历年内蒙古赤峰市中考试题(含答案)
赤峰市中考数学试题及答案
赤峰市中考数学试题及答案在赤峰市的中考中,数学试卷是必不可少的一部分。
以下是一些常见的数学试题及其答案,供参考。
一、选择题1. 已知等差数列的首项为a,公差为d。
若a=2,d=3,数列的第n 项为10,则n的值为:A. 4B. 5C. 6D. 7答案:C. 62. 若正方形ABCD的边长为4 cm,点E是边AB的中点,则三角形ADE的面积为:A. 6 cm²B. 8 cm²C. 12 cm²D. 16 cm²答案:B. 8 cm²二、填空题1. 若x=2,y=-3,则2x-3y的值为____。
答案:142. 用两个数字4、6、8、9能组成多少个互不重复的两位数?答案:12个三、解答题1. 计算下列各题的解:a) 7 + 12 ÷ 4b) (8 + 3) × 2 - 10答案:a) 10b) 142. 解方程组:2x + y = 73x - y = -1答案:x = 2, y = 3以上是赤峰市中考数学试题及答案的一部分范例。
在中考数学考试中,选择题常常涉及对基础知识点的掌握和运用能力的测试,而填空题和解答题则更加注重学生对于数学思维和解题能力的考察。
希望通过这些题目的讲解和答案的给出,能够帮助你更好地了解赤峰市中考数学试题的难度和出题思路,为备考提供参考。
同时,希望你在备考过程中,能够注重平时的积累和练习,加强对数学知识的理解和掌握,提高解题能力,从而在中考中取得优异的成绩。
祝你取得好成绩!。
2024年内蒙古赤峰市中考英语真题(含答案)
2024年赤峰市初中毕业、升学统一考试试卷英语温馨提示:1.本试卷分第Ⅰ卷、第Ⅱ卷两部分,共12页,满分150分,考试时间120分钟。
2.答题前,考生务必将姓名、座位号、考生号填写在答题卡的指定位置上,并仔细阅读答题卡上的”注意事项”。
3.答题时,请将答案填涂在答题卡指定位置,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷选择题(85分)一、听力测试(共20小题;每小题1.5分,共30分)第一节:听下面5段对话。
请你从每小题所给的A、B、C三幅图片中,选出与你所听到的信息相关联的一项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话读两遍。
1.A. B. C.2.A. B. C.3.A. B. C.4.A. B. C.5.A. B. C.第二节:听下面5段对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话前,你将有时间阅读各个小题,每小题5秒钟。
听完后,各小题将给出5秒钟的作答时间。
每段对话读两遍。
6.Where is the shopping center?A.Next to a park.B.Next to a bookstore.C.Across from a bookstore.听对话,回答以下各小题。
7.How often does Li Hong sweep the floor?A.Once a week.B.Twice a week.C.Very often.8.What does the man like doing?A.Washing clothes.B.Making the bed.C.Doing the dishes.听对话,回答以下各小题。
9.Where will the man go?A.To the hospital.B.To the post office.C.To the school.10.Who are the two speakers?A.Husband and wife.B.Doctor and patient.C.Teacher and student.听对话,回答以下各小题。
近5年赤峰市中考试题
2012年赤峰市初中毕业、升学统一考试试卷语文一、识字、写字(10分)1.给加点的字注音。
(选做5个题,共5分)(1)栖.息( ) (2)嗔.视( ) (3)蟾蜍.( )(4)恣睢.( ) (5)稽.首( ) (6)孱.弱( )2.根据拼音写汉字。
(选做5个题,共5分)(1)隐mì( ) (2)深Suì( ) (3)阴mái( )(4)jiān( )默(5) yǚn( )落(6) zhǜ( )足二、经典诗文积累(25分)3.依据原文填空。
(选做4个题,共4分)(1)乱花渐欲迷人眼,。
(白居易《钱塘湖春行》)(2)春潮带雨晚来急,。
(韦应物《滁州西涧》)(3)苔痕上阶绿,。
(刘禹锡《陋室铭》)(4) ,赢得生前身后名。
(辛弃疾《破阵子为陈同甫赋壮词以记之》)(5) ,铜雀春深锁二乔。
(杜牧《赤壁》)(6) ?雪拥蓝关马不前。
(韩愈《左迁至蓝关示侄孙湘》)4.根据提示默写。
(选做3个题,共6分)(1)做事情应学会换位思考,自己不愿意接受的事物,也不要强迫别人接受,用孔子的话说就是:,。
(2)文天祥在《过零丁洋》中感慨国势危亡、人生坎坷的两句诗是:,。
(3)陆游《游山西村》中暗含作者摆脱逆境的强烈愿望,同时包含深刻哲理的两句诗是: , 。
(4)在余光中的《乡愁》诗中,乡愁是一枚小小的邮票,。
,乡愁是一湾浅浅的海峡。
5.默写课文。
(共15分,(1)(2)题必做,各5分;(3)(4)题选做其一,5分。
不写题目和作者)(1)欧阳修《醉翁亭记》中“若夫日出而林靠开”至“而乐亦无穷也”。
(2)《孟子两章》中“人恒过然后能改”至“而死于安乐也。
”(3)陶弘景《答谢中书书》全文。
(4)吴均《与朱元思书》中“夹岸高山”至“有时见日。
”必做题(1)(一)阅读《羚羊木雕》-完成6—10题。
(17分)羚羊木雕张之路“那只羚羊哪儿去啦?”妈妈突然问我。
妈妈说的羚羊是一件用黑色硬木雕成的工艺品。
那是爸爸从非洲带回来给我的。
内蒙古赤峰市中考语文试卷及答案
内蒙古赤峰市中考语文试卷及答案温馨提示:本试卷共12页,满分150分,考题时间为150分钟。
一、 经典诗文积累(25分)1、 依据原文填空。
(选做6个题,多做不加分)(1)正是江南好风景, 。
(杜甫《江南逢李龟年》)(2)何当共剪西窗烛, 。
(李清照《夜雨寄北》)(3) ,化作春泥更护花。
(龚自珍《己亥杂诗》)(4) ,浅草才能没马蹄。
(白居易《钱塘湖春行》)(5)何处望神州? 。
(辛弃疾《登京口北固亭有怀》)(6)烟笼寒水月笼沙, 。
(杜牧《泊秦淮》)(7) ,梨花落后清明。
(晏殊《破阵子》)(8) ,芳草萋萋鹦鹉洲。
(崔颢《黄鹤楼》)2、根据提示默写。
(选做2个题,共4分,多做不加分)(1)《论语》中论述学习与思考关系的两句话是:, 。
(2)李清照《武陵春》中感慨物是人非的两句词是:, 。
(3)从你积累的古诗词中,写出表达雄心壮志的连续的两句:, 。
3、 默写课文选段。
(共15分,(1)题必做,8分;(2)(3)题选做其一,7分。
不写题目和作者)(1)诸葛亮《出师表》中“先帝知臣谨慎”至“则攸之、祎、允之任也。
”(2)柳宗元《小石潭记》中“从小丘西行百二十步”至“似与游者相乐。
”(3)郦道元《三峡》中“自三峡七百里中”至“良多趣味。
”二、阅读理解(65分)(一)阅读《夕照透入书房》,完成4----9题。
(20分)夕照透入书房冯骥才(1)我常常在黄昏时分,坐在书房里,享受夕照穿窗而入带来的那一种异样的神奇。
(2)此刻,书房已经暗下来。
到处堆放的书籍文稿以及艺术品重重叠叠地隐没在阴影里。
(3)暮时的阳光,已经失去了白日里的咄咄逼人....;它变得很温和,很红,好像一种橘色的灯光, 不管什么东西给它一照,全部分外的美丽。
首先是窗台上那盆已经衰败的藤草,此刻像镀了金一样,蓬勃发光;跟着是书桌上的玻璃灯罩,亮闪闪的,仿佛打开了灯;然后,这一大片橙色的夕照带着窗棂和外边的树影,斑斑驳驳投射在东墙那边一排大书架上。
2024年内蒙古赤峰市中考化学真题(附答案)
2024年内蒙古赤峰市中考化学真题(附答案)可能用到的相对原子质量:H 1 C 12 N 14 O 16 Ca 40 Fe 56------一、选择题(每小题给出的选项中只有一个符合题意,请将该选项的序号在答题卡的对应位置上按要求涂黑。
每小题2分,共28分)空气是地球上宝贵的自然资源,人类对空气的认识经历了漫长的研究和探索过程。
完成下面小题。
1.18世纪70年代,拉瓦锡通过定量实验证明了空气是混合物,其中约占空气体积15的气体是A.2NB.2OC.2COD.2H O2.随着科技的发展,空气中各成分的应用越来越广泛。
下列用途主要利用物理性质的是A.氮气——充氮包装B.氧气——医疗急救C.稀有气体——激光技术D.二氧化碳——气体肥料3.如图是测定空气中氧气含量的改进实验装置(夹持装置已省略),对该实验认识正确的是A.现象:实验过程中,红磷燃烧,产生大量白雾B.推论:实验后,玻璃管中剩余气体具有可燃性C.分析:红磷的量多或少,都不会影响实验结果D.评价:用改进装置实验,能减少对空气的污染【答案】1.B2.C3.D 【解析】【1题详解】N 2约占空气体积的78%,CO 2约占空气体积的0.03%,O 2约占空气体积的21%(约为15),H 2O 在空气中含量非常少,故选:B 。
【2题详解】A 、氮气化学性质不活泼,可用于填充包装,该性质属于化学性质,A 错误;B 、氧气可供给呼吸,呼吸作用消耗糖类和氧气,产生二氧化碳和水,利用的是氧气的化学性质,B 错误;C 、稀有气体通电能发出不同颜色的光,可用于制造电光源,此过程不产生新物质,该性质属于物理性质,C 正确;D 、二氧化碳是光合作用的原料,二氧化碳和水经光合作用转化为糖类和氧气,利用的是二氧化碳的化学性质,D错误。
故选:C。
【3题详解】A、实验过程中,红磷燃烧,产生大量白烟,A错误;B、实验后,红磷有剩余,且不再燃烧,说明玻璃管中剩余气体不具有可燃性,B错误;C、红磷必须过量,确保试管中的氧气被完全消耗,红磷不足会导致试管中有氧气剩余,测量结果偏小,C 错误;D、红磷燃烧产生的五氧化二磷是有毒物质,该装置在密封装置内引燃红磷,能减少五氧化二磷对空气的污染,D正确。
内蒙古赤峰市中考语文考试题及答案(word版).doc
内蒙古赤峰市中考语文考试题及答案(word版)姓名:_____________ 年级:____________ 学号:______________一、选择题(共3题)1.选出下面词语书写完全正确的一组(3分)A.屏障污秽赢弱惊慌失错B.销蚀崔巍喧腾迫不及待C.响晴弥慢喑哑小心翼翼D.阻遏藉贯哂笑闲情逸至【答案】B难度:容易知识点:字形2.选出下面加点字注音完全正确的一组(3分)A.菜畦(qí)脑髓(suí)嫉妒(jì)九曲连环(qū)B.澎湃(pài)哺育(bǔ)祈祷(qí)一拍即合(jì)C.炽痛(chì)亘古(gèn)默契(qì)叱咤风云(zhà)D.蓦然(mò)惩戒(chěng)犷野(guǎng)毛骨悚然(sǒng)【答案】C难度:容易知识点:字音3.选出下边各句说法正确的一项(3分)A.“敝”字的部首是“攵”,共11画。
B.“为”字按笔顺正确书写,第三划应该是“丿”。
C.“爬”字属于上下结构,共7画。
D.“菇”字的部首是“女”,表示“菇”字与草本植物有关。
【答案】A难度:中等知识点:字形二、名句默写(共3题)1.依据原文填空(选做3个题,每空1分,共3分)(1)折戟沉沙铁未销,__________________。
(杜牧《赤壁》)(2)枯藤老树昏鸦,小桥流水人家,__________________。
(马致远《天净沙·秋思》)(3)浊酒一杯家万里,__________________。
(范仲淹《渔家傲·秋思》)(4)__________________,化作春泥更护花。
(龚自珍《己亥杂诗》)(5)__________________,忽复乘舟梦日边。
(李白《行路难》)【答案】难度:容易知识点:诗2.根据提示默写(选做3个题,每空1分,共6分)(1)杜甫《望岳》中抒发雄心壮志的句子是:__________________。
