七年级下册数学课后答案

合集下载

北师大版数学七年级下册第一章整式的乘除第6节完全平方公式课后练习

北师大版数学七年级下册第一章整式的乘除第6节完全平方公式课后练习

第一章整式的乘除第6节完全平方公式课后练习学校:___________姓名:___________班级:___________考生__________ 评卷人得分一、单选题1.4张长为m ,宽为n (m >n )的长方形纸片,按如图的方式拼成一个边长为(m +n )的正方形,图中空白部分的面积为S 1,阴影部分的面积为S 2,若3S 1=2S 2,则m ,n 满足的关系是( )A .m =4.5nB .m =4nC .m =3.5nD .m =3n2.下列运算正确的是( ) A .(m 2)3=m 6B .(mn )3=mn 3C .(m +n )2=m 2+n 2D .m 6÷m 2=m 33.如果229(3)x bx x -+=-,则b 的值为( ) A .-3B .3C .6D .-64.我国宋代数学家杨辉发现了()na b +(0n =,1,2,3,…)展开式系数的规律:以上系数三角表称为“杨辉三角”,根据上述规律,()8a b +展开式的系数和是( ) A .64 B .128C .256D .612评卷人 得分二、填空题 5.已知:2a b +=,34ab =,则22a b +=_________,a b -=______.6.如图,长方形ABCD的周长为24,以它的四条边为边长向外作正方形,如果这四个正方形的面积和为160,则长方形ABCD 的面积为________.7.已知(x ﹣2020)2+(x ﹣2022)2=18,则(x ﹣2021)2的值是___. 8.已知:x +y =12,则代数式3x 2+y 2的最小值为___. 评卷人 得分三、解答题 9.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S . (1)用含a ,b 的代数式分别表示1S 、2S ; (2)若15a b +=,20ab =,求12S S +的值;(3)当1240S S +=时,求出图3中阴影部分的面积3S .10.化简求值:()()()()22322x y x x y x y x y +-+++-,其中14x =,2y =.11.有甲、乙两个长方形纸片,边长如图所示(m>0),面积分别为S甲和S乙.(1)①计算:S甲=,S乙=;①用“<”,“=”或“>”填空:S甲S乙.(2)若一个正方形纸片的周长与乙长方形的周长相等,面积为S正.①该正方形的边长是(用含m的代数式表示);①小方同学发现:S正与S乙的差与m无关.请判断小方的发现是否正确,并通过计算说明你的理由.12.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值.13.如图,有长为m ,宽为n 的长方形卡片()A mn ,边长为m 的正方形卡片B ,边长为n 的正方形卡片C ,将卡片C 按如图1放置于卡片A 上,其未叠合部分(阴影)面积为1S ,将卡片A 按如图2放置于卡片B 上,其未叠合部分(阴影)面积为2S .(1)1S =________,2S =________;(用含m 、n 的代数式表示) (2)若1218S S +=,则图3中阴影部分的面积3S =________; (3)若6m n -=,10mn =,求图4中阴影部分的面积4S .14.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示) 方法1:______ 方法2:______(2)根据()1中结论,请你写出下列三个代数式之间的等量关系;代数式:2()m n +,2()m n -,mn _________________________(3)根据(2)题中的等量关系,解决如下问题:已知8a b +=,7ab =,求a b -和22a b -的值.15.观察与计算: 152=225=1×2×100+25; 252=625=2×3×100+25; 352=1225=3×4×100+25; …猜想与计算:852=_________,1052= ;发现:末位数字是5的数的平方的结果总是等于 ; 说理:请你用整式的乘法的有关知识说明你发现的结论的正确性. (提示:可以用10a +5表示末位数字是5的数)16.劳动是财富的源泉,也是幸福的源泉高新区某中学对劳动教育进行积极探索和实践,创建学生劳动教育基地,让学生参与农耕劳作。

2020年人教版 七年级数学下册 课后作业本《二元一次方程组实际问题》(含答案)

2020年人教版 七年级数学下册 课后作业本《二元一次方程组实际问题》(含答案)

2020年七年级数学下册课后作业本《二元一次方程组实际问题》一、选择题1.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得( )A. B. C. D.2.为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元,则购买一块电子白板和一台投影机分别需要()A.4000元,8000元B.8000元,4000元C.14000元,8000元D.10000元,12000元3.食堂的存煤计划用若干天,若每天用130kg,则缺少60kg;若每天用120kg,则还剩余60kg.设食堂的存煤共有xkg,计划用y天,则下面所列方程组正确的是A.6013060120x yx y+=⎧⎨-=⎩B.6013060120x yx y-=⎧⎨+=⎩C.6013060120y xy x+=⎧⎨-=⎩D.6013060120y xy x-=⎧⎨+=⎩4.甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个.问甲、乙两人每天分别做多少个?设甲每天做x个,乙每天做y个,列出的方程组是( ).A. B.C. D.5.小敏和小捷两人玩“打弹珠”游戏,小敏对小捷说:“把你珠子的一半给我,我就有30颗珠子”.小捷却说:“只要把你的一半给我,我就有30颗”,如果设小捷的弹珠数为x颗,小敏的弹珠数为y颗,则列出的方程组正确的是( )A. B. C. D.6.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都恰好花完的条件下,有购买方案( )A.1种B.2种C.3种D.4种7.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1.小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图2那样的正方形,中间还留下了一个洞,恰好是边长为3的小正方形,则每个小长方形的面积为( )A.120B.135C.108D.968.甲、乙两运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点,…,若甲跑步的速度为5 m/s,乙跑步的速度为4 m/s,则起跑后100 s内,两人相遇的次数为( )A.5B.4C.3D.2二、填空题9.某班组织学生去看戏剧表演.老师派班长先去购票,已知甲票每张10元,乙票每张8元.班长带去350元,买了36张票,找回14元.设班长甲票买了x张,乙票买了y张,则x:y= .10.“十一”黄金周,国光超市“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x元,男装部购买了原价为y元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为.11.已知两个完全相同的大长方形,长为a,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a的代数式表示).12.我市某重点中学校团委、学生会发出倡议,在初中各年级捐款购买书籍送给我市贫困地区的学校. 初一年级利用捐款买甲、乙两种自然科学书籍若干本,用去5324元;初二年级买了A、B两种文学书籍若干本,用去4840元,其中A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同. 若甲、乙两种书的单价之和为121元,则初一和初二两个年级共向贫困地区的学校捐献了本书.三、解答题13.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?14.为庆祝“六一”儿童节,某市中小学统一组织文艺会演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5 000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请为两校设计一种省钱的购买服装方案.15.阅读材料,善于思考的小军在解方程组时,采用了一种“整体代换’的解法.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组:(2)已知x,y满足方程组:16.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.参考答案1.答案为:B.2.B3.答案为:C;4.C5.D6.B7.B8.B9.答案为:210.答案为:.11.答案为:-0.5a.12.答案为:16813.解:设这个笼中的鸡有x只,兔有y只,根据题意得:,解得;;答:笼子里鸡有18只,兔有12只.14.解:(1)5 000-92×40=1 320(元).答:两所学校联合起来购买服装比各自购买服装共可以节省1 320元.(2)设甲、乙两所学校各有x名、y名学生准备参加演出,由题意,得x+y=92,50x+60y=5000.解得x=52,y=40.答:甲、乙两校各有52名、40名学生准备参加演出.(3)∵甲校有10人不能参加演出,∴甲校参加演出的人数为52-10=42(人).若两校联合购买服装,则需要50×(42+40)=4 100(元),此时比各自购买服装可以节约(42+40)×60-4 100=820(元).但如果两校联合购买91套服装,只需40×91=3 640(元),此时又比联合购买服装可节约4 100-3 640=460(元),因此,最省钱的购买服装方案是两校联合购买91套服装(即比实际人数多购9套).15.16.解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解得:.答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=,∵a、b都是正整数,∴或或.答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.。

人教版七年级数学下册第十章《数据的应用:直方图、统计图》知识梳理、考点精讲精练、课堂小测、课后作业第

人教版七年级数学下册第十章《数据的应用:直方图、统计图》知识梳理、考点精讲精练、课堂小测、课后作业第

第26讲数据的应用--直方图、统计图1、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

也称次数。

在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。

2、频率:频数与数据总数的比为频率。

用文字表示定义为:每个对象出现的次数与总次数的比值是频率。

3、频率:频数与数据总数的比为频率。

在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n(A)称为事件A发生的频数。

比值n(A)/n称为事件A发生的频率,并记为fn(A).用文字表示定义为:每个对象出现的次数与总次数的比值是频率。

1、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数;每一组两个端点的差叫做组距。

2、列频数分布表的注意事项运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。

3、画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组。

4、直方图的特点通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图。

特点:①清楚显示各组频数分布情况; ②易于显示各组之间频数的差别。

5、制作频数分布直方图的步骤(1)找出所有数据中的最大值和最小值,并算出它们的差。

(2)决定组距和组数。

(3)确定分点。

(4)列出频数分布表。

(5)画频数分布直方图。

1、表示数据的两种基本方法:一是统计表,通过表格可以找出数据分布的规律;二是统计图,利用统计图表示经过整理的数据,能更直观地反映数据的规律。

人教版七年级下册数学教材课后习题参考答案

人教版七年级下册数学教材课后习题参考答案

人教版七年级下册数学教材课后习题参考答案
181
/ 1
人教版七年级下册数学教材课后习题参考答案
182
/ 2
人教版七年级下册数学教材课后习题参考答案
183
/ 3
人教版七年级下册数学教材课后习题参考答案
184
/ 4
人教版七年级下册数学教材课后习题参考答案
185
/ 5
人教版七年级下册数学教材课后习题参考答案
186
/ 6
人教版七年级下册数学教材课后习题参考答案
187
/ 7
人教版七年级下册数学教材课后习题参考答案
188
/ 8
人教版七年级下册数学教材课后习题参考答案189
/ 9
人教版七年级下册数学教材课后习题参考答案
1810
/ 10
人教版七年级下册数学教材课后习题参考答案
1811
/ 11
人教版七年级下册数学教材课后习题参考答案
1812
/ 12
人教版七年级下册数学教材课后习题参考答案
1813
/ 13
人教版七年级下册数学教材课后习题参考答案
1814
/ 14
人教版七年级下册数学教材课后习题参考答案
1815
/ 15
人教版七年级下册数学教材课后习题参考答案
1816
/ 16
人教版七年级下册数学教材课后习题参考答案
1817
/ 17
人教版七年级下册数学教材课后习题参考答案
1818 / 18。

冀教版七年级下册数学第七章 相交线与平行线含答案(附解析)

冀教版七年级下册数学第七章 相交线与平行线含答案(附解析)

冀教版七年级下册数学第七章相交线与平行线含答案一、单选题(共15题,共计45分)1、把点M(-2,1)向右平移3个单位长度,再向下平移2个单位长度后得到点N,则点N的坐标为()A.(-4,4)B.(-5,3)C.(1,-1)D.(-5,-1)2、下列说法正确的有()①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过一点可以向一条射线或线段所在的直线作垂线;⑥若,则是的垂线,不是的垂线.A.2个B.3个C.4个D.5个3、如图,直线c与直线a、b相交,且a//b,则下列结论:(1)∠1=∠2;(2)∠1=∠3;(3)∠3=∠2中正确的个数为()A.0B.1C.2D.34、在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,若点A的对应点是点C(3,a),点B的对应点是点D(b,1),则a﹣b的值是()A.﹣1B.0C.1D.25、如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是( )A.60°B.50°C.40°D.30°6、如图OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠AOD的度数是()A.30°;B.40 °;C.60° ;D.90°.7、如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=130°,则∠D的度数是()A.20 °B.40 °C.50°D.70°8、下列命题:①同旁内角互补,两直线平行;②两个锐角互余的三角形是直角三角形;③如果一个角的两边与另一个角的两边互相平行,那么这两个角相等,其中真命题的序号是()A.①②B.①③C.②③D.①②③9、如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E1F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为()A.7B.14C.21D.2810、下列命题中,①三角形的外心是三角形三边垂直平分线的交点;②函数y=(1﹣a)x2﹣4x+6与x轴只有一个交点,则a=;③半径分别为1和2的两圆相切,则圆心距为3;④若对于任意x>1的实数,都有ax>1成立,则a≥1.其中正确的个数有()A.1个B.2个C.3个D.4个11、如图,已知∠1=120°,则∠2的度数是()A.120°B.90°C.60°D.30°12、如图,下列条件中,不能判断直线∥ 的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°13、如图,下列说法正确的是()A.如果∠1和∠2互补,那么l1∥l2B.如果∠2=∠3,那么l1∥l2C.如果∠1=∠2,那么l1∥l2D.如果∠1=∠3,那么l1∥l214、如图,四边形, 是延长线上一点,下列推理正确的是()A.如果,那么B.如果,那么C.如果,那么D.如果,那么15、如图所示,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DEB.DF∥ACC.∠E=∠ABC D.AB∥DE二、填空题(共10题,共计30分)16、如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是________.17、如图,把一块等腰直角三角板△ABC,∠C=90°,BC=5,AC=5.现将△ABC 沿CB方向平移到△A′B′C′的位置,若平移距离为x(0≤x≤5),△ABC与△A′B′C′的重叠部分的面积y,则y=________(用含x的代数式表示y).18、如图,矩形ABCD中,E,F分别为AB,CD的中点.G为AD上一点,将△ABC沿BG翻折,使A点的对应点恰好落在EF上,则∠ABG=________.19、如图,直线l1∥l2,AB⊥EF,∠1=20°,那么∠2=________.20、如图,在△ABC中,AB=AC=8,点D是BC边上一点,且DE∥AC,DF∥AB,则四边形DEAF的周长为________.21、如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP的最小值是________.22、将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a上,含90°角的顶点落在直线b上.若a∥b,∠2=2∠1,则∠1=________°.23、如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为________.24、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠1=60°,则∠2等于________25、已知直线,a与b之间的距离为5,a与b之间有一点P,点P到a 的距离是2,则点P到b的距离是________.三、解答题(共5题,共计25分)26、如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF过点O,且平行于BC,求∠BOC的度数.27、每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2.28、如图,点B、C、E、F都在同一直线上,与DE的延长线交于点G,,,求证:.29、如图,在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):(1)作出△ABC中AB边上的高;(2)画出先将△ABC向右平移5格,再向上平移3格后的△DEF.30、如图,在由若干个小正方形组成的网格图中,点A,B,C,P都在网格图的格点上,按要求完成下列各小题.①点A表示的是小鹏家,线段BC表示一条马路,请你在图中画出小鹏从家走到这条马路的最短距离(即AD);②在①的基础上,连接AC,若在该网格中平移三角形ADC,使得点D移到点P 的位置上,请你在图中画出平移后的三角形EPF(点A与点E对应)参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、A5、B6、C7、B8、A9、B10、B11、A12、B14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

人教版七年级数学下册第七章《平面直角坐标系》知识梳理、考点精讲精练、课堂小测、课后作业第9讲有答案

人教版七年级数学下册第七章《平面直角坐标系》知识梳理、考点精讲精练、课堂小测、课后作业第9讲有答案

第9讲平面直角坐标系1、有序数对:有顺序的两个数a与b组成的数对。

(1)记作(a ,b);(2)注意:a、b的先后顺序对位置的影响。

a,)(3)、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b 一一对应;其中,a为横坐标,b为纵坐标坐标;(4)、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;2、平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

构成坐标系的各种名称:水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;四个象限的特点:第一象限(正,正),第二象限(负,正),第三象限(负,负),第四象限(正,负)横坐标轴上的点:(x ,0)纵坐标轴上的点:(0,y )1、平行于x 轴(或横轴)的直线上的点的纵坐标相同;2、平行于y 轴(或纵轴)的直线上的点的横坐标相同。

