cm ,∴此时四边形ABCD 的周长为2+2+6+6=16(cm ), 故答案为16.(2)如图3中,连接EF 交OC 于H .由题意CE =CF =25×6=125(cm ), ∵OE =OF =1cm , ∴CO 垂直平分线段EF , ∵OC =2+OE 2=√(125)2+12=135(cm ), ∵12•OE •EC =12•CO •EH , ∴EH =1×125135=1213(cm ),∴EF =2EH =2413(cm ) ∵EF ∥AB , ∴EF AB=CE CB=25,∴AB =52×2413=6013(cm ). 故答案为6013.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(6分)计算:(﹣2020)0+√4−tan45°+|﹣3|. 【解答】解:原式=1+2﹣1+3=5. 18.(6分)解不等式:5x ﹣5<2(2+x ). 【解答】解:5x ﹣5<2(2+x ), 5x ﹣5<4+2x 5x ﹣2x <4+5, 3x <9, x <3.19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题: 抽取的学生最喜爱体育锻炼项目的统计表 类别 项目 人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.20.(8分)如图,AB̂的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求AB̂的长.【解答】解:(1)∵AB̂的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA•sin60°=2×√32=√3,∴AB =2AC =2√3;(2)∵OC ⊥AB ,∠AOC =60°, ∴∠AOB =120°, ∵OA =2, ∴AB̂的长是:120π×2180=4π3.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T (℃)和高度h (百米)的函数关系如图所示. 请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C ), ∴13.2﹣1.2=12,∴高度为5百米时的气温大约是12°C ;(2)设T 关于h 的函数表达式为T =kh +b , 则:{3k +b =13.25k +b =12,解得{k =−0.6b =15,∴T 关于h 的函数表达式为T =﹣0.6h +15;(3)当T =6时,6=﹣0.6h +15, 解得h =15.∴该山峰的高度大约为15百米.22.(10分)如图,在△ABC中,AB=4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.【解答】解:(1)如图1中,过点A作AD⊥BC于D.在Rt△ABD中,AD=AB•sin45°=4√2×√22=4.(2)①如图2中,∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°﹣90°=90°.②如图3中,由(1)可知:AC=ADsin60°=8√33,∵PF⊥AC,∴∠PF A=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AFAB =AEAC,即4√2=√28√33,∴AF=2√3,在Rt△AFP,AF=FP,∴AP=√2AF=2√6.23.(10分)如图,在平面直角坐标系中,已知二次函数y=−12(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.【解答】解:(1)当m=5时,y=−12(x﹣5)2+4,当x=1时,n=−12×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=−12(x﹣m)2+4,得2=−12(1﹣m)2+4,解得m=3或﹣1(舍弃),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=−12m2+4,∴点B的坐标为(0,−12m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,−12m2+4=0,解得m=2√2或﹣2√2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴−12m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2√2.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=12×8×4=16,S△EOD=12×4×4=8,∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,∴S菱形AEFD=2S△AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2√2,∵AO=8√2,∴AK=6√2,∴AK =3DK ,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形:如图2中,设AG 交PQ 于H ,过点H 作HN ⊥x 轴于N ,交AC 于M ,设AM =t .∵菱形P AQG ∽菱形ADFE ,∴PH =3AH ,∵HN ∥OQ ,QH =HP ,∴ON =NP ,∴HN 是△PQO 的中位线,∴ON =PN =8﹣t ,∵∠MAH =∠PHN =90°﹣∠AHM ,∠PNH =∠AMH =90°,∴△HMA ∽△PNH ,∴AM NH =MH PN =AH PH =13, ∴HN =3AM =3t ,∴MH =MN ﹣NH =8﹣3t ,∵PN =3MH ,∴8﹣t =3(8﹣3t ),∴t =2,∴OP =2ON =2(8﹣t )=12,∴P (12,0).如图3中,过点H 作HI ⊥y 轴于I ,过点P 作PN ⊥x 轴交IH 于N ,延长BA 交IN 于M .同法可证:△AMH ∽△HNP ,∴AM HN =MH PN =AH HP =13,设MH =t , ∴PN =3MH =3t ,∴AM =BM ﹣AB =3t ﹣8,∵HI 是△OPQ 的中位线,∴OP =2IH ,∴HIHN ,∴8+t =9t ﹣24,∴t =4,∴OP =2HI =2(8+t )=24,∴P (24,0).②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形:如图4中,QH =3PH ,过点H 作HM ⊥OC 于M ,过D 点P 作PN ⊥MH 于N .∵MH 是△QAC 的中位线,∴MH =12AC =4,同法可得:△HPN ∽△QHM ,∴NP HM =HN MQ =PH QH =13, ∴PN =13HM =43,∴OM =PN =43,设HN =t ,则MQ =3t ,∵MQ =MC ,∴3t =8−43,∴t =209,∴OP =MN =4+t =569,∴点P 的坐标为(569,0).如图5中,QH =3PH ,过点H 作HM ⊥x 轴于M 交AC 于I ,过点Q 作QN ⊥HM 于N .∵IH 是△ACQ 的中位线,∴CQ =2HI ,NQ =CI =4,同法可得:△PMH ∽△HNQ ,∴MH NQ =PM HN =PH HQ =13,则MH =13NQ =43, 设PM =t ,则HN =3t ,∵HN =HI ,∴3t =8+43,∴t =289, ∴OP =OM ﹣PM =QN ﹣PM =4﹣t =89,∴P (89,0). ③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM ⊥y 轴于于点M ,交AB 于I ,过点P 作PN ⊥HM 于N . ∵HI ∥x 轴,AH =HP ,∴AI =IB =4,∴PN =IB =4,同法可得:△PNH ∽△HMQ ,∴PN HM =HN MQ =PH HQ =13, ∴MH =3PN =12,HI =MH ﹣MI =4,∵HI 是△ABP 的中位线,∴BP =2IH =8,∴OP =OB +BP =16,∴P (16,0),综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0).。

浙江省丽水市2020年中考数学试卷(含答案)

浙江省丽水市2020年中考数学试卷(含答案)

D. 3× (20 + x) + 5= 10x + 2
10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形 ABCD 与正方形 EFGH .连
结 EG
, BD 相交于点 O 、BD 与 HC 相交于点 P .若 GO
= GP ,则
S正方形ABCD S正方形EFGH
的值是 (
)
A.1 + 2
B. 2 + 2
B. 2a − b2
C. a2 − b2
4.下列四个图形中,是中心对称图形的是 ( )
D. 1 3
D. −5 D. −a2 − b2
A.
B.
C.
D.
5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出 一张,摸到 1 号卡片的概率是 ( )
A. 1 2
B. 1 3
C. 2 3
2020 年浙江省丽水市中考数学试卷
一、选择题(共 10 小题,每小题 3 分,共 30 分).
1.实数 3 的相反数是 ( )
A. −3
B.3
2.分式 x + 5 的值是零,则 x 的值为 ( x−2
A.2
B.5
C. − 1 3
) C. −2
3.下列多项式中,能运用平方差公式分解因式的是 ( )
A. a2 + b2
20.如图, AB 的半径 OA = 2 , OC ⊥ AB 于点 C , ∠AOC =60° . (1)求弦 AB 的长. (2)求 AB 的长.
21.某地区山峰的高度每增加 1 百米,气温大约降低 0.6° C ,气温 T (° C) 和高度 h (百米) 的函数关系如图所示.

2020浙江省金华市、丽水市中考数学试题(word版,含答案)

2020浙江省金华市、丽水市中考数学试题(word版,含答案)

浙江省2020年初中学业水平考试(金华卷/丽水卷)数 学 试 题 卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在“答题纸”相应位置上.3.请用黑色字迹钢笔或签字笔在“答题纸”上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.5.本次考试不得使用计算器.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分)1.实数3的相反数是( ▲ )A.-3B.3C. 13-D.13 2.分式52x x +-的值是零,则x 的值为( ▲ ) A.5 B.2 C.-2 D.-53.下列多项式中,能运用平方差公式分解因式的是( ▲ )A. 22a b +B. 22a b -C. 22a b -D. 22a b --4.下列四个图形中,是中心对称图形的是( ▲ )5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( ▲ )A. 12B. 13C. 23D. 166.如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b ,理由是( ▲ )A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线(第5题) 1 1 3 4 1 3 (第6题)A Bb a B CD.经过直线外一点,有且只有一条直线与这条直线平行7.已知点(-2,a ),(2,b ),(3,c )在函数()0k y k x =>的图象上, 则下列判断正确的是( ▲ ) A.a <b <c B. b <a <c C. a <c <b D. c <b <a8.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则∠EPF 的度数是( ▲ )A.65°B.60°C.58°D.50°9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x ,则列出方程正确的是( ▲ )A.3252x x ⨯+=B.3205102x x ⨯+=⨯C.320520x x ⨯++=D.()3205102x x ⨯++=+10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O ,BD 与HC 相交于点P .若GO=GP ,则ABCD EFGH S S 正方形正方形的值是( ▲ ) A. 12+ B. 22+ C. 52- D. 154卷 Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在“答题纸”的相应位置上.二、填空题 (本题有6小题,每小题4分,共24分)11.点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) ▲ .12.数据1,2,4,5,3的中位数是 ▲ .13.如图为一个长方体,则该几何体主视图的面积为 ▲ cm 2.14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 ▲ °.(第8题) (第9题) (第10题) A BC E FD O P A B CEF D OGH P 3×2□+5 =□2(第13题) (第14题) (第15题) M N 140° 120° 70° α4 5 3 AB Cβ15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β,则tan β的值是 ▲ .16. 图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,O E ⊥AC 于点E ,OF ⊥BD 于点F ,OE=OF=1cm ,AC =BD =6cm , CE =DF , CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动. (1)当E ,F 两点的距离最大值时,以点A ,B ,C ,D 为顶点的四边形的周长是 ▲ cm. (2)当夹子的开口最大(点C 与点D 重合)时,A ,B 两点的距离为 ▲ cm.三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程)17.(本题6分)计算:()0o 2020+4tan 45+3---.18.(本题6分)解不等式:552(2+)x x -<.19.(本题6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.(本题8分)如图,AB 的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°.(1)求弦AB 的长. 类别 项 目 人数 A 跳绳 59 B 健身操 ▲ C 俯卧撑 31 D 开合跳 ▲ E 其它 22 抽取的学生最喜爱体育锻炼项目的统计表 抽取的学生最喜爱体育锻炼项目的扇形统计图A.跳绳B.健身操C.俯卧撑D.开合跳E.其它 E D C B A 11% 24% 29.5% (第19题) (第16题) C E (B ) A O F D 图1 图2 (第20题)A O CB(2)求AB 的长.21.(本题8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃.气温T (℃)和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温. (2)求T 关于h 的函数表达式.(3)测得山顶的气温为6℃,求该山峰的高度.22.(本题10分)如图,在△ABC 中,AB=,∠B =45°,∠C =60°.(1)求BC 边上的高线长. (2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF .①如图2,当点P 落在BC 上时,求∠AEP 的度数.②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.23.(本题10分) 如图,在平面直角坐标系中,已知二次函数21()42yx m 图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点C (1,n )在该函数图象上. (1)当m=5时,求n 的值.(2)当n =2时,若点A 在第一象限内,结合图象,求当y 2≥时,自变量x 的取值范围.(3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.24. (本题12分)如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上, (第23题) (第21题)A A(第22题) 图1 C B C E F B P C 图2 图3F B A E P分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F , 已知OB =8.(1)求证:四边形AEFD 为菱形.(2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点D ),点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P , Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.浙江省2020年初中学业水平考试(金华卷/丽水卷)数学试卷参考答案及评分标准一、二、填空题 (本题有6小题,每小题4分,共24分)11. 如-1等(答案不唯一,负数即可);12. 3; 13. 20;14. 30; 15. 16. (1)16;(2) 6013.三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程)17.(本题6分)解:原式=1+2-1+3=5.18.(本题6分)解:5x -5<4+2x ,5x -2x <4+5,3x <9,x <3.19.(本题6分)解:(1)22÷11%=200.∴参与问卷调查的学生总人数为200人.(2)200×24%=48.(第24题)答:最喜爱“开合跳”的学生有48人.(3)抽取学生中最喜爱“健身操”的初中学生有200-59-31-48-22=40(人), 4080001600200⨯=.∴最喜爱“健身操”的初中学生人数约为1600人.20.(本题8分)解:(1)在Rt △AOC 中,∠AOC =60°,∴AC =AO ·sin ∠AOC =2sin60°∵OC ⊥AB ,∴AB =2AC =(2)∵OA = OB =2,OC ⊥AB ,∴∠AOB =2∠AOC =120°.∴AB =180n r π=1202180π⨯=43π. ∴AB 的长是43π.21.(本题8分)解:(1)由题意得 高度增加2百米,则温度降低2×0.6=1.2(℃).∴13.2-1.2=12∴高度为5百米时的气温大约是12℃. (2)设T =kh +b (k ≠0),当h =3时,T =13.2, 13.2=-0.6⨯3+b ,解得 b =15. ∴T =-0.6h +15.(3)当T =6时,6=-0.6h +15, 解得h =15. ∴该山峰的高度大约为15百米.22.(本题10分) (1)如图1,过点A 作AD ⊥BC 于点D , A 图1B CD (第20题)A OC B(第21题)。