(中考精品卷)内蒙古赤峰市中考数学真题(解析版)
2022年赤峰市初中毕业、升学统一考试试卷数 学温馨提示:1.本试卷卷面分值150分,共8页,考试时间120分钟.2.答题前,考生务必将姓名、座位号、考生号填写在答题卡的对应位置上,并仔细阅读答题卡上的“注意事项”.3.答题时,请将答案填涂在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分) 1. -5绝对值是( ) A. 15-B. -5C. 15D. 5【答案】D【解析】【分析】由绝对值的定义进行计算即可. 【详解】55=-故选:D .【点睛】本题考查绝对值,理解绝对值的定义是解决问题的关键.2. 下列图案中,不是轴对称图形的是( ) A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【详解】A 不是轴对称图形;的B 、C 、D 都是轴对称图形;故选:A .【点睛】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3. 同种液体,压强随着深度增加而增大.7km 深处海水的压强为a 72100000p ,数据72100000用科学记数法表示为( )A. 67.2110⨯B. 80.72110⨯C. 77.2110⨯D. 572110⨯【答案】C【解析】【分析】科学记数法表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】72100000=77.2110⨯故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值. 4. 解不等式组31x x ≤⎧⎨>-⎩①②时,不等式①、②的解集在同一数轴上表示正确的是( ) A. B.C.D.【答案】B【解析】 【分析】根据不等式组确定出解集,表示在数轴上即可.【详解】解:不等式组31x x ≤⎧⎨>-⎩①②的解集为13x -<≤, 表示在同一数轴为,故选:B .【点睛】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面的表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 5. 下面几何体的俯视图是( )A. B. C. D.【答案】B【解析】【分析】俯视图是从物体的上面看得到的视图.【详解】圆台的俯视图是一个同心圆环.故选:B .【点睛】本题考查几何体的三视图,主要考查学生空间想象能力及对立体图形的认知能力.6. 如图,点()2,1A ,将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段''O A ,则点A 的对应点'A 的坐标是( )A. ()3,2-B. ()0,4C. ()1,3-D. ()3,1-【解析】【分析】根据点向上平移a 个单位,点向左平移b 个单位,坐标P (x ,y )⇒P (x ,y +a )⇒P (x +a ,y +b ),进行计算即可.【详解】解:∵点A 坐标为(2,1),∴线段OA 向h 平移2个单位长度,再向左平移3个单位长度,点A 的对应点A ′的坐标为(2-3,1+2),即(-1,3),故选C .【点睛】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.7. 下列运算正确的是( )A. 325a a a +=B. 236a a a ⋅=C. 23236a a a ⋅=D. ()347a a -=-【答案】C【解析】【分析】由合并同类项、同底数幂相乘、幂的乘方、积的乘方的运算法则分别进行判断,即可得到答案.【详解】解:A 、a 3和a 2不是同类项,不能合并,该选项不符合题意;B 、a 2⋅a 3=a 5原式计算错误,该选项不符合题意;C 、23236a a a ⋅=正确,该选项符合题意;D 、()3412a a -=-原式计算错误,该选项不符合题意;故选:C .【点睛】本题考查了合并同类项、同底数幂相乘、幂的乘方、积的乘方的运算法则,解题的关键是熟练掌握运算法则进行判断.8. 下列说法正确的是( )A. 调查某班学生的视力情况适合采用随机抽样调查的方法B. 声音在真空中传播的概率是100%C. 甲、乙两名射击运动员10次射击成绩的方差分别是2 2.4S =甲,21.4S =乙,则甲的射击成绩比乙的射击成绩稳定D. 8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5【解析】【分析】根据普查、抽查、概率、方差、中位数和众数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、调查某班学生的视力情况适合采用普查的方法,故A 不符合题意; B 、声音在真空中传播的概率是0,故B 不符合题意;C 、甲、乙两名射击运动员10次射击成绩的方差分别是2 2.4S =甲,2 1.4S =乙,则乙的射击成绩比甲的射击成绩稳定;故C 不符合题意;D 、8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5;故D 符合题意;故选:D【点睛】本题考查了全面调查与抽样调查,中位数、众数、方差和概率的意义,理解各个概念的内涵是正确判断的前提.9. 如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD ,其中一张纸条在转动过程中,下列结论一定成立的是( )A. 四边形ABCD 周长不变B. AD CD =C. 四边形ABCD 面积不变D. AD BC =【答案】D【解析】【分析】由平行四边形的性质进行判断,即可得到答案.【详解】解:由题意可知,∵//AB CD ,//AD BC ,∴四边形ABCD 是平行四边形,∴AD BC =;故D 符合题意;随着一张纸条在转动过程中,AD 不一定等于CD ,四边形ABCD 周长、面积都会改变;故A 、B 、C 不符合题意;【点睛】本题考查了平行四边形的判定和性质,解题的关键是掌握平行四边形对边相等.10. 某中学对学生最喜欢的课外活动进行了随机抽样调查,要求每人只能选择其中的一项.根据得到的数据,绘制的不完整统计图如下,则下列说法中不正确的是()A. 这次调查的样本容量是200B. 全校1600名学生中,估计最喜欢体育课外活动的大约有500人C. 扇形统计图中,科技部分所对应的圆心角是36D. 被调查的学生中,最喜欢艺术课外活动的有50人【答案】B【解析】【分析】①由折线统计图和扇形图可知:喜欢播音的人数是10人,占调查人数的5%,可以计算出这次调查的样本容量;②用全校1600名学生中的总人数,乘以喜欢体育课外活动的所占总人数的百分比估计最喜欢体育课外活动的人数;③先计算被调查的学生中,最喜欢艺术课外活动的人数再用总人数减去各项人数就可以算出喜欢科技的人数,扇形统计图中,可以计算出科技部分所对应的圆心角是;④被调查的学生中,最喜欢艺术课外活动的人数就是用200乘艺术课外活动占调查人数的百分比;【详解】①由折线统计图和扇形图可知:喜欢播音的人数是10人,占调查人数的5%,这次调查的样本容量是10÷5%=200(人),故A选项正确;②全校1600名学生中,估计最喜欢体育课外活动的大约有:1600×50200=400(人)故B选项错误;③被调查的学生中,最喜欢艺术课外活动的有200×25%=50(人)可以算出喜欢科技的人数为:200-50-50-10-70=20人∴扇形统计图中,科技部分所对应的圆心角是°20360=36200⨯°,故C 正确; ④被调查的学生中,最喜欢艺术课外活动的有200×25%=50(人)故D 正确; 故选:B【点睛】本题考查折线统计图,扇形统计图,理解两个统计图中的数量之间的关系是正确解答的前提.11. 已知()()2221x x x +--=,则2243x x -+的值为( )A. 13B. 8C. -3D. 5【答案】A【解析】【分析】先化简已知的式子,再整体代入求值即可.【详解】∵()()2221x x x +--=∴225x x -=∴222432(2)313x x x x -+=-+=故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键.12. 如图所示,圆锥形烟囱帽的底面半径为12cm ,侧面展开图为半圆形,则它的母线长为( )A. 10cmB. 20cmC. 5cmD. 24cm【答案】D【解析】【分析】根据扇形的弧长公式进行计算,即可求出母线的长度. 详解】解:根据题意,圆锥形烟囱帽的底面周长为:21224ππ⨯=;∵圆锥的侧面展开图为半圆形, ∴180··24180R ππ=, ∴24R =;【∴它的母线长为24cm ;故选:D【点睛】本题考查了圆锥的侧面展开图,弧长公式,解题的关键是熟练掌握弧长公式进行计算.13. 如图,菱形ABCD ,点A 、B 、C 、D 均在坐标轴上,120ABC ∠=︒,点()30A -,,点E 是CD 的中点,点P 是OC 上的一动点,则PD PE +的最小值是( )A. 3B. 5C. 【答案】A【解析】【分析】直线AC 上的动点P 到E 、D 两定点距离之和最小属“将军饮马”模型,由D 关于直线AC 的对称点B ,连接BE ,则线段BE 的长即是PD +PE 的最小值.【详解】如图:连接BE ,,∵菱形ABCD ,∴B 、D 关于直线AC 对称,∵直线AC 上的动点P 到E 、D 两定点距离之和最小∴根据“将军饮马”模型可知BE 长度即是PD +PE 的最小值.,∵菱形ABCD ,120ABC ∠=︒,点()30A -,,∴60,30CDB DAO ∠=︒∠=︒,3OA =,∴OD AD DC CB ====∴△CDB 是等边三角形∴BD =∵点E 是CD 的中点,∴12DE CD ==且BE ⊥CD ,∴3BE ==故选:A .【点睛】本题考查菱形性质及动点问题,解题的关键是构造直角三角形用勾股定理求线段长.14. 如图,AB 是O 的直径,将弦AC 绕点A 顺时针旋转30°得到AD ,此时点C 的对应点D 落在AB 上,延长CD ,交O 于点E ,若4CE =,则图中阴影部分的面积为( )A. 2πB.C. 24π-D.2π-【答案】C【解析】【分析】如图,连接OE ,OC ,过点O 作OF ⊥CE 于点F ,由旋转得AD =AC ,可求出75ADC ACD ∠=∠=︒ ,由圆周角定理得150,AOE ∠=︒得 30EOD ∠=︒,由三角形外角的性质得45,90,OEC FOC ∠=︒∠=︒ 由垂径定理得EF =2,根据勾股定理得OE ==EOF EOF S S S ∆-阴影扇形求解即可.【详解】解:如图,连接OE ,OC ,过点O 作OF ⊥CE 于点F ,则114222EF CE ==⨯=, 由旋转得,,AC AD =∴∠ADC ACD =∠,∵∠30,A ︒= ∴∠1(18030)752ADC ACD ︒︒︒=∠=⨯-=, ∴∠2150AOE ACD ︒=∠=∴∠30,EOD ︒=又∠75,OED EOD ODC ︒+∠=∠=∴∠75753045,OED EOD ︒︒︒︒=-∠=-=∴∠45,EOF OEF ︒=∠=∴2OF EF ==∴OE ===∵OE OC =∴∠45OEC OFE ︒=∠=∴∠90EOC ︒=∴42=EOFEOF S S S ∆-=⨯阴影扇形2 4.π=- 故选:C .【点睛】本题主要考查了等腰三角形的判定与性质,圆周角定理,勾股定理,扇形面积等知识,求出扇形的半径和圆心角是解答本题的关键. 二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分) 15. 分解因式:32242x x x ++=______.【答案】22(1)x x +【解析】【分析】先提取公因式,再利用完全平方公式进行因式分解. 