2013年广东省中考数学试卷解析
2013年广东省中考数学试题及答案-精编
2013年广东省中考数 学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑. 3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是A.21-B. 21C.-2D.2 2.下列几何体中,俯视图为四边形的是3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是 A.55-<-b a B.b a +<+22 C.33ba < D.b a 33>5.数据1、2、5、3、5、3、3的中位数是 A.1 B.2 C.3 D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是A.30°B.40°C.50°D.60°7.下列等式正确的是 A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D. 2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是9.下列图形中,不是..轴对称图形的是10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________.13.一个六边形的内角和是__________.14.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分) 17.解方程组⎩⎨⎧=++=821y x y x18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.①②19.如题19图,已知□ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD于点F,求证:△AFD≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1, Rt △BFC 的面积为S 2, Rt △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.25.有一副直角三角板,在三角板ABC 中,∠BAC=90°,AB=AC=6,在三角板DEF 中,∠FDE=90°,DF=4,DE=34.将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M, 则∠EMC=______度;(2)如题25图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长; (3)在三角板DEF 运动过程中,设BF=x ,两块三角板重叠部分面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.2013年广东省中考数学参考答案1、答案:C解析:2的相反数为-2,选C,本题较简单。
2013年广东省广州市中考数学试卷-答案
广东省广州市2013年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】4个选项中只有D 选项大于0.故选D .【提示】比0的大的数一定是正数,结合选项即可得出答案. 【考点】有理数的大小比较 2.【答案】A【解析】从几何体的正面看可得图形.故选:A .【提示】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【考点】三视图 故选:A . 3.【答案】D【解析】观察图形可知:从图1到图2,可以将图形N 向下移动2格.故选D . 【提示】根据题意,结合图形,由平移的概念求解. 【考点】平移的基本概念,平移规律 4.【答案】B【解析】3262()m n m n =.故选:B .【提示】根据幂的乘方的性质和积的乘方的性质进行计算即可. 【考点】幂的乘方,积的乘方 5.【答案】D【解析】该调查方式是抽样调查,506106424a =----=,故选:D .【提示】根据关键语句“先随机抽取50名中学生进行该问卷调查”,可得该调查方式是抽样调查,调查的样本容量为50,故6106450a ++++=,解即可. 【考点】条形统计图,抽样调查, 6.【答案】C【解析】根据题意列方程组,得:1032x y x y +=⎧⎨=+⎩.故选:C .【提示】根据等量关系为:两数x ,y 之和是10;x 比y 的3倍大2,列出方程组即可. 【考点】由实际问题抽象出二元一次方程组 7.【答案】B【解析】如图可得: 2.5a <,即 2.50a -<,则 2.5(| 2.5) 2.5|a a a -=--=-.故选B .【提示】首先观察数轴,可得 2.5a <,然后由绝对值的性质,可得 2.5(| 2.5) 2.5|a a a -=--=-,则可求得答案.【考点】利用数轴比较实数的大小,绝对值的定义 8.【答案】D【解析】根据题意得:010x x ≥⎧⎨-≠⎩,解得:01x x ≥≠且.故选D .【提示】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 【考点】分式的意义,二次根式 9.【答案】A【解析】∵5200k +<,即4k <-,∴1640k ∆=+<,则方程没有实数根.故选A .【提示】根据已知不等式求出k 的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况. 【考点】一元二次方程根的判别式 10.【答案】B【解析】∵CA 是BCD ∠的平分线, ∴DCA ACB ∠=∠, 又∵AD BC ∥, ∴ACB CAD ∠=∠, ∴DAC DCA ∠=∠,∴DA DC =,过点D 作DE AB ∥,交AC 于点F ,交BC 于点E , ∵AB AC ⊥,∴DE AC ⊥(等腰三角形三线合一的性质), ∴点F 是AC 中点, ∴AF CF =,∴EF 是CAB △的中位线, ∴2EF AB ==,4 AB故答案为:(3,2).DA',则A BD'△即为所求;(3)C 级的有:0,2,3,3,画树状图得:由题意得,32PAE ∠=︒,30AP =海里,在Rt APE △中,sin sin3215.9PE AP PAE AP =∠=︒≈海里;PE(2)22CQ PD x =-=-222CQ PD x x ⎛⎫==-= ⎪⎝⎭CQ PD 列出S CQ PD 列出S在O上,∴是O的切线.2=CE DE OE4==AE DE CE DEAE DE=综上所述,存在四边形AODE为梯形,这样的梯形有2个,此时4AE ED值的时候,4a。
2013年初中数学中考广东试题解析
2013年广东省初中毕业生学业考试数 学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是 A.21 B. 21C.-2D.2 答案:C解析:2的相反数为-2,选C ,本题较简单。
2.下列几何体中,俯视图为四边形的是答案:D解析:A 、B 、C 的俯视图分别为五边形、三角形、圆,只有D 符合。
3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元 答案:B解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 1 260 000 000 000=1.26×1012元4.已知实数a 、b ,若a >b ,则下列结论正确的是A.55-<-b aB.b a +<+22C.33b a< D.b a 33> 答案:D解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A 、B 、C 错误,选D 。
广东省数学中考试卷和详细答案和考点分析(2013--2015)
2013年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)2的相反数是()A.B.C.﹣2D.22.(3分)下列四个几何体中,俯视图为四边形的是()3.(3分)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元4.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5B.2+a<2+b C.D.3a>3b5.(3分)数字1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.56.(3分)如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°7.(3分)下列等式正确的是()A.(﹣1)﹣3=1B.(﹣4)0=1C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣528.(3分)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.9.(3分)下列图形中,不是轴对称图形的是()10.(3分)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)分解因式:x2﹣9=.12.(4分)若实数a、b满足|a+2|,则=.13.(4分)一个六边形的内角和是.14.(4分)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=.15.(4分)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE 绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是.16.(4分)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)解方程组.18.(5分)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.19.(5分)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球36%乒乓球1428%羽毛球15篮球20%足球816%合计100%21.(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22.(8分)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.24.(9分)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.(9分)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B 与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.2013年广东省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•德州)2的相反数是()A.B.C.﹣2D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•广东)下列四个几何体中,俯视图为四边形的是()【考点】简单几何体的三视图.【分析】俯视图是从物体上面看,所得到的图形.【解答】解:A、三棱锥的俯视图是,故此选项错误;B、六棱柱的俯视图是六边形,故此选项错误;C、正方体俯视图是正方形,故此选项正确;D、圆锥的俯视图是有圆心的圆,故此选项错误,故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)(2013•东莞市)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1260 000 000 000有13位,所以可以确定n=13﹣1=12.【解答】解:1260 000 000 000=1.26×1012.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2013•东莞市)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5B.2+a<2+b C.D.3a>3b【考点】不等式的性质.【分析】以及等式的基本性质即可作出判断.【解答】解:A、a>b,则a﹣5>b﹣5,选项错误;B、a>b,则2+a>2+b,选项错误;C、a>b,则>,选项错误;D、正确.故选D.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)(2013•东莞市)数字1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.5【考点】中位数.【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:将数据从大到小排列为:1,2,3,3,3,5,5,则中位数是3.故选:C.【点评】本题考查了中位数的知识,属于基础题,掌握中位数的定义及计算方法是关键.6.(3分)(2013•东莞市)如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°【考点】平行线的性质.【分析】由AC∥DF,AB∥EF,根据两直线平行,同位角相等,即可求得∠1=∠A=∠2=50°.【解答】解:∵AB∥EF,∴∠A=∠2=50°,∵AC∥DF,∴∠1=∠A=50°.故选C.【点评】此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同位角相等定理的应用,注意掌握数形结合思想的应用.7.(3分)(2013•东莞市)下列等式正确的是()A.(﹣1)﹣3=1B.(﹣4)0=1C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣52【考点】负整数指数幂;同底数幂的乘法;同底数幂的除法;零指数幂.【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数),零指数幂:a0=1(a≠0),同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.同底数幂的除法法则:底数不变,指数相减分别进行计算,可得答案.【解答】解:A、(﹣1)﹣3=﹣1,故此选项错误;B、(﹣4)0=1,故此选项正确;C、(﹣2)2×(﹣2)3=﹣25,故此选项错误;D、(﹣5)4÷(﹣5)2=52,故此选项错误;故选:B.【点评】此题主要考查了负整数指数幂、零指数幂、同底数幂的乘除法,关键是熟练掌握各运算的计算法则,不要混淆.8.(3分)(2013•东莞市)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】存在型.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(3分)(2013•广东)下列图形中,不是轴对称图形的是()【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴.10.(3分)(2013•东莞市)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】根据反比例函数的图象性质及正比例函数的图象性质可作出判断.【解答】解:∵k1<0<k2,b=﹣1<0∴直线过二、三、四象限;双曲线位于一、三象限.故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)(2016•镇江)分解因式:x2﹣9=(x+3)(x﹣3).【考点】因式分解-运用公式法.【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.(4分)(2013•东莞市)若实数a、b满足|a+2|,则=1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.(4分)(2013•东莞市)一个六边形的内角和是720°.【考点】多边形内角与外角.【分析】根据多边形内角和公式进行计算即可.【解答】解:由内角和公式可得:(6﹣2)×180°=720°.故答案为:720°.【点评】此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2).180°(n ≥3)且n为整数).14.(4分)(2013•东莞市)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=.【考点】锐角三角函数的定义;勾股定理.