3、第一、三象限角平分线上的点的横纵坐标相同;4、第二、四象限角平分线上的点的横纵坐标相反。

(1)在与x 轴平行的直线上, 所有点的纵坐标相等; 点A 、B 的纵坐标都等于m ;(2)在与y 轴平行的直线上,所有点的横坐标相等; 点C 、D 的横坐标都等于n ;(3)各象限的角平分线上的点的坐标特点:若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

2020年冀教版七年级下册数学课后练习(11)【附答案】

2020年冀教版七年级下册数学课后练习(11)【附答案】

2020年冀教版七年级下册数学课后练习(11)一、解答题(共11小题,满分0分)1.写出下列命题的条件和结论:(1)能被2整除的数一定是偶数.(2)两直线平行,同旁内角互补.(3)平行于同一条直线的两条直线平行.2.请你举反例说明下列命题是假命题:(1)相等的角是直角.(2)如果a+b=0,那么a=0,b=0.(3)如果∠1>∠2,那么∠1是钝角.3.如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.4.如图,AB⊥CD,∠1=30°.求∠2的度数.5.在各图中,分别过点P画AB的垂线,6.如图,已知a∥b,c∥d,∠1=70°,求∠2、∠3的度数.7.如图,∠1=55°,∠2=55°,∠3=85°.求∠4的度数.8.如图,填空:(1)∵∠A=∠3(已知),∴∥(),(2)∵∠2=∠E(已知),∴∥().(3)∵∠A+=180°(已知),∴AD∥BE().9.完成下列说理过程,并在括号内填上相应的依据.(1)如图1,∵∠ADE=∠DEF(已知),∴AD∥()又∵∠EFC+∠C=180°(已知),∴EF∥()∴∥().(2)如图2:∵DE∥AB(已知)∴∠B=,∠A=()∴∠=∠(两直线平行,内错角相等)∴∠+=180°∠+=180°∠+=180°(两直线平行,同旁内角互补)10.已知:如图,AB∥CD,∠1═70°,∠2=55°.对EG平分∠BEF说明理由.理由:∵AB∥CD(已知),∴∠1+=180°()∴∠=180°﹣∠1=180°﹣70°=110°∵∠2=55°=∠()∴EG是∠BEF的平分线11.已知:如图,∠1=∠2,∠C=∠D,点B,E分别在线段AC,DF上,对∠A=∠F说明理由.理由:∵∠1=∠2(已知),∠3=∠2 (),∴∠1=∠3 (),∴∥().∴∠C=(两直线平行,同位角相等),又∵∠C=∠D(已知).∴=∠D(等量代换).∴AC∥(),∴∠A=∠F().2020年冀教版七年级下册数学课后练习(11)参考答案与试题解析一、解答题(共11小题,满分0分)1.写出下列命题的条件和结论:(1)能被2整除的数一定是偶数.(2)两直线平行,同旁内角互补.(3)平行于同一条直线的两条直线平行.【解答】解:(1)条件:能被2整除的数,结论是这样的数一定是偶数;(2)条件:两直线平行,结论是同旁内角互补;(3)条件:如果两条直线都与同一条直线平行,结论是那么两条直线平行.2.请你举反例说明下列命题是假命题:(1)相等的角是直角.(2)如果a+b=0,那么a=0,b=0.(3)如果∠1>∠2,那么∠1是钝角.【解答】解:(1)当∠1=∠2=30°时,满足相等的角,但∠1和∠2不是直角,故原命题是假命题;(2)当a=2,b=﹣2时,满足a+b=0,当a≠0,b≠0,故原命题是假命题;(3)当∠1=45°,∠2=30°时,∠1>∠2,但∠1不是钝角,故原命题是假命题.3.如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.【解答】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°﹣∠1=180°﹣40°=140°.4.如图,AB⊥CD,∠1=30°.求∠2的度数.【解答】解:∵AB⊥CD,∴∠ABD=90°,∵∠1=30°,∴∠2=90°﹣30°=60°.5.在各图中,分别过点P画AB的垂线,【解答】解:如图所示:6.如图,已知a∥b,c∥d,∠1=70°,求∠2、∠3的度数.【解答】解:∵a∥b,c∥d,∠1=70°,∴∠2=∠1=70°,∠1=∠4=70°,∴∠3=180°﹣∠4=110°.7.如图,∠1=55°,∠2=55°,∠3=85°.求∠4的度数.【解答】解:∵∠1=55°,∠2=55°,∴∠1=∠2.∵a∥b.∴∠3+∠4=180°.∴∠4=95°8.如图,填空:(1)∵∠A=∠3(已知),∴AD∥DE(同位角相等,两直线平行),(2)∵∠2=∠E(已知),∴BD∥CE(内错角相等,两直线平行).(3)∵∠A+∠ABE=180°(已知),∴AD∥BE(同旁内角互补,两直线平行).【解答】解:(1)∵∠A=∠3(已知),∴AD∥DE(同位角相等,两直线平行),故答案为:AD;DE;同位角相等,两直线平行;(2)∵∠2=∠E(已知),∴BD∥CE(内错角相等,两直线平行),故答案为:BD;CE;内错角相等,两直线平行;(3)∵∠A+∠ABE=180°(已知),∴AD∥BE(同旁内角互补,两直线平行),故答案为:∠ABE;同旁内角互补,两直线平行.9.完成下列说理过程,并在括号内填上相应的依据.(1)如图1,∵∠ADE=∠DEF(已知),∴AD∥EF(内错角相等,两直线平行)又∵∠EFC+∠C=180°(已知),∴EF∥BC(同旁内角互补,两直线平行)∴AD∥BC(平行于同一条直线的两直线平行).(2)如图2:∵DE∥AB(已知)∴∠B=∠EDC,∠A=∠DEC(两直线平行,同位角相等)∴∠BFD=∠FDE(两直线平行,内错角相等)∴∠AFD+∠FDE=180°∠A+∠AED=180°∠+∠BDE=180°(两直线平行,同旁内角互补)【解答】解:(1)如图1,∵∠ADE=∠DEF(已知),∴AD∥EF(内错角相等,两直线平行)又∵∠EFC+∠C=180°(已知),∴EF∥BC(同旁内角互补,两直线平行)∴AD∥BC(平行于同一条直线的两直线平行).(2)如图2:∵DE∥AB(已知)∴∠B=∠EDC,∠A=∠DEC(两直线平行,同位角相等)∴∠BFD=∠∠FDE(两直线平行,内错角相等)∴∠AFD+∠FDE=180°∠A+∠AED=180°∠B+∠BDE=180°(两直线平行,同旁内角互补)故答案为:(1)EF,内错角相等,两直线平行,BC,同旁内角互补,两直线平行,AD、BC,平行于同一条直线的两直线平行;(2)∠EDC,∠DEC,两直线平行,同位角相等,BFD,FDE,AFD,∠FDE,A,∠AED,B,∠BDE.10.已知:如图,AB∥CD,∠1═70°,∠2=55°.对EG平分∠BEF说明理由.理由:∵AB∥CD(已知),∴∠1+∠BEF=180°(两直线平行,同旁内角互补)∴∠BEF=180°﹣∠1=180°﹣70°=110°∵∠2=55°=∠BEF(等量关系)∴EG是∠BEF的平分线【解答】解:∵AB∥CD(已知),∴∠1+∠BEF=180°(两直线平行,同旁内角互补),∴∠BEF=180°﹣∠1=180°﹣70°=110°,∵∠2=55°=∠BEF(等量关系),∴EG是∠BEF的平分线.故答案为:∠BEF,两直线平行,同旁内角互补,BEF,BEF,等量关系.11.已知:如图,∠1=∠2,∠C=∠D,点B,E分别在线段AC,DF上,对∠A=∠F说明理由.理由:∵∠1=∠2(已知),∠3=∠2 (对顶角相等),∴∠1=∠3 (等量代换),∴BD∥CE(同位角相等,两直线平行).∴∠C=∠ABD(两直线平行,同位角相等),又∵∠C=∠D(已知).∴∠ABD=∠D(等量代换).∴AC∥DF(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).【解答】解:∵∠1=∠2(已知),∠3=∠2 (对顶角相等),∴∠1=∠3 (等量代换),∴BD∥CE(同位角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),又∵∠C=∠D(已知),∴∠ABD=∠D(等量代换),∴AC∥DF(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:对顶角相等;等量代换;BD;CE;同位角相等,两直线平行;∠ABD;DF;内错角相等,两直线平行;两直线平行,内错角相等.。

北师大版数学七年级下册第三章变量之间的关系第3节用图像表示的变量间关系课后练习

北师大版数学七年级下册第三章变量之间的关系第3节用图像表示的变量间关系课后练习

第三章变量之间的关系第3节用图像表示的变量间关系课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度2.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.3.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米B.2千米C.15千米D.37千米4.小刚徒步到同学家取自行车,在同学家逗留几分钟后他骑车原路返回,他骑车速度是徒步速度的3倍.设他从家出发后所用的时间为t(分钟),所走的路程为s(米),则s 与t的函数图象大致是()A.B.C.D.5.某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)的关系的图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花时间少于回家所花时间D.小王去时走上坡路施,回家时走下坡路6.如图,向高为H的圆柱形空水杯中注水,表示注水量y与水深x的关系的图象是下面哪一个?()A.B.C.D.7.梅梅以每件6元的价格购进某商品若干件到市场去销售,销售金额y(元)与销售量x(件)的函数关系的图象如图所示,则降价后每件商品销售的价格为()A.5元B.15元C.12.5元D.10元评卷人得分二、填空题8.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是________(只需填序号)9.用图象来表示两个变量之间的关系的方法叫做__________,在利用图象法表示变量之间的关系时,通常用__________方向的数轴(称为__________)上的点表示自变量,用__________方向的数轴(称为__________)上的点表示因变量.10.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务,收割亩数与天数之间的关系如图所示,那么乙参与收割________天.11.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了22元,那么小明姥姥乘车路程为__________千米.12.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,则隧道长度为________米.13.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;①甲的平均速度为15千米/小时;①乙走了8km后遇到甲;①乙出发6分钟后追上甲.其中正确的有_____________(填所有正确的序号).14.某城市用电收费实行阶梯电价,收费标准如下表所示,用户5月份交电费45元,则所用电量为_____度.月用电量不超过12度的部分超过12度不超过18度的部分超过18度的部分收费标准(元/度)2.00 2.503.00评卷人得分三、解答题15.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆16.温度的变化是人们在生活中经常谈论的话题,请你根据下图回答下列问题:(1)上午9时的温度是多少?这一天的最高温度是多少?(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(3)在什么时间范围内温度在下降?图中的A点表示的是什么?17.下图表示购买某种商品的个数与付款数之间的关系(1)根据图形完成下列表格购买商品个数(个)2467付款数(元)(2)请写出表示付款数y(元)与购买这种商品的个数x(个)之间的关系式.18.小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是_________,因变量是_________,小南家到该度假村的距离是_____km.(2)小南出发___________小时后爸爸驾车出发,爸爸驾车的平均速度为___________km/h,图中点A表示.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是___________km.19.巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?20.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;①当t等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案:1.C【解析】【详解】A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.2.B【解析】【详解】①y轴表示当天爷爷离家的距离,X轴表示时间又①爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,①刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多①选项B中的图形满足条件.故选B.3.A【解析】【详解】解:由图象可以看出菜地离小徐家1.1千米.故选A.点睛:本题考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题的关键.4.B【解析】【分析】根据小刚取车的整个过程共分三个阶段:慢匀速步行,图像是坡直线,然后休息反应时间变化路程不变,再快匀速骑自行车,图像是陡直线即可.【详解】解:小刚取车的整个过程共分三个阶段:①徒步从家到同学家,s随时间t的增大而增大;①在同学家逗留期间,s不变;①骑车返回途中,速度是徒步速度的3倍,s随t的增大而增大,并且比徒步时的直线更陡;纵观各选项,只有B选项符合,故选B.【点睛】本题考查图像识别,掌握图形的特征和表示的意义是解题关键.5.B【解析】【分析】A、根据速度=路程÷时间,可求出小王去时的速度和回家的速度,比较后可得出A不正确;B、观察函数图象,求出小王在朋友家停留的时间,故B正确;;C、先求出小王回家所用时间,比较后可得出C不正确;D、题干中未给出路况如何,故D不正确.综上即可得出结论.【详解】解:A、小王去时的速度为2000÷20=100(米/分),小王回家的速度为2000÷(40−30)=200(米/分),①100<200,①小王去时的速度小于回家的速度,A不正确;B、①30−20=10(分),①小王在朋友家停留了10分,B正确;C、40−30=10(分),①20>10,①小王去时所花时间多于回家所花时间,C不正确;D、①题干中未给出小王去朋友家的路有坡度,①D不正确.故选B.【点睛】本题考查了函数图象,观察函数图象逐一分析四条结论的正误是解题的关键.6.A【解析】【详解】由于圆柱形水杯是均匀的物体,随着水的深度变高,需要的注水量也是均匀升高的.可知,只有选项A适合均匀升高这个条件.故选A.7.D【解析】【详解】(1000-600)÷(80-40)=10(元)8.①①【解析】【详解】①小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,①表示母亲离家的时间与距离之间的关系的图象是①;①父亲看了10分报纸后,用了15分返回家,①表示父亲离家的时间与距离之间的关系的图象是①9.图象法水平横轴竖直纵轴【解析】【详解】用图象来表示两个变量之间的关系的方法叫做图象法,在利用图象法表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量,故答案为图象法,水平,横轴,竖直,纵轴.10.4【解析】【详解】解:由图可知,甲、乙收割机每天共收割350-200=150亩,共同收割600亩,所以,乙参与收割的天数是600÷150=4天.故答案为4.【点睛】此题主要考查学生的读图获取信息的能力,要注意分析其中的“关键点”.11.13【解析】【详解】设AB的解析式为y=kx+b,由题意,得63148k bk b=+⎧⎨=+⎩,解得:1.61.2kb=⎧⎨=⎩,①直线AB的解析式为y=1.6x+1.2(x≥3),当y=22时,22=1.6x+1.2,解得:x=13,故答案为13.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.12.900【解析】【分析】根据图象可知,火车的长度为150米,火车的速度可用火车的长度除以火车本身出(或进)隧道内所用的时间即35-30=5秒,列式计算即可得到火车行驶的速度;隧道的长度等于火车走过的总路程减去火车的长度,可列式为35×30-150,列式计算即可得到答案.【详解】解:由图象可直接得到火车的长度为150米,火车的速度是:150÷(35−30)=150÷5=30(米/秒),隧道的长度:35×30−150=1050−150=900(米).故答案为900.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.13.①①①【解析】【详解】①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;①根据甲到达目的地时的路程和时间知:甲的平均速度=10÷4060=15千米/时;故①正确;①设乙出发x分钟后追上甲,则有:102818-×x=1040×(18+x),解得x=6,故①正确;①由①知:乙第一次遇到甲时,所走的距离为:6×102818-=6km,故①错误;所以正确的结论有三个:①①①,故答案为①①①.14.20【解析】【详解】设所用电量为x度,由题意得:12×2+6×2.5+3(x﹣18)=45,解得:x=20,故答案为20.【点睛】本题考查了一元一次方程的应用,解题的关键是读懂表格,根据表格列出相应的方程进行求解.15.(1) 5元(2) 0.5元/千克;y=12x+5(0≤x≤30);(3)他一共带了45千克土豆.【解析】【分析】(1)根据题意得出自带的零钱;(2)根据图象可知降价前售出的土豆数量为30千克,总金额为15元,然后计算单价;根据降价后的价格和金额求出降价后售出的数量,然后计算总质量.【详解】(1)根据图示可得:农民自带的零钱是5元.x+5(0≤x≤30)(2)(20-5)÷30=0.5(元/千克)①y=12答:降价前他出售的土豆每千克是0.5元.(3)(26-20)÷0.4+30=15+30=45(千克)答:他一共带了45千克土豆.考点:一次函数的应用.16.(1)27①,37①;(2)14①,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【解析】【分析】(1)观察函数图象找出时间9时的温度和这一天的最高温度;(2)找出函数图象的最高点(最高温度)和最低点(最低温度),然后再找最高点和最低点分别对应的时间;用最高温度减去最低温度得到这天的温差,最低温度到最高温度经过的时间等于最高点和最低点对应的时间的差;(3)观察图象0时到3时和15时到24时温度在下降.【详解】解:(1)利用图象得出上午9时的温度是27①,这一天的最高温度是37①.(2)这一天的温差是37-23=14(①),从最低温度到最高温度经过了15-3=12(小时).(3)温度下降的时间范围为0时至3时及15时至24时,图中的A点表示的是21点时的气温.故答案为(1)27①,37①;(2)14①,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【点睛】本题考查了函数图象,利用函数图象反映两变量之间的变化规律,通过该规律解决有关的实际问题.17.(1)4;8;12;14;(2)付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【解析】【分析】根据折线统计图即可写得答案根据题意可得关系式为y=kx,代入x与y的值即可解得k为2,及关系式为y=2x.【详解】(1)当购买商品个数为2个时,付款数为4元;当购买商品个数为4个时,付款数为8元;当购买商品个数为6个时,付款数为12元;当购买商品个数为7个时,付款数为14元;故答案为4;8;12;14;(2)设付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=kx,根据题意得:4=2k,解得k=2,∴付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【点睛】本题考查一元一次方程,根据题意列出关系式并解出k的值是解题的关键.18.(1)t,s,60;(2) 1,60,小南出发2.5小时后,离家的距离为50km ;(3)30或45.【解析】【分析】(1)直接利用常量与变量的定义得出答案;直接利用函数图象结合纵坐标得出答案;(2)利用函数图象求出爸爸晚出发1小时,根据速度=路程÷时间求解即可;根据函数图象的横纵坐标的意义得出A点的意义;(3)利用函数图象得出交点的位置进而得出答案.【详解】(1)自变量是时间或t,因变量是距离或s;小亮家到该度假村的距离是:60;(2)小亮出发1小时后爸爸驾车出发:爸爸驾车的平均速度为60÷1=km/h;图中点A表示:小亮出发2.5小时后,离度假村的距离为10km;(3)当20t=60(t-1),解得:t=1.5则离家20×1.5=30(千米)当20t=120-60(t-1),解得:t=2.25则离家20×2.25=45(千米)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是30或45.【点睛】此题主要考查了函数图象以及常量与变量,利用函数图象获取正确信息是解题关键.19.(1)t,s;(2)2,6;(3)小明距起点的距离为300米【解析】【分析】(1)观察函数图象即可找出谁是自变量谁是因变;(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答.【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度420200110=2(米/秒),小明的速度为42070=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师,根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题的关键在于看懂图中数据,通过数形结合来求解.20.(1) ①甲,甲,3小时;①3和193;(2) 甲在5~7时的生产速度最快,每小时生产零件15个.【解析】【分析】(1)根据图象不难得出结论;(2)从图上看出甲在5~7时直线斜率最大,即生产速度最快.【详解】解:(1) ①甲、乙中,甲先完成一天的生产任务;在生产过程中,甲因机器故障停止生产3小时;①由图象可知,甲、乙两条折线相交时,表示甲、乙所生产的零件个数相等.当t=3时,甲乙第一次相交;设甲乙第二次相交时生产时间为t2,得:10+()24010575t ---=4+40482--(2t -2), 解得:t 2=193, ①当t 等于3和193时,甲、乙所生产的零件个数相等; (2)甲在5~7时的生产速度最快,①(40-10)÷(7-5)=15,①他在这段时间内每小时生产零件15个.故答案为(1) ①甲,甲,3小时;①3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.【点睛】从图象中获取信息是学习函数的基本功,要结合题意熟练掌握.。