【详解】解:32242x x x ++,22(21)x x x =++, 22(1)x x =+,故答案是:22(1)x x +.【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及完全平方公式. 16. 已知王强家、体育场、学校在同一直线上,下面的图像反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中x 表示时间,y 表示王强离家的距离.则下列结论正确的是_________.(填写所有正确结论的序号)①体育场离王强家2.5km ②王强在体育场锻炼了30min ③王强吃早餐用了20min④王强骑自行车的平均速度是0.2km/min【答案】①③④ 【解析】【分析】利用图象信息解决问题即可.【详解】解:体育场离张强家2.5 km ,①正确; 王强在体育场锻炼了()301515min -=,②错误; 王强吃早餐用了()876720min -=,③正确; 王强骑自行车的平均速度是30.2km/min 10287=-,④正确.故答案为:①③④.【点睛】此题考查函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题.17. 如图,为了测量校园内旗杆AB 的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O 处,然后观测者沿着水平直线BO 后退到点D ,这时恰好能在镜子里看到旗杆顶点A ,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD =1.7m ,BD =11m ,则旗杆AB 的高度约为_________m . 1.7≈)【答案】17 【解析】【分析】如图容易知道CD ⊥BD ,AB ⊥BD ,即∠CDO =∠ABO =90°.由光的反射原理可知∠COD =∠AOB =60°,这样可以得到△COD ∽△AOB ,然后利用对应边成比例就可以求出AB .【详解】解:由题意知∠COD =∠AOB =60°,∠CDE =∠ABE =90°, ∵CD =1.7m ,∴OD =60CD tan =︒≈1(m),∴OB =11-1=10(m), ∴△COD ∽△AOB . ∴CD OD AB OB =,即1.7110AB =, ∴AB =17(m),答:旗杆AB 的高度约为17m . 故答案为:17.【点睛】本题考查了解直角三角形的应用,相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.18. 如图,抛物线265y x x =---交x 轴于A 、B 两点,交y 轴于点C ,点(),1D m m +是抛物线上的点,则点D 关于直线AC 的对称点的坐标为_________.【答案】(0,1) 【解析】【分析】先求出A 、B 、C 、D 的坐标,根据CD ∥x 轴即可求出点D 关于直线AC 的对称点坐标.【详解】∵抛物线265y x x =---交x 轴于A 、B 两点,交y 轴于点C , ∴当2650y x x =---=时,121,5x x =-=-; 当0x =时,5y =-∴(5,0),(1,0),(0,5)A B C --- ∴OA =OC =5∴45ACO OAC ∠=∠=︒ ∵(),1D m m +是抛物线上的点∴2165m m m +=---,解得121,6m m =-=- 当1m =-时,()1,0D -与A 重合; 当6m =-时,()6,5D --; ∴CD ∥x 轴,∴45ACD OAC ∠=∠=︒设点D 关于直线AC 的对称点M ,则45,ACD ACM DC CM ∠=∠=︒=∴M 在y 轴上,且△DCM 是等腰直角三角形 ∴DC =CM =6∴M 点坐标为(0,1) 故答案为:(0,1).【点睛】本题考查二次函数的性质,等腰直角三角形的判定与性质,解题的关键是根据对称得到△DCM 是等腰直角三角形.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19. 先化简,再求值:221111a a a a -⎛⎫+÷ ⎪+-⎝⎭,其中114cos 452a -⎛⎫=-+ ⎪⎝⎭︒. 【答案】33a -;3 【解析】【分析】由分式的加减乘除运算法则进行化简,然后求出a 的值,再代入计算,即可得到答案.【详解】解:221111a aa a -⎛⎫+÷ ⎪+-⎝⎭ =1211(1)(1)a a aa a a ++-÷+-+=3(1)(1)1a a a aa -+⨯+ =33a -;∵114cos 452422a -︒=-⎛⎫=- ⎪⎭=⎝,把2a =代入,得 原式=3233⨯-=.【点睛】本题考查了分式的加减乘除混合运算,二次根式的性质,负整数指数幂,特殊角的三角函数值等知识,解题的关键是熟练掌握运算法则,正确的进行解题.20. 如图,已知Rt ABC 中,90ACB ∠=︒,8AB =,5BC =.(1)作BC 的垂直平分线,分别交AB 、BC 于点D 、H ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD ,求BCD △的周长.【答案】(1)见解析 (2【解析】【分析】(1)利用基本作图,作BC 的垂直平分线分别交AB 、BC 于点D 、H ; (2)根据平行线分线段成比例计算即可. 【小问1详解】如图所示,点D 、H 即为所求【小问2详解】在(1)的条件下,1522CH BH BC ===, 90DHC ∠=︒ ∵90ACB ∠=︒,8AB =∴DH ∥AC ,AC ===∴DH BHAC BC=12=,解得DH=∴11522BCDS DH BC=⋅⋅==.【点睛】本题考查尺规作图中的作垂直平分线、平行线分段成比例、垂直平分线的性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21. 为了解青少年健康状况,某班对50名学生的体育达标情况进行了测试,满分为50分.根据测试成绩,绘制出不完整的频数分布表和不完整的频数分布直方图如下:组别成绩x(分)频数(人数)第一组515x≤< 1 第二组1525≤<x 5 第三组2535x≤<12第四组3545x≤<m 第五组4555x≤<14请结合图表完成下列各题:(1)求表中m值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于35分为达标,则本次测试的达标率是多少?(4)第三组12名学生中有A、B、C、D四名女生,现将这12名学生平均分成两组进的行竞赛练习,每组两名女生,请用画树状图法或列表法求B、C两名女生分在同一组的概率.【答案】(1)18;(2)见解析;(3)64%;(4)1 3【解析】【分析】(1)用总人数减去第一、二、三、五组的人数,即可求出m的值;(2)根据(1)得出的m的值,补全频数分布直方图;(3)用测试成绩不低于35分的频数除以总数,即可得到本次测试的达标率;(4)画出树状图,再根据概率公式列式计算即可.【小问1详解】解:表中m的值是:m=50﹣1﹣5﹣12﹣14=18;【小问2详解】解:频数分布直方图补充完整如下:【小问3详解】解:由题意得:181464% 50+=,答:本次测试的达标率是64%;【小问4详解】解:根据题意画树状图如下:共有12种等可能情况,B、C两名女生分在同一组的情况有4种,则他们同一组的概率为41 123=.【点睛】本题考查了频数分布直方图和概率,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,概率=所求情况数与总情况数之比.22. 某学校建立了劳动基地,计划在基地上种植A、B两种苗木共6000株,其中A种苗木的数量比B种苗木的数量的一半多600株.(1)请问A、B两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种苗木30株,应分别安排多少人种植A种苗木和B种苗木,才能确保同时完成任务?【答案】(1)A苗木的数量是2400棵,B苗木的数量是3600棵;(2)安排100人种植A苗木,250人种植B苗木,才能确保同时完成任务.【解析】【分析】(1)根据在基地上种植A,B两种苗木共6000株,A种苗木的数量比B种苗木的数量的一半多600株,可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以列出相应的分式方程,从而可以解答本题,最后要检验.【小问1详解】解:设A苗木的数量是x棵,则B苗木的数量是y棵,根据题意可得:600016002x yx y+=⎧⎪⎨=+⎪⎩,解得:24003600 xy=⎧⎨=⎩,答:A苗木的数量是2400棵,B苗木的数量是3600棵;【小问2详解】解:设安排a人种植A苗木,则安排(350-a)人种植B苗木,根据题意可得:24003600 5030(350)a a=-,解得,a =100,经检验,a =100是原方程的解, ∴350-a =250,答:安排100人种植A 苗木,250人种植B 苗木,才能确保同时完成任务.【点睛】本题考查二元一次方程组的应用以及分式方程的应用,解题的关键是明确题意,列出相应的二元一次方程组. 23. 阅读下列材料定义运算:min ,a b ,当a b ≥时,min ,a b b =;当a b <时,min ,a b a =.例如:min 1,31-=-;min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②4-=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 【答案】(1)①1;②4-(2)12y x=-,223y x =-- 【解析】【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,2kx b x -+<,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式.【小问1详解】 解:根据题意,∵min ,a b ,当a b ≥时,min ,a b b =;当a b <时,min ,a b a =, ∴①()0min 3,21-=;∵4>-,∴②44-=-; 故答案为:①1;②4-; 【小问2详解】解:由函数图像可知当20x -<<时,2k x b x-+<, ∴min,22kx b x b x-+=-+, 又∵()()2min,213kx b x x x x-+=+--, ∴()()2213x b x x x -+=+--, ∴3b =-,∴一次函数223y x =--, 当x =-2时,21y =, ∴A (-2,1), 将A (-2,1)代入1ky x=得212k =-⨯=-, ∴反比例函数12y x=-. 【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.24. 如图,已知AB 为O 的直径,点C 为O 外一点,AC BC =,连接OC ,DF 是AC 的垂直平分线,交OC 于点F ,垂足为点E ,连接AD 、CD ,且DCA OCA ∠=∠.(1)求证:AD 是O 的切线;(2)若6CD =,4OF =,求cos DAC ∠的值.【答案】(1)见解析(2【解析】【分析】(1)由等腰三角形的性质可得,CO AB ⊥由线段垂直平分线的性质可得,DAC DCA ∠=∠由DCA OCA ∠=∠可得,DAC OCA ∠=∠证明AD //OC ,从而可得结论; (2)连接AF ,由线段垂直平分线的性质可得6,AF AD CD CF ====再由勾股定理求出相关线段长即可.