【分析】首先由勾股定理求得斜边AC=5;然后由锐角三角函数的定义知sinA=,然后将相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC==5(勾股定理).∴sinA==.故答案是:.【点评】本题考查了锐角三角函数定义,勾股定理.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.(4分)(2013•东莞市)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是平行四边形.【考点】图形的剪拼.【分析】四边形ACE′E的形状是平行四边形;首先根据三角形中位线的性质可得DE∥AC,DE=AC,再根据旋转可得DE=DE′,然后可根据一组对边平行且相等的四边形是平行四边形进行判定即可.【解答】解:四边形ACE′E的形状是平行四边形;∵DE是△ABC的中线,∴DE∥AC,DE=AC,∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,∴DE=DE′,∴EE′=2DE=AC,∴四边形ACE′E的形状是平行四边形,故答案为:平行四边形.【点评】此题主要考查了图形的剪拼,以及平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.16.(4分)(2015•青海)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).【考点】扇形面积的计算.【专题】压轴题.【分析】阴影部分可看成是圆心角为135°,半径为1是扇形.【解答】解:根据图示知,∠1+∠2=180°﹣90°﹣45°=45°,∵∠ABC+∠ADC=180°,∴图中阴影部分的圆心角的和是90°+90°﹣∠1﹣∠2=135°,∴阴影部分的面积应为:S==.故答案是:.【点评】本题考查学生的观察能力及计算能力.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•东莞市)解方程组.【考点】解二元一次方程组.【专题】计算题.【分析】将方程组中的第一个方程代入第二个方程消去x求出y的值,进而求出x的值,即可得到方程组的解.【解答】解:,将①代入②得:2(y+1)+y=8,去括号得:2y+2+y=8,解得:y=2,将y=2代入①得:x=2+1=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(5分)(2013•广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.【考点】分式的化简求值.【专题】开放型.【分析】选②与③构造出分式,再根据分式混合运算的法则把原式进行化简,把a、b的值代入进行计算即可.【解答】解:选②与③构造出分式,,原式==,当a=6,b=3时,原式==.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.19.(5分)(2013•东莞市)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.【考点】作图—复杂作图;全等三角形的判定;平行四边形的性质.【分析】(1)根据题目要求画出图形即可;(2)首先根据平行四边形的性质可得AD∥BC,AD=BC,进而得到AD=CE,∠DAF=∠CEF,进而可利用AAS证明△AFD≌△EFC.【解答】(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥BC,∴∠DAF=∠CEF,∵在△AFD和△EFC中,,∴△AFD≌△EFC(AAS).【点评】此题主要考查了平行四边形的性质,以及全等三角形的判定,关键是正确画出图形,掌握平行四边形的性质.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•东莞市)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球36%乒乓球1428%羽毛球15篮球20%足球816%合计100%【考点】条形统计图;用样本估计总体;统计表.【专题】计算题.【分析】(1)由排球的人数除以所占的百分比求出总人数,乘以篮球所占的百分比即可求出篮球的人数,补全条形统计图,如图所示,求出羽毛球所占的百分比,补全人数分布图,如图所示;(2)用人数乘以羽毛球所占的百分比即可求出人数.【解答】解:(1)3÷6%=50人,则篮球的人数为50×20%=10人,则补全条形统计图如下:羽毛球占总数的百分比为:15÷50=30%,补全人数分布表为:类别人数百分比排球36%乒乓球1428%羽毛球1530%篮球1020%足球816%合计50100%(2)920×30%=276人.则七年级学生喜爱羽毛球运动项目的人数为276人.【点评】此题考查了条形统计图,扇形统计图,中位数,以及众数,弄清题意是解本题的关键.21.(8分)(2013•东莞市)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次增长的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次增长的百分率)=第四天收到捐款钱数,依此列式子解答即可.【解答】解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.【点评】本题考查了一元二次方程的应用,列方程的依据是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数.22.(8分)(2013•东莞市)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1= S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.【考点】相似三角形的判定;矩形的性质.【分析】(1)根据S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.(2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可.【解答】(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,∴S1=S矩形BDEF,∴S2+S3=S矩形BDEF,∴S1=S2+S3.(2)答:△BCD∽△CFB∽△DEC.证明△BCD∽△DEC;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD,又∵∠BCD=∠DEC=90°,∴△BCD∽△DEC.【点评】本题考查了相似三角形的判定,注意掌握相似三角形的判定定理,最经常用的就是两角法,此题难度一般.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•东莞市)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;(2)根据m=2,代入求出二次函数解析式,进而利用配方法求出顶点坐标以及图象与y 轴交点即可;(3)根据当P、C、D共线时PC+PD最短,利用平行线分线段成比例定理得出PO的长即可得出答案.【解答】解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入二次函数y=x2﹣2mx+m2﹣1,得出:m2﹣1=0,解得:m=±1,∴二次函数的解析式为:y=x2﹣2x或y=x2+2x;(2)∵m=2,∴二次函数y=x2﹣2mx+m2﹣1得:y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点为:D(2,﹣1),当x=0时,y=3,∴C点坐标为:(0,3),∴C(0,3)、D(2,﹣1);(3)当P、C、D共线时PC+PD最短,过点D作DE⊥y轴于点E,∵PO∥DE,∴=,∴=,解得:PO=,∴PC+PD最短时,P点的坐标为:P(,0).【点评】此题主要考查了二次函数的综合应用以及配方法求二次函数顶点坐标以及最短路线问题等知识,根据数形结合得出是解题关键.24.(9分)(2013•东莞市)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.【考点】切线的判定;圆周角定理;相似三角形的判定与性质.【专题】压轴题.【分析】(1)根据BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出结论;(2)判断△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.(3)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断BE⊥OB,可得出结论.【解答】(1)证明:∵BD=BA,∴∠BDA=∠BAD,∵∠BCA=∠BDA(圆周角定理),∴∠BCA=∠BAD.(2)解:∵∠BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°,∴△BED∽△CBA,∴=,即=,解得:DE=.(3)证明:连结OB,OD,在△ABO和△DBO中,,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴BE是⊙O的切线.【点评】本题考查了切线的判定及圆周角定理的知识,综合考查的知识点较多,解答本题要求同学们熟练掌握一些定理的内容.25.(9分)(2013•东莞市)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=15度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.【考点】相似形综合题.【专题】压轴题.【分析】(1)如题图2所示,由三角形的外角性质可得;(2)如题图3所示,在Rt△ACF中,解直角三角形即可;(3)认真分析三角板的运动过程,明确不同时段重叠图形的变化情况:(I)当0≤x≤2时,如答图1所示;(II)当2<x≤6﹣时,如答图2所示;(III)当6﹣<x≤6时,如答图3所示.【解答】解:(1)如题图2所示,∵在三角板DEF中,∠FDE=90°,DF=4,DE=,∴tan∠DFE==,∴∠DFE=60°,∴∠EMC=∠FMB=∠DFE﹣∠ABC=60°﹣45°=15°;(2)如题图3所示,当EF经过点C时,FC====;(3)在三角板DEF运动过程中,(I)当0≤x≤2时,如答图1所示:设DE交BC于点G.过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△BDG﹣S△BFM=BD•DG﹣BF•MN=(x+4)2﹣x•x=x2+4x+8;(II)当2<x≤6﹣时,如答图2所示:过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△ABC﹣S△BFM=AB•AC﹣BF•MN=×62﹣x•x=x2+18;(III)当6﹣<x≤6时,如答图3所示:由BF=x,则AF=AB﹣BF=6﹣x,设AC与EF交于点M,则AM=AF•tan60°=(6﹣x).y=S△AFM=AF•AM=(6﹣x)•(6﹣x)=x2﹣x+.综上所述,y与x的函数解析式为:y=.【点评】本题是运动型综合题,解题关键是认真分析三角板的运动过程,明确不同时段重叠图形形状的变化情况.在解题计算过程中,除利用三角函数进行计算外,也可以利用三角形相似,殊途同归.参与本试卷答题和审题的老师有:sd2011;wdzyzlhx;星期八;zhjh;caicl;zcx;CJX;sjzx;HLing;wdxwwzy;HJJ;dbz1018;sks;ZJX;gbl210;未来(排名不分先后)菁优网2016年12月20日考点卡片1.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2.非负数的性质:绝对值任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.3.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.4.非负数的性质:算术平方根(1)非负数的性质:算术平方根具有非负性.(2)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.5.同底数幂的乘法(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m•a n=a m+n(m,n是正整数)(2)推广:a m•a n•a p=a m+n+p(m,n,p都是正整数)在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.(3)概括整合:同底数幂的乘法,是学校整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数)这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.6.同底数幂的除法同底数幂的除法法则:底数不变,指数相减.a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.7.因式分解-运用公式法1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2;2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.8.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【规律方法】分式化简求值时需注意的问题1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.9.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.10.负整数指数幂负整数指数幂:a﹣p=1ap(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.。
2013年广东省中考数学试题与答案
2013年省初中毕业生学业考试数学(时间:100分钟 满分:120分)班别:__________学号:____________:___________成绩:______________一、选择题(本大题10小题,每小题3分,共30分) 1. 2的相反数是( )A.21-B. 21C.-2D.22.下列几何体中,俯视图为四边形的是( )3.据报道,2013年第一季度,省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为( )A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是( )A.55-<-b aB.b a +<+22C.33ba < D.b a 33> 5.数据1、2、5、3、5、3、3的中位数是( ) A.1 B.2 C.3 D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( ) A.30° B.40° C.50° D.60°7.下列等式正确的是( ) A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D. 2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是( )9.下列图形中,不是..轴对称图形的是( )10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________. 13.一个六边形的角和是__________.14.在R t △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=821y x y x① ②18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.19.如题19图,已知□ABCD .(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表. (1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设R t △CBD 的面积为S 1, R t △BFC 的面积为S 2, R t △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,4.