2020年浙江省丽水市中考数学试卷原卷附解析

2020年浙江省丽水市中考数学试卷原卷附解析

2020年浙江省丽水市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示,在四边形ABCD 中,∠B=∠D=90°,:C:1:2:2CD B CA=,则∠DAB 等于()A.60°B.75°C.90°D.105°2.两个相似三角形对应高的长分别为 8 和 6则它们的面积比是()A.4:3 B.16:9 C.2:3D.3:23.如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()A.1.5 B.2 C.2.5 D.34.过⊙O内一点M的最长的弦长为4cm,最短的弦长为2cm ,则OM 的长为()A.3cm B.2cm C . 1cm D. 3cm5.如图,一块等边三角形的木板,边长为 1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路程长度为()A.32πB.43πC.4 D.322π+6.下列命题为真命题的是()A.三角形的中位线把三角形的面积分成相等的两部分B.对角线相等且相互平分的四边形是正方形C.关于某直线对称的两个三角形是全等三角形D.一组对边平行,另一组对边相等的四边形一定是等腰梯形7.如图,顺次连结四边形ABCD各边的中点得四边形EFGH,要使EFGH是菱形,应添加的条件是()A.AD∥BC B.AC=BD C.AC⊥BD D.AD=AB8.下列命题中,是假命题的为()A.两条直线相交,只有一个交点B.全等三角形对应边上的中线相等C.全等三角形对应边上的高相等D.三角形一边上的中线把这个三角形分成两个全等的小三角形9.下列说法错误的是()A.错误的判断也是命题B.命题有真命题和假命题两种C.定理是命题D.命题是定理10.已知正比例函数y kx=的图象经过点(2,4),k的值是()A. 1 B.2 C. -1 D.-211.如图反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家,其中t表示时间,s表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是()A.35min B.45min C.50min D.60min12.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩13.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是()14.若-2 减去一个有理数的差等于-7,则-2乘以这个有理数的积等于( ) A .-10B .10C .-14D .14二、填空题15.如图,在⊙O 中,已知20=∠OAC °,OA ∥CD ,则 =∠AOD .16.设计一个商标图形(如图所示),在△ABC 中,AB=AC=2cm,∠B=30°,以A 为圆心,AB 为半径作B ⌒EC ,以BC 为直径作半圆B ⌒FC ,则商标图案面积等于________cm 2.F ECBA17.命题“关于x 的一元二次方程20ax bx c ++=(a ≠0),若240b ac -=,则这个方程有两个相等的实数根.”的逆命题是: ,这个命题是 命题.(填“真”或“假”)18.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平 方米售价30元,主楼梯宽2 m ,其侧面图如图所示,则购买地毯至少需要 元.19.某初级中学八年级(1)班若干名同学(不足20人)星期日去公园游览,公园售票窗口标明票价:每人10元,团体票20人以上(含 20人)八折优惠. 他们经过核算,买团体票比买单人票便宜,则它们至少有 人.20.在四边形ABCD 中.给出下列论断:①AB ∥DC ;②AD=BC ;③∠A=∠C.以其中两个作为题设,另外一个作为结论,用“如果…,那么…”的形式,写出一个你认为正确的命题 . 21.一个几何体的三视图都是正方形,则这个几何体是 . 22.填空:(1)∵∠1=∠E ,∴ ∥ ( )(2)∵∠2=∠ ,∴AB ∥ (同位角相等,两直线平行)23. 写出一个二元一次方程组,使它的解为23x y =⎧⎨=-⎩,则二元一次方程组为 . 24.观察下表: 的个位数字是 . 25.已知a 、b 为两个连续整数,且a <7<b ,则b a += .三、解答题26.已如图所示,梯子 AB 长为 2. 5米,顶端A 靠在墙壁上,这时梯子底端 B 与墙角的距离为1. 5 米,梯子滑动后停在 DE 的位置上,测得 BD 的长为0. 5 米,求梯子顶端A 下滑了多少?27.(1)你能找出几个使不等式2 2.515x -≥⋅成立的 x 的值吗? (2)x=3,5,7 能使不等式225 1.5x -⋅≥成立吗?28.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学对部分同学暑假在家做家务的时问进了抽样调查(时间取整上数),所得数据统计如表2: 表2 时间分组/时0.5~20.520.5~40.540.5~60.5 60.5~80.5 80.5~100.5幂的运算 18 182 183 184 185 186 187 188 … 结果的个位数字84268426…人数20253015lO(1)抽取样本的容量是;(2)样本的中位数所在时间段的范围是;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?29.已有长为l的篱笆,利用它和房屋的一面墙围成如图形状的园子,园子的宽为t.(1)用关于l、t的代数式表示园子的面积;(2)当l=100 m,t=30 m 时,求园子的面积.30.如图,任意剪一个三角形纸片ABC,设它的锐角为∠A,首先用对折的方法得到高AN,然后按图中所示的方法分别将含有∠B,∠C的部分向里折,找出AB,AC的中点D,E,同时得到两个折痕DF,EG,分别沿折痕DF,EG剪下图中的三角形①,②,并按图中箭头所指的方向分别旋转180°.(1)你能拼成一个什么样的四边形?并说明你的理由.(2)请你利用这个图形,证明三角形的面积公式:12S=⨯⨯底高.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.A5.B6.C7.B8.D9.D10.B11.CA13.A14.A二、填空题 15. 40°16.361+π 17. 若关于x 的一元二次方程20ax bx c ++=(0a ≠)有两个相等的实数根,则240b ac -=,真18.480°19.1720.略21.立方体22.(1)AC ;DE ;同位角相等,两直线平行;(2)B ,CD23.略24.625.5三、解答题 26.梯子顶端下滑了 0. 5 米.(1)能,x=2,3,4,…;(2)成立28.(1)100;(2)40.5~60.5小时; (3)∵3015101260693100++⨯=,∴大约有693名学生在暑假做家务的时间在40.5~100.5小时之间.29.(1) (2)t l t ⋅- (2)1200 (m 2 )30.(1)矩形;(2)略。

2020年浙江省丽水市中考数学试卷附解析

2020年浙江省丽水市中考数学试卷附解析

2020年浙江省丽水市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,AB 是⊙O 的直径,弦 AC 、BD 相交于点P ,CD AB 等于( )A .sin ∠BPCB .cos ∠BPC C .tan ∠BPCD .cot ∠BPC 2.如图所示,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是( )A .DCE △B .四边形ABCDC .ABF △D .ABE △ 3.已知⊙O 的半径为r ,圆心O 到直线l 的距离为d .若直线l 与⊙O 有交点,则下列结论正确的是( )A .d =rB .d ≤rC .d ≥rD .d <r 4. 过⊙O 内一点M 的最长的弦长为4cm ,最短的弦长为2cm ,则OM 的长为( ) A .3cmB .2cmC . 1cmD . 3cm 5.一个多边形的内角和与外角和相等,则这个多边形是( ) A .三角形B .四边形C .五边形D .六边形 6.如图,直线l 与直线a ,b 相交,且a ∥b ,∠1=800,则∠2的度数是( )A .600B .800C .1000D .12007.给出下列运算:①326()a a -=-;②224-=-;③22()()x y x y y x ---=-;④0(31)1=.其中运算正确的是( )A . ①和②B . ①和③C . ②和④D . ③和④ 8.256421的结果为( )A . 61B .19C .-21D .-8 二、填空题9.已知⊙O 1与⊙O 2的半径分别为2cm 和3cm ,当⊙O 1与⊙O 2外切时,圆心距O 1O 2=____ cm .10.“平行四边形的对角线互相平分”的逆命题是 . 11.如图,四边形ABCD 是各边长都大于2,分别以它的顶点为圆心,1为半径画弧(弧的端点分别在四边形的相邻两边上),则这四条弧长的和是_________.12.已知221y x x =-+-+,则y x= . 13.把如图所示折叠成正方体,如果相对面的值相等,则一组x ,y 的值是 .14.已知点P (x-1,x+3),那么点P 不可能在第 象限.15.如图,乙图形可以由图形 得到.16.若方程组7336029510x y x y +-=⎧⎨+-=⎩的解也是方程21mx y +=的解,则m = . 17.长方形的长是(2a b +)cm, 宽是(a b +)cm,它的周长是 cm, 面积是 cm 2.18.已知三角形的两条边的长分别是3和5,第三条边的长为a ,则a 的长度在 和 之间.19.比较两条线段的大小的方法有两种:一种是 ;另一种是 .20.在有理数中,倒数是它本身的数有 ,平方等于它本身的数有 ,立方等于它本身的数有 ,绝对值等于它本身的数有 .21.33亿精确到 位,有 个有效数字,它们是 ;26.5万精确到 位,有 个有效数字,它们是 .22.已知x 的与 3 的差小于 5,用不等式表示为 .三、解答题23.将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上.(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;(2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.24.已知方程组713x y a x y a +=--⎧⎨-=+⎩的解x 为非正数,y 为负数,求a 的取值范围.25.如图,在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点围形. 如图中的△ABC 称为格点△ABC. 请根据你所学过的平移、旋转、对称等知识,说明网中“格点四边形图案”是如何通过“格点A4BC 图案”变换得到的.26.已知,4425,7522==y x 求22)()(y x y x --+的值.27.为加快西都大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程. 如 果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过 6 个月才能完成. 现在甲、乙两队先共同施工 4个月,剩下的由乙队单独施工,则刚好如期完成. 问原来规定修好这条公路需多长时间?28.有10 张相同的卡片上写的数字如下:卡片任意搅乱后,一个人随机抽取一张,卡片上的数字是下列情况的概率是多少?(1)2;(2)大于2;(3)8;(4)一个偶数;(5)一个奇数.29.如图,D、B是线段AC上的两点,且D为AC的中点,BC=DB,DC= 3.5,求线段AB的长.30.解下列方程(1)1(5)7 2x-=(2)5x-2(x-1)=14(3) 5(x-1)=2(4x+2)-20( x-1)(4) 324 [2(6)]1 233-+=【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.A5.B6.答案:B7.D8.B二、填空题9.510.对角线互相平分的四边形是平行四边形11.π6 12.21 13. 23x y =⎧⎨=⎩或32x y =⎧⎨=⎩ 14.四15.甲先向左平移3个单位长度,再向下平移6个单位长度16.-317.64a b +,2223a ab b ++18.2,819.叠合法、度量法20.1±,0和 1,0 和1±,非负数21.亿两;3,3;千,三;2,6,522.1352x -<三、解答题23.解:(1)P 偶数=42 =21 (2)P (4的倍数)=123=41.24.解原方程组,得342x a y a =-+⎧⎨=--⎩,∵x 为非正数,y 为负数,∴30420a a -+≤⎧⎨--<⎩,∴23a -<≤. 25.把“格点△ABC 图案”向右平移 10个单位长度,再向上平移5个单位长度,以BC 中点为旋转中心旋转 180°(或以 BC 所在直线为对称轴作轴对称变换),即得到“格点四边形图案”26.32.27.12 个月28. (1)110;(2)910;(3)12;(4)1;(5)0 29.因为D 为 AC 的中点,∴CD=12AC. ∵CD =3.5,∴AC =7.又∵ BC=BD ,∴BC=12CD=12×3.5=1.75.∴AB=AC-BC=7-1.75=5.25 30. (1)x=19 (2)x=4 (3)2917x = (4)13y =。