【小问1详解】∵O 为圆心,∴OA =OB ,∵AC =BC ,∴,CO AB ⊥即∠90,COA COB ︒=∠=∵DF 是AC 的垂直平分线,∴,AD CD =∴∠,DAC DCA =∠∵∠,DCA OCA =∠∴∠,DAC OCA =∠∴,AD OC ∥∴∠90DAO COB ︒=∠=,即,AD AB ⊥又AB 是圆O 的直径,∴AD 是O 的切线;【小问2详解】连接AF ,如图,由(1)知,,,AD CD AE CE ==∵∠,,DCA OCA DF AC =∠⊥∴,.CD CF AF AD ==∴6,AF AD CD CF ====在Rt AOF ∆中,2226,4,AF OF AO OF AF ==+=∴AO ===在Rt AOC ∆中,6410,AO CO CF OF ==+=+=222AC AO OC =+∴AC ===∴12AE AC ==∴cos cos AE DAC DAE AD ∠=∠== 【点睛】本题主要考查了线段垂直平分线的性质,等腰三角形的性质,切线的判定,勾股定理以及求锐角余弦值,熟练运用相关知识解答本题的关键25. 【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长4m AD =,宽1m =AB 的长方形水池ABCD 进行加长改造(如图①,改造后的水池ABNM 仍为长方形,以下简称水池1),同时,再建造一个周长为12m 的矩形水池EFGH (如图②,以下简称水池2).【建立模型】如果设水池ABCD 的边AD 加长长度DM 为()()m 0x x >,加长后水池1的总面积为()21m y ,则1y 关于x 的函数解析式为:()140y x x =+>;设水池2的边EF 的长为()()m 06x x <<,面积为()22m y ,则2y 关于x 的函数解析式为:()22606y x x x =-+<<,上述两个函数在同一平面直角坐标系中的图像如图③.【问题解决】(1)若水池2的面积随EF 长度的增加而减小,则EF 长度的取值范围是_________(可省略单位),水池2面积的最大值是_________2m ;(2)在图③字母标注的点中,表示两个水池面积相等的点是_________,此时的()m x 值是_________;(3)当水池1的面积大于水池2的面积时,()m x 的取值范围是_________;(4)在14x <<范围内,求两个水池面积差的最大值和此时x 的值;(5)假设水池ABCD 的边AD 的长度为()m b ,其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积()23m y 关于()()m 0x x >的函数解析式为:()30y x b x =+>.若水池3与水池2的面积相等时,()m x 有唯一值,求b 的值.【答案】(1)36x <<;9(2)C ,E ;1,4;(3)01x <<或46x <<(4)94,52(5)254【解析】【分析】(1)将函数解析式化为顶点式即可解决问题;(2)交点即为面积相等的点,联立方程组,求出交点坐标即可;(3)观察函数图象,结合点C ,点E 的坐标可得结论;(4)求出面积差的函数关系式,根据二次函数的性质求解即可;(5)根据面积相等列出一元二次方程,依据=0∆,求出b 的值即可.【小问1详解】∵()222639y x x x =-+=--+∴抛物线的顶点坐标为(3,9),对称轴为x =3,∵水池2的面积随EF 长度的增加而减小,∴EF 长度的取值范围是36x <<;水池2面积的最大值是92m ;故答案为:36x <<;9;【小问2详解】由图象得,两函数交于点C ,E ,所以,表示两个水池面积相等的点是C ,E ;联立方程组246y x y x x =+⎧⎨=-+⎩解得,121214,58x x y y ==⎧⎧⎨⎨==⎩⎩ ∴x 的值为1或4,故答案为:C ,E ;1或4【小问3详解】由(3)知,C (1,5),E (4,8),又直线在抛物线上方时,01x <<或46x <<,所以,水池1的面积大于水池2的面积时,()m x 的取值范围是01x <<或46x <<, 故答案为01x <<或46x <<;【小问4详解】在14x <<范围内,两个水池面积差22259(6)(4)54(24M x x x x x x =-+-+=-+-=--+, ∵10,-<∴函数有最大值,∵06x <<∴当52x =时,函数有最大值,为94, 即,当52x =时,面积最大值为94 【小问5详解】∵水池3与水池2的面积相等,∴26x b x x +=-+,整理得,250x x b -+=∵()m x 有唯一值,∴2(5)40b ∆=--= 解得,254b = 【点睛】本题主要考查了二次函数的图象与性质,熟练掌握二次函数图象与性质是解答本题的关键.26. 同学们还记得吗?图①、图②是人教版八年级下册教材“实验与探究”中我们研究过的两个图形.受这两个图形的启发,数学兴趣小组提出了以下三个问题,请你回答:(1)【问题一】如图①,正方形ABCD 的对角线相交于点O ,点O 又是正方形111A B C O 的一个顶点,1OA 交AB 于点E ,1OC 交BC 于点F ,则AE 与BF 的数量关系为_________;(2)【问题二】受图①启发,兴趣小组画出了图③:直线m 、n 经过正方形ABCD 的对称中心O ,直线m 分别与AD 、BC 交于点E 、F ,直线n 分别与AB 、CD 交于点G 、H ,且m n ⊥,若正方形ABCD 边长为8,求四边形OEAG 的面积;(3)【问题三】受图②启发,兴趣小组画出了图④:正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,顶点E 在BC 的延长线上,且6BC =,2CE =.在直线BE 上是否存在点P ,使APF 为直角三角形?若存在,求出BP 的长度;若不存在,说明理由.【答案】(1)AE BF =(2)16(3)6BP =或 2.BP = 【解析】【分析】(1)由正方形的性质可得,BAO OBC AO BO ∠=∠=,AOE BOF ∠=∠,根据ASA 可证AOE BOF ∆≅∆,由全等三角形的性质可得结论;(2) 过点O 作,MN AB ∥交AD 于点M ,交BC 于点N ,作.TR AD ∥交AB 于点T ,交CD 于点R ,证明△OME OTG ≅∆,进而证明16ATOM AEOG S S ==正方形四边形;(3),BP x =分别求出222236,1668AP x FP x x =+=-+,280,AF =由勾股定理可得方程,求出x 的值即可.【小问1详解】∵四边形ABCD 是正方形,∴∠90BAD ABC ︒=∠=∵,AC BD 是对角线, ∴∠11,,22BAO BAD OBF ABC AC BD =∠∠=∠=,∴∠11,,9022BAO OBC AO BO AC BD AOB ︒=∠===∠=, ∵四边形111A B C O 正方形,∴∠1190AOC ︒=, ∴∠1190AOB BOC ︒+∠= 又∠1190AOA AOB ︒+∠= ∴AOE BOF ∠=∠,∴AOE BOF ∆≅∆∴AE BF =故答案为: AE BF =【小问2详解】过点O 作,MN AB ∥交AD 于点M ,交BC 于点N ,作.TR AD ∥交AB 于点T ,交CD 于点R ,如图,∵点O 是正方形ABCD 的中心, ∴11=,22AT TO OM MA AB AD ==== 又∠A =90°∴四边形ATOM 是正方形, ∴21116,44ATOM ABCD S S AB ===正方形正方形 同(1)可证△.OME OTG ≅∆∴16ATOM AEOG S S ==正方形四边形【小问3详解】∵四边形,ABCD CEFG 均为正方形,∴6,2,AB BC CD DA CE EF FG GC ========∠是90,B E ADC EFG ︒=∠=∠=∠=∵CG 在CD 上,∴624,DG DC CG =-=-=又CE 在BC 的延长线上,∴628,BE BC CE =+=+=设,BP x =则8,PE x =-在Rt ABP ∆中,222236,AP AB BP x =+=+在Rt FPE ∆中,222222(8)21668FP PE EF x x x =+=-+=-+延长AD ,CE 交于点Q ,则四边形DQFG 是矩形,∴4,2,QF DG DQ GF ====∴628.AQ AD DQ =+=+=,在Rt AQF ∆中,222228480,AF AQ QF =+=+=若△APF 为直角三角形,则有,222,AP PF AF +=即2236166880.x x x ++-+=整理得,28120,x x -+=解得,126, 2.x x ==∴6BP =或 2.BP =【点睛】本题主要考查了正方形的性质,全等三角形的判定与性质,矩形的判定,勾股定理等知识,正确作出辅助线是解答本题的关键。
2024年内蒙古自治区赤峰市中考数学试题(含解析)
2024年赤峰市初中毕业、升学统一考试试卷数学温馨提示:1.本试卷卷面分值150分,共8页,考试时间120分钟.2.答题前,考生务必将姓名、座位号、考生号填写在答题卡的相应位置上,并仔细阅读答题卡上的“注意事项”.3.答题时,请将答案填涂在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为()A.95.210⨯ B.110.5210⨯ C.95210⨯ D.105.210⨯3.将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为()A.100︒B.105︒C.115︒D.120︒4.下列计算正确的是()A.235a a a+= B.222()a b a b+=+ C.632a a a÷= D.()236a a=5.在数据收集、整理、描述的过程中,下列说法错误..的是()A.为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50B.了解某校一个班级学生的身高情况,适合全面调查C.了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性D.甲、乙二人10次测试的平均分都是96分,且方差2 2.5S=甲,2 2.3S=乙,则发挥稳定的是甲6.解不等式组()322211x x x x -<⎧⎪⎨+≥-⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是()A.B.C.D.7.如图,是正n 边形纸片的一部分,其中l m ,是正n 边形两条边的一部分,若l m ,所在的直线相交形成的锐角为60︒,则n 的值是()A.5B.6C.8D.108.某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是()视力 4.7以下 4.7 4.8 4.9 4.9以上人数3941334047A.120B.200C.6960D.96009.等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A.17或13B.13或21C.17D.1310.如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是()A.61︒B.63︒C.65︒D.67︒11.用1块A 型钢板可制成3块C 型钢板和4块D 型钢板;用1块B 型钢板可制成5块C 型钢板和2块D 型钢板.现在需要58块C 型钢板、40块D 型钢板,问恰好用A 型钢板、B 型钢板各多少块?如果设用A 型钢板x 块,用B 型钢板y 块,则可列方程组为()A.32404558x y x y +=⎧⎨+=⎩ B.35404258x y x y +=⎧⎨+=⎩ C.35584240x y x y +=⎧⎨+=⎩ D.34585240x y x y +=⎧⎨+=⎩12.如图,ABC 中,1AB BC ==,72C ∠=︒.将ABC 绕点A 顺时针旋转得到AB C ''△,点B'与点B 是对应点,点C '与点C 是对应点.