新人教版七年级数学(下册)导学案及参考答案

新人教版七年级数学(下册)导学案及参考答案

新人教版七‎年级数学(下册)第九章导学‎案第九章不等式与不‎等式组课题 9.1.1不等式及‎其解集【学习目标】了解不等式‎的解、解集的概念‎,会在数轴上‎表示出不等‎式的解集.【学习重点】不等式的解‎集的概念及‎在数轴上表‎示不等式的‎解集的方法‎。

【学习难点】不等式的解‎集的概念。

【导学指导】一、知识链接1、什么叫等式‎?2、什么叫方程‎?什么叫方程‎的解?3.问题1:一辆匀速行‎驶的汽车在‎11:20时距离‎A地50千‎米。

(1)要在12:00时刚好‎驶过A地,车速应为多‎少?(2)要在12:00以前驶‎过A地,车速应该具‎备什么条件‎?若设车速为‎每小时x千‎米,能用一个式‎子表示吗?二、自主探究阅读课本1‎14-115页,回答下面的‎问题1.不等式:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__2.不等式的解‎:_____‎_____‎_____‎_____‎_____‎_____‎_____‎_____‎___3.思考:判断下列数‎中哪些是不‎等式5032x的解:76,73,79,80,74.9,75.1,90,60你能找出这‎个不等式其‎他的解吗?它到底有多‎少个解?你从中发现‎了什么规律‎?4.不等式的解‎集:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__5.解不等式:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__6、不等式的解‎集在数轴上‎的表示:(1)x>1 (2) x<3;【课堂练习】:1.课本115‎页练习1、2、32.下列式子中‎哪些是不等‎式?(1)a +b=b +a (2)-3>-5 (3)x ≠1 (4)x+3>6 (5)2m <n (6)2x -33.下列式子中‎:①-5<0 ②2x=3 ③3x-1>2 ④ 4x-2y ≤0 ⑤ x 2-3x+2>0 ⑥x-2y 其中属于不‎等式的是_‎_____‎_____‎_,属于一元一‎次不等式的‎是____‎_____‎_(填序号) 【要点归纳】:【拓展训练】:1、绝对值小于‎3的非负整‎数有( )A .1、2B .0、1C .0、1、2D .0、1、32、下列选项中‎,正确的是( ) A . 不是负数,则 B . 是大于0的‎数,则C .不小于-1,则D .是负数,则3、用数轴表示‎不等式x<34的解集正确‎的是( )ABCD4.在数轴上表‎示下列不等‎式的解集:(1)x>2; (2) x<4; (3)-2<x<3【课堂小结】:课题 9.1.2 不等式的性‎质 (1)【学习目标】掌握不等式‎的性质;会根据“不等式性质‎”解简单的一‎元一次不等‎式,并能在数轴‎上表示其解‎集;【学习重点】 理解并掌握‎不等式的性‎质并运用它‎正确地解一‎元一次不等‎式。

2024年人教版七年级下册数学第二单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第二单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第二单元课后练习题(含答案和概念)试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. 0D. (3)2. 下列各数中,最小的数是()A. |3|B. 3C. |3|D. 33. 下列各数中,有理数是()A. √1B. √3C. √3D. √34. 如果|a|=5,那么a的值可能是()A. 5B. 5C. 3D. 35. 有理数的乘法中,2×()的结果是()A. 2B. 2C. 0D. 46. 计算:(2)×(3)的结果是()A. 6B. 6C. 5D. 57. 在数轴上,点A表示的数是3,那么点A关于原点对称的点是()A. 3B. 3C. 0D. (3)8. 若a、b为有理数,且a<0,b<0,则a+b()A. >0B. <0C. =0D. 无法确定9. 下列各数中,无理数是()A. 0.333…B. 1.414C. √2D. 3.1415910. 若|a|=b,且a<0,则a与b的大小关系是()A. a>bB. a<bC. a=bD. 无法确定二、判断题:1. 相反数的定义是:只有符号不同的两个数互为相反数。

()2. 数轴上的点与实数是一一对应的。

()3. 两个负数相乘,结果一定是正数。

()4. 两个正数相乘,结果一定是正数。

()5. 任何有理数的平方都是正数。

()6. 0的相反数是0。

()7. |a|=|a|对于任何有理数a都成立。

()8. 若a<b,则a>b。

()9. 两个无理数相乘,结果一定是无理数。

()10. 数轴上,原点左边的点表示的数都是负数。

()三、计算题:1. 计算:4 + 72. 计算:5 (3)3. 计算:3 × 64. 计算:4 ÷ 25. 计算:(2)^36. 计算:| 5 |7. 计算:| 4 |8. 计算:|3| + |5|9. 计算:|3| |5|10. 计算:(3 5) × (2)11. 计算:(4 + 6) ÷ (2)12. 计算:2 × (3) + 4 ÷ 213. 计算:3^2 + 2^314. 计算:|2^3| |(3)^2|15. 计算:(2 4) × (3 + 5)16. 计算:(6 ÷ 2) (3)^217. 计算:3 × (2) + 4 × (1)18. 计算:5 × (2 4) ÷ (2)19. 计算:2 × (3 + 5) 4 ÷ 220. 计算:|4^2| + |3^3|四、应用题:1. 小明在数轴上从原点出发,先向右移动3个单位,再向左移动5个单位,此时小明所在的位置是哪个数?2. 一个数加上它的相反数,结果是多少?3. 一个数的2倍减去它的3倍,结果是多少?4. 一个数的4倍加上它的2倍,结果是多少?5. 一个数的绝对值是5,这个数可能是哪些数?6. 一个数的平方是9,这个数可能是哪些数?7. 小华在数轴上从2出发,向右移动了几个单位后,到达了3的位置?8. 如果一个数的相反数是正数,那么这个数是什么数?9. 如果一个数的绝对值是负数,那么这个数可能是什么数?10. 一个数的3倍减去它的2倍,结果是这个数本身,这个数是多少?试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. 0D. (3)2. 下列各数中,最小的数是()A. |3|B. |3|C. 3D. 33. 下列说法正确的是()A. 互为相反数的两个数绝对值相等B. 互为相反数的两个数绝对值不等C. 互为相反数的两个数相等D. 互为相反数的两个数和为04. 有理数a、b在数轴上的对应点如图所示,下列结论正确的是()A. |a| > |b|B. a < bC. a + b < 0D. a b > 05. 若|a| = 5,那么a的值是()A. 5或5B. 5C. 5D. 06. 若a、b互为相反数,且|a| = 3,则a² + b²的值为()A. 9B. 18C. 0D. 67. 下列各数中,无理数是()A. √9B. √16C. √3D. √18. 下列各数中,有理数是()A. πB. √2C. √3D. √49. 下列各数中,最小的数是()A. √2B. √2C. √3D. √310. 若a、b互为倒数,且a < 0,那么b的符号是()A. 正B. 负C. 0D. 无法确定二、判断题:1. 互为相反数的两个数和为0。

2024年人教版七年级下册数学第四单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第四单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第四单元课后练习题(含答案和概念)试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. 0D. (3)2. 如果a<0,那么a()A. 大于0B. 小于0C. 等于0D. 无法确定3. 下列各数中,有理数是()A. √2B. √1C. 3.14D. π4. 下列各数中,2的倍数是()A. 3.5B. 4.8C. 5.6D. 6.95. 下列各数中,既是有理数又是无理数的是()A. 0B. 1C. 2D. 36. 下列各数中,不是2的倍数的是()A. 14B. 16C. 18D. 207. 下列各数中,2的绝对值是()A. 2B. 2C. 0D. (2)8. 如果a>0,那么a()A. 大于0B. 小于0C. 等于0D. 无法确定9. 下列各数中,既不是正数也不是负数的是()A. 0B. 1C. 1D. 210. 下列各数中,最小的数是()A. 5B. 3C. 1D. 0二、判断题:1. 相反数的和为0。

()2. 绝对值等于0的数是0。

()3. 有理数和无理数统称为实数。

()4. 任何数乘以0都等于0。

()5. 两个负数相乘得到正数。

()6. 两个正数相加得到负数。

()7. 0除以任何非0的数都等于0。

()8. 任何数的平方都是正数。

()9. 任何数的平方根都是正数。

()10. 负数的绝对值等于它的相反数。

()三、计算题:1. 计算:(3) + 7 = ?2. 计算:5 (2) = ?3. 计算:4 × 6 = ?4. 计算:24 ÷ (3) = ?5. 计算:| 5 | = ?6. 计算:3^2 = ?7. 计算:√(49) = ?8. 计算:2^3 × 3^2 = ?9. 计算:(4 3)^2 = ?10. 计算:(2 + 3) × (5 2) = ?11. 计算:4.8 ÷ 1.2 = ?12. 计算:3.14 × 2.5 = ?13. 计算:10 3.5 = ?14. 计算:| 7.2 | = ?15. 计算:5 × (6 2) = ?16. 计算:(8 ÷ 2) + 4 = ?17. 计算:9 + (3) 2 = ?18. 计算:7 × (4) ÷ 2 = ?19. 计算:12 ÷ (2 + 3) = ?20. 计算:2^4 ÷ 4 = ?四、应用题:1. 小华有5个苹果,他吃掉了其中的3个,请问他还剩下几个苹果?2. 一个长方形的长是8厘米,宽是4厘米,请计算它的面积。