2020年浙江省丽水市中考数学试卷-解析版

2020年浙江省丽水市中考数学试卷-解析版

2020年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.实数3的相反数是()A. −3B. 3C. −13D. 132.分式x+5x−2的值是零,则x的值为()A. 2B. 5C. −2D. −53.下列多项式中,能运用平方差公式分解因式的是()A. a2+b2B. 2a−b2C. a2−b2D. −a2−b24.下列四个图形中,是中心对称图形的是()A. B. C. D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A. 12B. 13C. 23D. 166.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a//b.理由是()A. 连结直线外一点与直线上各点的所有线段中,垂线段最短B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D. 经过直线外一点,有且只有一条直线与这条直线平行7.已知点(−2,a)(2,b)(3,c)在函数y=kx(k>0)的图象上,则下列判断正确的是()A. a<b<cB. b<a<cC. a<c<bD. c<b<a8.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF⏜上一点,则∠EPF的度数是()A. 65°B. 60°C. 58°D. 50°9. 如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是( )A. 3×2x +5=2xB. 3×20x +5=10x ×2C. 3×20+x +5=20xD. 3×(20+x)+5=10x +210. 如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH.连结EG ,BD 相交于点O 、BD 与HC 相交于点P.若GO =GP ,则S 正方形ABCDS 正方形EFGH的值是( )A. 1+√2B. 2+√2C. 5−√2D. 154二、填空题(本大题共6小题,共24.0分)11. 点P(m,2)在第二象限内,则m 的值可以是(写出一个即可)______. 12. 数据1,2,4,5,3的中位数是______.13. 如图为一个长方体,则该几何体主视图的面积为______cm 2.14. 如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是______°.15. 如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tanβ的值是______.16. 图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD(点A与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF =1cm ,AC =BD =6cm ,CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是______cm .(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为______cm.三、解答题(本大题共8小题,共66.0分)17.计算:(−2020)0+√4−tan45°+|−3|.18.解不等式:5x−5<2(2+x).19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,AB⏜的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求AB⏜的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度ℎ(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.如图,在△ABC中,AB=4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长(x−m)2+4图象的顶点为A,23.如图,在平面直角坐标系中,已知二次函数y=−12与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.答案和解析1.【答案】A【解析】解:实数3的相反数是:−3.故选:A.直接利用相反数的定义分析得出答案.此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.【答案】D【解析】【分析】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.利用分式值为零的条件可得x+5=0,且x−2≠0,再解即可.【解答】解:由题意得:x+5=0,且x−2≠0,解得:x=−5,故选:D.3.【答案】C【解析】解:A、a2+b2不能运用平方差公式分解,故此选项错误;B、2a−b2不能运用平方差公式分解,故此选项错误;C、a2−b2能运用平方差公式分解,故此选项正确;D、−a2−b2不能运用平方差公式分解,故此选项错误;故选:C.根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.4.【答案】C【解析】解:A、该图形不是中心对称图形,故本选项不合题意;B、该图形不是中心对称图形,故本选项不合题意;C、该图形是中心对称图形,故本选项符合题意;D、该图形不是中心对称图形,故本选项不合题意;故选:C.根据中心对称图形的概念对各图形分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】A【解析】解:∵共有6张卡片,其中写有1号的有3张,∴从中任意摸出一张,摸到1号卡片的概率是36=12;故选:A.根据概率公式直接求解即可.此题考查了概率的求法,用到的知识点为:可能性等于所求情况数与总情况数之比.6.【答案】B【解析】【分析】本题考查行公理以及推论等知识,解题的关键是理解题意,灵活运用所学知识解决问题.根据垂直于同一条直线的两条直线平行判断即可.【解答】解:由题意a⊥AB,b⊥AB,∴a//b(垂直于同一条直线的两条直线平行),故选:B.7.【答案】C【解析】【分析】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关(k>0)的图象分布在第一、三象限,在每一键.根据反比例函数的性质得到函数y=kx象限,y随x的增大而减小,则b>c>0,a<0.【解答】解:∵k>0,(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,∴函数y=kx∵−2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:C.8.【答案】B【解析】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∠EOF=60°,∴∠EPF=12故选:B.如图,连接OE,OF.求出∠EOF的度数即可解决问题.本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】D【解析】解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.直接利用表示十位数的方法进而得出等式即可.此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.10.【答案】B【解析】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BG=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=√2x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+√2x,∴BC2=BG2+CG2=x2(√2+1)2+x2=(4+2√2)x2,∴S正方形ABCDS正方形EFGH=(4+2√2)x22x2=2+√2.故选:B.证明△BPG≌△BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG=√2x,由勾股定理得出BC2=(4+2√2)x2,则可得出答案.本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握勾股定理的应用是解题的关键.11.【答案】−1(答案不唯一).【解析】解:∵点P(m,2)在第二象限内,∴m<0,则m的值可以是−1(答案不唯一).故答案为:−1(答案不唯一).直接利用第二象限内点的坐标特点得出m的取值范围,进而得出答案.此题主要考查了点的坐标,正确得出m的取值范围是解题关键.12.【答案】3【解析】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.先将题目中的数据按照从小到大排列,即可得到这组数据的中位数.本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数.13.【答案】20【解析】解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.【答案】30【解析】解:∵四边形ABCD是平行四边形,∴∠D=180°−∠C=60°,∴∠α=180°−(540°−70°−140°−180°)=30°,故答案为:30.根据平行四边形的性质解答即可.此题考查平行四边形的性质,关键是根据平行四边形的邻角互补解答.15.【答案】19√315【解析】解:如图,作AT//BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=√32a.观察图象可知:BH=192a,AH=5√32a,∵AT//BC , ∴∠BAH =β, ∴tanβ=BHAH =192a 5√32a =19√315.故答案为19√315.如图,作AT//BC ,过点B 作BH ⊥AT 于H ,设正六边形的边长为a ,则正六边形的半径为,边心距=√32a.求出BH ,AH 即可解决问题.本题考查解直角三角形的应用,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.16.【答案】16 6013【解析】解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形,∵OE =OF =1cm , ∴EF =2cm ,∴AB =CD =2cm ,∴此时四边形ABCD 的周长为2+2+6+6=16(cm), 故答案为16.(2)如图3中,连接EF 交OC 于H .由题意CE =CF =25×6=125(cm),∵OE =OF =1cm , ∴CO 垂直平分线段EF ,∵OC =√CE 2+OE 2=√(125)2+12=135(cm),∵12⋅OE ⋅EC =12⋅CO ⋅EH , ∴EH =1×125135=1213(cm),∴EF =2EH =2413(cm) ∵EF//AB , ∴EFAB =CECB =25,∴AB=52×2413=6013(cm).故答案为6013.(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题.(2)如图3中,连接EF交OC于H.想办法求出EF,利用平行线分线段成比例定理即可解决问题.本题考查旋转的性质,矩形的判定和性质,平行线分线段成比例定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.17.【答案】解:原式=1+2−1+3=5.【解析】利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进行计算,再算加减即可.此题主要考查了实数运算,关键是掌握零次幂、二次根式的性质、特殊角的三角函数值、绝对值的性质.18.【答案】解:5x−5<2(2+x),5x−5<4+2x5x−2x<4+5,3x<9,x<3.【解析】去括号,移项、合并同类项,系数化为1求得即可.本题考查了解一元一次不等式,熟练掌握解不等式的步骤是解题的关键.19.【答案】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200−59−31−48−22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.【解析】(1)从统计图表中可得,“E组其它”的频数为22,所占的百分比为11%,可求出调查学生总数;(2)“开合跳”的人数占调查人数的24%,即可求出最喜爱“开合跳”的人数;(3)求出“健身操”所占的百分比,用样本估计总体,即可求出8000人中喜爱“健身操”的人数.考查统计表、扇形统计图的意义和制作方法,理解统计图表中的数量之间的关是解决问题的关键.20.【答案】解:(1)∵AB⏜的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA⋅sin60°=2×√32=√3,∴AB=2AC=2√3;(2)∵OC ⊥AB ,∠AOC =60°,∴∠AOB =120°,∵OA =2,∴AB ⏜的长是:120π×2180=4π3.【解析】(1)根据题意和垂径定理,可以求得AC 的长,然后即可得到AB 的长;(2)根据∠AOC =60°,可以得到∠AOB 的度数,然后根据弧长公式计算即可.本题考查弧长的计算、垂径定理,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C), ∴13.2−1.2=12,∴高度为5百米时的气温大约是12°C ;(2)设T 关于h 的函数表达式为T =kℎ+b ,则:{3k +b =13.25k +b =12, 解得{k =−0.6b =15, ∴T 关于h 的函数表达式为T =−0.6ℎ+15;(3)当T =6时,6=−0.6ℎ+15,解得ℎ=15.∴该山峰的高度大约为15百米.【解析】(1)根据高度每增加1百米,气温大约降低0.6℃,由3百米时温度为13.2°C ,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.22.【答案】解:(1)如图1中,过点A 作AD ⊥BC 于D .在Rt △ABD 中,AD =AB ⋅sin45°=4√2×√22=4.(2)①如图2中,∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°−90°=90°.②如图3中,由(1)可知:AC=ADsin60∘=8√33,∵PF⊥AC,∴∠PFA=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AFAB =AEAC,即4√2=√28√33,∴AF=2√3,在Rt△AFP,AF=FP,∴AP=√2AF=2√6.【解析】(1)如图1中,过点A作AD⊥BC于D.解直角三角形求出AD即可.(2)①证明BE=EP,可得∠EPB=∠B=45°解决问题.②如图3中,由(1)可知:AC=ADsin60∘=8√33,证明△AEF∽△ACB,推出AFAB=AEAC,由此求出AF即可解决问题.本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.23.【答案】解:(1)当m=5时,y=−12(x−5)2+4,当x=1时,n=−12×42+4=−4.(2)当n=2时,将C(1,2)代入函数表达式y=−12(x−m)2+4,得2=−12(1−m)2+4,解得m=3或−1(舍弃),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=−12m2+4,∴点B的坐标为(0,−12m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,−12m2+4=0,解得m=2√2或−2√2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴−12m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2√2.【解析】(1)利用待定系数法求解即可.(2)求出y=2时,x的值即可判断.m2+4),求出几个特殊位置m的值即可判断.(3)由题意点B的坐标为(0,−12本题属于二次函数综合题,考查了二次函数的性质,待定系数法,一次函数的性质等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考常压轴题.24.【答案】(1)证明:如图1中,∵AE//DF,AD//EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=1×8×4=16,2×4×4=8,S△EOD=12−2S△ABD−S△EOD=64−2×16−8=24,∴S△AED=S正方形ABOC=2S△AED=48.∴S菱形AEFD(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2√2,∵AO=8√2,∴AK=6√2,∴AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:如图2中,设AG交PQ于H,过点H作HN⊥x轴于N,交AC于M,设AM=t.∵菱形PAQG∽菱形ADFE,∴PH=3AH,∵HN//OQ,QH=HP,∴ON=NP,∴HN是△PQO的中位线,∴ON=PN=8−t,∵∠MAH=∠PHN=90°−∠AHM,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴AMNH =MHPN=AHPH=13,∴HN=3AM=3t,∴MH=MN−NH=8−3t,∵PN=3MH,∴8−t=3(8−3t),∴t=2,∴OP=2ON=2(8−t)=12,∴P(12,0).如图3中,过点H作HI⊥y轴于I,过点P作PN⊥x轴交IH于N,延长BA交IN于M.同法可证:△AMH∽△HNP,∴AMHN =MHPN=AHHP=13,设MH=t,∴PN=3MH=3t,∴AM=BM−AB=3t−8,∵HI是△OPQ的中位线,∴OP=2IH,∴HIHN,∴8+t=9t−24,∴t=4,∴OP=2HI=2(8+t)=24,∴P(24,0).②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:如图4中,QH=3PH,过点H作HM⊥OC于M,过D点P作PN⊥MH于N.∵MH是△QAC的中位线,∴MH=12AC=4,同法可得:△HPN∽△QHM,∴NPHM =HNMQ=PHQH=13,∴PN=13HM=43,∴OM=PN=43,设HN=t,则MQ=3t,∵MQ=MC,∴3t=8−43,∴t=209,∴OP=MN=4+t=569,∴点P的坐标为(569,0).如图5中,QH=3PH,过点H作HM⊥x轴于M交AC于I,过点Q作QN⊥HM于N.∵IH是△ACQ的中位线,∴CQ=2HI,NQ=CI=4,同法可得:△PMH∽△HNQ,∴MHNQ =PMHN=PHHQ=13,则MH=13NQ=43,设PM=t,则HN=3t,∵HN=HI,∴3t=8+43,∴t=289,∴OP=OM−PM=QN−PM=4−t=89,∴P(89,0).③如图6中,当AP为菱形的对角线时,有图6一种情形:过点H作HM⊥y轴于于点M,交AB于I,过点P作PN⊥HM于N.∵HI//x轴,AH=HP,∴AI=IB=4,∴PN=IB=4,同法可得:△PNH∽△HMQ,∴PNHM =HNMQ=PHHQ=13,∴MH=3PN=12,HI=MH−MI=4,∵HI是△ABP的中位线,∴BP=2IH=8,∴OP=OB+BP=16,∴P(16,0),综上所述,满足条件的点P的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0).【解析】(1)根据邻边相等的四边形是菱形证明即可.(2)连接DE,求出△ADE的面积即可解决问题.(3)首先证明AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形.③如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.本题属于相似形综合题,考查了正方形的性质,菱形的判定和性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会寻找相似三角形,利用相似三角形的性质构建方程解决问题,属于中考压轴题.。