若点C '恰好落在BC 边上,下列结论:①点B 在旋转过程中经过的路径长是15π;②B B A C '∥;③BD C D '=;④AB B B AC BD'=.其中正确的结论是()A.①②③④B.①②③C.①③④D.②④13.如图,数轴上点A ,M ,B 分别表示数a a bb +,,,若AM BM >,则下列运算结果一定是正数的是()A.a b +B.a b -C.abD.a b-14.如图,正方形ABCD 的顶点A ,C 在抛物线24y x =-+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是()A.1m n +=B.1m n -=C.1mn = D.1mn=二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15.请写出一个比小的整数_____________16.因式分解:233am a -=______.17.综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为________米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos650.423︒≈,tan 65 2.145︒≈).18.编号为A ,B ,C ,D ,E 的五台收割机,若同时启动其中两台收割机,收割面积相同的田地所需时间如下表:收割机编号A ,B B ,C C ,D D ,E A ,E 所需时间(小时)2319202218则收割最快的一台收割机编号是________.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(1()0π12sin 602+++︒+-;(2)已知230a a --=,求代数式2(2)(1)(3)a a a -+-+的值.20.如图,在ABC 中,D 是AB 中点.(1)求作:AC 的垂直平分线l (要求:尺规作图,不写作法,保留作图痕迹);(2)若l 交AC 于点E ,连接DE 并延长至点F ,使2EF DE =,连接BE CF ,.补全图形,并证明四边形BCFE 是平行四边形.21.某校田径队为了调动队员体育训练的积极性,计划根据成绩情况对队员进行奖励.为确定一个适当的成绩目标,进行了体育成绩测试,统计了每个队员的成绩,数据如下:收集数据777876728475918578798278767991917674758575918077757587857677整理、描述数据成绩/分72747576777879808284858791人数/人11a433b111314分析数据样本数据的平均数、众数、中位数如下表:平均数众数中位数80c78解决问题(1)表格中的=a ______;b =______;c =______;(2)分析平均数、众数、中位数这三个数据,如果想让一半左右的队员都能达到成绩目标,你认为成绩目标应定为______分,如果想确定一个较高的成绩目标,这个成绩目标应定为______分;(3)学校要从91分的A ,B ,C ,D 四名队员中,随机抽取两名队员去市里参加系统培训.请利用画树状图法或列表法,求A ,B 两名队员恰好同时被选中的概率.22.一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.(1)求甲、乙两队平均每天修复公路分别是多少千米;(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?23.在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N -,()30,2N -中,是点M 等和点的有_____;(2)若点()3,2M -的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1ky x=和直线22y x =-,满足12y y <的x 取值范围是4x >或20x -<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =-上,求点P 的坐标.24.如图,ABC 中,90ACB ∠=︒,AC BC =,O 经过B ,C 两点,与斜边AB 交于点E ,连接CO 并延长交AB 于点M ,交O 于点D ,过点E 作EF CD ∥,交AC 于点F .(1)求证:EF 是O 的切线;(2)若42BM =,1tan 2BCD ∠=,求OM 的长.25.如图,是某公园的一种水上娱乐项目.数学兴趣小组对该项目中的数学问题进行了深入研究.下面是该小组绘制的水滑道截面图,如图1,人从点A 处沿水滑道下滑至点B 处腾空飞出后落入水池.以地面所在的水平线为x 轴,过腾空点B 与x 轴垂直的直线为y 轴,O 为坐标原点,建立平面直角坐标系.他们把水滑道和人腾空飞出后经过的路径都近似看作是抛物线的一部分.根据测量和调查得到的数据和信息,设计了以下三个问题,请你解决.(1)如图1,点B 与地面的距离为2米,水滑道最低点C 与地面的距离为78米,点C 到点B 的水平距离为3米,则水滑道ACB 所在抛物线的解析式为______;(2)如图1,腾空点B 与对面水池边缘的水平距离12OE =米,人腾空后的落点D 与水池边缘的安全距离DE 不少于3米.若某人腾空后的路径形成的抛物线BD 恰好与抛物线ACB 关于点B 成中心对称.①请直接写出此人腾空后的最大高度和抛物线BD 的解析式;②此人腾空飞出后的落点D 是否在安全范围内?请说明理由(水面与地面之间的高度差忽略不计);(3)为消除安全隐患,公园计划对水滑道进行加固.如图2,水滑道已经有两条加固钢架,一条是水滑道距地面4米的点M 处竖直支撑的钢架MN ,另一条是点M 与点B 之间连接支撑的钢架BM .现在需要在水滑道下方加固一条支撑钢架,为了美观,要求这条钢架与BM 平行,且与水滑道有唯一公共点,一端固定在钢架MN 上,另一端固定在地面上.请你计算出这条钢架的长度(结果保留根号).26.数学课上,老师给出以下条件,请同学们经过小组讨论,提出探究问题.如图1,在ABC 中,AB AC =,点D 是AC 上的一个动点,过点D 作DE BC ⊥于点E ,延长ED 交BA 延长线于点F .请你解决下面各组提出的问题:(1)求证:AD AF =;(2)探究DF DE 与ADDC的关系;某小组探究发现,当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =.请你继续探究:①当76AD DC =时,直接写出DFDE 的值;②当AD m DC n =时,猜想DFDE的值(用含m ,n 的式子表示),并证明;(3)拓展应用:在图1中,过点F 作FP AC ⊥,垂足为点P ,连接CF ,得到图2,当点D 运动到使ACF ACB ∠=∠时,若AD m DC n =,直接写出APAD的值(用含m ,n 的式子表示).参考答案一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.【答案】A【解析】A .是轴对称图形,故A 选项正确;B .不是轴对称图形,故B 选项错误;C .不是轴对称图形,故C 选项错误;D .不是轴对称图形,故D 选项错误.故选:A .2.【答案】D【解析】解:1052000000000 5.210=⨯,故选:D .3.【答案】B【解析】解:如图所示:由题意得:3230∠=∠=︒∴1180345105∠=︒-∠-︒=︒故选:B .4.【答案】D【解析】解:A 、2a 与3a 不是同类项,不能合并,故此选项不符合题意;B 、()222222a b a ab b a b +=++≠+,故此选项不符合题意;C 、6332a a a a ÷=≠,故此选项不符合题意;D 、()236a a =,故此选项符合题意.故选:D .5.【答案】D【解析】解:A 、为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50,说法正确,本选项不符合题意;B 、了解某校一个班级学生的身高情况,适合全面调查,说法正确,本选项不符合题意;C 、了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性,说法正确,本选项不符合题意;D 、甲、乙二人10次测试的平均分都是96分,且方差22.5S =甲,22.3S =乙,则发挥稳定的是乙,故原说法错误,符合题意;故选:D .6.【答案】C【解析】解:()322211x x x x -<⎧⎪⎨+≥-⎪⎩①②解不等式①得,2x <,解不等式②得,3x ≥-,所以,不等式组的解集为:32x -≤<,在数轴上表示为:故选:C .7.【答案】B【解析】解:如图,直线l m 、相交于点A ,则60A ∠=︒,∵正多边形的每个内角相等,∴正多边形的每个外角也相等,∴1806012602︒-︒∠=∠==︒,∴360660n ︒==︒,故选:B.8.【答案】D 【解析】解:334047160009600200++⨯=,∴视力不低于4.8的人数是9600,故选:D .9.【答案】C【解析】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .10.【答案】B【解析】解:∵半径OC AB ⊥,∴ AC BC=,∴42AOC BOC ∠=∠=︒,84AOB ∠=︒,∵ AC AC=,∴1212D AOC ∠=∠=︒,∴63OED AOB D ∠=∠-∠=︒,故选:B .11.【答案】C【解析】解:设用A 型钢板x 块,用B 型钢板y 块,由题意得:35584240x y x y +=⎧⎨+=⎩,故选:C .12.【答案】A【解析】解:∵AB BC =,72C ∠=︒,∴72BAC C ∠=∠=︒,180236ABC C ∠︒=︒-∠=,由旋转的性质得36AB C ABC ︒'∠=∠=,72B AC BAC ︒''∠=∠=,72AC B C ''∠︒=∠=,72AC B ADC ︒''∠=∠=,AC AC '=,∴72AC C C '∠=∠=︒,∴36CAC '∠=︒,∴36CAC BAC ''∠=∠=︒,∴723636B AB '∠=︒-︒=︒,由旋转的性质得AB AB '=,∴()118036722ABB AB B ''∠=∠=︒-︒=︒,①点B 在旋转过程中经过的路径长是36111805ππ⋅=;①说法正确;②∵36B AB ABC '∠=∠=︒,∴B B A C '∥;②说法正确;③∵18027236DC B '∠=︒-⨯︒=︒,∴36DC B ABC '∠=∠=︒,∴BD C D '=;③说法正确;④∵36BB D ABC '∠=∠=︒,72B BD BAC '∠=∠=︒,∴B BD BAC '∽△△,∴AB B B AC BD'=.④说法正确;综上,①②③④都是正确的,故选:A .13.【答案】A【解析】解:数轴上点A ,M ,B 分别表示数a a bb +,,,∴AM a b a b =+-=、()BM b a b a =-+=-,∵AM BM >,∴原点在A ,M 之间,由它们的位置可得a<0,0b >且a b <,∴0a b +>,0a b -<,00ab a b <-<,,故运算结果一定是正数的是a b +.故选:A .14.【答案】B【解析】解:如图,连接AC 、BD 交于点E ,过点A 作MN y ⊥轴于点M ,过点B 作BN MN ⊥于点N ,四边形ABCD 是正方形,AC ∴、BD 互相平分,AB AD =,90BAD ∠=︒,90BAN DAM ∴∠+∠=︒,90DAM ADM ∠+∠=︒,BAN ADM ∴∠=∠.90BNA AMD ∠=∠=︒ ,BA AD =,(AAS)ANB DMA ∴ ≌.AM NB ∴=,DM AN =.