将这副直角三角板按如题25图(1)所示位置摆放,点B与点F重∠FDE=90°,DF=4,DE=3合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如题25图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=______度;(2)如题25图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值围.FED CBA参考答案一、C D B D C C B A C A二、11.)3)(3(-+x x ;12. 1;13. 720°;14.54;15.平行四边形;16.83π 三、17.⎩⎨⎧==23y x ;18.选取①、②得3)(3)(332222b a b a b a b a b ab a -=--=-+-,当3,6==b a 时,原式=1336=-(有6种情况).19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,A D ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC. 20.(1)30%、10、50;图略;(2)276(人).21.(1)10%;(2)12100×(1+0.1)=13310(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为x x y x x y 2222-=+=或;(2)当m=2时,1)2(3422--=+-=x x x y ,∴D(2,-1);当0=x 时,3=y ,∴C(0,3). (3)存在.连结C 、D 交x 轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为32+-=x yFNMEDC BAGFN MEDCB AFEA当0=y 时,23=x ,∴P(23,0).24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD. (2)在Rt △ABC 中,AC=135122222=+=+BC AB ,易证△ACB ∽△DBE,得ACBDAB DE =, ∴DE=13144131212=⨯ (3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 接于⊙O,∴∠BAC+∠BCD=180°,又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.25. 解:(1)15;(2)在R t △CFA 中,AC=6,∠ACF=∠E=30°,∴FC=ο30cos AC=6÷3423= (3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x∵MN ∥DE ∴△FMN ∽FED,∴FD FNDE MN =,即434x MN MN -=,∴x MN 233+= ①当20≤≤x 时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆ 即844312+++-=x x y ; ②当3262-≤<x 时,如图(5),x x MN BF AC S S y BMFBCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆ 即184332++-=x y ; ③当4326≤<-x 时, 如图(6) 设AC 与EF 交于点H , ∵AF=6-x ,∠AHF =∠E=30° ∴AH=)6(33x AF -=2)6(23)6(3)6(21x x x S y FHA -=-⋅-==∆ 综上所述,当20≤≤x 时,844312+++-=x x y 题25图(4)题25图(5)当3262-≤<x ,184332++-=x y 当4326≤<-x 时,2)6(23x y -=。
2013年广东省广州市中考数学试卷及答案
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前广东省广州市2013年初中毕业生学业考试数学 .................................................................. 1 广东省广州市2013年初中毕业生学业考试数学答案解析 .. (4)广东省广州市2013年初中毕业生学业考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.比0大的数是( ) A .1-B .12-C .0D .1 2.图1所示的几何体的主视图是( )A B C D正面 3.在66⨯方格中,将图2—①中的图形N 平移后位置如图2—②所示,则图形N 的平移方法中,正确的是 ( )A .向下平移1格B .向上平移1格C .向上平移2格D .向下平移2格 4.计算:32()m n 的结果是( ) A .6m nB .62m n C .52m n D .32m n5.为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是 ( ) A .全面调查,26 B .全面调查,24 C .抽样调查,26 D .抽样调查,246.已知两数,x y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A .1032x y y x +=⎧⎨=+⎩B .1032x y y x +=⎧⎨=-⎩C .1032x y x y +=⎧⎨=+⎩D .1032x y x y +=⎧⎨=-⎩7.实数a 在数轴上的位置如图4所示,则| 2.5|a -=( ) A . 2.5a - B .2.5a - C . 2.5a +D . 2.5a --8.有意义,则实数x 的取值范围是( ) A .1x ≠B .0x ≥C .0x >D .0x ≥且1x ≠9.若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法判断 10.如图5,四边形ABCD 是梯形,AD BC ∥,CA 是BCD ∠的平分线,且AB AC ⊥,4AB =,6AD =,则tan B =( ) A. B.C .114D第Ⅱ卷(非选择题 共120分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 11.点P 在线段AB 的垂直平分线上,7PA =,则PB = .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)13.分解因式:2x xy += .14.一次函数(2)1y m x =++,若y 随x 的增大而增大,则m 的取值范围是 . 15.如图6,Rt ABC △的斜边16AB =,Rt ABC △绕点O 顺时针旋转后得到Rt A B C '''△,则Rt A B C '''△的斜边A B ''上的中线C D '的长度为 . 16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P 与x 轴交于,O A 两点,点A 的坐标为(6,0),P则点P 的坐标为 .三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解方程:21090x x -+=. 18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O ,5AB =,4AO =,求BD 的长. 19.(本小题满分10分)先化简,再求值:22x y x y x y---,其中1x =+,1y =-20.(本小题满分10分)已知四边形ABCD 是平行四边形(如图9),把ABD △沿对角线BD 翻折180得到A BD '△.(1)利用尺规作出A BD '△.(要求保留作图痕迹,不写作法);(2)设DA '与BC 交于点E ,求证:BA E DCE '△≌△.21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当10m ≥时为A 级,当50m ≤<1时为B 级,当05m ≤<时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下: 11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1)求样本数据中为A 级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3)从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10,在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58方向,船P 在船B 的北偏西35方向,AP 的距离为30海里.(1)求船P 到海岸线MN 的距离(精确到0.1海里); (2)若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.23.(本小题满分12分)如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(0,0)x k ≠>的图像经过线段BC 的中点D . (1)求k 的值;(2)若点(,)P x y 在该反比例函数的图像上运动(不与点D 重合),过点P 作PR y ⊥轴于点R ,作PQ BC ⊥所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)24.(本小题满分14分)已知AB 是O 的直径,4AB =,点C 在线段AB 的延长线上运动,点D 在O 上运动(不与点B 重合),连接CD ,且CD OA =. (1)当OC =时(如图12),求证:CD 是O 的切线;(2)当OC >,CD 所在直线于O 相交,设另一交点为E ,连接AE . ①当D 为CE 中点时,求ACE △的周长;②连接OD ,是否存在四边形AODE 为梯形?若存在,请说明梯形个数并求此时AE ED 的值;若不存在,请说明理由.25.(本小题满分14分)已知抛物线21(0,0)y ax bx c a c =++≠≠过点(1,0)A ,顶点为B ,且抛物线不经过第三象限.(1)使用a 、c 表示b ;(2)判断点B 所在象限,并说明理由;(3)若直线22y x m =+经过点B ,且于该抛物线交于另一点(,8)c C b a+,求当1x ≥时1y 的取值范围.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2013年广东省深圳市中考数学试卷解析
2013年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)(2014•白银)﹣3的绝对值是()A.3 B.﹣3 C.﹣D.【考点】M113 绝对值【难度】容易题【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号,则﹣3的绝对值是3.故选:A.【解答】A.【点评】此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•深圳)下列计算正确的是()A.(a+b)2=a2+b2B.(ab)2=ab2C.(a3)2=a5D.a•a2=a3【考点】M11G 整式运算M11K 因式分解M11O 指数幂M11O 乘方【难度】容易题【分析】A、原式利用完全平方公式展开得到结果a2+2ab+b2,故本选项错误;B、原式利用积的乘方运算法则计算得到结果a2b2,故本选项错误;C、原式利用幂的乘方运算法则计算得到结果a6,故本选项错误;D、原式利用同底数幂的乘法法则计算得到结果a3,故本选项正确.故选D.【解答】D.【点评】此题考查了完全平方公式,合并同类项,去括号与添括号,以及同底数幂的除法,熟练掌握公式及法则是解本题的关键.3.(3分)(2013•深圳)某活动中,共募得捐款32000000元,将32000000用科学记数法表示为()A.0.32×108B.3.2×106C.3.2×107D.32×106【考点】M11D 科学记数法【难度】容易题【分析】科学记数法的表示较大数的形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.则在本题中a为3.2,n为7,所以32 000 000=3.2×107,故选:C.【解答】C.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•深圳)如图,是轴对称图形但不是中心对称图形的是()A.B. C.D.【考点】M411 图形的对称【难度】容易题【分析】根据轴对称及中心对称概念,结合选项即可得A、是轴对称图形,也是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选B.【解答】B.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.5.(3分)(2013•深圳)某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A.最高分B.中位数C.极差 D.平均数【考点】M214 中位数、众数M212 平均数、方差和标准差M215 频数、频率、极差【难度】容易题【分析】由于有21名同学参加百米竞赛,要取前11名参加决赛,所以小颖需要知道自己的成绩是否进入前11应考虑中位数的大小,故选:B【解答】B.【点评】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)(2013•深圳)分式的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=0【考点】M11K 因式分解M11L 分式及其相关概念【难度】容易题【分析】分式的值为零:分子等于零,且分母不等于零;由题意,得x2﹣4=0,且x+2≠0,解得x=2.故选:C.【解答】C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.(3分)(2013•深圳)在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.7【考点】M137 不同位置的点的坐标的特征【难度】中等题【分析】点P(﹣20,a)与点Q(b,13)关于原点对称,先根据关于原点对称的点的坐标特点:横坐标与纵坐标都互为相反数,求出a=﹣13,b=20,,再代入计算即a+b=﹣13+20=7.故选:D.【解答】D.【点评】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.8.(3分)(2013•深圳)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.【考点】M11H 代数式M12D 分式方程的应用【难度】容易题【分析】首先表示出爸爸和小朱的速度,再根据题意可得等量关系:小朱走1440米的时间=爸爸走1440米的时间+10分钟,根据等量关系,表示出爸爸和小朱的时间,根据时间关系列出方程=+10,即:=+10,故选:B.【解答】B.【点评】此题主要考查了由实际问题抽象出分式方程,关键是分析题意,表示出爸爸和小朱的时间各走1440米所用时间,再由时间关系找出相等关系,列出方程.9.(3分)(2013•深圳)如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是()A.8或B.10或C.10或D.8或【考点】M323 三角形的中位线M32B 勾股定理M332 平行四边形的性质与判定M333 矩形的性质与判定M338 四边形的面积、周长M414 剪纸问题M329 直角三角形性质与判定【难度】中等题【分析】由题意可得:AB=2,∵∠C=30°,则在⊿ABC中根据30°角所对直角边是斜边的一半得BC=4,由勾股定理得AC=2,∵图中所示的中位线剪开,∴CD=AD=,CF=BF=2,DF=1,如图1所示:拼成一个矩形,矩形周长为:1+1+2++=4+2;如图2所示,可以拼成一个平行四边形,周长为:2+2+2+2=8,故选:D.【解答】D.【点评】此题属于剪纸拼接问题,涉及到三角形的中位线,平行四边形的性质与判定,矩形的性质与判定,四边形的面积、周长等知识点,注意解题的突破口为:在⊿ABC中根据30°角所对直角边是斜边的一半得BC=4,由勾股定理得AC=2,关键是根据画出图形,可拼成矩形、平行四边形,不要漏解.10.