北师大版数学七年级下册第一章整式的乘除第3节同底数幂的除法课后练习

北师大版数学七年级下册第一章整式的乘除第3节同底数幂的除法课后练习

第一章整式的乘除第3节同底数幂的除法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.下列计算正确的是( )A .3412a a a ⋅=B .()326a a =C .()2222a a =D .4442a a a ÷= 2.下列计算错误的是( )A .325a a a ⋅=B .2222a a a +=C .()326a a -=D .826a a a ÷= 3.下列计算正确的是( )A .336a a a +=B .3225()xy x y =C .624a a a ÷=D .()2231931m m m +=++ 4.运算结果为6a 的式子是( )A .32a a ⋅B .()32aC .122a a ÷D .7a a - 5.下列计算中,正确的是( )A .33a a ÷=B .23a a a +=C .()235a a =D .426a a a ⋅= 6.下列运算正确的是( )A .()123a a =B .221a a -=C .623a a a ÷=D .()224ab ab = 评卷人得分二、填空题 7.计算423287x y x y -÷的结果等于___________.8.已知28m =,31n =,则n m -=____.9.2﹣2+|3﹣2|=_____.10.计算()()2201901130142π-⎛⎫-+--= ⎪⎝⎭________. 11.已知23x =,25y =,则212x y +-=_______.12.若6m a =,4n a =,则2m n a -=__.评卷人得分三、解答题 13.计算:1020201( 3.14)2(1)2π-⎛⎫-+---- ⎪⎝⎭.14.根据题意,完成下列问题.(1)若8,2322m n ==,求22m n -的值;(2)已知2330x y +-=,求48x y ⋅的值;(3)已知22332510x x x ++-⋅=,求x 的值.15.已知53a =,52b =,572c =.(1)求25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系为_______.16.计算 (1)101|2|(2)3π-⎛⎫---+- ⎪⎝⎭; (2)()()254822()x x x x +-⋅÷-17.小明和小红在计算100101133⎛⎫-⨯ ⎪⎝⎭时,分别采用了不同的解法.小明的解法:10010010010110010011133333(1)33333⎡⎤⎛⎫⎛⎫⎛⎫-⨯=-⨯⨯=-⨯⨯=-⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 小红的解法:()100100100101101110110010111333333333--⎛⎫⎛⎫-⨯=⨯=⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.请你借鉴小明和小红的解题思路,解决下列问题:(1)若4310a b -+=,求2213927a b +⨯÷的值;(2)已知x 满足24222296x x ++-=,求x 的值.18.(1)填空()10222-=()21222-= ()32222-=(2)探索(1)中式子的规律,试写出第n 个等式,并说明理由.(3)计算234991*********+++++⋯++;19.计算(1)23a a ⋅(2)()322y y ⋅ (3)3236415x y x y ⎛⎫-- ⎪⎝⎭(4)852()()()x y y x y x -÷-⋅-.20.(1)()()13011273π-⎛⎫-+-+-- ⎪⎝⎭ (2)()22436310a a a a ⋅+--21.(1)若34213927m m +-⋅÷的值为81,试求m 的值;(2)已知4434,381m m n -==,求2008n 的值.22.观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;① 22x ,33x -,45x ,59x -,617x ,733x -,⋯;①根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第①行的第9个单项式为_______;第①行的第10个单项式为_______;(3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.23.(1)若2x a =,3y a =,求x y a -的值; (2)计算2310012222++++⋅⋅⋅+的值.24.阅读材料,求1+2-1+2-2+…+2-2 016的值.解:设S=1+2-1+2-2+…+2-2016,①则2S=2+1+2-1+…+2-2 015,①①-①得S=2-2-2 016.请你仿此计算:(1)1+3-1+3-2+…+3-2 016;(2)1+3-1+3-2+…+3-n(n为正整数).25.x n+1·x n-1÷(x n) 2 (x≠0)参考答案:1.B【解析】【分析】根据运算法则逐一计算判断即可【详解】①347⋅=,a a a①A式计算错误;①()326=,a a①B式计算正确;①()22=,24a a①C式计算错误;①44a a÷=,22①D式计算错误;故选B【点睛】本题考查了同底数幂的乘法,幂的乘方,积的乘方,单项式除以单项式,熟练掌握公式和运算的法则是解题的关键.2.C【解析】【分析】根据运算法则逐一计算判断即可【详解】①325⋅=,a a a①A式计算正确,不符合题意;①222+=,a a a2①B式计算正确,不符合题意;①()326a a-=-,①C式计算错误,符合题意;①826a a a ÷=,①D 式计算正确,不符合题意;故选C【点睛】本题考查了整式的加减,幂的乘方,同底数幂的除法,熟练掌握运算的法则和化简的方法是解题的关键.3.C【解析】【分析】根据合并同类项的法则判断A ;根据积的乘方法则判断B ;根据同底数幂的除法法则判断C ;根据完全平方公式判断D .【详解】A 、3332a a a +=,计算错误,故本选项不符合题意;B 、()2326xy x y =,计算错误,故本选项不符合题意; C 、624a a a ÷=,计算正确,故本选项符合题意;D 、22(31)961m m m +=++,计算错误,故本选项不符合题意; 故选:C .【点睛】本题考查了合并同类项,积的乘方,同底数幂的除法,完全平方公式,掌握公式与法则是解题的关键.4.B【解析】【分析】先将选项中的式子进行化简算出正确的结果,然后进行对照即可解答本题.【详解】解:A .33522a a a a +⋅==,故不符合题意;B .()23236a a a ⨯==,符合题意; C .12210122=a a a a -=÷ ,故不符合题意;D . 7a 与a -无法合并,故不符合题意;故选:B【点睛】本题考查幂的乘方与积的乘方、合并同类项、同底数幂的乘除法,解题的关键是明确它们各自的计算方法.5.D【解析】【分析】分别根据同底数幂的除法,合并同类项,幂的乘方,同底数幂的乘法法则逐项判断即可.【详解】A 、32a a a ÷=,原计算错误,不符合题意;B 、a 和2a 不是同类项,不能合并,不符合题意;C 、()236a a =,原计算错误,不符合题意; D 、426a a a ⋅=,正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的除法,幂的乘方,同底数幂的乘法,解题的关键是掌握运算法则.6.B【解析】【分析】按照幂的运算法则计算判断即可.【详解】①()212=a a , ①选项A 错误;①221a a -=, ①选项B 正确;①6642-2=a a a a ÷=,①选项C 错误;①()2224ab a b =,①选项D 错误;故选B .【点睛】本题考查了同底数幂的乘方,同底数幂的除法,积的乘方,负整数指数幂的运算,熟练掌握各类运算的法则是解题的关键.7.4xy -【解析】【分析】利用同底数除法的法则计算即可【详解】解:423287x y x y -÷=-4x 4-3y 2-1=-4xy故答案为:-4xy【点睛】本题考查同底数除法法则,正确使用法则是关键 8.-3【解析】【分析】现将8化成32,在利用零指数,得出m ,n 的值计算即可【详解】解:①28m =,38=2①322m =①m =3①031=①n =0①n -m =0-3=-3故答案为:-3【点睛】本题考查乘方的含义,零指数.灵活应用概念是关键.9.934- 【解析】【分析】先算负指数、绝对值,再进行计算即可.【详解】解:2﹣2+|3﹣2|=1234+- =934-; 故答案为:934-. 【点睛】本题考查了实数的混合运算,解题关键是熟练运用相关法则计算负指数和绝对值. 10.2.【解析】【分析】 先计算有理数的乘方、负整数指数幂、零指数幂,再计算有理数的加法即可得.【详解】解:原式141=-+-,2=故答案为:2.【点睛】本题考查了有理数的乘方、负整数指数幂、零指数幂,熟记各运算法则是解题关键. 11.452. 【解析】【分析】逆用同底数幂乘法法则以及逆用幂的乘方的运算法则即可求得答案.【详解】解:①23x =,25y =,①212x y +-=()2222x y ⨯÷=32×5÷2=452故答案为:452. 【点睛】本题考查了同底数幂的除法,幂的乘方,掌握运算法则是解题关键.12.9【解析】【分析】根据幂的运算的逆运算,把所求式子变成幂的运算即可.【详解】6m a =,4n a =,222()643649m n m n a a a -∴=÷=÷=÷=.故答案为:9.【点睛】 本题考查了幂的运算的逆运算,解题关键是灵活运用幂的运算的逆运算,把所求式子转换成幂的运算.13.0【解析】【分析】根据实数的运算法则计算.【详解】解:原式1221=+--0=.【点睛】本题考查实数的混合运算,熟练掌握负整数指数幂和零指数幂运算、绝对值运算和负数的偶次幂运算是解题关键.14.(1)2;(2)8;(3)52. 【解析】【分析】(1)先逆用同底数幂的乘法公式、同底数幂的除法公式和幂的乘方公式,将22m n -转化为()222m n ÷的形式,再代入8,2322m n ==进行计算即可;(2)先求出233x y +=,再利用幂的乘方公式和同底数幂的乘法公式将48x y ⋅转化为232x y +的形式,最后代入数值运算即可;(3)先逆用积的乘方公式将2225x x ++⋅转化为210x +,然后得到关于x 的一元一次方程后求解即可.【详解】解:(1)①8,2322m n ==,①()22222283264322m n m n -=÷=÷=÷=;①22m n -的值为2.(2)①2330x y +-=,①233x y +=,①232334822228x y x y x y +⋅=⋅===;①48x y ⋅的值为8.(3)①2222510x x x +++⋅=,①2331010x x +-=,①233x x +=-,①52x =, ①x 的值为52. 【点睛】本题综合考察了同底数幂的乘法公式以及逆用、同底数幂的除法公式的逆用、幂的乘方公式及其逆用、积的乘方公式及其逆用等知识,要求学生能理解并熟记公式,能灵活运用公式对代数式进行变形等,考察了学生对基础知识的理解与公式的掌握,本题蕴含了整体代入的思想方法.15.(1)9;(2)108;(3)c =2a +3b【解析】【分析】(1)根据幂的乘方直接解答即可;(2)根据同底数幂的乘除法进行解答即可;(3)根据幂的乘方法则以及同底数幂的乘法法则,即可得到结论.【详解】解:(1)①5a=3,①25a=(5a)2=32=9;(2)①5a=3,5b=2,5c=72,①5a b c-+=5a×5c÷5b=.3×72÷2=108;(3)①72=32×23=(5a)2×(5b)3=2+35a b,572c=①2+35a b=5c,①c=2a+3b;故答案为:c=2a+3b.【点睛】本题主要考查同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.16.(1)-2;(2)103x【解析】【分析】(1)原式根据绝对值的代数意义,零指数幂的运算法则以及负整数指数幂的运算法则化简各项,然后再进行加减运算即可;(2)原式根据积的乘方运算法则,单项式乘以单项式、单项式除以单项式运算法则化简各项后再合并即可得到答案.【详解】解:(1)11 |2|(2)3π-⎛⎫---+-⎪⎝⎭=2-1-3 =-2;(2)()()254822()x x x x +-⋅÷- =481024x x x x -⋅÷=101224x x x -÷=10104x x -=103x【点睛】此题主要考查了整式的运算,熟练掌握运算法则是解答此题的关键.17.(1)27;(2)32x =. 【解析】【分析】(1)根据同底数幂的乘法和除法化简2213927a b +⨯÷,然后再计算即可;(2)将24222296x x ++-=化成2222222926x x ++-=⨯,然后得到22232x +=,然后再化成指数相同计算即可.【详解】解:(1)2213927a b +⨯÷()()21223333a b +=⨯÷2423333a b +=⨯÷4433a b +-=4343a b -+=①4310a b -+=①431a b -=-①原式1433327-+===;(2)①24222296x x ++-=①2222222926x x ++-=⨯①()22222196x +-=⨯①229326x +⨯=①22232x +=①22522x +=①225x +=①32x =. 【点睛】本题考查了同底数幂的运算,熟悉相关性质是解题的关键.18.(1)0, 1,2;(2)2n -2n -1=2n -1,理由见解析;(3)2101-1.【解析】【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得2n -2n -1=2n -1,然后利用提2n -1可以证明这个等式成立; (3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式,相减即可.【详解】解:(1)21-20=2-1=20,22-21=4-2=21,23-22=8-4=22;故答案为: 0, 1,2;(2)第n 个等式为:2n -2n -1=2n -1,①左边=2n -2n -1=2n -1(2-1)=2n -1,右边=2n -1,①左边=右边,①2n -2n -1=2n -1;(3)设a =20+21+22+23+…+299+2100.①则2a =21+22+23+…+299+2100+2101①由①-①得:a =2101-1①20+21+22+23+…+298+2100=2101-1.【点睛】此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:2n -2n -1=2n -1成立.19.(1)5a ;(2)8y ;(3)64691125x y x y --;(4)5()y x - 【解析】【分析】(1)直接利用同底数幂的乘法计算即可;(2)先计算幂的乘方,再计算同底数幂的乘法;(3)直接利用积的乘方计算即可;(4)先利用乘方的符号法则将底数化为相同,再利用同底数幂的乘、除法计算即可.【详解】解:(1)原式=235a a +=;(2)原式=62y y ⋅=8y ;(3)原式=64691125x y x y --; (4)原式=852()()()y x y x y x -÷-⋅-=852()y x -+-=5()y x -.【点睛】本题考查幂的相关运算.主要考查同底数幂的乘、除法,幂的乘方和积的乘方.(4)中注意底数互为相反数时可先将底数化为相同在利用同底数幂的乘、除法计算.20.(1)9-;(2)0.【解析】【分析】(1)分别化简绝对值,计算乘方、零指数幂和负整数指数幂,再相加减即可; (2)分别计算同底数幂的乘法、积的乘方,再合并同类项即可.【详解】解:(1)原式=1(8)13+-+-=9-;(2)原式=666910a a a +-=0.【点睛】本题考查同底数幂的乘法、积的乘方、零指数幂和负整数指数幂等.熟练掌握相关运算法则,并能熟练运用是解题关键.21.(1)m =52;(2)2008. 【解析】【分析】(1)由33•9m +4÷272m -1的值为81,易得3+2(m +4)-3(2m -1)=4,继而求得答案;(2)由4434,381m m n -==易得34n =81=34,继而求得n =1,则可求得2008n 的值. 【详解】解:(1)①33•9m +4÷272m -1=33•32(m +4)÷33(2m -1)=33+2(m +4)-3(2m -1)=81=34,①3+2(m +4)-3(2m -1)=4,解得:m =52; (2)①3m =4,①44443334381m n m n n -=÷=÷=, ①34n =81=34,①4n =4,解得:n =1,①2008n =2008.【点睛】此题考查了同底数幂的乘法运算、幂的乘方以及同底数幂的除法.此题难度适中,注意掌握指数的变化是解此题的关键.22.(1)8128x ;(2)9512x -,11513x -;(3)12.【解析】【分析】(1)观察第①行的前四个单项式,归纳类推出一般规律即可得;(2)分别观察第①行和第①行的前四个单项式,归纳类推出一般规律即可得;(3)先计算整式的加减进行化简,再将x 的值代入即可得.【详解】(1)第①行的第1个单项式为112x x -=,第①行的第2个单项式为221222x x -=,第①行的第3个单项式为313342x x -=,第①行的第4个单项式为414482x x -=,归纳类推得:第①行的第n 个单项式为12n n x -,其中n 为正整数,则第①行的第8个单项式为81882128x x -=,故答案为:8128x ;(2)第①行的第1个单项式为()122x x -=-,第①行的第2个单项式为()22242x x =-,第①行的第3个单项式为()33382x x --=,第①行的第4个单项式为()444162x x -=,归纳类推得:第①行的第n 个单项式为()2n n x -,其中n 为正整数,则第①行的第9个单项式为()9992512x x -=-,第①行的第1个单项式为()()11211112211x x -+-+=-,第①行的第2个单项式为()()21132213211x x +---+=-, 第①行的第3个单项式为()()11433135211x x -+-+=-, 第①行的第4个单项式为()()41154419211x x +---+=-,归纳类推得:第①行的第n 个单项式为()()111211n n n x --++-,其中n 为正整数, 则第①行的第10个单项式为()()10101101111121513x x --+-=-+, 故答案为:9512x -,11513x -; (3)由题意得:()89998102221A x x x =-++,当12x =时,()99108981112221222A ⎛⎫⎛⎫⎛⎫=⨯-⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎝⎭⨯⎭, 101111242=-++, 101142=-+, 则910111151224424A ⎛⎫⎛⎫+=⨯-++ ⎪ ⎪⎝⎭⎝⎭, 910122=⨯,12=. 【点睛】本题考查了单项式的规律型问题、整式的化简求值,正确归纳类推出一般规律是解题关键.23.(1)23;(2)10121-.【解析】【分析】(1)逆用同底数幂的除法的运算法则解答即可;(2)设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+, 把这两个式子相减即可求解.【详解】(1)①2x a =,3y a =,①23x y x y a a a -=÷=; (2) 设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+,①S=2S-S=10121-.【点睛】本题考查了同底数幂的除法及同底数幂的乘法的应用,熟练运用法则是解决问题的关键. 24.(1)-2?0163-3 2(2) -3-32n 【解析】【详解】试题分析:(1)类比题目中的解题方法计算即可;(2)类比题目中的解题方法计算即可. 试题解析:(1)设M=1+3-1+3-2+…+3-2 016,①则3M=3+1+3-1+…+3-2 015,①①-①得2M=3-3-2 016,即M=-20163-32. (2)设N=1+3-1+3-2+…+3-n ,①则3N=3+1+3-1+…+3-n+1,①①-①得2N=3-3-n,即N=-3-32n.点睛:本题是一道阅读理解题,根据题目中所给的运算顺序或解题方法解决所给的问题,是处理这类问题的基本思路.25.1【解析】【详解】试题分析:根据幂的混合运算,先算同底数幂相除及幂的乘方,再算同底数相乘即可.试题解析:x n+1·x n-1÷(x n) 2 =x(n+1)+(n-1)-2n=x0=1。