点A 、C 的横坐标分别为m 、n ,24(,)A m m ∴+-,2()4,C n n -+.(2m n E +∴,2282m n -+-,2(0,)4M m +-,设(0,)D b ,则22(,)8B m n m n b ++---,2()4,N m n m ++-,24BN n b ∴=-+-,AM m =,AN n =,24DM m b =-+.又AM NB =,DM AN =,24n m b +--∴=,24n m b =-+.24b n m ∴=--+.2244n m n m ∴=---+.∴()()m n m n m n +-=+.点A 、C 在y 轴的同侧,且点A 在点C 的右侧,0m n ∴+≠.1m n ∴-=.故选:B .二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15.【答案】1(或2)【解析】23=<<= ,满足条件的数为小于或等于2的整数均可.16.【答案】()()311a m m +-【解析】解:()()()223331311am a a m a m m -=-=+-,故答案为:()()311a m m +-.17.【答案】11.5【解析】解:如图,过点D 作DM AB ⊥,交AB 的延长线于点M ,∴四边形ACDM 是矩形,∴10DM AC ==米,∵45BDM ∠=︒,65ADM ∠=︒,90M ∠=︒,∴BDM 是等腰直角三角形,∴10BM DM ==米,在Rt ADM △中,tan 10tan 6510 2.14521.45AM DM ADM =⋅∠=⋅︒≈⨯≈(米),∴21.451011.4511.5AB AM BM =-=-=≈(米),∴古树AB 的高度约为11.5米.故答案为:11.5.18.【答案】C【解析】解:同时启动A ,B 两台收割机,所需的时间为23小时,同时启动B ,C 两台收割机,所需的时间为19小时,得到C 比A 快;同时启动B ,C 两台收割机,所需的时间为19小时,同时启动C ,D 两台收割机,所需的时间为20小时,得到B 比D 快;同时启动A 、B 两台收割机,所需的时间为23小时,同时启动A ,E 两台收割机,所需的时间为18小时,得到E 比B 快;同时启动C ,D 两台收割机,所需的时间为20小时,同时启动D ,E 两台收割机,所需的时间为22小时,得到C 比E 快.综上,收割最快的一台收割机编号是C .故答案为:C .三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.【答案】(1)6;(2)7.【解析】解:(1)原式331222=++⨯+42=+-,6=;(2)∵230a a --=,∴23a a -=,∴()()()2213a a a -+-+224423a a a a =-+++-,2221a a =-+,()221a a =-+,231=⨯+,7=.20.【答案】(1)见解析(2)见解析【解析】【小问1详解】解:直线l 如图所示,;【小问2详解】证明:补全图形,如图,由(1)作图知,E 为AC 的中点,∵D ,E 分别为AB ,AC 的中点,∴DE BC ∥,12DE BC =,∵2EF DE =,即:12DE EF =,∴EF BC =,∵EF BC ∥,∴四边形BCFE 是平行四边形.21.【答案】(1)5;2;75(2)78;80(3)A ,B 两名队员恰好同时被选中的概率为16.【解析】【小问1详解】解:根据收集的数据知5a =;2b =;出现最多的是75分,有5人,众数为75分,则75c =;故答案为:5;2;75;【小问2详解】解:∵由统计图可知中位数为78分,∴如果想让一半左右的队员都能达到成绩目标,成绩目标应定为78分,如果想确定一个较高的目标,成绩目标应定为80分,因为在样本的众数,中位数和平均数中,平均数最大,可以估计,如果成绩目标定为80分,努力一下都能达到成绩目标.故答案为:78;80;【小问3详解】解:画树状图表示所有等可能结果如图所示,共有12种等可能结果,A ,B 两名队员恰好同时被选中的情况有2种,∴A ,B 两名队员恰好同时被选中的概率为21126==,答:A ,B 两名队员恰好同时被选中的概率为16.22.【答案】(1)甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;(2)15天的工期,两队最多能修复公路105千米.【解析】【小问1详解】解:设甲队平均每天修复公路x 千米,则乙队平均每天修复公路()3x +千米,由题意得60903x x =+,解得6x =,经检验,6x =是原方程的解,且符合题意,39x +=,答:甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;【小问2详解】解:设甲队的工作时间为m 天,则乙队的工作时间为()15m -天,15天的工期,两队能修复公路w 千米,由题意得()69153135w m m m =+-=-+,()215m m ≥-,解得10m ≥,∵30-<,∴w 随m 的增加而减少,∴当10m =时,w 有最大值,最大值为310135105w =-⨯+=,答:15天的工期,两队最多能修复公路105千米.23.【答案】(1)()14,2N 和()30,2N -;(2)5b =;(3)()4,2--或()2,4.【解析】【小问1详解】解:由()1,3M ,()14,2N 得,12125x x y y +=+=,∴点()14,2N 是点M 的等和点;由()1,3M ,()23,1N -得,124x x +=,122y y +=,∵1212x x y y +≠+,∴()23,1N -不是点M 的等和点;由()1,3M ,()30,2N -得,12121x x y y +=+=,∴()30,2N -是点M 的等和点;故答案为:()14,2N 和()30,2N -;【小问2详解】解:设点N 的横坐标为a ,∵点N 是点()3,2M -的等和点,∴点N 的纵坐标为()325a a +--=+,∴点N 的坐标为(),5a a +,∵点N 在直线y x b =+上,∴5a a b +=+,∴5b =;【小问3详解】解:由题意可得,0k >,双曲线分布在一、三象限内,设直线与双曲线的交点分别为点A B 、,如图,由12y y <时x 的取值范围是4x >或20x -<<,可得点A 的横坐标为4,点B 的横坐标为2-,把4x =代入2y x =-得,422y =-=,∴()4,2A ,把()4,2A 代入1k y x =得,24k =,∴8k =,∴反比例函数解析式为18y x =,设8,P m m ⎛⎫ ⎪⎝⎭,点Q 的横坐标为n ,∵点Q 是点P 的等和点,∴点Q 的纵坐标为8m n m +-,∴8,Q n m n m ⎛⎫+- ⎪⎝⎭,∵点Q 在直线22y x =-上,∴82m n n m +-=-,整理得,820m m -+=,去分母得,2280m m +-=,解得14m =-,12m =,经检验,4,2m m =-=是原方程的解,∴点P 的坐标为()4,2--或()2,4.24.【答案】(1)见解析(2)5OM =【解析】【小问1详解】证明:连接OE ,延长EO ,交O 于点P ,连接,,PD BD 如图,∵,90,AB BC ACB =∠=︒∴ABC 是等腰直角三角形,∴45,ABC ∠=︒∵CD 是O 的直径,∴90,CBD ∠=︒∴904545,DBE CBD ABC ∠=∠-∠=︒-︒=︒∴45,EPD DBE ∠=∠=︒∴224590,DOE DPE ∠=∠=⨯︒=︒∵,EF CD ∥∴90,FEO DOE ∠=∠=︒即,OE EF ⊥∵OE 是O 的半径,∴EF 是O 的切线;【小问2详解】解:∵90DBC ∠=︒,1tan 2BCD ∠=,∴12DB BC =,∵,BC AC =∴12DB AC =,∵,DMB CMA ∠=∠A DBM ∠=∠,∴DBM ACM ∽ ,∴12BM DM DB AM CM AC ===,∵BM =,∴2AM BM ==∴AB AM BM =+=+=,在等腰直角三角形ABC 中,222AC BC AB +=,∴(2222AC AC AB +==,解得,12AC =,∴12AC BC ==,∴16,2DB BC ==在t R BDC 中,CD ==∴CO DO ==又12DM CM =,∴2,CM DM =∴2DM DM CD +==∴DM =∴OM OD DM =-==25.【答案】(1)()217388y x =++(2)①此人腾空后的最大高度是258米,解析式为()2125388y x =--+;②此人腾空飞出后的落点D 在安全范围内,理由见解析(3)这条钢架的长度为米【解析】【小问1详解】解:根据题意得到水滑道ACB 所在抛物线的顶点坐标为73,8C ⎛⎫- ⎪⎝⎭,且过点()0,2B ,设水滑道ACB 所在抛物线的解析式为()2738y a x =++,将()0,2B 代入,得:()272038a =++,即998a =,18a ∴=,∴水滑道ACB 所在抛物线的解析式为()217388y x =++;【小问2详解】解:① 人腾空后的路径形成的抛物线BD 恰好与抛物线ACB 关于点B 成中心对称,则设人腾空后的路径形成的抛物线的解析式为()218y x b c =-++,∴人腾空后的路径形成的抛物线BD 的顶点坐标与抛物线ACB 的顶点坐标73,8C ⎛⎫- ⎪⎝⎭关于点()0,2B 成中心对称,()7250233,2288⨯--=⨯-=,∴人腾空后的路径形成的抛物线BD 的顶点坐标为253,8⎛⎫ ⎪⎝⎭,即253,8b c ==,∴此人腾空后的最大高度是258米,人腾空后的路径形成的抛物线BD 的解析式为:()2125388y x =--+;由①知人腾空后的路径形成的抛物线BD 的解析式为:()2125388y x =--+,令0y =,则()21253088x --+=,即()2325x -=∴8x =或2x =-(舍去,不符合题意),∴点()8,0D ,8OD ∴=,12OE =,43DE OE OD ∴=-=>,∴此人腾空飞出后的落点D 在安全范围内;【小问3详解】解:根据题意可得M 点的纵坐标为4,令()2173488y x =++=,即()2325x +=,2x ∴=(舍去,不符合题意)或8x =-,()8,4M ∴-,设BM 所在直线的解析式为y kx b '=+,将()()8,4,0,2M B -代入得:248b k b =⎧⎨=-+''⎩,解得:214b k =-'⎧⎪⎨=⎪⎩,∴BM 所在直线的解析式为124y x =-+,如图,设这条钢架为GH ,与MN 交于点G ,与地面交于H, 这条钢架与BM 平行,∴设该钢架GH 所在直线的解析式为14y x n =-+,联立()21417388y x n y x ⎧=-+⎪⎪⎨⎪=++⎪⎩,即()21173488x n x -+=++,整理得:281680x x n ++-=,该钢架GH 与水滑道有唯一公共点,()2Δ8411680n ∴=-⨯⨯-=,∴0n =即该钢架所在直线的解析式为14y x =-,∴点H 与点O 重合, ()1824GN =-⨯-=,8NO =,90GNO ∠=︒,GH ∴==∴这条钢架的长度为米.26.【答案】(1)见解析(2)①73DF DE =②2DF DE m n=,证明见解析(3)2AP n AD m =【解析】【小问1详解】证明:∵AB AC =,∴B C ∠=∠,∵DE BC ⊥,∴90BEF CED ∠=∠=︒,∴90F B ∠=︒-∠,90CDE C ∠=︒-∠,且CDE ADF ∠=∠,∴F ADF ∠=∠,∴AD AF =;【小问2详解】解:①当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =,∴总结规律得:DF DE 是AD DC 的2倍,∴当76AD DC =时,14763DF DE ==;②当AD m DC n =时,猜想2DF DE m n =,证明:作AG EF ⊥于点G ,∵DE BC ⊥,∴AG CE ∥,∴AGD CED ∽△△,∵AD m DC n =,∴GD AD m DE DC n ==,由(1)知AD AF =,又AG EF ⊥,∴DG FG =,即2DF DG =,∴22GD m DE nDF DE ==;【小问3详解】2AP n AD m=,理由如下:过点D 作DG CF ⊥,∵ACF ACB ∠=∠,DE CE ⊥,∴DG DE =,由(2)知,当AD m DC n =时,2DF DE m n=,∴2DE n DF m =,∴2DG n DF m=,∵PF AC ⊥,∴90ACF CFP ∠+∠=︒,∵FE BC ⊥,∴90B AFD ∠+∠=︒,∵AB AC =,∴ACB B =∠∠,∴B ACF ∠=∠,∴AFD CFP ∠=∠,∴AFD PFD CFP PFD ∠-∠=∠-∠,∴AFP DFG ∠=∠,∴sin sin AFP DFG ∠=∠,∴2AP DG n AF DF m==,由(1)知AD AF =,∴2AP AP n AD AF m ==.。