(3分)(2013•深圳)下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A..1个 B.2个C.3个D.4个【考点】M31C 平行线的判定及性质M32A 全等三角形性质与判定M333 矩形的性质与判定M34A 垂径定理及其推论M511 命题、定理和证明M31B 相交线(对顶角、邻补角、同位角、同旁内角、内错角、)【难度】容易题【分析】根据有关的定理和定义作出判断即可得①对顶角相等正确,是真命题;②两直线平行,内错角相等正确,是真命题;③两个锐角对应相等的两个直角三角形应该是相似,而不是全等,原命题错误,是假命题;④有三个角是直角的四边形是矩形,正确,是真命题;⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,原命题错误,是假命题,故选:C.【解答】解:①对顶角相等正确,是真命题;②两直线平行,内错角相等正确,是真命题;③两个锐角对应相等的两个直角三角形应该是相似,而不是全等,原命题错误,是假命题;④有三个角是直角的四边形是矩形,正确,是真命题;⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,原命题错误,是假命题,故选:C.【点评】本题考查了命题与定理的知识,涉及平行线的判定及性质,全等三角形性质与判定,矩形的性质与判定,垂径定理及其推论,对顶角相等等知识;注意:在判断一个命题正误的时候可以举出反例.11.(3分)(2013•深圳)已知二次函数y=a(x﹣1)2﹣c的图象如图所示,则一次函数y=ax+c的大致图象可能是()A. B.C.D.【考点】M142 一次函数的的图象、性质M154 二次函数的的图象、性质M161 二次函数的关系式【难度】中等题【分析】根据二次函数开口向上则a>0,根据﹣c是二次函数顶点坐标的纵坐标,得出c>0,故一次函数y=ax+c的大致图象经过一、二、三象限,故选:A.【解答】A.【点评】此题属于一、二次函数的综合题,主要考查了二次函数的图象以及一次函数的性质,根据已知得出a,c的值是解题关键.12.(3分)(2013•深圳)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A.B.C.D.【考点】M31J 两平行线的距离M327 等腰三角形性质与判定M329 直角三角形性质与判定M32A 全等三角形性质与判定M32B 勾股定理M32C 锐角三角函数【难度】较难题【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,再根据等腰直角三角形斜边等于直角边的倍求出AB,然后利用锐角的正弦等于对边比斜边列式计算即可得解.具体如下:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,在Rt△ACD中,AC===,在等腰直角△ABC中,AB=AC=×=,∴sinα==.故选:D.【解答】D.【点评】本题属于压轴题,主要考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.(3分)(2013•深圳)分解因式:4x2﹣8x+4=.【考点】M11K 因式分解【专题】因式分解.【难度】容易题【分析】先提取公因式4,再根据完全平方公式进行分解即可,则4x2﹣8x+4=4(x2﹣2x+1)=4(x﹣1)2.故答案为:4(x﹣1)2.【解答】4(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.14.(3分)(2013•深圳)写有“中国”、“美国”、“英国”、“韩国”的四张卡片,从中随机抽取一张,抽到卡片所对应的国家为亚洲的概率是.【考点】M222 概率的计算【难度】容易题【分析】由有“中国”、“美国”、“英国”、“韩国”的四张卡片,卡片所对应的国家为亚洲的有“中国”、“韩国”,利用概率公式求解即可求得抽到卡片所对应的国家为亚洲的概率是:=.故答案为:.【解答】.【点评】此题考查了概率公式的应用,属于中考常考题;注意掌握概率=所求情况数与总情况数之比.15.(3分)(2013•深圳)某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.【考点】M124 一元一次方程的应用【难度】容易题【分析】设空调的标价为x元,根据销售问题的数量关系利润=售价﹣进价=进价×利润率建立方程80%x﹣2000=2000×10%,解得:x=2750.故答案为:2750.【解答】2750.【点评】本题是一道关于销售问题的运用题,考查了利润=售价﹣进价=进价×利润率在实际问题中的运用,解答时根据销售问题的数量关系建立方程是关键.16.(3分)(2013•深圳)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形…按这样的规律下去,第7幅图中有个正方形.【考点】M612 规律型题【难度】较难题【分析】观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…第n个有:n(n+1)(2n+1)个正方形,第7个有1+4+9+16+25+36+49=140个正方形,故答案为:140.【解答】140.【点评】本题考查了图形的变化类问题,解题的关键是仔细关系图形并找到规律,注意:本题采用了穷举法.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)(2013•深圳)计算:|﹣|+﹣4sin45°﹣.【考点】M113 绝对值M11A 实数的混合运算M11O 指数幂M32D 特殊角三角函数的值【难度】容易题【分析】本题涉及绝对值、负指数幂、特殊角的三角函数值、0指数幂等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=|﹣2|+﹣4×﹣1 (3)=2+3﹣2﹣1=2. (5)【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握绝对值、负指数幂、特殊角的三角函数值、0指数幂等考点的运算.18.(6分)(2013•深圳)解下等式组:,并写出其整数解.【考点】M12I 一元一次不等式(组)的解及解集M12J 解一元一次不等式(组)M12K 一元一次不等式(组)的应用【难度】中等题【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:∵解不等式①得:x<2, (2)解不等式②得:x>﹣, (4)∴不等式组的解集为:﹣<x<2,即不等式组的整数解为:0、1. (6)【点评】本题考查了解一元一次不等式(组),一元一次不等式组的整数解的应用,属于中考必考题型,关键是能根据不等式的解集找出不等式组的解集.19.(7分)(2013•深圳)2013年起,深圳市实施行人闯红灯违法处罚,处罚方式分为四类:“罚款20元”、“罚款50元”、“罚款100元”、“穿绿马甲维护交通”.如图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)实施首日,该片区行人闯红灯违法受处罚一共人;(2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是%;(3)据了解,“罚款20元”人数是“罚款50元”人数的2倍,请补全条形统计图;(4)根据(3)中的信息,在扇形统计图中,“罚款20元”所在扇形的圆心角等于度.【考点】M211 总体、个体、样本、容量M213 普查、调查M216 统计图(扇形、条形、折线)M343 圆心角与圆周角【难度】容易题【分析】(1)根据罚款100元的有10人,占的比例是5%,即可求得调查的总人数;(2)百分比的定义即可求解;(3)求得先“罚款20元”人数是“罚款50元”人数的和,然后根据“罚款20元”人数是“罚款50元”人数的2倍,即可求得各自的人数,从而作出统计图;(4)利用360度乘以对应的比例即可求得.【解答】解:(1)10÷5%=200(人).故答案是:200; (1)(2)×100%=65%,故答案是:65; (2)(3)“罚款20元”人数是“罚款50元”人数的和是:200﹣10﹣130=60(人),则罚款20元”人数是40人,“罚款50元”人数是20. (3); (5)(4)“罚款20元”所在扇形的圆心角等于360×=72°.故答案是:72. (7)【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2013•深圳)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE.(1)求证:BD=DE.(2)若AC⊥BD,AD=3,S ABCD=16,求AB的长.【考点】M327 等腰三角形性质与判定M329 直角三角形性质与判定M32B 勾股定理M32H 相似三角形性质与判定M332 平行四边形的性质与判定M337 等腰梯形的性质与判定【难度】中等题【分析】(1)由AD∥BC,CE=AD,可得四边形ACED是平行四边形,即可证得AC=DE,又由等腰梯形的性质,可得AC=BD,即可证得结论;此问简单(2)首先过点D作DF⊥BC于点F,可证得△BDE是等腰直角三角形,由S ABCD=16,可求得BD的长,继而求得答案.此问中等【解答】(1)证明:∵AD∥BC,CE=AD,∴四边形ACED是平行四边形,∴AC=DE, (2)∵四边形ABCD是等腰梯形,AD∥BC,AB=DC,∴AC=BD,∴BD=DE. (4)(2)解:过点D作DF⊥BC于点F,∵四边形ACED是平行四边形,∴CE=AD=3,AC∥DE,∵AC⊥BD,∴BD⊥DE,∵BD=DE, (6)∴S△BDE=BD•DE=BD2=BE•DF=(BC+CE)•DF=(BC+AD)•DF=S梯形ABCD=16,∴BD=4,∴BE=BD=8,∴DF=BF=EF=BE=4,∴CF=EF﹣CE=1,∴由勾股定理得AB=CD==. (8)【点评】此题考查了等腰三角形的性质、等腰直角三角形的性质与判定、平行四边形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21.(8分)(2013•深圳)如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.【考点】M32B 勾股定理M32H 相似三角形性质与判定M32I 相似图形的应用M34A 垂径定理及其推论【难度】中等题【分析】根据已知得出旗杆高度,进而得出GM=MH,再利用勾股定理求出半径即可.【解答】解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m, (1)∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m. (2)如图,设小桥的圆心为O,连接OM、OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m. (4)在Rt△OGM中,由勾股定理得:∴OG2=OM2+42,∴r2=(r﹣2)2+16, (6)解得:r=5,答:小桥所在圆的半径为5m. (8)【点评】此题主要考查了垂径定理以及勾股定理的应用,难度不大,注意:根据已知得出关于r的等式是解题关键.22.(9分)(2013•深圳)如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(),抛物线的表达式为;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.【考点】M133 结合图像对函数关系进行分析M134 用待定系数法求函数关系式M136 函数图像的交点问题M154 二次函数的的图象、性质M162 二次函数的应用M32A 全等三角形性质与判定M32B 勾股定理M34A 垂径定理及其推论【难度】较难题【分析】(1)如答图1,作辅助线,证明△AOC≌△CEB,由此得到点B的坐标;再由点C、B的坐标,利用待定系数法求出抛物线的表达式;此问中等(2)如答图2,作辅助线,求出△BCD三边的长度,再利用勾股定理的逆定理判定其为直角三角形,从而问题得证;此问较难(3)如答图3,利用勾股定理依次求出CQ、CF、AF的长度,然后利用垂径定理AP=2AF 求出AP的长度.此问较难【解答】(1)解:如答图1所示,过点B作BE⊥x轴于点E.∵AC⊥BC,∴∠ACO+∠BCE=90°,∵∠ACO+∠OAC=90°,∠BCE+∠CBE=90°,∴∠OAC=∠BCE,∠ACO=∠CBE.∵在△AOC与△CEB中,∴△AOC≌△CEB(ASA). (1)∴CE=OA=4,BE=OC=2,∴OE=OC+CE=6.∴B点坐标为(6,2).∵点C(2,0),B(6,2)在抛物线y=x2+bx+c上,∴,解得b=,c=﹣7. (2)∴抛物线的表达式为:y=x2+x﹣7. (3)(2)证明:在抛物线表达式y=x2+x﹣7中,令y=0,即x2+x﹣7=0,解得x=2或x=7,∴D(7,0). (4)如答图2所示,过点B作BE⊥x轴于点E,则DE=OD﹣OE=1,CD=OD﹣OC=5.在Rt△BDE中,由勾股定理得:BD===;在Rt△BCE中,由勾股定理得:BC===. (5)在△BCD中,BD=,BC=,CD=5,∵BD2+BC2=CD2∴△BCD为直角三角形,∠CBD=90°,∴∠CBD=∠ACB=90°,∴AC∥BD. (6)(3)解:如答图3所示:由(2)知AC=BC=,又AQ=5,则在Rt△ACQ中,由勾股定理得:CQ===. (7)过点C作CF⊥PQ于点F,∵S△ACQ=AC•CQ=AQ•CF,∴CF===2. (8)在Rt△ACF中,由勾股定理得:AF===4.由垂径定理可知,AP=2AF,∴AP=8. (9)【点评】本题是二次函数综合题型,考查了二次函数的图象与性质、待定系数法、全等三角形、勾股定理、勾股定理的逆定理、垂径定理等知识点.本题设计考点清晰,层次合理:第(1)问主要考查全等三角形和待定系数法,第(2)问主要考查勾股定理及其逆定理,第(3)问主要考查垂径定理与勾股定理.23.(9分)(2013•深圳)如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).(1)m为何值时,△OAB面积最大?最大值是多少?(2)如图2,在(1)的条件下,函数的图象与直线AB相交于C、D两点,若,求k的值.(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).【考点】M133 结合图像对函数关系进行分析M134 用待定系数法求函数关系式M135 动点问题的函数图像M136 函数图像的交点问题M152 反比例函数的的图象、性质M154 反比例函数的应用M325 三角形的面积M32J 相似多边形和相似比M32H 相似三角形性质与判定M611 数学综合与实践M154 二次函数的的图象、性质M162 二次函数的应用【难度】较难题【分析】(1)由A(m,0),B(0,n),可以表示出OA=m,OB=n,由三角形的面积公式就可以求出结论;此问简单(2)由(1)的结论可以求出点A点B的坐标,就可以求出直线AB的解析式,根据双曲线的对称性就可以求出S△OBD=S△OAC的值,再由三角形的面积公式就可以求出其值;此问中等(3)根据平移的性质可以求得△O′C′D′∽△O′CD,再由相似三角形的性质就可以求出就可以求出S△O′C′D′和S△O′CD的面积关系,从而可以求出S与运动时间t之间的函数关系式.此问较难【解答】解:(1)∵A(m,0),B(0,n),∴OA=m,OB=n.∴S△AOB=. (1)∵m+n=20,∴n=20﹣m,∴S△AOB==m2+10m=﹣(m﹣10)2+50 (2)∵a=﹣<0,∴抛物线的开口向下,∴m=10时,S最大=50; (3)(2)∵m=10,m+n=20,∴n=10,∴A(10,0),B(0,10),设AB的解析式为y=kx+b,由图象,得,解得:,y=﹣x+10. (4),∴设S△OCD=8a.则S△OAC=a,∴S△OBD=S△OAC=a,∴S△AOB=10a,∴10a=50,∴a=5, (5)∴S△OAC=5,∴OA•y=5,∴y=1.1=﹣x+10,x=9∴C(9,1),∴1=,∴k=9; (6)(3)∵C(9,1),移动后重合的部分的面积是△O′C′D′,t秒后点O的坐标为O′(t,0),O′A=10﹣t,O′E=10.∵C′D′∥CD,∴△O′C′D′∽△O′CD, (7)∴,∴ (8)S=40•,∴(0<t<10). (9)【点评】本题主要考查了二次函数的最值的运用,反比例函数的图象的对称性的运用,相似三角形的相似比与面积之比的关系的运用,动点问题直线问题的运用,综合性较强,属于中考压轴题,注意:解答时求出函数的解析式及交点坐标是解答本题的关键.。
2013年广东省广州市中考数学试卷及答案(word解析版)