《新课程课堂同步练习册人教版七年级下册数学》参考答案

《新课程课堂同步练习册人教版七年级下册数学》参考答案

《新课程课堂同步练习册人教版七年级下册数学》参考答案§5.1.1相交线一、选择题1.C 2.D 3.B 4.D二、填空题1.∠AOD、∠AOC或∠BOD 2.145°3.135°4.35°三、解答题1.解:(图7)因为∠2=30°,所以∠1=30°(对顶角相等)又,所以∠3=2∠1=60°所以∠4=∠3=60°(对顶角相等)2.解:(图8)(1)因为,又(对顶角相等)所以因为所以所以(对顶角相等)(2)设则,由+=180°,可得,解得,所以3.解:(图9)AB、CD相交于O 所以∠AOD与∠BOD互为邻补角所以∠AOD+∠BOD=180°,又OE是∠AOD的平分线,所以∠1=∠AOD,同理∠2=∠BOD所以∠1+∠2=∠AOD+∠BOD=(∠AOD+∠BOD)=×180°=90°即∠EOF的度数为90°§5.1.2垂线一、选择题1.D 2. B 3.C二、填空题1.不对2.40°3.互相垂直4.180°三、解答题1.答:最短路线为线段AB,设计理由:垂线段最短.2.解:由题意可知∠1+∠2=90°,又∠1-∠2=54°所以2∠1=144°所以∠1=72°,所以∠2=90°-∠1=18°3.解:(图7)(1)因为,所以,又,所以,所以,又是的平分线,所以==45°(2)由(1)知==45°,所以=90°所以与互相垂直.§5.1.3同位角、内错角、同旁内角一、选择题1.D 2.B 3.B 4.C二、填空题1.AB内错角2. AB 、CD 、AD 3. DE 、BC 、AB 、同位角4.同位角、内错角、同旁内角三、解答题1.答:∠ABC与∠ADE构成同位角,∠CED与∠ADE构成内错角,∠A、∠AED分别与∠ADE构成同旁内角;∠ACB与∠DEA构成同位角,∠BDE与∠DEA构成内错角,∠A、∠ADE分别与∠DEA构成同旁内角.2.答:图中共有5对同旁内角,它们分别是:∠ABC 与∠BAC、∠ABC与∠BAD、∠ACB与∠BAC 、∠ACB与∠CAE、∠ABC与∠ACB3.答:∠1与∠2是直线AC截直线AE、BD形成的同位角;∠2与∠3是直线BD截直线AC、DE形成的内错角;∠3与∠4是直线BD截直线AC、DE形成的同旁内角.§5.2.1平行线一、选择题1.D 2.C 3.A 4..A二、填空题1.2.相交3.经过直线外一点,有且只有一条直线与这条直线平行.三、解答题1.略2.(1)略(2)a//c§5.2.2平行线的判定(一)一、选择题1.B 2.C 3..C 4.A二、填空题1.∠4,同位角相等,两直线平行;∠3,内错角相等,两直线平行.2.∠1,∠BED 3.答案不唯一,合理就行4.70°三、解答题1.答:,因为∠1=50°,所以∠2=130°(邻补角定义),又∠3=130°,所以∠2=∠3,所以(内错角相等,两直线平行)2.(图1)答:AB∥CD,因为∠1=∠2,且∠1+∠2=90°,所以∠1=∠2=45°,因为∠3=45°,所以∠2=∠3,所以AB∥CD§5.2.2平行线的判定(二)一、选择题1.C 2.A 3.A 4.D二、填空题1.∠2 内错角相等,两直线平行;∠4 同旁内角互补,两直线平行2.BC//AD;BC//AD;∠BAD;∠BCD(或∠3+∠4);3. AB//CD 同位角相等,两直线平行;∠C,内错角相等,两直线平行;∠BFE,同旁内角互补,两直线平行.三、解答题1.答:AB//CD AD//BC,因为∠A+∠B=180°所以AD//BC (同旁内角互补,两直线平行),又∠A=∠C,所以∠C +∠B=180°,所以AB//CD(同旁内角互补,两直线平行)2.解:AB//CD,∵∠APC=90°∴∠1+∠2=90°,∵AP、CP分别是∠BAC和∠ACD的平分线,∴∠BAC=2∠1,∠ACD=2∠2,∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°∴AB//CD(同旁内角互补,两直线平行)§5.3.1 平行线的性质(一)一、选择题1.C 2.C 3.C二、填空题1. 50° 2. 25° 3. 60三、解答题1.已知;垂直的性质;等量代换,同位角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行.2.解:延长BA交CE于点F,因为AB//CD,∠C=52°,所以∠EFB=∠C=52°(两直线平行,同位角相等),又∠E=28°,所以∠FAE=180°―∠E―∠C =100°所以∠EAB=80°(邻补角定义)§5.3.1 平行线的性质(二)一、选择题1.D 2.A 3.B 4.D二、填空题1. 80° 2. 65° 3. 90°三、解答题1.解:延长梯形玉片图形的两腰及下底,构造出玉片原图如图8所示,∵AD//BC,∴∠1+∠A=180°∠2+∠D=180°(两直线平行,同旁内角互补)又∠A=115°,∠D=100°,∴∠1 =180°-∠A=65°∠2 =180°-∠D=80°即梯形玉片另外两个角的度数分别是65°、80°.2.解:∵∠END=50°(已知)又AB//CD,(已知)∴∠BMF+∠END =180°(两直线平行,同旁内角互补),又∵MG平分∠BMF(已知)∴,而AB//CD(已知)∴∠1=∠BMG=65°(两直线平行,内错角相等)§5.3.2 命题、定理一、选择题1.A 2.D 3.C二、填空题1.如果两个角是对顶角,那么它们相等;2.“题设:一个三角形是直角三角形,结论:它的两个锐角互余.”3.如∠A=50°∠B=60°则∠A+∠B>90°(答案不唯一,只要写出两个角,它们的和大于或等于均可;但不写∠A+∠B≥90°.)4.①③④三、解答题1. (1) 答:在同一个平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行.这个命题是真命题.(2) 答:如果两个角是同旁内角,那么这两个角互补.这个命题是假命题. (3) 答:如果几个角相等,那么它们的余角相等;或者,如果几个角是等角的余角,那么这几个角相等.这个命题是真命题.2.(1)答:是命题,题设是:两直线平行线被第三条直线所截;结论是:内错角相等.(2)答:不是命题.(3)答:不是命题.(4)答:是命题,题设是:两个角互为邻补角;结论是:这两个角的平分线互相垂直.或者,题设是:两条射线是两个互为邻补角的角的平分线;结论是:这两条角平分线互相垂直.3.答:这个说法是正确的,根据题意作出右图,如图所示.则有AB//CD,EP是∠BEF的平分线,FP是∠DFE的平分线.∵AB//CD∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补)又∵EP与FP分别是∠BEF与∠DFE的平分线,∴∠BEF=2∠2∠DFE=2∠1,∴2∠2 +2∠1=180°,∴∠1 +∠2=90°,∴∠P=90°∴EP⊥FP,即“两条平行线被第三条直线所截,则同旁内角的角平分线互相垂直.”说法正确.§5.4平移 (一)一、选择题1.D 2.A 3.A二、填空题1. 5cm 2.2 3.形状与大小相等4.70°、 50°、 60°、60°三、解答题1.图略2.(如图5),相等的线段:,,;相等的角:,,;平行的线段:,,3.答:线段AB平移成线段EF、HG与CD;线段AE可以由线段BF、CG或DH平移得到;FG不能由AE或EF平移得到.§5.4平移 (二)一、选择题1.D 2.B 3.D 4.C二、填空题1.60°、8cm 2.一只小鸟 3.36平方单位 4.16cm三、解答题1.图略2.解:由楼梯侧面可以知道,可将楼梯水平方向的线段向下平移到线段AC上,将楼梯竖直方向的线段向右平移到线段BC上则所需地毯总长度刚好等于线段AC加上线段BC 的长,即6+2.8=8.8米,其面积为8.8×2=17.6 m2,所以购买地毯至少需要17.6×50=880元.3.解:当AB在线段CD上向上或向下平移时, S1·S4 =S2 ·S3因为S1 =AP·PC,S4 =DP·BP;S2=DP·AP,S3=BP·PCS1·S4=AP·PC·DP·BP, S2 ·S3=DP·AP·BP·PC所以S1 ·S4 =S2·S第6章平面直角坐标系§6.1.1有序数对一、选择题1. D2. C3. A4. A二、填空题1.两2.(5,6)2.组4号3. (9,12) ,不同4.(19,110)三、解答题 1.(1).B(4,0) C(6,0) D(7,2) E(6,3)(2).8 2.3个格.3.解:如图所示的是最短路线的6种走法.一、选择题1.D2.B3.B4.C二、填空题1.二三y轴上2. 有序数对横坐标纵坐标3.负数负数正数4. 72三、解答题1.略 2.图略 3.略§6.1. 2平面直角坐标系(二)一、选择题1.A2.B3.A4.C二、填空题 1.二三(-1,-2)2. 三四(1,-2)3.(0,0)纵横 4. 72三、解答题1.略 2. 解:因为a2+1 0,-1-b2 0,所以点A在第四象限. 3.(1) a=1,b=3(2) a= - 3, b=1§6.2.1用坐标表示地理位置一、选择题1.B2.D3.C二、填空题1.∠BOA ∠COA2.110 3.正北三、解答题1. 正北,两家距离100米.2.图略.小玲家(-150,100),小敏家(200,300),小凡家(-300,150).3.解:李哲在湖心亭,丁琳在望春亭,张瑞在游乐园.图略.他们三人到望春亭集合,三人所行路程之和最短.§6.2.2用坐标表示平移一、选择题1.B2.D3.A4.D二、填空题1.(5,-3)(3,-6)2.(0,0)3.不变4.(-1,-2)三、解答题 1.A′(2,3),B′(1,0),C′(5,1).2.(1)略(2)四边形ABCD的面积为6.5.第七章三角形§7.1.1 三角形的边一、选择题1、C 2 、B 3、 B二、填空题1、8 4 △BOC 、△BEC、△BDC 、△ABC 2、 5cm,7cm或6cm,6cm3、24、否因为任意两线段之和都大于第三条,这三条线段围成一个三角形.三、解答题1、不相信.这位同学的身高约1.65米,腿长大约不超过1米,根据三角形两边之和大于第三边,步子的长不可能有2米远.2、若小明家,小华家,学校位置在同一条直线上,S=1m 或5m;若三者不在同一直线上,根据三角形三边关系知1 S 5;所以S的范围为1m≤S ≤5m.3、因为a、b、c为△ABC的三边,所以a+b-c ≥0,b-c-a≤0 ,c-a-b≤0.原式=a+b-c-(b-c-a)+(c-a-b)= a+b-c -b+c+a+c-a-b= a-b+c§7.1.2三角形的高、中线与角平分线一、选择题1 、B 2、 C 3、D二、填空题1、ADBE 2、6 cm 40° 3、钝角 4、AD BC ∠ADB ∠ADC三、解答题1、解:△ABD 的周长=AB+AD+BD,△ACD 的周长=AC+AD+CD因为AD是△ABC的中线,所以 BD=CD,△ABD与△ACD 的周长之差= AB -AC=8-5=3(cm)2、如右图:3、解:AD=2CE.因为,而 AB=2BC所以AD=2CE§7.1.3 三角形的稳定性一、选择题1、A 2、 A 3 A二、填空题1、三角形具有稳定性2、三角形具有稳定性3、三角形具有稳定4、三角形具有稳定三、简答题1、答案不唯一.2、答案不唯一.3、答案不唯一.§7.2.1三角形的内角一、选择题1、D 2 、C 3 、 A二、填空题1、20°60° 100° 2、60°3、40°或100°4、40°三、简答题1、解:设∠A=x°,则∠B=15°+ x°,∠C=15°+ x°+ 45°=60°+ x°因为∠A+∠B +∠C=180°,所以x°+15°+ x°+60°+ x°=180°,解得x=35,∠C=95°2 、解:因为∠C+∠1+∠2=180°, ∠C+∠B+∠A=180°所以∠1+∠2=60°+50°=110°3解:在△ABC中,∠BAC=180°-∠B-∠C=180°-65°-45°=70°,因为AE是∠BAC的角平分线,所以∠BAE=∠BAC=×70°=35°.因为AD⊥BC,所以∠ADB=90°. 在△ABD中, ∠BAD=180°-65°-90°=25°所以∠DAE=∠BAE -∠BAD=35°-25°=10°§7.2.2三角形的外角一、选择题1、A 2D 3 B二、填空题1、105° 2、 85°3、 80° 4、165三、简答题1、如图,根据三角形的一个外角等于与它不相邻的两个内角的和,知:∠1=∠B+∠D,∠2=∠A+∠C,而∠1+ ∠2+∠E=180°,所以∠A+∠B+∠C+∠D+∠E=180°2、因为DF⊥AB,所以∠BFD =90°在△BFD中,∠B=180°-∠D-∠BFD =180°-45°-90°=45°,在△ABC中, ∠BCA=180°-∠A-∠B=180°-40°-45°=95°3、∠AEB>∠CED.理由:根据三角形的一个外角大于与它不相邻的任何一个内角,知∠AEB >∠ACB ,∠ACB >∠CED,所以∠AEB >∠CED.§7.3.1 多边形一、选择题1 、A. 2 、B 3、B二、填空题1、(n-3)(n-2);2、120°; 3、8 ;4、 433三、简答题1、图略2、180°×3=540°3、因为360°÷30°=12,所以他一共左转了12次,12×10=120,一共走了120米.§7.3.2 多边形的内角和一、选择题1 、C 2、 D 3、D二、填空题1、900 ; 2、8; 3、135 ;4、 90°、90°、120°、60°三、简答题1、因为多边形的外角和等于360 o,360o ÷72o=5,所以该多边形的边数为5;五边形内角和为(5-2)×180°=540°.2、设该正多边形的一个外角为x,则每一个内角为(x +60°),相邻的内角与外角互补,所以(x+60°)+x=180°,解得x=60°,即每个外角为60°,因为多边形的外角和等于360°,360°÷60°=6,所以这个多边形的边数为6.3、因为多边形的内角和都是180°的倍数,且每个外角的范围是大于0°小于180°,1340°=180°×7﹢80°,所以这个多边形的边数为7﹢2=9,这个外角的度数为80°§7.4课题学习镶嵌一、选择题1 、C 2、A 3、A二、填空题1、3 ; 2、3 3、4或5 4、12三、解答题1、不能.因为正十边形的内角和为(0-2)180°=1440°,1440°÷10=144°,144°的整数倍得不到360°所以用正十边形不能铺满地面.2、能,需要6个;也能,需要4个.3、正方形和正八边形组合能镶嵌成平面图案.因为正方形的每个内角为90°,正八边形的每个内角为135°,90°+2×135°=360°,所以正方形和正八边形组合能镶嵌成平面图案;用正方形和正六边形不能镶嵌成平面图案.因为找不到正整数m、n,使得,所以不能.第8章二元一次方程组§8.1二元一次方程组一、选择题 1.B2.B3.A二、填空题1.2.2,-13. 无数,无数;4.三、解答题 1.解:设小华买了x千克香蕉,y千克苹果,依题意可得2.解:设这个学校有x个班,这批图书有y本,依题意可得3.解:设甲原来有羊x只,乙原来有羊y只,依题意可得§8.2消元——二元一次方程组的解法(一)一、选择题1.C 2.B 3.A二、填空题1.-1 2. , 3. 1,4 4.7,2三、解答题1.(1)(2)(3)(4)2. 这个学生有中国邮票216张,外国邮票109张.§8.2消元——二元一次方程组的解法(二)一、选择题1.C 2.D 3.B二、填空题1.2.3. 4,-14.-16三、解答题1.(1)(2)(3)(4)。

苏教版七年级数学补充习题(上下学期)(上下册)

苏教版七年级数学补充习题(上下学期)(上下册)