2023年内蒙古自治区赤峰市中考语文真题(含答案)
2023年内蒙古自治区赤峰市中考语文真题学校:___________姓名:___________班级:___________考号:___________一、基础知识综合A.“洁白”“甘甜”“怪异”“恬静”“壮阔”都是形容词。
B.“艺术殿堂”“包罗万象”“万鸟齐飞”都是主谓短语。
C.文中画波浪线的句子,运用了比喻的修辞手法,D.文中有三处破折号,它们的主要作用是解释说明。
3.朗读时,为适应传情达意的需要,会对语句中的某些词或短语以重音的形式加以强调。
如果强调赤峰的历史悠久,朗读下面语句时重音应该放在哪个词语上?()走近她,你就能感知到中国北方近万年波澜壮阔的民族历史。
A.感知B.中国北方C.近万年D.波澜壮阔4.参照前后两个文段,联系本段内容。
把画横线处的句子补充完整,使上下文语意连贯。
二、情景默写5.根据上下文补全内容。
春到紫蒙胡,湖边“青树翠蔓,① ____ ”(唐·柳宗元《小石谭记》),“有桃花红,① ____ ,① ____ ”(宋·秦观《行香子》),你会真切感受到“① ____ ,浅草才能没马蹄”(① ____ )·白居易《钱塘湖春行》)的绝妙。
夏天游览大青山。
你不由得吟咏“① ____ ,阴阳割昏晓”(唐·杜甫《望岳》),见“树木丛生,① ____ ”(东汉末年·① ____ 《观沧海》),不禁发出“实是欲界之仙都”(南朝·陶弘景《答谢中书书》)的感叹。
初冬走进玉龙沙湖,让你联想起“① ____ ,长河落日圆”(唐·王维《使至塞上》),见此情景,作为赤峰人的你,“乐亦在其中矣”(《① ____ 》)。
三、选择题6.下列对名著内容的理解,不正确...的一项是()A.《昆虫记》中,杨柳天牛像个吝啬鬼,身穿一件似乎“缺了布料”的短身燕尾礼服;小甲虫“为它的后代做出无私奉献,为儿女操碎了心”。
B.《海底两万里》是凡尔纳的代表作。
内蒙古赤峰市中考数学试卷含答案解析(word版)
内蒙古赤峰市中考数学试卷一、选择题:每小题3分,共30分1.的倒数是()A.﹣B.C. D.﹣2.等腰三角形有一个角是90°,则另两个角分别是()A.30°,60°B.45°,45°C.45°,90°D.20°,70°3.平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称4.中国的领水面积约为370000km2,其中南海的领水面积约占我国领水面积的,用科学记数法表示中国南海的领水面积是()A.37×105km2B.37×104km2C.0.85×105km2D.1.85×105km25.从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A.B.C.D.6.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交7.一个长方体的三视图如图所示,则这个长方体的体积为()A.30 B.15 C.45 D.208.如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.πC.πD.2π9.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A. B.C.D.10.8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A.东风 B.百惠 C.两家一样 D.不能确定二、填空题:每小题3分,共18分11.分解因式:4x2﹣4xy+y2=.12.数据499,500,501,500的中位数是.13.如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是.14.下列图表是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是(填序号)15.如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于cm.16.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.三、解答题:共102分17.计算:(﹣)﹣1+3tan30°﹣+(﹣1).18.化简:÷并任选一个你认为合理的正整数代入求值.19.在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).(1)以(0,0)为圆心,3为半径画圆;(2)以(0,﹣1)为圆心,1为半径向下画半圆;(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.(向上、向下指在经过圆心的水平线的上方和下方)20.下表是博文学校初三•一班慧慧、聪聪两名学生入学以来10次数学检测成绩(单位:分).慧慧116 124 130 126 121 127 126 122 125 123聪聪122 124 125 128 119 120 121 128 114 119回答下列问题:(1)分别求出慧慧和聪聪成绩的平均数;(2)分别计算慧慧和聪聪两组数据的方差;(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;(4)由于初三•二班、初三•三班和初三•四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三•二班和初三•三班的概率.21.为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在A 岛测得B岛在北偏西30°,C岛在北偏东15°,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离(≈2.45,结果保留到整数)22.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.23.如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求圆的半径及圆心P的坐标;(2)M为劣弧的中点,求证:AM是∠OAB的平分线;(3)连接BM并延长交y轴于点N,求N,M点的坐标.24.如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x﹣2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.25.如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P 点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)26.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.内蒙古赤峰市中考数学试卷参考答案与试题解析一、选择题:每小题3分,共30分1.的倒数是()A.﹣B.C. D.﹣【考点】倒数.【分析】根据倒数的定义,即可解答.【解答】解:的倒数是.故选:C.2.等腰三角形有一个角是90°,则另两个角分别是()A.30°,60°B.45°,45°C.45°,90°D.20°,70°【考点】等腰三角形的性质.【分析】由于等腰三角形的两底角相等,所以90°的角只能是顶角,再利用三角形的内角和定理可求得另两底角.【解答】解:∵等腰三角形的两底角相等,∴两底角的和为180°﹣90°=90°,∴两个底角分别为45°,45°,故选B.3.平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.【解答】解:平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于x轴对称.故选:B.4.中国的领水面积约为370000km2,其中南海的领水面积约占我国领水面积的,用科学记数法表示中国南海的领水面积是()A.37×105km2B.37×104km2C.0.85×105km2D.1.85×105km2【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:370000×=185000=1.85×105,故选D.5.从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】先画树状图展示所有9种等可能的结果数,再找出组成的数是偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中组成的数是偶数的结果数为4,所以组成的数是偶数的概率==.故选A.6.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交【考点】平行线的判定.【分析】根据同旁内角互补,两直线平行即可求解.【解答】解:∵∠ABC=150°,∠BCD=30°,∴∠ABC+∠BCD=180°,∴AB∥DC.故选:C.7.一个长方体的三视图如图所示,则这个长方体的体积为()A.30 B.15 C.45 D.20【考点】由三视图判断几何体.【分析】易得该长方体长为3,宽为2,高为5,根据长方体的体积=长×宽×高列式计算即可求解.【解答】解:观察图形可知,该几何体为长3,宽2,高5的长方体,长方体的体积为3×2×5=30.故选:A.8.如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.πC.πD.2π【考点】圆的认识.【分析】将下面阴影部分进行对称平移,根据半圆的面积公式列式计算即可求解.【解答】解:π×12×=π×1×=π.答:图中阴影部分的面积为π.故选:B.9.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A. B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】将一次函数解析式展开,可得出该函数图象与y轴交于负半轴,分析四个选项可知,只有C选项符合,由此即可得出结论.【解答】解:一次函数y=k(x﹣k)=kx﹣k2,∵k≠0,∴﹣k2<0,∴一次函数与y轴的交点在y轴负半轴.A、一次函数图象与y轴交点在y轴正半轴,A不正确;B、一次函数图象与y轴交点在y轴正半轴,B不正确;C、一次函数图象与y轴交点在y轴负半轴,C可以;D、一次函数图象与y轴交点在y轴正半轴,D不正确.故选C.10.8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A.东风 B.百惠 C.两家一样 D.