2013年广州市初中毕业生学业考试第一部分选择题(共30分)一、选择题:1.(2013年广州市)比0大的数是()A -1 B12C 0D 1分析:比0的大的数一定是正数,结合选项即可得出答案解:4个选项中只有D选项大于0.故选D.点评:本题考查了有理数的大小比较,注意掌握大于0的数一定是正数2.(2013年广州市)图1所示的几何体的主视图是()(A)(B) (C) (D)正面分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从几何体的正面看可得图形.故选:A.点评:从几何体的正面看可得图形.故选:A..3.(2013年广州市)在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图2,可以将图形N 向下移动2格.故选D .点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置.4.(2013年广州市)计算:()23m n 的结果是( )A 6m nB 62m nC 52m nD 32m n分析:根据幂的乘方的性质和积的乘方的性质进行计算即可解:(m 3n )2=m 6n 2.故选:B .点评:此题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键,是一道基础题5、(2013年广州市)为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( )A 全面调查,26B 全面调查,24C 抽样调查,26D 抽样调查,24分析:根据关键语句“先随机抽取50名中学生进行该问卷调查,”可得该调查方式是抽样调查,调查的样本容量为50,故6+10+6+a+4=50,解即可解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D .点评:此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据6.(2013年广州市)已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩分析:根据等量关系为:两数x ,y 之和是10;x 比y 的3倍大2,列出方程组即可 解:根据题意列方程组,得:.故选:C .点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x 比y 的3倍大2”,找出等量关系,列出方程组是解题关键.图37.(2013年广州市)实数a 在数轴上的位置如图4所示,则 2.5a -=( )A 2.5a -B 2.5a -C 2.5a +D 2.5a --分析:首先观察数轴,可得a <2.5,然后由绝对值的性质,可得|a ﹣2.5|=﹣(a ﹣2.5),则可求得答案解:如图可得:a <2.5,即a ﹣2.5<0,则|a ﹣2.5|=﹣(a ﹣2.5)=2.5﹣a .故选B .点评:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大.8.(2013年广州市)若代数式1x x -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围 解:根据题意得:,解得:x ≥0且x ≠1.故选D .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数9.(2013年广州市)若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( )A 没有实数根B 有两个相等的实数根C 有两个不相等的实数根D 无法判断分析:根据已知不等式求出k 的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况解:∵5k+20<0,即k <﹣4,∴△=16+4k <0,则方程没有实数根.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.(2013年广州市)如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22C 114D 554分析:先判断DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,由等腰三角形的性质,可得点F 是AC 中点,继而可得EF 是△CAB 的中位线,继而得出EF 、DF 的长度,在Rt △ADF 中求出AF ,然后得出AC ,tanB 的值即可计算.解:∵CA 是∠BCD 的平分线,∴∠DCA=∠ACB ,又∵AD ∥BC ,∴∠ACB=∠CAD ,∴∠DAC=∠DCA ,∴DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,∵AB ⊥AC ,∴DE ⊥AC (等腰三角形三线合一的性质),∴点F 是AC 中点,∴AF=CF ,∴EF 是△CAB 的中位线,∴EF=AB=2,∵==1,∴EF=DF=2, 在Rt △ADF 中,AF==4,则AC=2AF=8,tanB===2.故选B .点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F 是AC 中点,难度较大.第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11. (2013年广州市)点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .分析:根据线段垂直平分线的性质得出PA=PB ,代入即可求出答案解:∵点P 在线段AB 的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.点评:本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等12. (2013年广州市)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ . 分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13. (2013年广州市)分解因式:=+xy x 2_______________.分析:直接提取公因式x 即可解:x 2+xy=x (x+y )点评:本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解14. (2013年广州市)一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 分析:根据图象的增减性来确定(m+2)的取值范围,从而求解解:∵一次函数y=(m+2)x+1,若y 随x 的增大而增大,∴m+2>0,解得,m >﹣2.故答案是:m >﹣2.点评:本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0.15. (2013年广州市)如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .分析:根据旋转的性质得到A ′B ′=AB=16,然后根据直角三角形斜边上的中线性质求解即可解:∵Rt △ABC 绕点O 顺时针旋转后得到Rt △A ′B ′C ′,∴A ′B ′=AB=16,∵C ′D 为Rt △A ′B ′C ′的斜边A ′B ′上的中线,∴C ′D=A ′B ′=8.故答案为8.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了直角三角形斜边上的中线性质.16. (2013年广州市)如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.分析:过点P 作PD ⊥x 轴于点D ,连接OP ,先由垂径定理求出OD 的长,再根据勾股定理求出PD 的长,故可得出答案.解:过点P 作PD ⊥x 轴于点D ,连接OP ,∵A (6,0),PD ⊥OA , C B C'D A A'O∴OD=OA=3,在Rt △OPD 中,∵OP=,OD=3, ∴PD===2,∴P (3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分9分)(2013年广州市)解方程:09102=+-x x .分析:分解因式后得出两个一元一次方程,求出方程的解即可解:x 2﹣10x+9=0,(x ﹣1)(x ﹣9)=0,x ﹣1=0,x ﹣9=0,x 1=1,x 2=9.点评:本题啊扣除了解一元一次方程和解一元二次方程的应用,关键是能把解一元二次方程转化成解一元一次方程.18.(本小题满分9分)(2013年广州市)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.分析:根据菱形的性质得出AC ⊥BD ,再利用勾股定理求出BO 的长,即可得出答案解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO==3, ∴BD=2BO=2×3=6.点评:此题主要考查了菱形的性质以及勾股定理,根据已知得出BO 的长是解题关键19.(本小题满分10分)(2013年广州市)先化简,再求值:y x y y x x ---22,其中.321,321-=+=y x 分析:分母不变,分子相减,化简后再代入求值解:原式===x+y=1+2+1﹣2=2.点评:本题考查了分式的化简求值和二次根式的加减,会因式分解是解题的 题的关键20.(本小题满分10分)(2013年广州市)已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .分析:(1)首先作∠A′BD=∠ABD,然后以B为圆心,AB长为半径画弧,交BA′于点A′,连接BA′,DA′,即可作出△A′BD.(2)由四边形ABCD是平行四边形与折叠的性质,易证得:∠BA′D=∠C,A′B=CD,然后由AAS即可判定:△BA′E≌△DCE.解:(1)如图:①作∠A′BD=∠ABD,②以B为圆心,AB长为半径画弧,交BA′于点A′,③连接BA′,DA′,则△A′BD即为所求;(2)∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠C,由折叠的性质可得:∠BA′D=∠BAD,A′B=AB,∴∠BA′D=∠C,A′B=CD,在△BA′E和△DCE中,,∴△BA′E≌△DCE(AAS).点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(本小题满分12分)(2013年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率. 分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率;(2)根据题意得:1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽得2个人的“日均发微博条数”都是3的情况,再利用概率公式求解即可求得答案.解:(1)∵抽取30个符合年龄条件的青年人中A级的有15人,∴样本数据中为A级的频率为:=;(2)1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)C级的有:0,2,3,3四人,画树状图得:∵共有12种等可能的结果,抽得2个人的“日均发微博条数”都是3的有2种情况,∴抽得2个人的“日均发微博条数”都是3的概率为:=.点评:本题考查的是用列表法或画树状图法求概率、频数与频率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比22.(本小题满分12分)(2013年广州市)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.23.(本小题满分12分)(2013年广州市)如图11,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数kyx(x>0,k≠0)的图像经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。
2013年广东省中考数学试题及答案
2013年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.2的相反数是A .21-B .21C .2-D .22.下列四个几何体中,俯视图为四边形的是3.据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为A .1210126.0⨯元B .121026.1⨯元C .111026.1⨯元D .11106.12⨯元 4.已知实数a 、b ,若b a >,则下列结论正确的是A .55-<-b aB .b a +<+22C .33b a < D .b a 33> 5.数学1、2、5、3、5、3、3的中位数是A .1B .2C .3D .56.如题6图,DF AC //,EF AB //,点D 、E 分别在AB 、AC 上,若︒=∠502,则1∠的大小是A .︒30B .︒40C .︒50D .︒607.下列等式正确的是A .1)1(3=-- B .1)4(0=- C .6322)2()2(-=-⨯- D .2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是9.下列图形中,不是..轴对称图形的是10.已知210k k <<,则函数11-=x k y 和xk y 2=的图象大致是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.分解因式:92-x = .12.若实数a 、b 满足042=-++b a ,则=ba 2 . 13.一个六边形的内角和是 .14.在ABC Rt ∆中,︒=∠90ABC ,3=AB ,4=BC ,则=A sin .15.如题15图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将BDE ∆绕着CB 的中点D 逆时针旋转︒180,点E 到了点E '位置,则四边形E E AC '的形状是 .16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).17.解方程组⎩⎨⎧=++=,82,1y x y x 18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选两个代数式构造分式,然后进行化简,并求出当6=a ,3=b 时该分式的值.19.如题19图,已知□ABCD.(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE ,交CD 于点F ,求证:AFD ∆≌EFC ∆四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21、雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动。
【2013年】广东省中考数学试题(word解析)
2013年广东省初中毕业生学业考试数 学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 2的相反数是 A.21- B. 21 C.-2 D.2 答案:C解析:2的相反数为-2,选C ,本题较简单。
2.下列几何体中,俯视图为四边形的是答案:D解析:A 、B 、C 的俯视图分别为五边形、三角形、圆,只有D 符合。
3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元 答案:B解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 1 260 000 000 000=1.26×1012元4.已知实数a 、b ,若a >b ,则下列结论正确的是A.55-<-b aB.b a +<+22C.33b a < D.b a 33> 答案:D解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A 、B 、C 错误,选D 。
2013年广东省广州市中考数学试卷及答案解析