苏教版七年级数学增补习题答案(上放学期 )( 上下册 )2015 详尽版七年级上册七年级下册第一版社:江苏凤凰科学技术版次:( 2015.6 重印)每日更新,请您关注七年级上册数学增补习题答案第 1 页苏教版七年级上册数学增补习题答案第 2 页七上数学增补习题答案第 3 页苏科版七年级上册数学增补习题答案第 4 页苏科版七年级上册数学增补习题答案第 5 页苏科版七年级上册数学增补习题答案第 6 页苏科版初一七年级上册数学增补习题答案第 7 页苏科版初一七年级上册数学增补习题答案第8 页苏科版初一七年级上册数学增补习题答案第9 页苏科版初一七年级上册数学增补习题答案第10 页苏科版初一七年级上册数学增补习题答案第11 页苏科版初一七年级上册数学补充习题答案第 12 页苏科版初一七年级上册数学增补习题答案第 13 页苏科版初一七年级上册数学增补习题答案第14 页苏科版初一七年级上册数学增补习题答案第15 页苏科版初一七年级上册数学增补习题答案第16 页苏科版初一七年级上册数学增补习题答案第17 页苏科版初一七年级上册数学增补习题答案第18 页苏科版初一七年级上册数学增补习题答案第 19 页苏科版初一七年级上册数学增补习题答案第20页苏科版初一七年级上册数学增补习题答案第21 页苏科版初一七年级上册数学增补习题答案第22 页苏科版初一七年级上册数学增补习题答案第23 页苏科版初一七年级上册数学增补习题答案第24 页苏科版初一七年级上册数学增补习题答案第 25 页苏科版初一七年级上册数学增补习题答案第26 页苏科版初一七年级上册数学增补习题答案第27 页苏科版初一七年级上册数学增补习题答案第28 页苏科版初一七年级上册数学增补习题答案第29 页苏科版初一七年级上册数学增补习题答案第 30 页苏教版七年级上册数学增补习题答案第 31 页苏教版七年级上册数学增补习题答案第32 页苏教版七年级上册数学增补习题答案第33 页苏教版七年级上册数学增补习题答案第34 页苏教版七年级上册数学增补习题答案第 35 页苏教版七年级上册数学增补习题答案第36 页苏教版七年级上册数学增补习题答案第37 页苏教版七年级上册数学增补习题答案第38 页苏教版七年级上册数学增补习题答案第 39 页苏教版七年级上册数学增补习题答案第40页苏教版七年级上册数学增补习题答案第41 页苏教版七年级上册数学增补习题答案第42 页苏教版七年级上册数学补充习题答案第 43 页苏教版七年级上册数学增补习题答案第44 页苏教版七年级上册数学增补习题答案第45 页苏教版七年级上册数学增补习题答案第46 页苏教版七年级上册数学第 48 页苏教版七年级上册数学增补习题答案第49 页苏教版七年级上册数学增补习题答案第50 页苏教版七年级上册数学增补习题答案第 51 页苏教版七年级上册数学增补习题答案第 52 页苏教版七年级上册数学增补习题答案第53 页苏教版七年级上册数学增补习题答案第54 页苏教版七年级上册数学增补习题答案第 55 页苏教版七年级上册数学增补习题答案第 56 页苏教版七年级上册数学增补习题答案第57 页苏教版七年级上册数学增补习题答案第58 页苏教版七年级上册数学增补习题答案第59 页苏教版七年级上册数学增补习题答案第 60 页苏教版七年级上册数学增补习题答案第61 页苏教版七年级上册数学增补习题答案第62 页苏教版七年级上册数学增补习题答案第63 页苏教版七年级上册数学增补习题答案第 64 页苏教版七年级上册数学增补习题答案第65页苏教版七年级上册数学增补习题答案第66 页苏教版七年级上册数学增补习题答案第67 页苏教版七年级上册数学补充习题答案第 68 页苏教版七年级上册数学增补习题答案第69 页苏教版七年级上册数学增补习题答案第70 页苏教版七年级上册数学增补习题答案第71页苏教版七年级上册数学增补习题答案第 72 页苏教版七年级上册数学增补习题答案第 73 页苏教版七年级上册数学增补习题答案第74 页苏教版七年级上册数学增补习题答案第75 页苏教版七年级上册数案第 77 页苏教版七年级上册数学增补习题答案第78 页苏教版七年级上册数学增补习题答案第79 页苏教版七年级上册数学增补习题答案第 80 页苏教版七年级上册数学增补习题答案第 81 页苏教版七年级上册数学增补习题答案第82 页苏教版七年级上册数学增补习题答案第83 页苏教版七年级上册数学增补习题答案第84 页苏教版七年级上册数学增补习题答案第 85 页苏教版七年级上册数学增补习题答案第86 页苏教版七年级上册数学增补习题答案第87 页苏教版七年级上册数学增补习题答案第88 页苏教版七年级上册数学增补习题答案第 89 页苏教版七年级上册数学增补习题答案第90页苏教版七年级上册数学增补习题答案第91 页苏教版七年级上册数学增补习题答案第92 页苏教版七年级上册数学补充习题答案第 93 页苏教版七年级上册数学增补习题答案第94 页苏教版七年级上册数学增补习题答案第95 页苏教版七年级上册数学增补习题答案第96页苏教版七年级上册数学增补习题答案第 97 页苏教版七年级上册数学增补习题答案第 98 页苏教版七年级上册数学增补习题答案第99 页苏教版七年级上册数学增补习题答案第100 页苏教版七年级上册数学增补习题答案第 101 页苏教版七年级上册数学增补习题答案第 102 页苏教版七年级上册数学增补习题答案第103 页苏教版七年级上册数学增补习题答案第104 页苏教版七年级上题答案第 106 页苏教版七年级上册数学增补习题答案第107页苏教版七年级上册数学增补习题答案第108 页苏教版七年级上册数学增补习题答案第109 页苏教版七年级上册数学补充习题答案第110 页第一版社:江苏凤凰科学技术版次:( 2015.12 重印)每日更新,请您关注七年级下册数学增补习题答案第 1 页苏科版七年级下册数学增补习题答案第 2 页七年级下册数学增补习题答案第 3 页七年级下册数学增补习题答案第 4 页苏科版七年级下册数学增补习题答案第 5 页苏科版七年级下册数学增补习题答案第6 页苏科版七年级下册数学增补习题答案第 7 页苏科版七年级下册数学增补习题答案第 8 页苏科版七年级下册数学增补习题答案第 9 页苏科版七年级(初一)下册数学增补习题答案第 10 页苏科版七年级(初一)下册数学增补习题答案第 11 页苏科版七年级(初一)下册数学增补习题答案第 12 页苏科版七年级(初一)下册数学增补习题答案第 13 页苏科版七年级(初一)下册数学增补习题答案第 14页苏科版七年级(初一)下册数学增补习题答案第15 页苏科版七年级(初一)下册数学增补习题答案第16 页苏科版七年级(初一)下册数学增补习题答案第17 页苏科版七年级(初一)下册数学增补习题答案第18 页苏科版七年级(初一)下册数学增补习题答案第 19 页苏科版七年级(初一)下册数学增补习题答案第 20 页苏科版七年级(初一)下册数学增补习题答案第 21 页苏科版七年级(初一)下册数学增补习题答案第 22 页苏科版七年级(初一)下册数学增补习题答案第 23 页苏科版七年级(初一)下册数学增补习题答案第 24 页苏科版七年级(初一)下册数学增补习题答案第 25 页苏科版七年级(初一)下册数学增补习题答案第26 页苏科版七年级(初一)下册数学增补习题答案第 27 页苏科版七年级(初一)下册数学增补习题答案第28页苏科版七年级(初一)下册数学增补习题答案第29页苏科版七年级(初一)下册数学增补习题答案第30 页苏科版七年级(初一)下册数学增补习题答案第31 页苏科版七年级(初一)下册数学增补习题答案第32 页苏科版七年级(初一)下册数学增补习题答案第33页苏科版七年级(初一)下册数学增补习题答案第34 页苏科版七年级(初一)下册数学增补习题答案第 35 页苏科版七年级(初一)下册数学增补习题答案第 36 页苏科版七年级(初一)下册数学增补习题答案第 37 页苏科版七年级(初一)下册数学增补习题答案第 38 页苏科版七年级(初一)下册数学增补习题答案第 39 页苏科版七年级(初一)下册数学增补习题答案第40页苏科版七年级(初一)下册数学增补习题答案第41页苏科版七年级(初一)下册数学增补习题答案第42 页苏科版七年级(初一)下册数学增补习题答案第 43 页苏科版七年级(初一)下册数学增补习题答案第 44 页苏科版七年级(初一)下册数学增补习题答案第 45 页苏科版七年级(初一)下册数学增补习题答案第 46 页苏科版七年级(初一)下册数学增补习题答案第 47 页苏科版七年级(初一)下册数学增补习题答案第 48 页苏科版七年级(初一)下册数学增补习题答案第 49 页苏科版七年级(初一)下册数学增补习题答案第50 页苏科版七年级(初一)下册数学增补习题答案第 51 页苏科版七年级(初一)下册数学增补习题答案第52页苏科版七年级(初一)下册数学增补习题答案第53页苏科版七年级(初一)下册数学增补习题答案第54 页苏科版七年级(初一)下册数学增补习题答案第55 页苏科版七年级(初一)下册数学增补习题答案第56 页苏科版七年级(初一)下册数学增补习题答案第57页苏科版七年级(初一)下册数学增补习题答案第58 页苏科版七年级(初一)下册数学增补习题答案第 59 页苏科版七年级(初一)下册数学增补习题答案第 60 页苏科版七年级(初一)下册数学增补习题答案第 61 页苏科版七年级(初一)下册数学增补习题答案第 62 页苏科版七年级(初一)下册数学增补习题答案第 63 页苏科版七年级(初一)下册数学增补习题答案第64页苏科版七年级(初一)下册数学增补习题答案第65页苏科版七年级(初一)下册数学增补习题答案第66 页苏科版七年级(初一)下册数学增补习题答案第 67 页苏科版七年级(初一)下册数学增补习题答案第 68 页苏科版七年级(初一)下册数学增补习题答案第 69 页苏科版七年级(初一)下册数学增补习题答案第 70 页苏科版七年级(初一)下册数学增补习题答案第 71 页苏科版七年级(初一)下册数学增补习题答案第 72 页苏科版七年级(初一)下册数学增补习题答案第 73 页苏科版七年级(初一)下册数学增补习题答案第74 页苏科版七年级(初一)下册数学增补习题答案第 75 页苏科版七年级(初一)下册数学增补习题答案第76页苏科版七年级(初一)下册数学增补习题答案第77页苏科版七年级(初一)下册数学增补习题答案第78 页苏科版七年级(初一)下册数学增补习题答案第79 页苏科版七年级(初一)下册数学增补习题答案第80 页苏科版七年级(初一)下册数学增补习题答案第81页苏科版七年级(初一)下册数学增补习题答案第82 页苏科版七年级(初一)下册数学增补习题答案第 83 页苏科版七年级(初一)下册数学增补习题答案第 84 页苏科版七年级(初一)下册数学增补习题答案第 85 页苏科版七年级(初一)下册数学增补习题答案第 86 页苏科版七年级(初一)下册数学增补习题答案第 87 页苏科版七年级(初一)下册数学增补习题答案第88页苏科版七年级(初一)下册数学增补习题答案第89页苏科版七年级(初一)下册数学增补习题答案第90 页苏科版七年级(初一)下册数学增补习题答案第 91 页苏科版七年级(初一)下册数学增补习题答案第 92 页苏科版七年级(初一)下册数学增补习题答案第 93 页苏科版七年级(初一)下册数学增补习题答案第 94 页苏科版七年级(初一)下册数学增补习题答案第 95 页苏科版七年级(初一)下册数学增补习题答案第 96 页苏科版七年级(初一)下册数学增补习题答案第 97 页苏科版七年级(初一)下册数学增补习题答案第98 页苏科版七年级(初一)下册数学增补习题答案第 99 页苏科版七年级(初一)下册数学增补习题答案第100页苏科版七年级(初一)下册数学增补习题答案第101 页苏科版七年级(初一)下册数学增补习题答案第102 页苏科版七年级(初一)下册数学增补习题答案第103 页苏科版七年级(初一)下册数学增补习题答案第104 页苏科版七年级(初一)下册数学增补习题答案第105 页苏科版七年级(初一)下册数学增补习题答案第106 页。

七年级下册数学课前课后答案

七年级下册数学课前课后答案

1、填空。

(1)简单应用题必须有两个()和一个(),它们之间的关系可以归纳为()、()、()、()四种。

(2)已知一辆汽车行驶的速度和时间,可以求出(),要想求这辆汽车行驶的速度必须知道()和()。

(3)要计算在银行存款的利息,已知本金是多少,还要知道()和()。

(4)知道核桃树的棵树和收核桃的千克数,求每棵核桃树的产量,是求()的题目。

(5)已知3只奶羊一年可产奶2340千克,可以求出()。

2、解答下列应用题。

(1)一条绳子长35米,用去14.75米,还剩多少米?(2)一辆汽车0.5小时行驶25千米,1小时行驶多少千米?(3)运送一批货物,已运走了2/5,还剩几分之几?(4)某班有学生50人,今天的出勤率是96%,今天出勤的有多少人?(5)果园里有桃树85棵,梨树的棵数正好是桃树的4倍。

梨树有多少棵?(6)一条水渠总长1200米,已经修了450米,再修多少米就可以完工了?(7)学校买回18个小足球,共用去1890元,每个小足球多少元?(8)在六一班50个学生中,有48个同学参加了各种“兴趣小组”活动。

参加“兴趣小组”活动的占全班人数的百分之几?(9)工程队修一段公路,已经修了8.4千米,正好占全长的80%,这段公路全长多少千米?B组1、按要求填空。

一种服装,原价每套85元,现价是原价的4/5,现在每套多少元?分析:(1)已知条件是()、(),所求问题是()。

(2)已知这种服装原价85元,现价是原价的 4/5,求现价是多少元,就是求()的 4/5是多少。

(3)求一个数的几分之几是多少用()法计算。

2、要求下列问题需要知道哪两个条件。

(1)六(1)班一共有学生多少人?(2)六(1)班男生比女生多多少人?(3)果园里桃树比梨树少多少棵?(4)五年级平均每人为灾区捐款多少元?(5)汽车平均每小时行驶多少千米?(6)合唱队人数是舞蹈队人数的多少倍?(7)五年级捐款数是六年级捐款数的几分之几?(8)剩下的书还需要多少小时能装订完?(9)小明几分可以从家走到学校?(10)这堆煤实际烧了多少天?3、根据下面各题的条件,把有关的数量关系补充完整。