丽水市2020年中考数学试题与答案

丽水市2020年中考数学试题与答案

丽水市2020年中考数学试题与答案注意事项:1、本试卷满分 120 分,考试时间 120 分钟。

2、本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在 试卷上的答案无效。

一、选择题(共10小题,每小题3分,共30分). 1.实数3的相反数是( ) A .3- B .3C .13-D .132.分式52x x +-的值是零,则x 的值为( ) A .2 B .5 C .2- D .5-3.下列多项式中,能运用平方差公式分解因式的是( ) A .22a b +B .22a b -C .22a b -D .22a b --4.下列四个图形中,是中心对称图形的是( )A .B .C .D .5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12 B .13C .23D .166.如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到//a b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c <<B .b a c <<C .a c b <<D .c b a <<8.如图,O 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12+B .22+C .52-D .154二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) .12.数据1,2,4,5,3的中位数是 .13.如图为一个长方体,则该几何体主视图的面积为 2cm .14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 ︒.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.计算:0(2020)4tan 45|3|--︒+-. 18.解不等式:552(2)x x -<+.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题: 抽取的学生最喜爱体育锻炼项目的统计表 类别 项目 人数(人)A 跳绳 59B 健身操 ▲C 俯卧撑 31D 开合跳 ▲ E其它22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒. (1)求弦AB 的长. (2)求AB 的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题: (1)求高度为5百米时的气温;(2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆. ①如图2,当点P 落在BC 上时,求AEP ∠的度数. ②如图3,连结AP ,当PF AC ⊥时,求AP 的长23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上. (1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y 时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.24.如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OCOB .的中点D,E作AE,AD的平行线,相交于点F,已知8(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点)D,点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分) 1.A 2.D 3.C 4.C 5.A 6.B 7.C 8.B 9.D 10.B 二、填空题(本题有6小题,每小题4分,共24分) 11.1-(答案不唯一). 12.3. 13.20. 14.30.15 16.(1)16.(2)6013. 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.解:原式12135=+-+=. 18.解:552(2)x x -<+, 5542x x -<+ 5245x x -<+, 39x <, 3x <.19.解:(1)2211%200÷=(人), 答:参与调查的学生总数为200人; (2)20024%48⨯=(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为2005931482240----=(人), 4080001600200⨯=(人), 答:最喜爱“健身操”的学生数大约为1600人. 20.解:(1)AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒,sin 602AC OA ∴=︒==,2AB AC ∴==;(2)OC AB ⊥,60AOC ∠=︒,120AOB ∴∠=︒, 2OA =, ∴AB 的长是:120241803ππ⨯=. 21.解:(1)由题意得,高度增加2百米,则气温降低20.6 1.2()C ⨯=︒, 13.2 1.212∴-=,∴高度为5百米时的气温大约是12C ︒;(2)设T 关于h 的函数表达式为T kh b =+, 则:313.2512k b k b +=⎧⎨+=⎩,解得0.615k b =-⎧⎨=⎩,T ∴关于h 的函数表达式为0.615T h =-+;(3)当6T =时,60.615h =-+, 解得15h =.∴该山峰的高度大约为15百米.22.解:(1)如图1中,过点A 作AD BC ⊥于D .在Rt ABD ∆中,2sin 45424AD AB =︒==.(2)①如图2中,AEF PEF∆≅∆,AE EP∴=,AE EB=,BE EP∴=,45EPB B∴∠=∠=︒,90PEB∴∠=︒,1809090AEP∴∠=︒-︒=︒.②如图3中,由(1)可知:83sin603ADAC==︒,PF AC⊥,90PFA∴∠=︒,AEF PEF∆≅∆,45AFE PFE∴∠=∠=︒,AFE B∴∠=∠,EAF CAB∠=∠,AEF ACB∴∆∆∽,∴AF AEAB AC=224283=23AF∴=在Rt AFP ∆,AF FP =,AP ∴==23.解:(1)当5m =时,21(5)42y x =--+,当1x =时,214442n =-⨯+=-.(2)当2n =时,将(1,2)C 代入函数表达式21()42y x m =--+,得212(1)42m =--+,解得3m =或1-(舍弃), ∴此时抛物线的对称轴3x =,根据抛物线的对称性可知,当2y =时,1x =或5,x ∴的取值范围为15x .(3)点A 与点C 不重合, 1m ∴≠,抛物线的顶点A 的坐标是(,4)m , ∴抛物线的顶点在直线4y =上,当0x =时,2142y m =-+,∴点B 的坐标为21(0,4)2m -+,抛物线从图1的位置向左平移到图2的位置,m 逐渐减小,点B 沿y 轴向上移动, 当点B 与O 重合时,21402m -+=,解得m =或-,当点B 与点D 重合时,如图2,顶点A 也与B ,D 重合,点B 到达最高点, ∴点(0,4)B ,21442m ∴-+=,解得0m =,当抛物线从图2的位置继续向左平移时,如图3点B 不在线段OD 上,B ∴点在线段OD 上时,m 的取值范围是:01m <或1m <<24.(1)证明:如图1中,AD EF,//AE DF,//∴四边形AEFD是平行四边形,四边形ABCD是正方形,ACE ABD∠=∠=︒,∴===,90AC AB OC OBE,D分别是OC,OB的中点,∴=,CE BD∴∆≅∆,()CAE ABD SAS∴=,AE AD∴四边形AEFD是菱形.(2)解:如图1中,连接DE . 184162ADB ACE S S ∆∆==⨯⨯=, 14482EOD S ∆=⨯⨯=, 264216824AED ABD EOD ABOC S S S S ∆∆∆∴=--=-⨯-=正方形,248AED AEFD S S ∆∴==菱形.(3)解:如图1中,连接AF ,设AF 交DE 于K ,4OE OD ==,OK DE ⊥,KE KD ∴=,22OK KE KD ∴===,82AO =,62AK ∴=,3AK DK ∴=,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形: 如图2中,设AG 交PQ 于H ,过点H 作HN x ⊥轴于N ,交AC 于M ,设AM t =.菱形PAQG ∽菱形ADFE ,3PH AH ∴=,//HN OQ ,QH HP =,ON NP ∴=,HN ∴是PQO ∆的中位线,8ON PN t ∴==-,90MAH PHN AHM ∠=∠=︒-∠,90PNH AMH ∠=∠=︒,HMA PNH ∴∆∆∽, ∴13AM MH AH NH PN PH ===, 33HN AM t ∴==,83MH MN NH t ∴=-=-,3PN MH =,83(83)t t ∴-=-,2t ∴=,22(8)12OP ON t ∴==-=,(12,0)P ∴.如图3中,过点H 作HI y ⊥轴于I ,过点P 作PN x ⊥轴交IH 于N ,延长BA 交IN 于M .同法可证:AMH HNP ∆∆∽,∴13AM MH AH HN PN HP ===,设MH t =, 33PN MH t ∴==,38AM BM AB t ∴=-=-,HI 是OPQ ∆的中位线,2OP IH ∴=,HIHN ∴,8924t t ∴+=-,4t ∴=,22(8)24OP HI t ∴==+=,(24,0)P ∴.②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形: 如图4中,3QH PH =,过点H 作HM OC ⊥于M ,过D 点P 作PN MH ⊥于N .MH 是QAC ∆的中位线,142MH AC ∴==, 同法可得:HPN QHM ∆∆∽, ∴13NP HN PH HM MQ QH ===, 1433PN HM ∴==, 43OM PN ∴==,设HN t =,则3MQ t =, MQ MC =,4383t ∴=-, 209t ∴=, 5649OP MN t ∴==+=, ∴点P 的坐标为56(9,0).如图5中,3QH PH =,过点H 作HM x ⊥轴于M 交AC 于I ,过点Q 作QN HM ⊥于N .IH 是ACQ ∆的中位线,2CQ HI ∴=,4NQ CI ==,同法可得:PMH HNQ ∆∆∽, ∴13MH PM PH NQ HN HQ ===,则1433MH NQ ==, 设PM t =,则3HN t =,HN HI =,4383t ∴=+, 289t ∴=, 849OP OM PM QN PM t ∴=-=-=-=, 8(9P ∴,0). ③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM y ⊥轴于于点M ,交AB 于I ,过点P 作PN HM ⊥于N .//HI x 轴,AH HP =, 4AI IB ∴==,4PN IB ∴==,同法可得:PNH HMQ ∆∆∽, ∴13PN HN PH HM MQ HQ ===, 312MH PN ∴==,4HI MH MI =-=, HI 是ABP ∆的中位线, 28BP IH ∴==,16OP OB BP ∴=+=, (16,0)P ∴,综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或56(9,0)或8(9,0)或(16,0).。

2020年浙江省丽水市中考数学测评试卷附解析

2020年浙江省丽水市中考数学测评试卷附解析

2020年浙江省丽水市中考数学测评试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知α是等腰直角三角形的一个锐角,则sin α的值为( )A .12B .22C .32D .12.如图,AC 、BC 是两个半圆的直径,∠ACP=30°,若AB=10㎝,则PQ 的值为( )A .5㎝B .35C .6D .8㎝ 3.如图,点P 是半径为5的⊙O 内一点,且OP=3,在过点P 的所有⊙O 的弦中,弦长为整数的弦的条数为 ( ) A .2B .3C .4D .5 4.下列图形不是中心对称图形的是( ) A .圆 B .平行四边形 C .菱形D .等腰梯形 5.如图,在□ABCD 中,对角线AC 、BD 交于点O ,则图中全等三角形的对数有( )A .2B .4C .6D .8 6.若化简︱1-x ︱- 1682+-x x 的结果是2x -5,则的取值范围是( )A .x 为任意实数B .1≤x ≤4C .x ≥1D .x ≤1 7.在平面直角坐标系中,下列各点关于y 轴的对称点在第一象限的是( )A .(21),B .(21)-,C .(21)-,D .(21)--, 8.若点P (m ,2)与点Q (3,n )关于y 轴对称,则m 、n 的值分别为( )A . -3,2B . 3,-2C .-3,-2D .3,2 9.观察右图,寻找规律.在“?”处填上的数字是 ( )A .128B .136C .162D .18810.在(5)--,2(5)--,5--,2(5)-中,负数有( )A .0个B .1个C .2个D .3个11.有下列说法:①a -一定是负数;②||a -一定是正数;③相反数等于它本身的数是0;④绝对值等于它本身的数是0和1.其中正确说法的个数是( )1Q PA .1B .2C .3D .4二、填空题12.一圆拱的跨度为20cm ,拱高5cm ,则圆拱的直径为 cm. 13.如图,弦 AB 垂直平分半径 OC ,则 ∠AOB= 度.14.一个凸多边形的内角和与外角和相等,它是 边形 .15.某超市一月份的营业额为200万元,第一季度的营业额共1000万元,如果平均每月增长率为x ,则由题意列方程为 .16.将点A(1,-3)向右平移3个单位,再向下平移1个 单位后,得到点B(a ,b),则ab = .17.根据下列数轴上所表示的x 的解集,在下面的横线上分别填出满足解的特殊解:(1) 自然数x 的值 ;(2)小于零的最大整数x 的值 ; (3)正整数x 的值 .18.如图,若∠1 =∠B ,则 ∥ , 理由是 ,所以∠2 = ,理由是 .19.如图,在△ABC 中,AB=AC=10cm ,DE 是AB 的中垂线,△BDC 的周长为 16 cm ,则 BC 的长为 .20. 如果2215(5)(3)x x x x --=-+,那么2()2()15m n m n ----分解因式的结果是 .21.在方程组⎩⎨⎧⋯⋯-=-⋯⋯=+②y x ①y x 13646中,可用①一②得到一元一次方程为 .22.如图所示,AD 是△ABC 的中线,AB=8.AC=6,则△ABD 与△ACD 的周长之差是 .23.已知x 的与 3 的差小于 5,用不等式表示为 .三、解答题24.如图,CD 是⊙O 的直径,AB 是弦,垂足为 E ,CD =10,AB=8,求CE .25.已知二次函数y1=-x 2+bx +c ,且二次方程x 2-bx -c =0的两个根为-3,-1. 若将函数y 1的图像向右平移3个单位,再向下平移5个单位,求所得的函数y 2的解析式. y2=-(x -1)2-4.26.如图,矩形ABCD 中,AC 与BD 交于点O ,BE ⊥AC , CF ⊥BD ,垂足分别为E ,F .求证:BE=CF .27.观察下图中的图形,并阅读图形下面的相关文字:通过分析上面的材料,十边形钓对角线有多少条?n边形的对角线有多少条?28.已知动点P以每秒2 cm的速度沿图①边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S(cm2)关于时间t(s)的函数图象如图②.若AB=6 cm,试解答下列问题:(1)图①中BC的长和图②中的a各是多少?(2)图①中的图形面积是多少?图②中的b是多少?29.请编一个实际应用题,要求所列的方程为30x+40x=450.30.画一条数轴,并在上面标出下列各点:0.1,112-,1.5,+5【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.D5.B6.B7.C8.A9.C10.C11.A二、填空题12.2513.12014.四15.1000)1(200)1(2002002=++++xx16.-l617.(1)0,l;(2)-1;(3)1,218.DE;BC;同位角相等,两直线平行;∠C;两直线平行,同位角相等19.6cm20.(5)(3)m n m n---+21.4y=522.223.1352x-<三、解答题24.连结 AO,∵ CD⊥AB,∴AE= EB,则 AE= EB= 4,AO=12CD =5=OC,由勾段定理得OE2 +AE2=AO2,∴OE=3,∴CE = OC-OE= 5- 3= 225.26.证明:∵四边形ABCD为矩形,∴AC=BD,则BO=CO.∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.又∵∠BOE=∠COF,∴△BOE≌△COF,∴BE=CF.27.35条,(3)2n n28.(1)8 cm,24cm2;(2)60cm2,17 s 29.略30.略。

2020年浙江省金华丽水市中考数学试卷

2020年浙江省金华丽水市中考数学试卷

2020年浙江省金华市中考数学试卷 学校: 班级: 姓名: 得分:一、选择题(本题有10小题,每小题3分,共30分).1.(3分)(2020•金华)实数4的相反数是( )A .14-B .4-C .14D .42.(3分)(2020•金华)计算63a a ÷,正确的结果是( )A .2B .3aC .2aD .3a3.(3分)(2020•金华)若长度分别为a ,3,5的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .84.(3分)(2020•金华)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是( )星期一 二 三 四 最高气温10C ︒ 12C ︒ 11C ︒ 9C ︒ 最低气温3C ︒ 0C ︒ 2C -︒ 3C -︒ A .星期一 B .星期二 C .星期三 D .星期四5.(3分)(2020•金华)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为( )A .12B .310C .15D .7106.(3分)(2020•金华)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A 的位置表述正确的是( )A .在南偏东75︒方向处B .在5km 处C .在南偏东15︒方向5km 处D .在南偏东75︒方向5km 处7.(3分)(2020•金华)用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=8.(3分)(2020•金华)如图,矩形ABCD 的对角线交于点O .已知AB m =,BAC α∠=∠,则下列结论错误的是( )A .BDC α∠=∠B .tan BC m α= C .2sin m AO α=D .cos m BD α= 9.(3分)(2020•金华)如图物体由两个圆锥组成.其主视图中,90A ∠=︒,105ABC ∠=︒,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .210.(3分)(2020•金华)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM ,GN 是折痕.若正方形EFGH 与五边形MCNGF 的面积相等,则FM GF的值是( )A 52-B 21C .12D .22二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2020•金华)不等式369x-的解是.12.(4分)(2020•金华)数据3,4,10,7,6的中位数是.13.(4分)(2020•金华)当1x=,13y=-时,代数式222x xy y++的值是.14.(4分)(2020•金华)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50︒,则此时观察楼顶的仰角度数是.15.(4分)(2020•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t的函数图象,则两图象交点P的坐标是.16.(4分)(2020•金华)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,90E F∠=∠=︒,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E M→,F N→的方向匀速滑动,带动B、C滑动:B到达E时,C 恰好到达F,此时两门完全开启,已知50AB cm=,40CD cm=.(1)如图3,当30ABE∠=︒时,BC=cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为2cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程。