2013年广东省广州市中考数学试卷参考答案与试题解析一、选择题:1.(3分)比0大的数是()A.﹣1B.−12C.0D.1【解答】解:4个选项中只有D选项大于0.故选:D.2.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从几何体的正面看可得图形.故选:A.3.(3分)在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格【解答】解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选:D.4.(3分)计算:(m3n)2的结果是()A.m6n B.m6n2C.m5n2D.m3n2【解答】解:(m3n)2=m6n2.故选:B.5.(3分)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图所示,该调查的方式是(),图中的a的值是()A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,24【解答】解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D.6.(3分)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A .{x +y =10y =3x +2B .{x +y =10y =3x −2C .{x +y =10x =3y +2D .{x +y =10x =3y −2【解答】解:根据题意列方程组,得: {x +y =10x =3y +2. 故选:C .7.(3分)实数a 在数轴上的位置如图所示,则|a ﹣2.5|=( )A .a ﹣2.5B .2.5﹣aC .a +2.5D .﹣a ﹣2.5【解答】解:如图可得:a <2.5, 即a ﹣2.5<0,则|a ﹣2.5|=﹣(a ﹣2.5)=2.5﹣a . 故选:B . 8.(3分)若代数式√xx−1有意义,则实数x 的取值范围是( ) A .x ≠1B .x ≥0C .x >0D .x ≥0且x ≠1【解答】解:根据题意得:{x ≥0x −1≠0,解得:x ≥0且x ≠1. 故选:D .9.(3分)若5k +20<0,则关于x 的一元二次方程x 2+4x ﹣k =0的根的情况是( ) A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法判断【解答】解:∵5k +20<0,即k <﹣4, ∴Δ=16+4k <0, 则方程没有实数根. 故选:A .10.(3分)如图所示,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tan B =( )A .2√3B .2√2C .114D .5√54【解答】解:∵CA 是∠BCD 的平分线, ∴∠DCA =∠ACB , 又∵AD ∥BC , ∴∠ACB =∠CAD , ∴∠DAC =∠DCA , ∴DA =DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E , ∵AB ⊥AC ,∴DE ⊥AC (等腰三角形三线合一的性质), ∴点F 是AC 中点, ∴AF =CF ,∴EF 是△CAB 的中位线, ∴EF =12AB =2, ∵AF FC=DF EF=1,∴DF =EF =2,在Rt △ADF 中,AF =√AD 2−DF 2=4√2, 则AC =2AF =8√2, tan B =ACAB =8√24=2√2. 故选:B .二.填空题(本大题共6小题,每小题3分,满分18分)11.(3分)点P在线段AB的垂直平分线上,P A=7,则PB=7.【解答】解:∵点P在线段AB的垂直平分线上,P A=7,∴PB=P A=7,故答案为:7.12.(3分)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为5.25×106.【解答】解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.13.(3分)分解因式:x2+xy=x(x+y).【解答】解:x2+xy=x(x+y).14.(3分)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是m>﹣2.【解答】解:∵一次函数y=(m+2)x+1,若y随x的增大而增大,∴m+2>0,解得,m>﹣2.故答案是:m>﹣2.15.(3分)如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为8.【解答】解:∵Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,∴A′B′=AB=16,∵C′D为Rt△A′B′C′的斜边A′B′上的中线,∴C′D=12A′B′=8.故答案为:8.16.(3分)如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为√13,则点P的坐标为(3,2).【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=12OA=3,在Rt△OPD中,∵OP=√13,OD=3,∴PD=√OP2−OD2=√(√13)2−32=2,∴P(3,2).故答案为:(3,2).三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤)17.(9分)解方程:x2﹣10x+9=0.【解答】解:x2﹣10x+9=0,(x﹣1)(x﹣9)=0,x﹣1=0或x﹣9=0,x1=1,x2=9.18.(9分)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.【解答】解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O , ∴AC ⊥BD ,DO =BO , ∵AB =5,AO =4, ∴BO =√52−42=3, ∴BD =2BO =2×3=6. 19.(10分)先化简,再求值:x 2x−y−y 2x−y,其中x =1+2√3,y =1−2√3.【解答】解:原式=x 2−y 2x−y =(x−y)(x+y)x−y=x +y =1+2√3+1﹣2√3=2.20.(10分)已知四边形ABCD 是平行四边形(如图),把△ABD 沿对角线BD 翻折180°得到△A ′BD .(1)利用尺规作出△A ′BD .(要求保留作图痕迹,不写作法); (2)设DA ′与BC 交于点E ,求证:△BA ′E ≌△DCE .【解答】解:(1)如图:①作∠A ′BD =∠ABD , ②以B 为圆心,AB 长为半径画弧,交BA ′于点A ′, ③连接BA ′,DA ′, 则△A ′BD 即为所求;(2)∵四边形ABCD 是平行四边形, ∴AB =CD ,∠BAD =∠C ,由折叠的性质可得:∠BA ′D =∠BAD ,A ′B =AB , ∴∠BA ′D =∠C ,A ′B =CD , 在△BA ′E 和△DCE 中, {∠BA′E =∠C∠BEA′=∠DEC A′B =CD, ∴△BA ′E ≌△DCE (AAS ).21.(12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下表: 11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 1210711368141512(1)求样本数据中为A 级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3)从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.【解答】解:(1)∵抽取30个符合年龄条件的青年人中A 级的有15人, ∴样本数据中为A 级的频率为:1530=12;(2)1000个18~35岁的青年人中“日均发微博条数”为A 级的人数为:1000×12=500;(3)C 级的有:0,2,3,3四人, 画树状图得:∵共有12种等可能的结果,抽得2个人的“日均发微博条数”都是3的有2种情况, ∴抽得2个人的“日均发微博条数”都是3的概率为:212=16.22.(12分)如图,在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里(参考数据:sin32°≈0.53,sin55°≈0.82). (1)求船P 到海岸线MN 的距离(精确到0.1海里);(2)若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.【解答】解:(1)过点P 作PE ⊥AB 于点E ,由题意得,∠P AE =32°,AP =30海里,在Rt △APE 中,PE =AP sin ∠P AE =AP sin32°≈15.9海里;(2)在Rt △PBE 中,PE =15.9海里,∠PBE =55°, 则BP =PEsin∠PBE ≈19.4海里, A 船需要的时间为:3020=1.5小时,B 船需要的时间为:19.415≈1.3小时,∵1.5>1.3, ∴B 船先到达.23.(12分)如图,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数y =kx (x >0,k ≠0)的图象经过线段BC 的中点D . (1)求k 的值;(2)若点P (x ,y )在该反比例函数的图象上运动(不与点D 重合),过点P 作PR ⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.【解答】解:(1)∵正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),∴C(0,2),∵D是BC的中点,∴D(1,2),∵反比例函数y=kx(x>0,k≠0)的图象经过点D,∴k=2;(2)当P在直线BC的上方时,即0<x<1,如图1,∵点P(x,y)在该反比例函数的图象上运动,∴y=2 x,∴S四边形CQPR=CQ•PQ=x•(2x−2)=2﹣2x(0<x<1),当P在直线BC的下方时,即x>1如图2,同理求出S四边形CQPR=CQ•CR=x•(2−2x)=2x﹣2(x>1),综上S={2x−2(x>1)2−2x(0<x<1).24.(14分)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O 上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=2√2时(如图),求证:CD是⊙O的切线;(2)当OC>2√2时,CD所在直线与⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.【解答】(1)证明:连接OD,如答图①所示.由题意可知,CD=OD=OA=12AB=2,OC=2√2,∴OD2+CD2=OC2由勾股定理的逆定理可知,△OCD为直角三角形,则OD⊥CD,又∵点D在⊙O上,∴CD是⊙O的切线.(2)解:①如答图②所示,连接OE ,OD ,则有CD =DE =OD =OE , ∴△ODE 为等边三角形,∠1=∠2=∠3=60°;∵OD =CD ,∴∠4=∠5,∵∠3=∠4+∠5,∴∠4=∠5=30°,∴∠EOC =∠2+∠4=90°,因此△EOC 是含30度角的直角三角形,△AOE 是等腰直角三角形. 在Rt △EOC 中,CE =2OA =4,OC =4cos30°=2√3,在等腰直角三角形AOE 中,AE =√2OA =2√2,∴△ACE 的周长为:AE +CE +AC =AE +CE +(OA +OC )=2√2+4+(2+2√3)=6+2√2+2√3. ②存在,这样的梯形有2个.答图③中,当EA =EC 时,易证∠1=∠4,可得AE ∥OD ,AE ≠OD∴四边形AEDO 是梯形.同理在AB 下方还有一个梯形,它们关于直线AB 成轴对称.∵OA =OE ,∴∠1=∠2,∵CD =OA =OD ,∴∠4=∠5,∵四边形AODE 为梯形,∴OD ∥AE ,∴∠4=∠1,∠3=∠2,∴∠3=∠5=∠1,在△ODE 与△COE 中,{∠OEC =∠OEC ∠3=∠5∴△ODE ∽△COE ,则有OE CE =DE OE ,∴CE •DE =OE 2=22=4.∵∠1=∠5,∴AE =CE ,∴AE •DE =CE •DE =4.综上所述,存在四边形AODE为梯形,这样的梯形有2个,此时AE•DE=4.25.(14分)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且与该抛物线交于另一点C(ca,b+8),求当x≥1时y1的取值范围.【解答】解:(1)∵抛物线y1=ax2+bx+c(a≠0,a≠c),经过A(1,0),把点代入函数即可得到:b=﹣a﹣c;(2)B在第四象限.理由如下:∵抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),∵x 1•x 2=c a ,∴x 1=1,x 2=c a ,a ≠c ,所以抛物线与x 轴有两个交点,又∵抛物线不经过第三象限,∴a >0,且顶点在第四象限;(3)∵C(c a ,b +8),且在抛物线上, 当b +8=0时,解得b =﹣8,∵a +c =﹣b ,∴a +c =8,把B (−b 2a ,4ac−b 24a )、C (c a,b +8)两点代入直线解析式得: { b +8=2×c a +m 4ac−b 24a =2×(−b 2a )+m b =−a −c =−8, 解得:{a =2b =−8c =6m =−6或{a =4b =−8c =4m =−2(a ≠c ,舍去) 如图所示,C 在A 的右侧,∴当x ≥1时,y 1≥4ac−b 24a =−2.。
2013年广东省广州市中考数学试卷-答案
广东省广州市2013年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】4个选项中只有D 选项大于0.故选D .【提示】比0的大的数一定是正数,结合选项即可得出答案. 【考点】有理数的大小比较 2.【答案】A【解析】从几何体的正面看可得图形.故选:A .【提示】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【考点】三视图 故选:A . 3.【答案】D【解析】观察图形可知:从图1到图2,可以将图形N 向下移动2格.故选D . 【提示】根据题意,结合图形,由平移的概念求解. 【考点】平移的基本概念,平移规律 4.【答案】B【解析】3262()m n m n =.故选:B .【提示】根据幂的乘方的性质和积的乘方的性质进行计算即可. 【考点】幂的乘方,积的乘方 5.【答案】D【解析】该调查方式是抽样调查,506106424a =----=,故选:D .【提示】根据关键语句“先随机抽取50名中学生进行该问卷调查”,可得该调查方式是抽样调查,调查的样本容量为50,故6106450a ++++=,解即可. 【考点】条形统计图,抽样调查, 6.【答案】C【解析】根据题意列方程组,得:1032x y x y +=⎧⎨=+⎩.故选:C .【提示】根据等量关系为:两数x ,y 之和是10;x 比y 的3倍大2,列出方程组即可. 【考点】由实际问题抽象出二元一次方程组 7.【答案】B【解析】如图可得: 2.5a <,即 2.50a -<,则 2.5(| 2.5) 2.5|a a a -=--=-.故选B .【提示】首先观察数轴,可得 2.5a <,然后由绝对值的性质,可得 2.5(| 2.5) 2.5|a a a -=--=-,则可求得答案.【考点】利用数轴比较实数的大小,绝对值的定义 8.【答案】D【解析】根据题意得:010x x ≥⎧⎨-≠⎩,解得:01x x ≥≠且.故选D .【提示】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 【考点】分式的意义,二次根式 9.【答案】A【解析】∵5200k +<,即4k <-,∴1640k ∆=+<,则方程没有实数根.故选A .【提示】根据已知不等式求出k 的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况. 【考点】一元二次方程根的判别式 10.【答案】B【解析】∵CA 是BCD ∠的平分线, ∴DCA ACB ∠=∠, 又∵AD BC ∥, ∴ACB CAD ∠=∠, ∴DAC DCA ∠=∠,∴DA DC =,过点D 作DE AB ∥,交AC 于点F ,交BC 于点E , ∵AB AC ⊥,∴DE AC ⊥(等腰三角形三线合一的性质), ∴点F 是AC 中点, ∴AF CF =,∴EF 是CAB △的中位线, ∴2EF AB ==,4 AB故答案为:(3,2).DA',则A BD'△即为所求;∴.(3)C 级的有:0,2,3,3,画树状图得:由题意得,32PAE ∠=︒,30AP =海里,在Rt APE △中,sin sin3215.9PE AP PAE AP =∠=︒≈海里;AE DE=42+=CD OC综上所述,存在四边形AODE 为梯形,这样的梯形有2个,此时4AE DE =g4a。
2013年广东省中考数学试题及答案