湘教版七年级数学下册全册同步练习含答案

湘教版七年级数学下册全册同步练习含答案

2015-2016学年湘教版初中数学七年级下册全册课时作业目录1.1 二元一次方程组课时作业1.3 二元一次方程组的应用(第1课时)课时作业1.3 二元一次方程组的应用(第2课时)课时作业1.4 三元一次方程组课时作业2.1.1 同底数幂的乘法课时作业2.1.2 多项式的乘法课时作业2.1.2 幂的乘方与积的乘方课时作业2.1.3 单项式的乘法课时作业2.1.4 多项式的乘法课时作业2.2.1 平方差公式课时作业2.2.2 完全平方公式课时作业2.2.3 运用乘法公式进行计算课时作业3.1 多项式的因式分解课时作业3.2 提公因式法课时作业3.3 公式法(第1课时)课时作业3.3 公式法(第2课时)课时作业4.1.1 相交与平行课时作业4.1.2 相交直线所成的角课时作业4.2 平移课时作业课时作业4.3 平行线的性质课时作业4.4 平行线的判定课时作业4.5 垂线课时作业4.6 两条平行线间的距离课时作业5.1.1轴对称图形课时作业5.1.2轴对称变换课时作业5.2 旋转课时作业5.3 图形变换的简单应用课时作业6.1.1 平均数课时作业6.1.2 中位数课时作业6.1.3 众数课时作业6.2 方差课时作业建立二元一次方程组(30分钟50分)一、选择题(每小题4分,共12分)1.下列方程中,是二元一次方程的是( )A.3x2-2y=4B.6x+y+9z=0C.+4y=6D.4x=2.以为解的二元一次方程组是( )A. B.C. D.3.(2013·广州中考)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( )A. B.C. D.二、填空题(每小题4分,共12分)4.请写出一个二元一次方程组,使它的解是5.方程(k2-1)x2+(k+1)x+2ky=k+3,当k= 时,它为一元一次方程;当k=时,它为二元一次方程.6.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x元/束,礼盒y 元/盒,则可列方程组为.三、解答题(共26分)7.(8分)下列各组数据中哪些是方程3x-2y=11的解?哪些是方程2x+3y=16的解?哪些是方程组的解?为什么?①②③④8.(8分)(1)若是方程2x+y=0的解,求6a+3b+2的值.(2)若是方程3x-y=1的解,求6a-2b+3的值.【拓展延伸】9.(10分)为民医疗器械经销部经营甲、乙两种医疗器械,甲器械每台2万元,乙器械每台5万元,今年厂方给经销部规定了24万元的营销任务,那么该经销部要想刚好完成任务,有哪些销售方案可选择?若乙医疗器械的利润是甲医疗器械的3倍,那么你觉得选择哪个方案更好些?答案解析1.【解析】选D.4x=含有两个未知数x,y,并且含x,y项的次数都是1,是二元一次方程.选项A有二次项,选项B有三个未知数,选项C分母中有未知数,故A,B,C都不是二元一次方程.2.【解析】选D.将分别代入四个方程组中,只有D中的两个方程同时成立.3.【解析】选C.由题意知,x+y=10,x-3y=2,即x=3y+2,所以4.【解析】以为解的二元一次方程有无数个,如x+y=1,x-y=3,x+2y=0等,只要满足x=2,y=-1即可.然后从中选两个方程,但是这两个方程的对应项的系数不能成倍数关系.答案:(答案不唯一)5.【解析】无论是一元一次方程还是二元一次方程,都不可能有二次项,所以k2-1=0,即k=±1.当k=-1时,原方程为-2y=2是一元一次方程;当k=1时,原方程为x+y=2为二元一次方程. 答案:-1 16.【解析】一束鲜花x元,一盒礼盒y元,由一束鲜花和两盒礼盒共55元,得:x+2y=55;由两束鲜花和3盒礼盒共90元,得2x+3y=90,故答案:7.【解析】①②是方程3x-2y=11的解.②③是方程2x+3y=16的解.②是方程组的解.因为方程组的解必须是方程组中两个方程的公共解.8.【解析】(1)把代入方程2x+y=0得2a+b=0,两边同时乘以3得:6a+3b=0,所以6a+3b+2=2.(2)把代入3x-y=1得3a-b=1,则6a-2b+3=2(3a-b)+3=5.【归纳整合】解决本题的方法为整体代入法,将含a,b的式子整体代入,使得整个求解过程更加简便,在解决整体代入法求值问题时,要多观察式子的特点,合理运用整体代入法.9.【解析】设销售甲医疗器械x台,乙医疗器械y台,根据题意,得2x+5y=24.因为x,y都是非负整数,所以x==12-2y-.当y=0时,x=12;当y=2时,x=7;当y=4时,x=2.所以销售方案有三种:方案一:销售甲器械12台,乙器械0台;方案二:销售甲器械7台,乙器械2台;方案三:销售甲器械2台,乙器械4台.设甲医疗器械的利润为a(a>0),则方案一的利润为12a+0×3a=12a(元);方案二的利润为7a+2×3a=13a(元);方案三的利润为2a+4×3a=14a(元).因为14a>13a>12a,所以选择方案三更好些.二元一次方程组的应用(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( ) A.B.C. D.2.(2013·潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是 2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A.B.C.D.3.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是( )A.50元,150元B.150元,50元C.100元,50元D.50元,100元二、填空题(每小题4分,共12分)4.甲种电影票每张20元,乙种电影票每张15元.若购买甲,乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.5.学校组织一次有关历史知识的竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得了76分,那么他答对道题.6.一个长方形的长减少5cm,宽增加2cm,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为cm2.三、解答题(共26分)7.(8分)(2013·济南中考)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.8.(8分)(2013·宜宾中考)2013年4月20日,四川省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?【拓展延伸】9.(10分)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解题过程.答案解析1.【解析】选B.第一个等量关系式为:x+y=1.2,第二个等量关系式为:x+y=16,构成方程组2.【解析】选B.根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”所得的方程是x-y=22;调查的吸烟的人数是,不吸烟的人数是,根据共调查了10000人,列方程得+=10000,所以可列方程组3.【解析】选B.设甲的定价为x元,乙的定价为y元.则解得:4.【解析】设购买甲种电影票x张,乙种电影票y张,由题意得解得即甲种电影票买了20张.答案:20【归纳整合】二元一次方程组的优点当我们遇到两个量之间出现两种等量关系时,可以考虑列二元一次方程组解题.虽然本题也可列一元一次方程,但相比较而言,列二元一次方程组比列一元一次方程更好.5.【解析】设他答对x道题,答错或不答y道题.根据题意,得解得答案:166.【解析】设长方形的长为xcm,宽为ycm,则根据题意得解这个方程组得所以长方形的面积xy=.答案:7.【解析】设大宿舍有x间,小宿舍有y间,根据题意得解得答:大宿舍有30间,小宿舍有20间.8.【解析】设规定时间为x天,生产任务是y顶帐篷,由题意得,解得答:规定时间是6天,生产任务是800顶帐篷.9.【解析】本题答案不唯一,方法一:问题:普通公路段和高速公路段各长多少千米?设普通公路段长为xkm,高速公路段长为ykm.由题意可得:解得答:普通公路段长为60km,高速公路段长为120km.方法二:问题:汽车在普通公路段和高速公路段上各行驶了多少小时?设汽车在普通公路段上行驶了xh,在高速公路段上行驶了yh.由题意可得:解得:答:汽车在普通公路段上行驶了1h,在高速公路段上行驶了1.2h.二元一次方程组的应用(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A.10g,40gB.15g,35gC.20g,30gD.30g,20g2.根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )A.1.2元/支,3.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.0.8元/支,2.6元/本3.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8,6,5个店铺,且每组至少有两人,则学生分组方案有( )A.6种B.5种C.4种D.3种二、填空题(每小题4分,共12分)4.(2013·绍兴中考)我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有只,兔有只.5.如图,正方形是由k个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k= .6.(2013·鞍山中考)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是cm.三、解答题(共26分)7.(8分)(2013·莱芜中考)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同,求两种跳绳的单价各是多少元?8.(8分)(2013·嘉兴中考)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?【拓展延伸】9.(10分)某公园的门票价格如表所示:购票人数1~50人51~100人100人以上票价10元/人8元/人5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?答案解析1.【解析】选C.设每块巧克力的质量为xg,每个果冻的质量为yg,由题意得解得2.【解析】选 A.设小红所买的笔和笔记本的价格分别是x元/支,y元/本,则解得所以小红所买的笔和笔记本的价格分别是1.2元/支,3.6元/本.3.【解析】选 B.设第一小组有x人,第二小组有y人,则第三小组有(20-x-y)人,则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=11,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意,故学生分组方案有5种.4.【解析】设鸡有x只,兔有y只,根据题意可得解得:即鸡有22只,兔有11只.答案:22 115.【解析】设矩形的长为x,矩形的宽为y,中间竖的矩形为n个,则可列方程组解得n=4.则k=2+2+4=8.答案:86.【解析】设长铁棒长为xcm,短铁棒长为ycm,由题意可得解得所以水的深度为×120=80(cm).答案:807.【解析】设长跳绳的单价是x元,短跳绳的单价是y元.由题意,得解得所以长跳绳的单价是20元,短跳绳的单价是8元.8.【解析】(1)设年降水量为x万立方米,每人年平均用水量为y立方米,则:解得答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z立方米才能实现目标,则:12000+25×200=20×25z,解得z=34.所以50-34=16.答:该城镇居民人均每年需要节约16立方米的水才能实现目标.9.【解析】设甲班有x人,乙班有y人,根据题意得,解得答:甲班有55人,乙班有48人.三元一次方程组(30分钟50分)一、选择题(每小题4分,共12分)1.下列方程中,是三元一次方程组的是( )A. B.C. D.2.若方程组的解x与y的值的和为3,则a的值为( )A.7B.4C.0D.-43.(2012·德阳中考)为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A.4,6,1,7B.4,1,6,7C.6,4,1,7D.1,6,4,7二、填空题(每小题4分,共12分)4.解方程组时,①+②可消去未知数,得到一个二元一次方程.5.已知方程组则x+y+z= .6.已知甲、乙、丙三人各有一些钱,其中甲的钱数是乙的钱数的2倍,乙的钱数比丙的钱数多1元,丙的钱数比甲的钱数少11元.三人共有元.三、解答题(共26分)7.(8分)李红在做这样一个题目:在等式y=ax2+bx+c中,当x=1时,y=6;当x=2时,y=21;当x=-1时,y=0;当x=-2时,y等于多少?她想,在求y值之前应先求a,b,c的值,你认为她的想法对吗?请你帮她求出a,b,c及y的值.8.(8分)某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50棵,乙小组植树的棵数是甲、丙两小组的和的,甲小组植树的棵数恰是乙小组与丙小组的和,问每小组各植树多少棵?【拓展延伸】9.(10分)某企业为了激励员工参与技术革新,设计了技术革新奖,这个奖项分设一、二、三等,按获奖等级颁发一定数额的奖金,每年评选一次,下表是近三年技术革新获奖人数及奖金总额情况.一等奖人数(人)二等奖人数(人)三等奖人数(人)奖金总额(万元)2011年10 20 30 412012年12 20 28 422013年14 25 40 54 那么技术革新一、二、三等奖的奖金数额分别是多少万元?答案解析1.【解析】选C.三元一次方程组里必须有三个方程,故排除A,B;D中有两个方程不是一次方程,故它也不是三元一次方程组.2.【解析】选A.把x+y=3和原方程组联立,得到一个关于x,y,a的三元一次方程组,求得a=7.3.【解析】选C.根据题意,得解得故选C.4.【解析】方程①和②中未知数y的系数互为相反数,相加可消去未知数y,得2x+z=27.答案:y 2x+z=275.【解析】①+②+③得:2x+2y+2z=12,所以x+y+z=6.答案:66.【解析】设甲有x元、乙有y元、丙有z元,根据题意,得解得所以三人共有20+10+9=39(元).答案:397.【解析】她的想法对.根据题意,得解得所以该等式为y=4x2+3x-1,所以当x=-2时,y=4×4-3×2-1=9,即y=9.8.【解析】设甲小组植树x棵、乙小组植树y棵、丙小组植树z棵,根据题意,得解得答:甲小组植树25棵、乙小组植树10棵、丙小组植树15棵.9.【解析】设一、二、三等奖的奖金数额分别是x万元、y万元、z万元,根据题意,得解得答:一、二、三等奖的奖金数额分别是1万元、万元、万元.同底数幂的乘法(30分钟50分)一、选择题(每小题4分,共12分)1.计算(-x)2·x3的结果是( )A.x5B.-x5C.x6D.-x62.下列各式计算正确的个数是( )①x4·x2=x8;②x3·x3=2x6;③a5+a7=a12;④(-a)2·(-a2)=-a4;⑤a4·a3=a7.A.1B.2C.3D.43.下列各式能用同底数幂乘法法则进行计算的是( )A.(x+y)2·(x-y)2B.(x+y)2(-x-y)C.(x+y)2+2(x+y)2D.(x-y)2(-x-y)二、填空题(每小题4分,共12分)4.(2013·天津中考)计算a·a6的结果等于.5.若2n-2×24=64,则n= .6.已知2x·2x·8=213,则x= .三、解答题(共26分)7.(8分)计算:(1)(-3)3·(-3)4·(-3).(2)a3·a2-a·(-a)2·a2.(3)(2m-n)4·(n-2m)3·(2m-n)6.(4)y·y n+1-2y n·y2.8.(8分)已知a x=5,a y=4,求下列各式的值:(1)a x+2. (2)a x+y+1.【拓展延伸】9.(10分)已知2a=3,2b=6,2c=12,试确定a,b,c之间的关系.答案解析1.【解析】选A.(-x)2·x3=x2·x3=x2+3=x5.2.【解析】选B.x4·x2=x4+2=x6,故①错误;x3·x3=x3+3=x6,故②错误;a5与a7不是同类项,不能合并,故③错误;(-a)2·(-a2)=a2·(-a2)=-a2·a2=-a2+2=-a4,故④正确;a4·a3=a4+3=a7,故⑤正确.3.【解析】选 B.A,D选项底数不相同,不是同底数幂的乘法,C选项不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.4.【解析】根据同底数幂的乘法法则“同底数幂相乘,底数不变,指数相加”,所以a·a6=a1+6=a7. 答案:a75.【解析】因为2n-2×24=2n-2+4=2n+2,64=26,所以2n+2=26,即n+2=6,解得n=4.答案:46.【解析】因为2x·2x·8=2x·2x·23=2x+x+3,所以x+x+3=13,解得x=5.答案:57.【解析】(1)(-3)3·(-3)4·(-3)=(-3)3+4+1=(-3)8=38.(2)a3·a2-a·(-a)2·a2=a3+2-a·a2·a2=a5-a5=0.(3)(2m-n)4·(n-2m)3·(2m-n)6=(n-2m)4·(n-2m)3·(n-2m)6=(n-2m)4+3+6=(n-2m)13.(4)y·y n+1-2y n·y2=y n+1+1-2y n+2=y n+2-2y n+2=(1-2)y n+2=-y n+2.8.【解析】(1)a x+2=a x×a2=5a2.(2)a x+y+1=a x·a y·a=5×4×a=20a.9.【解析】方法一:因为12=3×22=6×2, 所以2c=12=3×22=2a×22=2a+2,即c=a+2,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①+②得2c=a+b+3.方法二:因为2b=6=3×2=2a×2=2a+1,所以b=a+1,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①-②得2b=a+c.多项式的乘法(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3B.2x+9C.8x-3D.18x-32.下列各式中计算错误的是( )A.2x-(2x3+3x-1)=4x4+6x2-2xB.b(b2-b+1)=b3-b2+bC.-x(2x2-2)=-x3+xD.x=x4-2x2+x3.今天数学课上,老师讲了单项式乘以多项式.放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-3xy·(4y-2x-1)=-12xy2+6x2y+ .空格的地方被钢笔水弄污了,你认为横线上应填写( )A.3xyB.-3xyC.-1D.1二、填空题(每小题4分,共12分)4.(-2x2)3·(x2+x2y2+y2)的结果中次数是10的项的系数是.5.当x=1,y=时,3x(2x+y)-2x(x-y)= .6.如图是在正方形网格中按规律填成的阴影,根据此规律,第n个图中的阴影部分小正方形的个数是.三、解答题(共26分)7.(8分)先化简,再求值.x(x2-6x-9)-x(x2-8x-15)+2x(3-x),其中x=-.8.(8分)如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.【拓展延伸】9.(10分)阅读:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入. 解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.答案解析1.