最新2020年浙江省丽水市中考数学试卷含解析

最新2020年浙江省丽水市中考数学试卷含解析

绝密★启用前2020年浙江省丽水市中考数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂一、选择题(共10小题,每小题3分,共30分).1.实数3的相反数是()A.3-B.3C.13-D.132.分式52xx+-的值是零,则x的值为()A.2B.5C.2-D.5-3.下列多项式中,能运用平方差公式分解因式的是()A.22a b+B.22a b-C.22a b-D.22a b--4.下列四个图形中,是中心对称图形的是()A.B.C.D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.12B.13C.23D.166.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到//a b.理由是()A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c <<B .b a c <<C .a cb << D .c b a <<8.如图,O e 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是¶DF上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12+B .22+C .52-D .154二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) . 12.数据1,2,4,5,3的中位数是 .13.如图为一个长方体,则该几何体主视图的面积为 2cm .14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 ︒.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.计算:0(2020)4tan 45|3|-+-︒+-. 18.解不等式:552(2)x x -<+.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题: 抽取的学生最喜爱体育锻炼项目的统计表 类别 项目 人数(人)A 跳绳 59B 健身操 ▲C 俯卧撑 31D 开合跳 ▲ E其它22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,¶AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒. (1)求弦AB 的长. (2)求¶AB 的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆. ①如图2,当点P 落在BC 上时,求AEP ∠的度数. ②如图3,连结AP ,当PF AC ⊥时,求AP 的长23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上.(1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y …时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.24.如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F ,已知8OB =.(1)求证:四边形AEFD 为菱形. (2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点)D ,点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P ,Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分) 1.实数3的相反数是( ) A .3-B .3C .13-D .13解:实数3的相反数是:3-. 故选:A . 2.分式52x x +-的值是零,则x 的值为( ) A .2B .5C .2-D .5-解:由题意得:50x +=,且20x -≠, 解得:5x =-, 故选:D .3.下列多项式中,能运用平方差公式分解因式的是( ) A .22a b +B .22a b -C .22a b -D .22a b --解:A 、22a b +不能运用平方差公式分解,故此选项错误; B 、22a b -不能运用平方差公式分解,故此选项错误; C 、22a b -能运用平方差公式分解,故此选项正确;D 、22a b --不能运用平方差公式分解,故此选项错误;故选:C .4.下列四个图形中,是中心对称图形的是( )A .B .C .D .解:A 、该图形不是中心对称图形,故本选项不合题意; B 、该图形不是中心对称图形,故本选项不合题意; C 、该图形是中心对称图形,故本选项符合题意;D 、该图形不是中心对称图形,故本选项不合题意;故选:C .5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12 B .13C .23D .16解:Q 共有6张卡片,其中写有1号的有3张, ∴从中任意摸出一张,摸到1号卡片的概率是3162=; 故选:A .6.如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到//a b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 解:由题意a AB ⊥,b AB ⊥,//a b ∴(垂直于同一条直线的两条直线平行),故选:B .7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c << B .b a c << C .a c b << D .c b a <<解:0k >Q , ∴函数(0)ky k x=>的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, 2023-<<<Q , 0b c ∴>>,0a <,a cb ∴<<.故选:C .8.如图,O e 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是¶DF上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒解:如图,连接OE ,OF .O Q e 是ABC ∆的内切圆,E ,F 是切点, OE AB ∴⊥,OF BC ⊥, 90OEB OFB ∴∠=∠=︒, ABC ∆Q 是等边三角形, 60B ∴∠=︒, 120EOF ∴∠=︒,1602EPF EOF ∴∠=∠=︒, 故选:B .9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+解:设“□”内数字为x ,根据题意可得: 3(20)5102x x ⨯++=+.故选:D .10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22+C .52D .154解:Q 四边形EFGH 为正方形, 45EGH ∴∠=︒,90FGH ∠=︒, OG GP =Q ,67.5GOP OPG ∴∠=∠=︒, 22.5PBG ∴∠=︒,又45DBC ∠=︒Q , 22.5GBC ∴∠=︒, PBG GBC ∴∠=∠,90BGP BG ∠=∠=︒Q ,BG BG =,()BPG BCG ASA ∴∆≅∆, PG CG ∴=.设OG PG CG x ===, O Q 为EG ,BD 的交点,2EG x ∴=,2FG x =, Q 四个全等的直角三角形拼成“赵爽弦图”, BF CGx ∴==,2BG x x ∴=+, 2222222(21)(422)BC BG CG x x x ∴=+=++=+,∴()22422222ABCDEFGH x S S x +==+正方形正方形.故选:B .二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) 1-(答案不唯一). . 解:Q 点(,2)P m 在第二象限内,0m ∴<,则m 的值可以是1-(答案不唯一).故答案为:1-(答案不唯一).12.数据1,2,4,5,3的中位数是 3 .解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.13.如图为一个长方体,则该几何体主视图的面积为 20 2cm .解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为220cm . 故答案为:20.14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 30 ︒.解:Q 四边形ABCD 是平行四边形,18060D C ∴∠=︒-∠=︒,180(54070140180)30α∴∠=︒-︒-︒-︒-︒=︒,故答案为:30.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 19315.解:如图,作//AT BC ,过点B 作BH AT ⊥于H ,设正六边形的边长为a ,则正六边形的半径为,边心距32a =.观察图象可知:192BH a =,53AH =, //AT BC Q , BAH β∴∠=,191932tan 15532a BH AH a β∴===. 故答案为19315. 16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 16 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形, 1OE OF cm ==Q ,2EF cm ∴=,2AB CD cm ∴==,∴此时四边形ABCD 的周长为226616()cm +++=,故答案为16.(2)如图3中,连接EF 交OC 于H .由题意2126()55CE CF cm ==⨯=, 1OE OF cm ==Q ,CO∴垂直平分线段EF,13()5OC cm===Q,Q1122OE EC CO EH=g g g g,121125()13135EH cm⨯∴==,242()13EF EH cm∴==//EF ABQ,∴25EF CEAB CB==,52460()21313AB cm∴=⨯=.故答案为6013.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:0(2020)tan45|3|-+︒+-.解:原式12135=+-+=.18.解不等式:552(2)x x-<+.解:552(2)x x-<+,5542x x-<+5245x x-<+,39x<,3x<.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表C俯卧撑 31 D开合跳 ▲ E 其它 22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.解:(1)2211%200÷=(人),答:参与调查的学生总数为200人;(2)20024%48⨯=(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为2005931482240----=(人),4080001600200⨯=(人),答:最喜爱“健身操”的学生数大约为1600人.20.如图,¶AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒.(1)求弦AB 的长.(2)求¶AB 的长.解:(1)Q ¶AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒,3sin 6023AC OA ∴=︒==g ,223AB AC ∴==;(2)OC AB ⊥Q ,60AOC ∠=︒,120AOB ∴∠=︒,2OA =Q ,∴¶AB 的长是:120241803ππ⨯=. 21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.解:(1)由题意得,高度增加2百米,则气温降低20.6 1.2()C ⨯=︒,13.2 1.212∴-=,∴高度为5百米时的气温大约是12C ︒;(2)设T 关于h 的函数表达式为T kh b =+,则:313.2512k b k b +=⎧⎨+=⎩, 解得0.615k b =-⎧⎨=⎩, T ∴关于h 的函数表达式为0.615T h =-+;(3)当6T =时,60.615h =-+,解得15h =.∴该山峰的高度大约为15百米.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒.(1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆. ①如图2,当点P 落在BC 上时,求AEP ∠的度数.②如图3,连结AP ,当PF AC ⊥时,求AP 的长解:(1)如图1中,过点A 作AD BC ⊥于D .在Rt ABD ∆中,2sin 454242AD AB =︒=⨯=g .(2)①如图2中,AEF PEF ∆≅∆Q ,AE EP ∴=,AE EB =Q ,BE EP ∴=,45EPB B ∴∠=∠=︒,90PEB ∴∠=︒,1809090AEP ∴∠=︒-︒=︒.②如图3中,由(1)可知:83sin 603AD AC ==︒,PF AC ⊥Q ,90PFA ∴∠=︒,AEF PEF ∆≅∆Q ,45AFE PFE ∴∠=∠=︒,AFE B ∴∠=∠,EAF CAB ∠=∠Q ,AEF ACB ∴∆∆∽, ∴AF AE AB AC =224283=, 23AF ∴=在Rt AFP ∆,AF FP =,226AP ∴==23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上.(1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y …时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.解:(1)当5m =时,21(5)42y x =--+, 当1x =时,214442n =-⨯+=-.(2)当2n =时,将(1,2)C 代入函数表达式21()42y x m =--+,得212(1)42m =--+, 解得3m =或1-(舍弃),∴此时抛物线的对称轴3x =,根据抛物线的对称性可知,当2y =时,1x =或5,x ∴的取值范围为15x 剟.(3)Q 点A 与点C 不重合,1m ∴≠,Q 抛物线的顶点A 的坐标是(,4)m ,∴抛物线的顶点在直线4y =上,当0x =时,2142y m =-+, ∴点B 的坐标为21(0,4)2m -+, 抛物线从图1的位置向左平移到图2的位置,m 逐渐减小,点B 沿y 轴向上移动,当点B 与O 重合时,21402m -+=, 解得22m =或2-,当点B 与点D 重合时,如图2,顶点A 也与B ,D 重合,点B 到达最高点,∴点(0,4)B ,21442m ∴-+=,解得0m =, 当抛物线从图2的位置继续向左平移时,如图3点B 不在线段OD 上,B ∴点在线段OD 上时,m 的取值范围是:01m <…或122m <<.24.如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F ,已知8OB =.(1)求证:四边形AEFD 为菱形.(2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点)D ,点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P ,Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,//AE DF Q ,//AD EF ,∴四边形AEFD 是平行四边形,Q 四边形ABCD 是正方形,AC AB OC OB ∴===,90ACE ABD ∠=∠=︒,E Q ,D 分别是OC ,OB 的中点,CE BD ∴=,()CAE ABD SAS ∴∆≅∆,AE AD ∴=,∴四边形AEFD 是菱形.(2)解:如图1中,连接DE .184162ADB ACE S S ∆∆==⨯⨯=Q , 14482EOD S ∆=⨯⨯=, 264216824AED ABD EOD ABOC S S S S ∆∆∆∴=--=-⨯-=正方形,248AED AEFD S S ∆∴==菱形.(3)解:如图1中,连接AF ,设AF 交DE 于K ,4OE OD ==Q ,OK DE ⊥,KE KD ∴=,2OK KE KD ∴===,82AO =Q ,62AK ∴=,3AK DK ∴=,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形: 如图2中,设AG 交PQ 于H ,过点H 作HN x ⊥轴于N ,交AC 于M ,设AM t =.Q 菱形PAQG ∽菱形ADFE ,3PH AH ∴=,//HN OQ Q ,QH HP =,ON NP ∴=,HN ∴是PQO ∆的中位线,8ON PN t ∴==-,90MAH PHN AHM ∠=∠=︒-∠Q ,90PNH AMH ∠=∠=︒,HMA PNH ∴∆∆∽,∴13AM MH AH NH PN PH ===, 33HN AM t ∴==,83MH MN NH t ∴=-=-,3PN MH =Q ,83(83)t t ∴-=-,2t ∴=,22(8)12OP ON t ∴==-=,(12,0)P ∴.如图3中,过点H 作HI y ⊥轴于I ,过点P 作PN x ⊥轴交IH 于N ,延长BA 交IN 于M .同法可证:AMH HNP ∆∆∽, ∴13AM MH AH HN PN HP ===,设MH t =, 33PN MH t ∴==,38AM BM AB t ∴=-=-,HI Q 是OPQ ∆的中位线,2OP IH ∴=,HIHN ∴,8924t t ∴+=-,4t ∴=,22(8)24OP HI t ∴==+=,(24,0)P ∴.②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形: 如图4中,3QH PH =,过点H 作HM OC ⊥于M ,过D 点P 作PN MH ⊥于N .MH Q 是QAC ∆的中位线,142MH AC ∴==, 同法可得:HPN QHM ∆∆∽, ∴13NP HN PH HM MQ QH ===, 1433PN HM ∴==, 43OM PN ∴==,设HN t =,则3MQ t =, MQ MC =Q ,4383t ∴=-, 209t ∴=, 5649OP MN t ∴==+=, ∴点P 的坐标为56(9,0).如图5中,3QH PH =,过点H 作HM x ⊥轴于M 交AC 于I ,过点Q 作QN HM ⊥于N .IH Q 是ACQ ∆的中位线,2CQ HI ∴=,4NQ CI ==,同法可得:PMH HNQ ∆∆∽, ∴13MH PM PH NQ HN HQ ===,则1433MH NQ ==, 设PM t =,则3HN t =,HN HI =Q ,4383t ∴=+, 289t ∴=, 849OP OM PM QN PM t ∴=-=-=-=, 8(9P ∴,0). ③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM y ⊥轴于于点M ,交AB 于I ,过点P 作PN HM ⊥于N . //HI x Q 轴,AH HP =,4AI IB ∴==,4PN IB ∴==,同法可得:PNH HMQ ∆∆∽, ∴13PN HN PH HM MQ HQ ===, 312MH PN ∴==,4HI MH MI =-=, HI Q 是ABP ∆的中位线,28BP IH ∴==,16OP OB BP ∴=+=,(16,0)P ∴,综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或56(9,0)或8(9,0)或(16,0).。