2013年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.2的相反数是( )A .21-B .21C .2-D .22.下列四个几何体中,俯视图为四边形的是( )3.据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A .1210126.0⨯元B .121026.1⨯元C .111026.1⨯元D .11106.12⨯元4.已知实数a 、b ,若b a >,则下列结论正确的是( )A .55-<-b aB .b a +<+22C .33ba< D .b a 33>5.数学1、2、5、3、5、3、3的中位数是( )A .1B .2C .3D .56.如题6图,DF AC //,EF AB //,点D 、E 分别在AB 、AC 上,若︒=∠502,则1∠的大小是( )A .︒30B .︒40C .︒50D .︒607.下列等式正确的是( )A .1)1(3=--B .1)4(0=-C .6322)2()2(-=-⨯-D .2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是( )9.下列图形中,不是..轴对称图形的是( )10.已知210k k <<,则函数11-=x k y 和xk y 2=的图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.分解因式:92-x = .12.若实数a 、b 满足042=-++b a ,则=ba 2 . 13.一个六边形的内角和是 .14.在ABC Rt ∆中,︒=∠90ABC ,3=AB ,4=BC ,则=A sin .15.如题15图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将BDE ∆绕着CB 的中点D 逆时针旋转︒180,点E 到了点E '位置,则四边形E E AC '的形状是 .16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=,82,1y x y x18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选两个代数式构造分式,然后进行化简,并求出当6=a ,3=b 时该分式的值.19.如题19图,已知□ABCD.(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE ,交CD 于点F ,求证:AFD ∆≌EFC ∆四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21、雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22、如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C.(1)设CB D Rt ∆的面积为1S ,BFC Rt ∆的面积为2S ,DCE Rt ∆的面积为3S ,则1S 2S +3S (用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.四、解答题(三)(本大题3小题,每小题9分,共27分)23.已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如题23图,当2=m 时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PD PC +最短?,若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是ABC Rt ∆的外接圆,︒=∠90ABC ,弦BD=BA ,AB=12,BC=5,DC BE ⊥交DC 的延长线于点E.(1)求证:BAD BCA ∠=∠; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.25.有一副直角三角板,在三角板ABC 中,︒=∠90BAC ,AB=AC=6,在三角板DEF 中,︒=∠90FDE ,DF=4,34=DE .将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 到点A 重合时,设EF 与BC 交于点M ,则=∠EMC 度;(2)如题25图(3),当三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(3)在三角板DEF 运动过程中,设x BF =,两块三角板重叠部分的面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.↓2013年广东省中考数学试题答案一、选择CDBDC CBACA二、填空11、()()33x x +- 12、1 13、720︒ 14、45 15、平行四边形 16、38π 三、解答题(一)17、32x y =⎧⎨=⎩18、略 19、略四、解答题(二)20、30%、10、50、276人21、(1)10%(2)13310元22、(1)=(2)△BCD ∽△CFB ∽△DEC五、解答题(三)23、(1)22y x x =-或22y x x =+(2)C (0,3)、D (2,-1)(3)当P 、C 、D 共线时最短,P (32,0) 24、(1)∵BD =BA ,∴∠BCA =∠BAD(2)∵△BED ∽△CBA ,∴BD DE AC AB =,∴12144,131213DE DE == (3)连结OB ,OD∵AB=DB ,OA=OD ∴△ABO ≌△DBO∴∠DBO=∠ABO ∵∠ABO=∠OAB=∠BDC∴∠DBO=∠BDC∴OB //ED∵BE ⊥ED∴EB ⊥BO∴BE 是⊙O 的切线. 25、(1)15 (2)∵△AFC ∽△DFE,∴,8FC AC FCFE DE == ∴FC =(3)解:①当0≤ x ≤2时,过点M 作M N ⊥AB 于点N ,则MN=x 233+↓ ↓↓ ↓ 8441323321)4(2122+++-=+⋅-+⨯=x x x x x y②当2< x ≤326-时,过点M 作M N ⊥AB 于点N , 则MN=x 233+184332332162122++-=+⋅-⨯=x x x y③当326-< x ≤6时,3183623)6(3)6(212+-=-⨯-=x x x x y综上:()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-+--≤<++-≤≤+++-=)6326(3183623)3262(184332084413222x x x x x x x x y。
2013年广东省中考数学试卷及答案
2013年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2013•广东)2的相反数是()A.B.C.﹣2 D.22.(3分)(2013•广东)下列四个几何体中,俯视图为四边形的是()A.B.C.D.3.(3分)(2013•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元4.(3分)(2013•广东)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b5.(3分)(2013•广东)数学1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.56.(3分)(2013•广东)如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°7.(3分)(2013•广东)下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣4)0=1 C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣528.(3分)(2013•广东)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.9.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A.B.C.D.10.(3分)(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)(2013•平凉)分解因式:x2﹣9=_________.12.(4分)(2013•广东)若实数a、b满足|a+2|,则=_________.13.(4分)(2013•广东)一个六边形的内角和是_________.14.(4分)(2013•广东)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=_________.15.(4分)(2013•广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是_________.16.(4分)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是_________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•广东)解方程组.18.(5分)(2013•广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.19.(5分)(2013•广东)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•广东)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球 3 6%乒乓球14 28%羽毛球15篮球20%足球8 16%合计100%21.(8分)(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22.(8分)(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1_________ S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•广东)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= _________度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.2013年广东省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2013•广东)2的相反数是()A.B.C.﹣2 D.2考点:相反数.分析:根据相反数的概念解答即可.解答:解:2的相反数是﹣2,故选:C.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•广东)下列四个几何体中,俯视图为四边形的是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体上面看,所得到的图形.解答:解:A、五棱柱的俯视图是五边形,故此选项错误;B 、三棱锥的俯视图是,故此选项错误;C、球的俯视图是圆,故此选项错误;D、正方体俯视图是正方形,故此选项正确;故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)(2013•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1260 000 000 000有13位,所以可以确定n=13﹣1=12.解答:解:1260 000 000 000=1.26×1012.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2013•广东)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b考点:不等式的性质.分析:以及等式的基本性质即可作出判断.解答:解:A、a>b,则a﹣5>b﹣5,选项错误;B、a>b,则2+a>2+b,选项错误;C、a>b,则>,选项错误;D、正确.故选D.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)(2013•广东)数学1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.5考点:中位数.分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答:解:将数据从大到小排列为:1,2,3,3,3,5,5,则中位数是3.故选C.点评:本题考查了中位数的知识,属于基础题,掌握中位数的定义及计算方法是关键.6.(3分)(2013•广东)如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°考点:平行线的性质.分析:由AC∥DF,AB∥EF,根据两直线平行,同位角相等,即可求得∠1=∠A=∠2=50°.解答:解:∵AB∥EF,∴∠A=∠2=50°,∵AC∥DF,∴∠1=∠A=50°.故选C.点评:此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同位角相等订立的应用,注意掌握数形结合思想的应用.7.(3分)(2013•广东)下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣4)0=1 C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣52考点:负整数指数幂;同底数幂的乘法;同底数幂的除法;零指数幂.分析:根据负整数指数幂:a﹣p=(a≠0,p为正整数),零指数幂:a0=1(a≠0),同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.同底数幂的除法法则:底数不变,指数相减分别进行计算,可得答案.解答:解:A、(﹣1)﹣3=﹣1,故此选项错误;B、(﹣4)0=1,故此选项正确;C、(﹣2)2×(﹣2)3=﹣25,故此选项错误;D、(﹣5)4÷(﹣5)2=52,故此选项错误;故选:B.点评:此题主要考查了负整数指数幂、零指数幂、同底数幂的乘除法,关键是熟练掌握各运算的计算法则,不要混淆.8.(3分)(2013•广东)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:存在型.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.点评:本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断即可得出答案.解答:解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.(3分)(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:根据反比例函数的图象性质及正比例函数的图象性质可作出判断.解答:解:∵k1<0<k2,b=﹣1<0∴直线过二、三、四象限;双曲线位于一、三象限.故选A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)(2013•平凉)分解因式:x2﹣9=(x+3)(x﹣3).考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:x2﹣9=(x+3)(x﹣3).点评:主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.(4分)(2013•广东)若实数a、b满足|a+2|,则=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:根据题意得:,解得:,则原式==1.故答案是:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.(4分)(2013•广东)一个六边形的内角和是720°.考点:多边形内角与外角.分析:根据多边形内角和公式进行计算即可.解答:解:由内角和公式可得:(6﹣2)×180°=720°.故答案为:720°.点评:此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2).180°(n≥3)且n为整数).14.(4分)(2013•广东)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=.考点:锐角三角函数的定义;勾股定理.分析:首先由勾股定理求得斜边AC=5;然后由锐角三角函数的定义知sinA=,然后将相关线段的长度代入计算即可.解答:解:∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC==5(勾股定理).