【解析】选A.原式=10x-15+12-8x=(10x-8x)+(-15+12)=2x-3.2.【解析】选A.2x-(2x3+3x-1)=2x-2x3-3x+1=-2x3-x+1.3.【解析】选A.-3xy·(4y-2x-1)=-3xy·4y+(-3xy)·(-2x)+(-3xy)·(-1)=-12xy2+6x2y+3xy,所以应填写3xy.4.【解析】(-2x2)3·(x2+x2y2+y2)=-8x6·(x2+x2y2+y2)=-8x8-8x8y2-8x6y2,所以次数是10的项是-8x8y2,系数是-8.答案:-85.【解析】3x(2x+y)-2x(x-y)=6x2+3xy-2x2+2xy=4x2+5xy,当x=1,y=时,原式=4x2+5xy=4×12+5×1×=4+1=5.答案:56.【解析】根据图形可知:第一个图形中阴影部分小正方形个数为4=2+2=1×2+2,第二个图形中阴影部分小正方形个数为8=6+2=2×3+2,第三个图形中阴影部分小正方形个数为14=12+2=3×4+2,……所以第n个图形中阴影部分小正方形个数为n(n+1)+2= n2+n+2,故此题答案为n2+n+2. 答案:n2+n+27.【解析】x(x2-6x-9)-x(x2-8x-15)+2x(3-x)=x3-6x2-9x- x3+8x2+15x+6x-2x2=12x.当x=-时,原式=12×=-2.8.【解析】长方形地块的长为:(3a+2b)+(2a-b),宽为4a, 这块地的面积为:4a·[(3a+2b)+(2a-b)]=4a·(5a+b)=4a·5a+4a·b=20a2+4ab.答:这块地的面积为20a2+4ab.9.【解析】(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab,当ab=3时,原式=-4×33+6×32-8×3=-108+54-24=-78.幂的乘方与积的乘方(30分钟50分) 一、选择题(每小题4分,共12分)1.(2013·遵义中考)计算的结果是( )A.-a3b6B.-a3b5C.-a3b5D.-a3b62.(2013·泸州中考)下列各式计算正确的是( )A.(a7)2=a9B.a7·a2=a14C.2a2+3a3=5a5D.(ab)3=a3b33.如果(2a m b m+n)3=8a9b15成立,则m,n的值为( )A.m=3,n=2B.m=3,n=9C.m=6,n=2D.m=2,n=5二、填空题(每小题4分,共12分)4.若(x2)n=x8,则n= .5.若a n=3,b n=2,则(a3b2)n= .6.××(-1)2013= .三、解答题(共26分)7.(8分)比较3555,4444,5333的大小.8.(8分)计算:(1)(-a3b6)2-(-a2b4)3.(2)2(a n b n)2+(a2b2)n.【拓展延伸】9.(10分)阅读材料:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log a N=b. 例如,因为54=625,所以log5625=4;因为32=9,所以log39=2.对数有如下性质:如果a>0,且a≠1,M>0,N>0,那么lo g a(MN)=log a M+log a N.完成下列各题:(1)因为,所以log28= .(2)因为,所以log216= .(3)计算:log2(8×16)= + = .答案解析1.【解析】选D.=·a3·(b2)3=-a3b6.2.【解析】选 D.根据幂的乘方法则,(a7)2=a7×2=a14,选项A错误;根据同底数幂相乘法则,a7·a2=a7+2=a9,选项B错误;2a2与3a3不是同类项,不能合并,选项C错误;选项D符合积的乘方的运算法则,是正确的,故选D.3.【解析】选A.因为(2a m b m+n)3=8a3m b3(m+n)=8a9b15,所以3m=9,3(m+n)=15,解得m=3,n=2.4.【解析】因为(x2)n=x2n=x8,所以2n=8,所以n=4.答案:45.【解析】(a3b2)n=a3n b2n=(a n)3(b n)2=33×22=27×4=108.答案:1086.【解析】原式=×=×=12013×=.答案:7.【解析】因为3555=3111×5=(35)111=243111,4444=4111×4=(44)111=256111,5333=5111×3=(53)111=125111,又因为125<243<256,所以125111<243111<256111,所以5333<3555<4444.8.【解析】(1)原式=a6b12-(-a6b12)=a6b12+a6b12= 2a6b12.(2)原式=2a2n b2n+a2n b2n=3a2n b2n.9.【解析】(1)因为23=8,所以log28=3.(2)因为24=16,所以log216=4.(3)log2(8×16)=log28+log216=3+4=7.答案:(1)23=8 3 (2)24=16 4 (3)log28 log216 7单项式的乘法(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·绍兴中考)计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2.下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n43.某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元二、填空题(每小题4分,共12分)4.(2013·泰州中考)计算:3a·2a2= .5.计算:= .6.光的速度约为3×105km/s,太阳光到达地球需要的时间约为5×102s,则地球与太阳间的距离约为km.三、解答题(共26分)7.(8分)计算:(1)4y3·(-2x2y).(2)x2y3·xyz.(3)(3x2y)3·(-4xy2).(4)(-xy2z3)4·(-x2y)3.8.(8分)有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.【拓展延伸】9.(10分)已知三角表示2ab c,方框表示(-3x zω)y,求×.答案解析1.【解析】选C.3a·2b=3×2a·b=6ab.2.【解析】选 D.选项A中,(2xy)3(-2xy)2=8x3y3×4x2y2=32x5y5,故此选项正确;选项B 中,(-2ab2)2(-3a2b)3=4a2b4×(-27)a6b3=-108a8b7,故此选项正确;选项C中,=x2y2×x2y=x4y3,故此选项正确;选项D中,=m2n×m2n4=m4n5,故此选项错误.3.【解析】选A.由题意知bc=a.因为5月份售出该品牌衬衣3b件,每件打八折,则每件为0.8c 元.所以5月份该品牌衬衣的营业额为:3b·0.8c=2.4bc=2.4a(元).所以5月份该品牌衬衣的营业额比4月份增加2.4a-a=1.4a(元).4.【解析】3a·2a2=6a3.答案:6a35.【解析】=(a·a2)(b2·b)=-a3b3.答案:-a3b36.【解析】(3×105)×(5×102)=(3×5)×(105×102)=15×107=1.5×108.答案:1.5×1087.【解析】(1)原式=[4×(-2)]x2·(y3·y)=-8x2y4.(2)原式=(x2·x)(y3·y)·z=x3y4z.(3)原式=27x6y3·(-4xy2)=[27×(-4)](x6·x)(y3·y2)=-108x7y5.(4)原式=x4y8z12·(-x6y3)=-(x4·x6)(y8·y3)z12=-x10y11z12.8.【解题指南】由|2x-3y+1|+(x+3y+5)2=0知,2x-3y+1=0,x+3y+5=0,建立方程组,解得x,y 后,代入代数式求值.【解析】由题意得可得所以(-2xy)2·(-y2)·6xy2=4x2y2·(-y2)·6xy2=-24x3y6.当x=-2,y=-1时,原式=-24×(-2)3×(-1)6=-24×(-8)=192.9.【解析】×=2mn3·(-3n5m)2=2mn3·9n10m2=18n13m3.多项式的乘法(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列计算中,正确的有( )①(2a-3)(3a-1)=6a2-11a+3;②(m+n)(n+m)=m2+mn+n2;③(a-2)(a+3)=a2-6;④(1-a)(1+a)=1-a2.A.4个B.3个C.2个D.1个2.若(x+3)(x+m)=x2+kx-15,则m-k的值为( )A.-3B.5C.-2D.23.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mnB.(m+n)2C.(m-n)2D.m2-n2二、填空题(每小题4分,共12分)4.当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为.5.已知(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,则p+q的值为.6.若(x+a)(x+b)=x2-6x+8,则ab= .三、解答题(共26分)7.(8分)(1)化简(x+1)2-x(x+2).(2)先化简,再求值.(x+3)(x-3)-x(x-2),其中x=4.8.(8分)若(x-1)(x+1)(x+5)=x3+bx2+cx+d,求b+d的值.【拓展延伸】9.(10分)计算下列式子:(1)(x-1)(x+1)= .(2)(x-1)(x2+x+1)= .(3)(x-1)(x3+x2+x+1)= .(4)(x-1)(x4+x3+x2+x+1)= .用你发现的规律直接写出(x-1)(x n+x n-1+…+x+1)的结果.答案解析1.【解析】选C.因为(2a-3)(3a-1)=6a2-11a+3;(m+n)(n+m)=m2+2mn+n2;(a-2)(a+3)=a2+a-6;(1-a)(1+a)=1-a2,故正确的有2个.2.【解析】选A.因为(x+3)(x+m)=x2+(3+m)x+3m=x2+kx-15.所以m+3=k,3m=-15,解得m=-5,k=-2.所以m-k=-5-(-2)=-5+2=-3.3.【解析】选C.由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又因为原矩形的面积为4mn,所以中间空的部分的面积=(m+n)2-4mn=(m-n)2.4.【解析】(2x+5)(x+1)-(x-3)(x+1)=(2x2+2x+5x+5)-(x2+x-3x-3)=x2+9x+8.把x=-7代入得:原式=(-7)2+9×(-7)+8=-6.答案:-65.【解析】因为(x2+px+8)(x2-3x+q)=x4-3x3+qx2+p x3-3px2+qpx+8x2-24x+8q= x4+(p-3)x3+(q-3p+8)x2+(qp-24)x+8q,又因为(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,所以p-3=0,q-3p+8=0,所以p=3,q=1,所以p+q=4.答案:46.【解析】因为(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab,所以x2+(a+b)x+ab= x2-6x+8,所以ab=8.答案:87.【解析】(1)原式=(x+1)(x+1)-x(x+2)=x2+x+x+1-x2-2x=x2+2x+1-x2-2x=1.(2)原式=x2-3x+3x-9-x2+2x=2x-9.当x=4时,原式=2×4-9=-1.8.【解析】(x-1)(x+1)(x+5)=(x2-1)(x+5)=x3+5x2-x-5所以b=5,c=-1,d=-5.即b+d=5-5=0.9.【解析】(1)x2-1 (2)x3-1(3)x4-1 (4)x5-1(x-1)(x n+x n-1+…+x+1)=x n+1-1.平方差公式(30分钟50分)一、选择题(每小题4分,共12分)1.化简:(a+1)2-(a-1)2=( )A.2B.4C.4aD.2a2+22.下列各式计算正确的是( )A.(x+2)(x-2)=x2-2B.(2a+b)(-2a+b)=4a2-b2C.(2x+3)(2x-3)=2x2-9D.(3ab+1)(3ab-1)=9a2b2-13.下列运用平方差公式计算错误的是( )A.(a+b)(a-b)=a2-b2B.(x+1)(x-1)=x2-1C.(2x+1)(2x-1)=2x2-1D.(-a+2b)(-a-2b)=a2-4b2二、填空题(每小题4分,共12分)4.如果x+y=-4,x-y=8,那么代数式x2-y2的值是.5.计算:= .6.观察下列各式,探索发现规律:22-1=3=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102-1=99=9×11;…用含正整数n的等式表示你所发现的规律为.三、解答题(共26分)7.(8分)(1)(2013·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.8.(8分)(2013·义乌中考)如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2.(2)请写出上述过程所揭示的乘法公式.【拓展延伸】9.(10分)阅读下列材料:某同学在计算3×(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3×(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(21024+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(21024+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(21024+1)=(22-1)(22+1)(24+1)(28+1)…(21024+1)=(24-1)(24+1)(28+1)…(21024+1)=…=(21024-1)(21024+1)=22048-1.回答下列问题:(1)请借鉴该同学的经验,计算:(3+1)(32+1)(34+1)(38+1).(2)借用上面的方法,再逆用平方差公式计算:….答案解析1.【解析】选C.(a+1)2-(a-1)2=[(a+1)-(a-1)]·[(a+1)+(a-1)]=2×2a=4a.2.【解析】选D.(x+2)(x-2)=x2-4≠x2-2;(2a+b)(-2a+b)=(b+2a)(b-2a)=b2-4a2≠4a2-b2;(2x+3)(2x-3)=4x2-9≠2x2-9;(3ab+1)(3ab-1)=9a2b2-1.3.【解析】选C.根据平方差得(2x+1)(2x-1)=4x2-1,所以C错误.而A,B,D符合平方差公式条件,计算正确.4.【解析】因为x+y=-4,x-y=8,所以x2-y2=(x+y)(x-y)=(-4)×8=-32.答案:-325.【解析】原式====1.答案:16.【解析】观察式子,每个式子中等号左边的被减数是偶数的平方,减数都是1,等号右边是此偶数前后两个连续奇数的乘积,所以用含正整数n的等式表示其规律为(2n)2-1=(2n-1)(2n+1).答案:(2n)2-1=(2n-1)(2n+1)7.【解析】原式=x2-1-(x2-3x)=x2-1-x2+3x=3x-1,当x=3时,原式=3×3-1=8.(2)解方程:(x-4)(x+3)+(2+x)(2-x)=4.【解析】去括号得x2-4x+3x-12+4-x2=4,移项得x2-4x+3x-x2=4+12-4,合并同类项得-x=12,系数化为1得x=-12.8.【解析】(1)图1中阴影部分面积为S1=a2-b2;图2中阴影部分面积为S2=(2b+2a)(a-b)=(a+b)(a-b).(2)(a+b)(a-b)=a2-b2.9.【解析】(1)(3+1)(32+1)(34+1)(38+1)=(32-1)(32+1)(34+1)(38+1)=(34-1)(34+1)(38+1)=(38-1)(38+1)=(316-1).(2)…=…=××××…××=×=.完全平方公式(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·湘西州中考)下列运算正确的是( )A.a2-a4=a8B.(x-2)(x-3)=x2-6C.(x-2)2=x2-4D.2a+3a=5a2.若a+=7,则a2+的值为( )A.47B.9C.5D.513.如图是一个正方形,分成四部分,其面积分别是a2,ab,ab,b2,则原正方形的边长是( )A.a2+b2B.a+bC.a-bD.a2-b2二、填空题(每小题4分,共12分)4.(2013·晋江中考)若a+b=5,ab=6,则a-b= .5.(2013·泰州中考)若m=2n+1,则m2-4mn+4n2的值是.6.若=9,则的值为.三、解答题(共26分)7.(10分)(1)(2013·福州中考)化简:(a+3)2+a(4-a).(2)(2013·宁波中考)先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=-3.8.(6分)利用完全平方公式计算:(1)482.(2)1052.【拓展延伸】9.(10分)如图所示,有四个同样大小的直角三角形,两条直角边分别为a,b,斜边为c,拼成一个正方形,但中间却留有一个小正方形,你能利用它们之间的面积关系,得到关于a,b,c的等式吗?答案解析1.【解析】选D.A.a2与a4不是同类项,不能合并,故本选项错误;B.(x-2)(x-3)=x2-5x+6,故本选项错误;C.(x-2)2=x2-4x+4,故本选项错误;D.2a+3a=5a,故本选项正确.2.【解析】选A.因为a+=7,所以=72,a2+2·a·+=49,a2+2+=49,所以a2+=47.3.【解析】选B.因为a2+2ab+b2=(a+b)2,所以边长为a+b.4.【解析】因为(a-b)2=(a+b)2-4ab=25-24=1,所以a-b=±1.答案:±15.【解析】因为m=2n+1,即m-2n=1,所以原式=(m-2n)2=1.答案:16.【解析】由=9,可得x2+2+=9.即x2+=7,=x2-2+=7-2=5.答案:57.【解析】(1)原式=a2+6a+9+4a-a2=10a+9. (2)原式=1-a2+a2-4a+4=-4a+5,当a=-3时,原式=12+5=17.8.【解析】(1)482=(50-2)2=2500-200+4=2304.(2)1052=(100+5)2=10000+1000+25=11025.9.【解析】因为小正方形的边长为b-a,所以它的面积为(b-a)2,所以大正方形的面积为4××a×b+(b-a)2. 又因为大正方形的面积为c2,所以4××a×b+(b-a)2=c2,即2ab+b2-2ab+a2=c2,得a2+b2=c2.运用乘法公式进行计算(30分钟50分)一、选择题(每小题4分,共12分)1.若a2+ab+b2+A=(a-b)2,则A式应为( )A.abB.-3abC.0D.-2ab2.计算(m-2n-1)(m+2n-1)的结果为( )A.m2-4n2-2m+1B.m2+4n2-2m+1C.m2-4n2-2m-1D.m2+4n2+2m-13.计算(2a+3b)2(2a-3b)2的结果是( )A.4a2-9b2B.16a4-72a2b2+81b4C.(4a2-9b2)2D.4a4-12a2b2+9b4二、填空题(每小题4分,共12分)4.计算(-3x+2y-z)(3x+2y+z)= .5.矩形ABCD的周长为24,面积为32,则其四条边的平方和为.6.已知a-b=3,则a(a-2b)+b2的值为.三、解答题(共26分)7.(8分)求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=.8.(8分)计算:(x+1)(x+2)(x+3)(x+4).【拓展延伸】9.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档