浙江省金华市、丽水市2020年中考数学试卷

浙江省金华市、丽水市2020年中考数学试卷

浙江省金华市、丽水市2020年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)(共10题;共30分)1. ( 3分) (2020·金华·丽水)实数3的相反数是()A. 3B. 3C.D.2. ( 3分) (2020·金华·丽水)分式的值是零,则x的值为()A. 5B. 2C. -2D. -53. ( 3分) (2020·金华·丽水)下列多项式中,能运用平方差公式分解因式的是()A. B. C. D.4. ( 3分) (2020·金华·丽水)下列四个图形中,是中心对称图形的是()A. B. C. D.5. ( 3分) (2020·金华·丽水)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A. B. C. D.6. ( 3分) (2020·金华·丽水)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是()A. 连结直线外一点与直线上各点的所有线段中,垂线段最短B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D. 经过直线外一点,有且只有一条直线与这条直线平行7. ( 3分) (2020·金华·丽水)已知点(-2,a),(2,b),(3,c)在函数的图象上,则下列判断正确的是()A. a<b<cB. b<a<cC. a<c<bD. c<b<a8. ( 3分) (2020·金华·丽水)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P 是上一点,则∠EPF的度数是()A. 65°B. 60°C. 58°D. 50°9. ( 3分) (2020·金华·丽水)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x,则列出方程正确的是()A. B.C. D.10. ( 3分) (2020·金华·丽水)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A. B. C. D.二、填空题(本题有6小题,每小题4分,共24分)(共6题;共24分)11. ( 4分) (2020·金华·丽水)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)________.12. ( 4分) (2020·金华·丽水)数据1,2,4,5,3的中位数是________.13. ( 4分) (2020·金华·丽水)如图为一个长方体,则该几何体主视图的面积为________cm2.14. ( 4分) (2020·金华·丽水)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是________°.15. ( 4分) (2020·金华·丽水)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β,则tanβ的值是________.16. ( 4分) (2020·金华·丽水)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大值时,以点A,B,C,D为顶点的四边形的周长是________cm.(2)当夹子的开口最大(点C与点D重合)时,A,B两点的距离为________cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)(共8题;共66分)17. ( 6分) (2020·金华·丽水)计算:.18. ( 6分) (2020·金华·丽水)解不等式:.19. ( 6分) (2020·金华·丽水)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A 跳舞59B 健身操C 俯卧撑 31D 开合跳E 其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20. ( 8分) (2020·金华·丽水)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.21. ( 8.0分) (2020·金华·丽水)某地区山峰的高度每增加1百米,气温大约降低0.6℃.气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温.(2)求T关于h的函数表达式.(3)测得山顶的气温为6℃,求该山峰的高度.22. ( 10分) (2020·金华·丽水)如图,在△ABC中,AB= ,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23. ( 10.0分) (2020·金华·丽水)如图,在平面直角坐标系中,已知二次函数图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y 时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24. ( 12分) (2020·金华·丽水)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.答案解析部分一、选择题(本题有10小题,每小题3分,共30分)1.【答案】A【考点】实数的相反数【解析】【解答】解:3的相反数是-3.故答案为:A.【分析】只有符号不同的两个数互为相反数,据此判断即可.2.【答案】D【考点】分式的值为零的条件【解析】【解答】解:由题意得x+5=0且x-2≠0,解得x=-5.故答案为:D.【分析】分式值为0的条件:分子为0且分母不为0,据此解答即可.3.【答案】C【考点】平方差公式及应用【解析】【解答】解:A、两符号相同,不能用平方差公式分解,故A不符合题意;B、虽然符号相反,但缺少平方项,∴不能用平方差公式分解,故B不符合题意;C、a2-b2=(a+b)(a-b),故C符合题意;D、两符号相同,不能用平方差公式分解,故D不符合题意;故答案为:C.【分析】平方差公式a2-b2=(a+b)(a-b),据此逐一分析即可.4.【答案】C【考点】中心对称及中心对称图形【解析】【解答】解:A、不是中心对称图形,故A不符合题意;B、不是中心对称图形,故B不符合题意;C、是中心对称图形,故C符合题意;D、不是中心对称图形,故D不符合题意;【分析】中心对称图形:把一个图形绕着某一点旋转180°后,旋转后的图形能够与原来的图形重合,据此逐一判断即可.5.【答案】A【考点】概率公式【解析】【解答】解:一共有6张卡片,写有1号的有3张,∴摸到1号卡片的概率为:.故答案为:A.【分析】直接利用概率公式计算即可.6.【答案】B【考点】平行公理及推论,平行线的判定与性质【解析】【解答】解:∵a⊥AB,b⊥AB,∴a∥b(在同一平面内,垂直于同一直线的两直线互相平行).故答案为:B.【分析】在同一平面内,垂直于同一直线的两直线互相平行,据此解答即可.7.【答案】C【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵函数的图象位于一,三象限,∴在每个象限内,y随x的增大而减小,∵-2<0<2<3,∴(2,b),(3,c)位于第一象限,b>c>0,(-2,a)位于第三象限,∴a<0,∴a<c<b.故答案为:C.【分析】根据反比例函数的性质进行解答即可.8.【答案】B【考点】等边三角形的性质,圆周角定理,切线的性质,三角形的内切圆与内心【解析】【解答】解:连接OE,OF,∵点EF分别是切点,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=360°-∠OEB-∠OFB-∠B=120°,∴∠P=∠EOF=60°.故答案为:B.【分析】连接OE,OF,根据切线的性质可得∠OEB=∠OFB=90°,利用等边三角形的性质可得∠B=60°,根据四边形内角和等于360°,可求出∠EOF的度数,根据圆周角定理可得∠P=∠EOF,据此求出结论. 9.【答案】D【考点】一元一次方程的实际应用-数字、日历、年龄问题【解析】【解答】解:若设“□”内数字为x,可得:3×(2×10+x)+5=10x+2,即3(20+x)+5=10x+2.故答案为:D.【分析】若设“□”内数字为x,可得2□=2×10+x,□2=10x+2,据此解答即可.10.【答案】B【考点】全等三角形的判定与性质,勾股定理,正方形的性质,相似三角形的判定与性质,直角三角形的性质【解析】【解答】解:设AF=y,BF=x,∴正方形EFGH的边长GH=y-x,∴EG=GF=(y-x),∴正方形ABCD的面积为x2+y2,正方形EFGH的面积为(y-x)2,∵ED∥BG,∴∠EDO=∠GBO,∵ED=BG,∠EOD=∠BOG,∴△EOD≌GOB,∴EO=GO,∴GO=EG=(y-x),∵GP=GO,∴GP=(y-x),∴GH:GP=,∴PH:PG=∵DH∥GB,∴△DHP∽BGH,∴,即得,∴x=()y∴.故答案为:B.【分析】设AF=y,BF=x,可得正方形EFGH的边长GH=y-x,即得EG=GF=(y-x),根据正方形的面积公式可得正方形ABCD的面积为x2+y2,正方形EFGH的面积为(y-x)2,先证△EOD≌GOB,可得EO=GO,可得GO=EG=(y-x),从而可得GP=GO=(y-x),从而可得PH:PG=,由于DH∥GB,可得△DHP∽BGH,利用相似三角形对应边成比例可得DH:GB=x:y=,代入正方形的面积进行计算即得结论.二、填空题(本题有6小题,每小题4分,共24分)11.【答案】如-1等(答案不唯一,负数即可)【考点】点的坐标与象限的关系【解析】【解答】解:∵点P(m,2)在第二象限内,∴m<0,m可以是-1.故答案为:-1(答案不唯一).【分析】根据第二象限点的坐标符号为负正,据此解答即可.12.【答案】3【考点】中位数【解析】【解答】解:将数据从小大排列1,2,3,4,5,最中间的数据是3,∴中位数是:3.故答案为:3.【分析】中位数:先把数据从小到大(或从大到小)进行排列,如果数据的个数是奇数,那么最中间的那个数据就是中位数,如果数据的个数是偶数,那么最中间的那两个数据的平均数就是中位数;据此解答即可.13.【答案】20【考点】简单几何体的三视图【解析】【解答】解:主视图是一个长4,高为5的长方体,∴主视图的面积为:4×5=20cm2.故答案为:20.【分析】主视图:是从物体正面所看的的平面图形,根据长方体的尺寸确定主视图的长,高,然后计算即可.14.【答案】30【考点】多边形内角与外角,平行四边形的性质【解析】【解答】解:如图,∵∠1+∠2+70°+140°+120°=(5-2)×180°,∴∠1+∠2=210°,∵平移图形M,与图形N可以拼成一个平行四边形,∴∠2+120°=180°,∠1+a=180°,∴∠2+120°+∠1+a=360°,∴a=30°.故答案为:30.【分析】根据五边形的内角和可求出∠1+∠2=210°,根据平行四边形的性质及平角的定义可得∠2+120°=180°,∠1+a=180°,从而求出a的度数.15.【答案】【考点】正多边形和圆,解直角三角形的应用【解析】【解答】如图,过作AD∥BC,过点B作BH⊥AD垂足为H,∴∠A=β,设正六边形的边长为a,∴BH=6×2a=12a,∠AED=120°,AE=AD=a,在等腰三角形ADE中,∠ADE=∠EAD=30°,∴AD=a,∴AH=a+a+a=a,tanβ=tanA==.故答案为:.【分析】如图,过作AD∥BC,过点B作BH⊥AD垂足为H,可得∠A=β,设正六边形的边长为a,根据正六边形的性质及卡通图形,可得BH=12a,∠ADE=∠EAD=30°,AE=AD=a,从而求出AD=a,从而可得AH=a,由tanβ=tanA=即可求出结论.16.【答案】(1)16(2)【考点】等腰三角形的性质,勾股定理,矩形的性质,锐角三角函数的定义,旋转的性质【解析】【解答】解:(1)当点E、O、F三点共线时,E、F两点的距离最大,此时四边形ABDC是矩形,∴AB=CD=EF=2cm,∴以点A,B,C,D为顶点的四边形的周长为:2+6+2=6=16cm;(2)当夹子的开口最大(点C与点D重合)时,如图,连接CO并延长交AB于点H,∴CH⊥AB,AH=BH,∵AC=BD=6cm,CE:AE=2:3,∴CE=cm,在Rt△OEF中,CO==,∵sin∠ECO==,∴AH=,∴AB=2AH=.【分析】(1)当点E、O、F三点共线时,E、F两点的距离最大,此时四边形ABDC是矩形,可得AB=CD=EF=2cm,根据矩形的性质求出周长即可;(2)当夹子的开口最大(点C与点D重合)时,如图,连接CO并延长交AB于点H,可得CH⊥AB,AH=BH,利用已知先求出CE=cm,在Rt△OEF中利用勾股定理求出CO的长,由sin∠ECO==,求出AH,从而求出AB=2AH的长.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.【答案】解:原式=1+2-1+3=5【考点】实数的运算,特殊角的三角函数值【解析】【分析】利用零指数幂,算术平方根,特殊角的三角函数值,绝对值的意义将原式简化,然后进行加减运算即可.18.【答案】解:5x-5<4+2x,5x-2x<4+5,3x<9,x <3【考点】解一元一次不等式【解析】【分析】利用去括号,移项合并,系数化为1求出不等式的解集即可.19.【答案】(1)解:22÷11%=200.∴参与问卷调查的学生总人数为200人.(2)解:200×24%=48.答:最喜爱“开合跳”的学生有48人.(3)解:抽取学生中最喜爱“健身操”的初中学生有200-59-31-48-22=40(人),.∴最喜爱“健身操”的初中学生人数约为1600人.【考点】用样本估计总体,统计表,扇形统计图【解析】【分析】(1)利用跳绳的人数除以其百分比即得参与问卷调查的学生总人数.(2)利用参与问卷调查的学生总人数乘以“开合跳”的学生百分比即得“开合跳”的学生的人数;(3)利用8000乘以样本中最喜爱“健身操”人数的百分比即得结论.20.【答案】(1)解:在Rt△AOC中,∠AOC=60°,∴AC=AO·sin∠AOC =2sin60°=,∵OC⊥AB,∴AB=2AC=2(2)解:∵OA= OB=2,OC⊥AB,∴∠AOB=2∠AOC=120°.∴===.∴的长是.【考点】垂径定理,圆周角定理,弧长的计算【解析】【分析】(1)在Rt△AOC中,由AC=AO·sin∠AOC,可求出AC=,根据垂径定理可得AB =2AC=2;(2)根据等腰三角形的性质可得∠AOB=2∠AOC=120°,直接利用弧长公式即可求出结论.21.【答案】(1)解:由题意得高度增加2百米,则温度降低2×0.6=1.2(℃).∴13.2-1.2=12∴高度为5百米时的气温大约是12℃.(2)解:设T=kh+b(k≠0),当h=3时,T=13.2,13.2=-0.6 3+b,解得b=15.∴T=-0.6h+15(3)解:当T=6时,6=-0.6h+15,解得h=15.∴该山峰的高度大约为15百米.【考点】一次函数的实际应用【解析】【分析】(1)由高度每增加1百米,气温大约降低0.6℃,可得高度增加2百米,则温度降低2×0.6=1.2(℃),从而可得高度为5百米时的气温大约是13.2-1.2=12℃;(2)直接利用待定系数法求一次函数解析式T=-0.6h+15;(3)利用(2)直接求出当T=6时,h的值即可.22.【答案】(1)解:如图1,过点A作AD⊥BC于点D,在Rt△ABD中,= =4.(2)解:①如图2,∵△AEF≌△PEF,∴AE=EP.又∵AE=BE ,∴BE=EP,∴∠EPB=∠B=45°,∴∠AEP=90°.②如图3,由(1)可知:在Rt△ADC中,. ∵PF⊥AC,∴∠PFA=90°.∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,则∠AFE=∠B.又∵∠EAF=∠CAB,∴△EAF∽△CAB,∴=,即=,∴AF=在Rt△AFP中,AF=PF,则AP==.【考点】翻折变换(折叠问题),相似三角形的判定与性质,解直角三角形,等腰直角三角形【解析】【分析】(1)如图1,过点A作AD⊥BC于点D,在Rt△ABD中,=4;(2)①由折叠知△AEF≌△PEF,可得AE=EP,利用线段的中点及等量代换,可得BE=EP,根据等边对等角,可得∠EPB=∠B=45°,利用三角形内角和即可求出∠AEP=90°;②由(1)可知:在Rt△ADC中,,由∠EAF=∠CAB,∠AFE=∠B,可证△EAF∽△CAB,可得=,据此求出AF的长,在等腰直角△APF中,AP=,从而求出结论.23.【答案】(1)解:当m=5时,y=,当x=1时,n=.(2)解:当n=2时,将C(1,2)代入函数表达式y=,得2=,解得m1=3,m2=-1(舍去).∴此时抛物线的对称轴为直线x=3,根据抛物线的轴对称性,当y=2时,有x1=1 ,x2=5.∴x的取值范围为1≤x≤5.(3)解:∵点A与点C不重合,∴m≠1.∵抛物线的顶点A的坐标是(m,4) ,∴抛物线的顶点在直线y=4上.当x=0时,y=,∴点B的坐标为(0,).抛物线从试题图位置向左平移到图2的位置前,m减小,点B沿y轴上向上移动.当点B与点O重合时,=0,解得m1=,m2=.当点B与点D重合时,如图2,顶点A也与点B,D 重合,点B到达最高点.∴点B的点坐标为(0,4),∴=4,解得m=0.当抛物线从图2位置继续向左平移时,如图3点B不在线段OD上.∴ B点在线段OD上时,m的取值范围是0≤m<1或1<m<2 .【考点】二次函数图象的几何变换,二次函数图象上点的坐标特征,二次函数y=a(x-h)^2+k的图象,二次函数y=a(x-h)^2+k的性质【解析】【分析】(1)将m=5,x=1代入中,即可求出n值;(2)当n=2时,将C(1,2)代入函数表达式中,求出m=3值,即得此时抛物线的对称轴为直线x=3,当y=2时,即y=(x-3)2+4=2,解得x1=1 ,x2=5,由于抛物线开口向下,当1≤x≤5时,抛物线的图象在直线y=2直线的上方,据此即得结论;(3)点A与点C不重合,可得m≠1.由抛物线的顶点A的坐标是(m,4) ,可知抛物线的顶点在直线y =4上.利用抛物线求出点B的坐标为(0,).抛物线从试题图位置向左平移到图2的位置前,m减小,点B沿y轴上向上移动,①当点B与点O重合时,②如图2,顶点A也与点B,D 重合,点B到达最高点.③当抛物线从图2位置继续向左平移时,如图3点B不在线段OD上,分别求出m的范围即可.24.【答案】(1)证明:∵DF∥AE,EF∥AD,∴四边形AEFD是平行四边形.∵四边形ABOC是正方形,∴OB=OC=AB=AC,∠ACE=∠ABD=Rt∠.∵点D,E是OB,OC的中点,∴CE=BD,∴△ACE≌△ABD(SAS),∴AE=AD,∴□AEFD是菱形.(2)解:如图1,连结DE.∵S△ABD=AB·BD=,S△ODE=OD·OE=,∴S△AED=S正方形ABOC-2 S△ABD-S△ODE=64-2 -8=24,∴S菱形AEFD=2S△AED=48.(3)解:由图1,连结AF与DE相交于点K,易得△ADK的两直角边之比为1:3. 1)当AP为菱形一边时,点Q在x轴上方,有图2、图3两种情况:如图2,AG与PQ交于点H,∵菱形PAQG∽菱形ADFE,∴△APH的两直角边之比为1:3.过点H作HN⊥x轴于点N,交AC于点M,设AM=t.∵HN∥OQ,点H是PQ的中点,∴点N是OP中点,∴HN是△OPQ的中位线,∴ON=PN=8-t.又∵∠1=∠3=90°-∠2,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴==,∴HN=3AM=3t,∴MH=MN-NH=8-3t.∵PN=3MH,∴8-t =3(8-3t),解得t=2.∴OP=2ON=2(8-t)=12,∴点P的坐标为(12,0).如图3,△APH的两直角边之比为1:3.过点H作HI⊥y轴于点I,过点P作PN⊥x轴交IH于点N,延长BA交IN于点M. ∵∠1=∠3=90°-∠2,∠AMH=∠PNH,∴△AMH∽△HNP,∴==,设MH=t,∴PN=3MH=3t,∴AM=BM-AB=3t-8,∴HN=3AM=3(3t-8) =9t-24.又∵HI是△OPQ的中位线,∴OP=2IH,∴HI=HN,∴8+t=9t-24,解得t=4.∴OP=2HI=2(8+t)=24,∴点P的坐标为(24,0).2)当AP为菱形一边时,点Q在x轴下方,有图4、图5两种情况:如图4,△PQH的两直角边之比为1:3.过点H作HM⊥y轴于点M,过点P作PN⊥HM于点N. ∵MH是△QAC的中位线,∴HM==4.又∵∠1=∠3=90°-∠2,∠HMQ=∠N,∴△HPN∽△QHM,∴==,则PN==,∴OM=.设HN=t,则MQ=3t.∵MQ=MC,∴3t=8-,解得t=.∴OP=MN=4+t=,∴点P的坐标为( ,0).如图5,△PQH的两直角边之比为1:3.过点H作HM⊥x轴于点M,交AC于点I,过点Q作NQ⊥HM于点N. ∵IH是△ACQ的中位线,∴CQ=2HI,NQ=CI=4.∵∠1=∠3=90°-∠2,∠PMH=∠QNH,∴△PMH∽△HNQ,∴===,则MH=NQ=.设PM=t,则HN=3t,∵HN=HI,∴3t=8+ ,解得t=.∴OP=OM-PM=QN-PM=4-t=,∴点P的坐标为( ,0).3)当AP为菱形对角线时,有图6一种情况:如图6,△PQH的两直角边之比为1:3.过点H作HM⊥y轴于点M,交AB于点I,过点P作PN⊥HM于点N.∵HI∥x轴,点H为AP的中点,∴AI=IB=4,∴PN=4.∵∠1=∠3=90°-∠2,∠PNH=∠QMH=90°,∴△PNH∽△HMQ,∴===,则MH=3PN=12,HI=MH-MI=4.∵HI是△ABP的中位线,∴BP=2HI=8,即OP=16,∴点P的坐标为(16,0).综上所述,点P的坐标为(12,0),(24,0),( ,0),( ,0),(16,0).【考点】坐标与图形性质,菱形的判定与性质,正方形的性质,相似多边形的性质,相似三角形的判定与性质【解析】【分析】(1)根据两组对边分别平行可证四边形AEFD是平行四边形,利用正方形的性质可得OB=OC=AB=AC,∠ACE=∠ABD=90°.根据线段中点的定义可得CE=BD,根据“SAS”可证△ACE≌△ABD,可得AE=AD,根据一组邻边相等的平行四边形是菱形即证;(2)如图1,连结DE.根据三角形的面积公式求出S△ABD=AB·BD=,16,S△ODE=OD·OE=8,利用S△AED=S正方形ABOC-2 S△ABD-S△ODE=24,由S菱形AEFD=2S△AED即可求出结论;(3)由图1,连结AF与DE相交于点K,易得△ADK的两直角边之比为1:3.分两种情况讨论:①当AP为菱形一边时,点Q在x轴上方,有图2(△APH的两直角边之比为1:3);图3(△APH的两直角边之比为1:3).两种情况;②当AP为菱形一边时,点Q在x轴下方,有图4(△PQH的两直角边之比为1:3 )、图5(△PQH的两直角边之比为1:3)两种情况;据此分别解答即可.试卷分析部分1. 试卷总体分布分析2. 试卷题量分布分析3. 试卷难度结构分析4. 试卷知识点分析。