∴sinA==.故答案是:.点评:本题考查了锐角三角函数定义,勾股定理.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.(4分)(2013•广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是平行四边形.考点:图形的剪拼.分析:四边形ACE′E的形状是平行四边形;首先根据三角形中位线的性质可得DE∥AC,DE=AC,再根据旋转可得DE=DE′,然后可根据一组对边平行且相等的四边形是平行四边形进行判定即可.解答:解:四边形ACE′E的形状是平行四边形;∵DE是△ABC的中线,∴DE∥AC,DE=AC,∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,∴DE=DE′,∴EE′=2DE=AC,∴四边形ACE′E的形状是平行四边形,故答案为:平行四边形.点评:此题主要考查了图形的剪拼,以及平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.16.(4分)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).考点:扇形面积的计算.分析:阴影部分可看成是圆心角为135°,半径为1是扇形.解答:解:根据图示知,∠1+∠2=180°﹣90°﹣45°=45°,∴图中阴影部分的圆心角的和是90°+90°﹣∠1﹣∠2=135°,∴阴影部分的面积应为:S==.故答案是:.点评:本题考查学生的观察能力及计算能力.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•广东)解方程组.考点:解二元一次方程组.专题:计算题.分析:将方程组中的第一个方程代入第二个方程消去x求出y的值,进而求出x的值,即可得到方程组的解.解答:解:,将①代入②得:2(y+1)+y=8,去括号得:2y+2+y=8,解得:y=2,将y=2代入①得:x=2+1=3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(5分)(2013•广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.考点:分式的化简求值.专题:开放型.分析:选②与③构造出分式,再根据分式混合运算的法则把原式进行化简,把a、b的值代入进行计算即可.解答:解:选②与③构造出分式,,原式==,当a=6,b=3时,原式==.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.19.(5分)(2013•广东)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.考点:作图—复杂作图;全等三角形的判定;平行四边形的性质.分析:(1)根据题目要求画出图形即可;(2)首先根据平行四边形的性质可得AD∥BC,AD=BC,进而得到AD=CE,∠DAF=∠CEF,进而可利用AAS证明△AFD≌△EFC.解答:(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥BC,∴∠DAF=∠CEF,∵在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).点评:此题主要考查了平行四边形的性质,以及全等三角形的判定,关键是正确画出图形,掌握平行四边形的性质.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•广东)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球 3 6%乒乓球14 28%羽毛球15篮球20%足球8 16%合计100%考点:条形统计图;用样本估计总体;统计表.专题:计算题.分析:(1)由排球的人数除以所占的百分比求出总人数,乘以篮球所占的百分比即可求出篮球的人数,补全条形统计图,如图所示,求出羽毛球所占的百分比,补全人数分布图,如图所示;(2)用人数乘以羽毛球所占的百分比即可求出人数.解答:解:(1)3÷6%=50人,则篮球的人数为50×20%=10人,则补全条形统计图如下:羽毛球占总数的百分比为:15÷50=30%,补全人数分布表为:类别人数百分比排球 3 6%乒乓球14 28%羽毛球15 30%篮球10 20%足球8 16%合计50 100%(2)920×30%=276人.则七年级学生喜爱羽毛球运动项目的人数为276人.点评:此题考查了条形统计图,扇形统计图,中位数,以及众数,弄清题意是解本题的关键.21.(8分)(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?考点:一元二次方程的应用.专题:增长率问题.分析:(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.解答:解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.点评:本题考查了一元二次方程的应用,列方程的依据是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数.22.(8分)(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1=S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.考点:相似三角形的判定;矩形的性质.分析:(1)根据S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.(2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可.解答:(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,∴S1=S矩形BDEF,∴S2+S3=S矩形BDEF,∴S1=S2+S3.(2)答:△BCD∽△CFB∽△DEC.证明△BCD∽△DEC;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD,又∵∠BCD=∠DEC=90°,∴△BCD∽△DEC.点评:本题考查了相似三角形的判定,注意掌握相似三角形的判定定理,最经常用的就是两角法,此题难度一般.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•广东)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.考点:二次函数综合题.分析:(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;(2)根据m=2,代入求出二次函数解析式,进而利用配方法求出顶点坐标以及图象与y轴交点即可;(3)根据当P、C、D共线时PC+PD最短,利用平行线分线段成比例定理得出PO 的长即可得出答案.解答:解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入二次函数y=x2﹣2mx+m2﹣1,得出:m2﹣1=0,解得:m=±1,∴二次函数的解析式为:y=x2﹣2x或y=x2+2x;(2)∵m=2,∴二次函数y=x2﹣2mx+m2﹣1得:y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点为:D(2,﹣1),当x=0时,y=3,∴C点坐标为:(0,3);(3)当P、C、D共线时PC+PD最短,过点D作DE⊥y轴于点E,∵PO∥DE,∴=,∴=,解得:PO=,∴PC+PD最短时,P点的坐标为:P(,0).点评:此题主要考查了二次函数的综合应用以及配方法求二次函数顶点坐标以及最短路线问题等知识,根据数形结合得出是解题关键.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)根据BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出结论;(2)判断△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.(3)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.解答:(1)证明:∵BD=BA,∴∠BDA=∠BAD,∵∠BCA=∠BDA(圆周角定理),∴∠BCA=∠BAD.(2)解:∵∠BDE=∠CAB(圆周角定理),∠BED=∠CBA=90°,∴△BED∽△CBA,∴=,即=,解得:DE=.(3)证明:连结OB,OD,在△ABO和△DBO中,∵,∴△ABO≌△DBO,∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴OB⊥BE,∴BE是⊙O的切线.点评:本题考查了切线的判定及圆周角定理的知识,综合考查的知识点较多,解答本题要求同学们熟练掌握一些定理的内容.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= 15度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.考点:相似形综合题.分析:(1)如题图2所示,由三角形的外角性质可得;(2)如题图3所示,在Rt△ACF中,解直角三角形即可;(3)认真分析三角板的运动过程,明确不同时段重叠图形的变化情况:(I)当0≤x≤2时,如答图1所示;(II)当2<x≤6﹣时,如答图2所示;(III)当6﹣<x≤6时,如答图3所示.解答:解:(1)如题图2所示,∵在三角板DEF中,∠FDE=90°,DF=4,DE=,∴tan∠DFE==,∴∠DFE=60°,∴∠EMC=∠FMB=∠DFE﹣∠ABC=60°﹣45°=15°;(2)如题图3所示,当EF经过点C时,FC====;(3)在三角板DEF运动过程中,(I)当0≤x≤2时,如答图1所示:设DE交BC于点G.过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△BDG﹣S△BFM=BD•DG﹣BF•MN=(x+4)2﹣x•x=x2+4x+8;(II)当2<x≤6﹣时,如答图2所示:过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN ,即MN+x=MN,解得:MN=x.y=S△ABC﹣S△BFM=AB•AC ﹣BF•MN=×62﹣x •x=x2+18;(III)当6﹣<x≤6时,如答图3所示:由BF=x,则AF=AB﹣BF=6﹣x,设AC与EF交于点M,则AM=AF•tan60°=(6﹣x).y=S△AFM =AF•AM=(6﹣x)•(6﹣x)=x2﹣x+.综上所述,y与x的函数解析式为:y=.点评:本题是运动型综合题,解题关键是认真分析三角板的运动过程,明确不同时段重叠图形形状的变化情况.在解题计算过程中,除利用三角函数进行计算外,也可以利用三角形相似,殊途同归.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:
解析:由勾股定理,得AB=5,所以sinA=
15.如题15图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,
则四边形ACE′E的形状是________________.
17.解方程组
答案:
解析:用代入消元法可求解。
18.从三个代数式:① ,② ,③ 中任意选择两个代数式构造成分式,然后进行化简,并求当 时该分式的值.
解析:选取①、②得 ,
当 时,原式= (有6种情况).
19.如题19图,已知□ABCD.
(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC
1 260 000 000 000=1.26×1012元
4.已知实数 、 ,若 > ,则下列结论正确的是
A. B. C. D.
答案:D
解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A、B、C错误,选D。
5.数据1、2、5、3、5、3、3的中位数是
A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元
答案:B
解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
2013年广东省初中毕业生学业考试
数 学
说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.
2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2 B铅笔把对应号码的标号涂黑.
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上.
(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,不连结AE,交CD于点F,求证:△AFD≌△EFC.
解析:
19. (1)如图所示, 线段CE为所求;
(2)证明:在□ABCD中,AD∥BC,AD=BC.∴∠CEF=∠DAF
∵CE=BC,∴AD=CE,
又∵∠CFE=∠DFA,∴△AFD≌△EFC.
1解析:由平方差公式直接可以分解,原式= =
12.若实数 、 满足 ,则 ________.
答案:1
解析:由绝对值及二次根式的意义,可得: ,所以 , 1
13.一个六边形的内角和是__________.
答案:720°
解析:n边形的内角和为(n-2)×180°,将n=6代入可得。
1. 2的相反数是
A. B. C.-2 D.2
答案:C
解析:2的相反数为-2,选C,本题较简单。
2.下列几何体中,俯视图为四边形的是
答案:D
解析:A、B、C的俯视图分别为五边形、三角形、圆,只有D符合。
3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为
A. 1 B.2 C.3 D.5
答案:C
解析:将数据由小到大排列为:1,2,3,3,3,5,5,所以中位数为3。
6.如题6图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,
则∠1的大小是
A .30° B.40° C.50° D.60°
答案:C
解析:由两直线平行,同位角相等,知∠A=∠2=50°,
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.
一、选择题(本大题10小题,每小题3分,共 30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
答案:平行四边形
解析:C 平行且等于BE,而BE=EA,且在同一直线上,所以,C 平行且等于AE,故是平行四边形。
16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留 ).
答案:
解析:将左下阴影部分对称移到右上角,则阴影部分面积的和为:
S= + =
三、解答题(一)(本大题3小题,每小题5分,共15分)
四、解答题(二)(本大题3小题,每小题8分,共24分)
20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.
(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);
∠1=∠A=50°,选C。
7.下列等式正确的是
A. B. C. D.
答案:B
解析:(-1)-3=-1,(-2)2×(-2)3=25,(-5)4 (-5)2=(-5)2,所以,A、C、D都错,选B。
8.不等式 的解集在数轴上表示正确的是
答案:A
解析:解不等式,得x>2,故选A。
9.下列图形中,不是轴对称图形的是
(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.
解析:
21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
答案:C
解析:圆和正方形都既是轴对称图形又是中心对称图形,等边三角形是轴对称图形, 平行四边形是中 心对称图形,故选C。
10.已知 ,则是函数 和 的图象大致是
答案:A
解析:直线与y轴的交点为(0,-1),故排除B、D,又k2>0,双曲线在一、三象限,所以,选A。
二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.