2020年浙江省丽水市数学中考试题及答案

2020年浙江省丽水市数学中考试题及答案

2020年浙江省丽水市数学中考试题一.选择题(共10小题)1.实数3的相反数是()A.﹣3B.3C.﹣D.2.分式的值是零,则x的值为()A.2B.5C.﹣2D.﹣53.下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b24.下列四个图形中,是中心对称图形的是()A.B.C.D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a8.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+210.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.二.填空题(共6小题)11.点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.数据1,2,4,5,3的中位数是.13.如图为一个长方体,则该几何体主视图的面积为cm2.14.如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是°.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.三.解答题(共8小题)17.计算:(﹣2020)0+﹣tan45°+|﹣3|.18.解不等式:5x﹣5<2(2+x).19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长23.如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.参考答案一.选择题(共10小题)1.A.2.D.3.C.4.C.5.A.6.B.7.C.8.B.9.D.10.B.二.填空题(共6小题)11.﹣1(答案不唯一).12.3.13.20.14.30.15..16.解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,∵OE=OF=1cm,∴EF=2cm,∴AB=CD=2cm,∴此时四边形ABCD的周长为2+2+6+6=16(cm),故答案为16.(2)如图3中,连接EF交OC于H.由题意CE=CF=×6=(cm),∵OE=OF=1cm,∴CO垂直平分线段EF,∵OC===(cm),∵•OE•EC=•CO•EH,∴EH==(cm),∴EF=2EH=(cm)∵EF∥AB,∴==,∴AB=×=(cm).故答案为.三.解答题(共8小题)17.解:原式=1+2﹣1+3=5.18.解:5x﹣5<2(2+x),5x﹣5<4+2x5x﹣2x<4+5,3x<9,x<3.19.解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×=1600(人),答:最喜爱“健身操”的学生数大约为1600人.20.解:(1)∵的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA•sin60°=2×=,∴AB=2AC=2;(2)∵OC⊥AB,∠AOC=60°,∴∠AOB=120°,∵OA=2,∴的长是:=.21.解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C),∴13.2﹣1.2=12,∴高度为5百米时的气温大约是12°C;(2)设T关于h的函数表达式为T=kh+b,则:,解得,∴T关于h的函数表达式为T=﹣0.6h+15;(3)当T=6时,6=﹣0.6h+15,解得h=15.∴该山峰的高度大约为15百米.22.解:(1)如图1中,过点A作AD⊥BC于D.在Rt△ABD中,AD=AB•sin45°=4×=4.(2)①如图2中,∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°﹣90°=90°.②如图3中,由(1)可知:AC==,∵PF⊥AC,∴∠PF A=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴=,即=,∴AF=2,在Rt△AFP,AF=FP,∴AP=AF=2.23.解:(1)当m=5时,y=﹣(x﹣5)2+4,当x=1时,n=﹣×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=﹣(x﹣m)2+4,得2=﹣(1﹣m)2+4,解得m=3或﹣1(舍弃),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=﹣m2+4,∴点B的坐标为(0,﹣m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,﹣m2+4=0,解得m=2或﹣2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴﹣m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.24.(1)证明:如图1中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=×8×4=16,S△EOD=×4×4=8,∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,∴S菱形AEFD=2S△AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2,∵AO=8,∴AK=6,∴AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:如图2中,设AG交PQ于H,过点H作HN⊥x轴于N,交AC于M,设AM=t.∵菱形P AQG∽菱形ADFE,∴PH=3AH,∵HN∥OQ,QH=HP,∴ON=NP,∴HN是△PQO的中位线,∴ON=PN=8﹣t,∵∠MAH=∠PHN=90°﹣∠AHM,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴===,∴HN=3AM=3t,∴MH=MN﹣NH=8﹣3t,∵PN=3MH,∴8﹣t=3(8﹣3t),∴t=2,∴OP=2ON=2(8﹣t)=12,∴P(12,0).如图3中,过点H作HI⊥y轴于I,过点P作PN⊥x轴交IH于N,延长BA交IN于M.同法可证:△AMH∽△HNP,∴===,设MH=t,∴PN=3MH=3t,∴AM=BM﹣AB=3t﹣8,∵HI是△OPQ的中位线,∴OP=2IH,∴HIHN,∴8+t=9t﹣24,∴t=4,∴OP=2HI=2(8+t)=24,∴P(24,0).②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:如图4中,QH=3PH,过点H作HM⊥OC于M,过D点P作PN⊥MH于N.∵MH是△QAC的中位线,∴MH=AC=4,同法可得:△HPN∽△QHM,∴===,∴PN=HM=,∴OM=PN=,设HN=t,则MQ=3t,∵MQ=MC,∴3t=8﹣,∴t=,∴OP=MN=4+t=,∴点P的坐标为(,0).如图5中,QH=3PH,过点H作HM⊥x轴于M交AC于I,过点Q作QN⊥HM于N.∵IH是△ACQ的中位线,∴CQ=2HI,NQ=CI=4,同法可得:△PMH∽△HNQ,∴===,则MH=NQ=,设PM=t,则HN=3t,∵HN=HI,∴3t=8+,∴t=,∴OP=OM﹣PM=QN﹣PM=4﹣t=,∴P(,0).③如图6中,当AP为菱形的对角线时,有图6一种情形:过点H作HM⊥y轴于于点M,交AB于I,过点P作PN⊥HM于N.∵HI∥x轴,AH=HP,∴AI=IB=4,∴PN=IB=4,同法可得:△PNH∽△HMQ,∴===,∴MH=3PN=12,HI=MH﹣MI=4,∵HI是△ABP的中位线,∴BP=2IH=8,∴OP=OB+BP=16,∴P(16,0),综上所述,满足条件的点P的坐标为(12,0)或(24,0)或(,0)或(,0)或(16,0).。

2020年浙江省丽水市中考数学试卷-含答案

2020年浙江省丽水市中考数学试卷-含答案

2020年浙江省丽水市中考数学试卷一.选择题(共10小题) 1.有理数3的相反数是( ) A. ﹣3 B. ﹣13C. 3D. 132.分式52x x +-的值是零,则x 的值为( ) A. 5B. 2C. -2D. -53.下列多项式中,能运用平方差公式分解因式的是( ) A. 22a b +B. 22a b -C. 22a b -D. 22a b --4.下列四个图形中,是中心对称图形的是( )A. B. C. D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A. 12B. 13C. 23D. 166.如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b ,理由是( )A. 连结直线外一点与直线上各点的所有线段中,垂线段最短B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D. 经过直线外一点,有且只有一条直线与这条直线平行 7.已知点(-2,a ),(2,b ),(3,c )在函数()0ky k x=>的图象上,则下列判断正确的是( )A. a <b <cB. b <a <cC. a <c <bD. c <b <a8.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则∠EPF 的度数是( )A. 65°B. 60°C. 58°D. 50°9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x ,则列出方程正确的是( )A. 3252x x ⨯+=B. 3205102x x ⨯+=⨯C. 320520x x ⨯++=D. ()3205102x x ⨯++=+10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O ,BD 与HC 相交于点P .若GO=GP,则ABCDEFGHS S正方形正方形的值是( )A. 12B. 22+C. 52D.154二.填空题(共6小题)11.点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可)______. 12.数据1,2,4,5,3的中位数是______.13.如图为一个长方体,则该几何体主视图的面积为______cm 2.14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是______°.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β,则tan β的值是______.16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,O E ⊥AC 于点E ,OF ⊥BD 于点F ,OE=OF=1cm ,AC =BD =6cm , CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大值时,以点A ,B ,C ,D 为顶点的四边形的周长是_____ cm . (2)当夹子的开口最大(点C 与点D 重合)时,A ,B 两点的距离为_____cm .三.解答题(共8小题)17.计算:()0o 2020+4tan 45+3--18.解不等式:552(2+)x x <19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:类别 项 目 人数A 跳绳 59B 健身操 ▲C 俯卧撑 31D 开合跳 ▲E 其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数. 20.如图,AB 的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°. (1)求弦AB 的长. (2)求AB 的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6℃.气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题: (1)求高度为5百米时的气温. (2)求T 关于h 的函数表达式.(3)测得山顶的气温为6℃,求该山峰的高度.22.如图,在△ABC 中,AB =42,∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点C (1,n )在该函数图象上. (1)当m=5时,求n 的值.(2)当n =2时,若点A 在第一象限内,结合图象,求当y 2≥时,自变量x 取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 取值范围.24.如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F , 已知OB=8. (1)求证:四边形AEFD 为菱形. (2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点D ),点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P , Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.2020年浙江省丽水市中考数学试卷答案1.A .2.D .3.C .4.C .5.A .6.B .7.C .8.B .9.D .10.B .11.-1(答案不唯一,负数即可).12.3.13.20.14.30.15.19315.16.16,6013. 17.解:原式12135. 18.解:552(2)x x ,5542x x 5245x x,39x <, 3x <.19.解:(1)22÷11%=200.∴参与问卷调查的学生总人数为200人. (2)200×24%=48.答:最喜爱“开合跳”的学生有48人.(3)抽取学生中最喜爱“健身操”的初中学生有200-59-31-48-22=40(人),4080001600200⨯=. ∴最喜爱“健身操”的初中学生人数约为1600人. 20.解:(1)AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒, 3sin 6023ACOA ,223AB AC ∴==;(2)OC AB ⊥,60AOC ∠=︒,120AOB ∴∠=︒,2OA =,∴AB 的长是:120241803ππ⨯=.21.解:(1)由题意得 高度增加2百米,则温度降低2×0.6=1.2(℃). ∴13.2-1.2=12∴高度为5百米时的气温大约是12℃. (2)设T=-0.6h+b(k ≠0), 当h =3时,T =13.2, 13.2=-0.6⨯3+b , 解得 b=15. ∴T =-0.6h +15.(3)当T =6时,6=-0.6h +15, 解得h =15.∴该山峰的高度大约为15百米.22.解:(1)如图1,过点A 作AD ⊥BC 于点D , 在Rt △ABD 中,sin 45AD AB =⋅︒=242⨯=4.(2)①如图2,∵△AEF ≌△PEF , ∴AE =EP . 又∵AE =BE , ∴BE =EP ,∴∠EPB =∠B =45°, ∴∠AEP =90°.②如图3,由(1)可知:在Rt △ADC 中,83sin 60AD AC =︒. ∵PF ⊥AC , ∴∠PFA =90°. ∵△AEF ≌△PEF ,∴∠AFE=∠PFE=45°,则∠AFE=∠B. 又∵∠EAF=∠CAB,∴△EAF∽△CAB,∴AFAB=AEAC,即42=2283,∴AF=23,在Rt△AFP中,AF=PF,则AP=2AF=26.23.解:(1)当5m=时,21(5)42y x=--+,当1x=时,214442n.(2)当2n =时,将(1,2)C代入函数表达式21()42y x m=--+,得212(1)42m,解得3m=或1-(舍弃),∴此时抛物线的对称轴3x=,根据抛物线的对称性可知,当2y=时,1x=或5,x的取值范围为15x.(3)点A与点C不重合,1m∴≠,抛物线的顶点A的坐标是(,4)m,∴抛物线的顶点在直线4y=上,当0x=时,2142y m,∴点B的坐标为21(0,4)2m,抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,21402m,解得22m =或22-,当点B 与点D 重合时,如图2,顶点A 也与B ,D 重合,点B 到达最高点,∴点(0,4)B ,21442m ,解得0m =,当抛物线从图2的位置继续向左平移时,如图3点B 不在线段OD 上,B ∴点在线段OD 上时,m 的取值范围是:01m <或122m .24.(1)∵DF ∥AE ,EF ∥AD , ∴四边形AEFD 是平行四边形. ∵四边形ABOC 是正方形,∴OB =OC =AB =AC ,∠ACE =∠ABD =90°. ∵点D ,E 是OB ,OC 的中点, ∴CE =BD ,∴△ACE ≌△ABD(SAS), ∴AE =AD , ∴AEFD 是菱形 (2)如图1,连结DE ∵S △ABD =12AB ·BD =184=162⨯⨯, S △ODE =12OD ·OE =144=82⨯⨯, ∴S △AED =S 正方形ABOC -2 S △ABD - S △ODE =64-216⨯-8=24, ∴S 菱形AEFD =2S △AED =48(3)由图1,连结AF 与DE 相交于点K ,易得△ADK 的两直角边之比为1:31)当AP为菱形一边时,点Q在x轴上方,有图2、图3两种情况:如图2,AG与PQ交于点H,∵菱形PAQG∽菱形ADFE,∴△APH的两直角边之比为1:3过点H作HN⊥x轴于点N,交AC于点M,设AM=t∵HN∥OQ,点H是PQ的中点,∴点N是OP中点,∴HN是△OPQ的中位线,∴ON=PN=8-t又∵∠1=∠3=90°-∠2,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴AMHN=MHPN=13,∴HN=3AM=3t,∴MH=MN-NH=8-3t.∵PN=3MH,∴8-t =3(8-3t),解得t=2 ∴OP=2ON=2(8-t)=12∴点P的坐标为(12,0)如图3,△APH的两直角边之比为1:3过点H作HI⊥y轴于点I,过点P作PN⊥x轴交IH于点N,延长BA交IN于点M∵∠1=∠3=90°-∠2,∠AMH=∠PNH,∴△AMH∽△HNP,∴AMHN=MHPN=13,设MH=t,∴PN=3MH=3t,∴AM=BM-AB=3t-8,∴HN=3AM=3(3t-8) =9t-24又∵HI是△OPQ的中位线,∴OP=2IH,∴HI=HN,∴8+t=9t-24,解得 t=4∴OP=2HI=2(8+t)=24,∴点P的坐标为(24,0)2)当AP为菱形一边时,点Q在x轴下方,有图4、图5两种情况:如图4,△PQH的两直角边之比为1:3过点H作HM⊥y轴于点M,过点P作PN⊥HM于点N∵MH是△QAC的中位线,∴HM =2AC =4 又∵∠1=∠3=90°-∠2,∠HMQ =∠N ,∴△HPN ∽△QHM ,∴NPHM =HN MQ =13,则PN =13HM =43, ∴OM =43设HN =t ,则MQ =3t∵MQ =MC ,∴3t =8-43,解得t =209∴OP =MN =4+t =569, ∴点P 的坐标为(569,0) 如图5,△PQH 的两直角边之比为1:3过点H 作HM ⊥x 轴于点M ,交AC 于点I ,过点Q 作NQ ⊥HM 于点N∵IH 是△ACQ 的中位线,∴CQ =2HI ,NQ =CI =4∵∠1=∠3=90°-∠2,∠PMH =∠QNH ,∴△PMH ∽△HNQ ,∴MH NQ =PM HN =PH HQ =13,则MH =13NQ =43 设PM =t ,则HN =3t ,∵HN =HI ,∴3t=8+43,解得 t=289∴OP=OM-PM=QN-PM=4-t=89,∴点P的坐标为(89,0)3)当AP为菱形对角线时,有图6一种情况:如图6,△PQH的两直角边之比为1:3过点H作HM⊥y轴于点M,交AB于点I,过点P作PN⊥HM于点N∵HI∥x轴,点H为AP的中点,∴AI=IB=4,∴PN=4∵∠1=∠3=90°-∠2,∠PNH=∠QMH=90°,∴△PNH∽△HMQ,∴PNMH =PMHN=PMHN=13,则MH=3PN=12,HI=MH-MI=4∵HI是△ABP的中位线,∴BP=2HI=8,即OP=16,∴点P的坐标为(16,0)综上所述,点P的坐标为(12,0),(24,0),(569,0),(89,0),(16,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则∠EPF 的度数是( ▲ )
A.65°
B.60°
C.58°
D.50°
A
E
D
OP
B
F
C
(第 8 题)
3×2□+5 =□2
(第 9 题)
A
D
H
P E
OG
F
B
C
(第 10 题)
9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为 x,则列出方
程正确的是( ▲ )
A. 3 2x + 5 = 2x
A. 1+ 2
B. 2 + 2
C. 5 − 2
15
D.
4
卷Ⅱ
说明:本卷共有 2 大题,14 小题,共 90 分.请用黑色字迹钢笔或签字笔将答案写在“答
题纸”的相应位置上. 二、填空题 (本题有 6 小题,每小题 4 分,共 24 分)
11.点 P(m,2)在第二象限内,则 m 的值可以是(写出一个即可) ▲ .
B. 3 20x + 5 = 10x 2
C. 3 20 + x + 5 = 20x
D. 3(20 + x) + 5 = 10x + 2
10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形 ABCD 与正方形 EFGH.连结
EG,BD 相交于点 O,BD 与 HC 相交于点 P.若 GO=GP,则 S正方形ABCD 的值是( ▲ ) S正方形EFGH
卷Ⅰ
说明:本卷共有 1 大题,10 小题,共 30 分.请用 2B 铅笔在答题纸上将你认为正确的选
项对应的小方框涂黑、涂满.
一、选择题(本题有 10 小题,每小题 3 分,共 30 分)
1.实数 3 的相反数是( ▲ )
A. − 3
B.3
C. − 1 3
1
D.
3
2.分式 x + 5 的值是零,则 x 的值为( ▲ ) x−2
浙江省 2020 年初中学业水平考试(金华卷/丽水卷)
数学试题卷
考生须知:
1.全卷共三大题,24 小题,满分为 120 分.考试时间为 120 分钟,本次考试采用开卷形式. 2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案 必须用 2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在“答题纸”相应位置上. 3.请用黑色字迹钢笔或签字笔在“答题纸”上先填写姓名和准考证号. 4.作图时,可先使用 2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑. 5.本次考试不得使用计算器.
(1)当 E,F 两点的距离最大值时,以点 A,B,C,D 为顶点的四边形的周长是 ▲ cm. (2)当夹子的开口最大(点 C 与点 D 重合)时,A,B 两点的距离为 ▲ cm.
2
C E A O (B) F
D
图1
图2
(第 16 题)
三、解答题 (本题有 8 小题,共 66 分,各小题都必须写出解答过程) 17.(本题 6 分)
抽取的学生最喜爱体育锻炼项目的统计表
类别
项目
人数
A
跳绳
59
B
健身操

C
俯卧撑
31
D
开合跳

E
其它
22
抽取的学生最喜爱体育锻炼项目的扇形统%
C B
A 29.5%
A.跳绳 B.健身操 C.俯卧撑 D.开合跳 E.其它
(1)求参与问卷调查的学生总人数. (第 19 题) (2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人? (3)该市共有初中学生约 8000 人,估算该市初中学生中最喜爱“健身操”的人数.
计算: (−2020)0 + 4 − tan 45o + −3 .
18.(本题 6 分)
解不等式: 5x − 5<2(2+x) .
19.(本题 6 分) 某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中 学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下 两幅不完整的统计图表,请根据图表信息回答下列问题:
20.(本题 8 分)
O
如图, AB 的半径 OA=2,OC⊥AB 于点 C,∠AOC=60°.
(1)求弦 AB 的长. (2)求 AB 的长.
A
C
B
(第 20 题)
21.(本题 8 分)
12.数据 1,2,4,5,3 的中位数是 ▲ .
13.如图为一个长方体,则该几何体主视图的面积为 ▲ cm2. A
单位:cm 3
4 5
主视方向 (第 13 题)
70°
N
140°
M α
120°
(第 14 题)
β BC
(第 15 题)
14.如图,平移图形 M,与图形 N 可以拼成一个平行四边形,则图中 α 的度数是 ▲ °. 15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点 A, B,C 均为正六边形的顶点,AB 与地面 BC 所成的锐角为 β,则 tanβ 的值是 ▲ . 16. 图 1 是一个闭合时的夹子,图 2 是该夹子的主视示意图,夹子两边为 AC,BD(点 A 与 点 B 重合),点 O 是夹子转轴位置,OE⊥AC 于点 E,OF⊥BD 于点 F,OE=OF=1cm, AC=BD=6cm, CE=DF, CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点 O 转动.
Aa b
D.经过直线外一点,有且只有一条直线与这条直线平行
7.已知点(-2,a),(2,b),(3,c)在函数 y = k (k>0) 的图象上,
x
则下列判断正确的是( ▲ )
B (第 6 题)
A.a<b<c
B. b<a<c
C. a<c<b
D. c<b<a
1
8.如图,⊙O 是等边△ABC 的内切圆,分别切 AB,BC,AC 于点 E,F,D,P 是 DF 上一点,
1
3
14
3
1
1
A.
2
1
B.
3
2
C.
3
1
D.
6
(第 5 题)
6.如图,工人师傅用角尺画出工件边缘 AB 的垂线 a 和 b,得到 a∥b,理由是( ▲ )
A.连结直线外一点与直线上各点的所有线段中,垂线段最短 B.在同一平面内,垂直于同一条直线的两条直线互相平行 C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线
A.5
B.2
C.-2
D.-5
3.下列多项式中,能运用平方差公式分解因式的是( ▲ )
A. a2 + b2
B. 2a − b2
C. a2 − b2
D. −a2 − b2
4.下列四个图形中,是中心对称图形的是( ▲ )
A
B
C
D
5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们 背面朝上,从中任意摸出一张,摸到 1 号卡片的概率是( ▲ )
相关文档
最新文档