不能确定【考点】一元一次方程的应用.【分析】分析:本题可以直接求出郝爱在两家书店购买学习用品或工具书的钱数,比较一下便可得到答案.【解答】解:依题意,若在东风书店购买,需花费:60+×50%=180(元),若在百惠书店购买,需花费:50+×60%=200(元).∵180<200∴郝爱同学在东风书店购买学习用品或工具书便宜.故选:A二、填空题:每小题3分,共18分11.分解因式:4x2﹣4xy+y2=(2x﹣y)2.【考点】因式分解-运用公式法.【分析】符合完全平方公式的特点:两项平方项,另一项为两底数积的2倍,直接利用完全平方公式分解因式即可.【解答】解:4x2﹣4xy+y2,=(2x)2﹣2×2x•y+y2,=(2x﹣y)2.12.数据499,500,501,500的中位数是500.【考点】中位数.【分析】先将题中的数据按照从小到大的顺序排列,再根据中位数的概念解答即可.【解答】解:将该组数据按照从小到大的顺序排列为:499,500,500,501,可得改组数据的中位数为:=500,故答案为:500.13.如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是8cm.【考点】切线的性质.【分析】根据切线的性质以及垂径定理,在Rt△BOC中利用勾股定理求出BC,即可得出AB的长.【解答】解:∵AB是⊙O切线,∴OC⊥AB,∴AC=BC,在Rt△BOC中,∵∠BCO=90°,OB=5,OC=3,∴BC==4(cm),∴AB=2BC=8cm.故答案为:8cm.14.下列图表是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是①②③④(填序号)【考点】轴对称图形.【分析】结合图象根据轴对称图形的概念解答即可.【解答】解:根据轴对称图形的概念,可得出①②③④均为轴对称图形.故答案为:①②③④.15.如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于或cm.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【分析】如图,作DH∥MN,先证明△ADH≌△BAE推出MN⊥AE,在RT△AFM中求出AM即可,再根据对称性求出AM′,由此即可解决问题.【解答】解:如图,作DH∥MN,∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠B=90°,AB∥CD,∴四边形DHMN是平行四边形,∴DH=MN=AE,在RT△ADH和RT△BAE中,,∴△ADH≌△BAE,∴∠ADH=∠BAE,∴∠ADH+∠AHD=∠ADH+∠AMN=90°,∴∠BAE+∠AMN=90°,∴∠AFM=90°,在RT△ABE中,∵∠B=90°,AB=,∠BAE=30°,∴AE•cos30°=AB,∴AE=2,在RT△AFM中,∵∠AFM=90°,AF=1,∠FAM=30°,∴AM•cos30°=AF,∴AM=,根据对称性当M′N′=AE时,BM′=,AM′故答案为或.16.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.【考点】一元一次方程的应用.【分析】直接利用时针和分针第一次相遇,则时针比分针少转了一周,再利用分针转动一周60分钟,时针转动一周720分钟,进而得出等式求出答案.【解答】解:设分针旋转x周后,时针和分针第一次相遇,则时针旋转了(x﹣1)周,根据题意可得:60x=720(x﹣1),解得:x=.故答案为:.三、解答题:共102分17.计算:(﹣)﹣1+3tan30°﹣+(﹣1).【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(﹣)﹣1+3tan30°﹣+(﹣1)的值是多少即可.【解答】解:(﹣)﹣1+3tan30°﹣+(﹣1)=﹣3+3×﹣3+1=﹣3+﹣3+1=﹣2﹣218.化简:÷并任选一个你认为合理的正整数代入求值.【考点】分式的化简求值.【分析】根据分式的除法法则把原式进行化简,再选取合适的a的值代入进行计算即可.【解答】解:原式=÷=×=﹣,当a=1时,原式=﹣19.在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).(1)以(0,0)为圆心,3为半径画圆;(2)以(0,﹣1)为圆心,1为半径向下画半圆;(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.(向上、向下指在经过圆心的水平线的上方和下方)【考点】作图—复杂作图.【分析】(1)直接利用坐标系结合圆心的位置以及半径长画出圆即可;(2)直接利用坐标系结合圆心的位置以及半径长画出半圆即可;(3)直接利用坐标系结合圆心的位置以及半径长画出圆即可;(4)直接利用坐标系结合圆心的位置以及半径长画出半圆即可.【解答】解:(1)如图所示:⊙O,即为所求;(2)如图所示:半圆O1,即为所求;(3)如图所示:⊙O2,⊙O3,即为所求;(4)如图所示:半圆O2,半圆O3,即为所求.20.下表是博文学校初三•一班慧慧、聪聪两名学生入学以来10次数学检测成绩(单位:分).慧慧116 124 130 126 121 127 126 122 125 123聪聪122 124 125 128 119 120 121 128 114 119回答下列问题:(1)分别求出慧慧和聪聪成绩的平均数;(2)分别计算慧慧和聪聪两组数据的方差;(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;(4)由于初三•二班、初三•三班和初三•四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三•二班和初三•三班的概率.【考点】列表法与树状图法;算术平均数;方差.【分析】(1)把慧慧和聪聪的成绩都减去125,然后计算她们的平均成绩;(2)根据方差公式计算两组数据的方差;(3)根据平均数的大小和方差的意义进行判断;(4)画树状图展示所有6种等可能的结果数,再找出两名学生分别在初三•二班和初三•三班的结果数,然后根据概率公式计算.【解答】解:(1)慧慧的平均分数=125+(﹣9﹣1+5+1+6+2+1﹣3+0﹣2)=125(分),聪聪的平均分数=125+(﹣3﹣1+0+3﹣6﹣5+6+3﹣11﹣6)=123(分);(2)慧慧成绩的方差S2= [92+12+52+12+42+22+12+32+02+22]=14.2,聪聪成绩的方差S2= [12+12+22+52+42+32+82+52+92+42]=24.2,(3)根据(1)可知慧慧的平均成绩要好于聪聪,根据(2)可知慧慧的方差小于聪聪的方差,因为方差越小越稳定,所以慧慧的成绩比聪聪的稳定,因此选慧慧参加全国数学竞赛更合适一些.(4)画树状图为:共有6种等可能的结果数,其中两名学生分别在初三•二班和初三•三班的结果数为2,所以两名学生分别在初三•二班和初三•三班的概率==.21.为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在A 岛测得B岛在北偏西30°,C岛在北偏东15°,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离(≈2.45,结果保留到整数)【考点】解直角三角形的应用-方向角问题.【分析】过点B作BD⊥AC于点D,由等腰直角三角形的性质求出AD的长,再由直角三角形的性质即可得出结论.【解答】解:由题意知:∠BAC=45°,∠FBA=30°,∠EBC=45°,AB=100海里;过B点作BD⊥AC于点D,∵∠BAC=45°,∴△BAD为等腰直角三角形;∴BD=AD=50,∠ABD=45°;∴∠CBD=180°﹣30°﹣45°﹣45°=60°,∴∠C=30°;∴在Rt△BCD中BC=100≈141海里,CD=50,∴AC=AD+CD=50+50≈193海里.22.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.【考点】一元二次方程的应用.【分析】(1)设条纹的宽度为x米,根据等量关系:配色条纹所占面积=整个地毯面积的,列出方程求解即可;(2)根据总价=单价×数量,可分别求出地毯配色条纹和其余部分的钱数,再相加即可求解.【解答】解:(1)设条纹的宽度为x米.依题意得2x×5+2x×4﹣4x2=×5×4,解得:x1=(不符合,舍去),x2=.答:配色条纹宽度为米.(2)条纹造价:×5×4×200=850(元)其余部分造价:(1﹣)×4×5×100=1575(元)∴总造价为:850+1575=2425(元)答:地毯的总造价是2425元.23.如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求圆的半径及圆心P的坐标;(2)M为劣弧的中点,求证:AM是∠OAB的平分线;(3)连接BM并延长交y轴于点N,求N,M点的坐标.【考点】圆的综合题.【分析】(1)先利用勾股定理计算出AB=10,再利用圆周角定理的推理可判断AB为⊙P的直径,则得到⊙P的半径是5,然后利用线段的中点坐标公式得到P点坐标;(2)根据圆周角定理由=,∠OAM=∠MAB,于是可判断AM为∠OAB的平分线;(3)连接PM交OB于点Q,如图,先利用垂径定理的推论得到PM⊥OB,BQ=OQ=OB=4,再利用勾股定理计算出PQ=3,则MQ=2,于是可写出M点坐标,接着证明MQ为△BON 的中位线得到ON=2MQ=4,然后写出N点的坐标.【解答】解:(1)∵O(0,0),A(0,﹣6),B(8,0),∴OA=6,OB=8,∴AB==10,∵∠AOB=90°,∴AB为⊙P的直径,∴⊙P的半径是5∵点P为AB的中点,∴P(4,﹣3);(2)∵M点是劣弧OB的中点,∴=,∴∠OAM=∠MAB,∴AM为∠OAB的平分线;(3)连接PM交OB于点Q,如图,∵=,∴PM⊥OB,BQ=OQ=OB=4,在Rt△PBQ中,PQ===3,∴MQ=2,∴M点的坐标为(4,2);∵MQ∥ON,而OQ=BQ,∴MQ为△BON的中位线,∴ON=2MQ=4,∴N点的坐标为(0,4).24.如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x﹣2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据点A(3,2)在反比例函数y=,和一次函数y=k(x﹣2)上列出m和k 的一元一次方程,求出k和m的值即可;联立两函数解析式,求出交点坐标;(2)设C点的坐标为(0,y c),求出点M的坐标,再根据△ABC的面积为10,知×3×|y c﹣(﹣4)|+×1×|y c﹣(﹣4)|=10,求出y C的值即可.【解答】解:(1)∵点A(3,2)在反比例函数y=,和一次函数y=k(x﹣2)上;∴2=,2=k(3﹣2),解得m=6,k=2;∴反比例函数解析式为y=,和一次函数解析式为y=2x﹣4;∵点B是一次函数与反比例函数的另一个交点,∴=2x﹣4,解得x1=3,x2=﹣1;∴B点的坐标为(﹣1,6);(2)∵点M是一次函数y=2x﹣4与y轴的交点,∴点M的坐标为(0,﹣4),设C点的坐标为(0,y c),由题意知×3×|y c﹣(﹣4)|+×1×|y c﹣(﹣4)|=10,解得|y c+4|=5,当y c+4≥0时,y c+4=5,解得Yc=1,当y c+4≤0时,y c+4=﹣5,解得Yc=﹣9,∴点C的坐标为(0,1)或(0,﹣9).25.如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P 点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)【考点】相似形综合题.【分析】(1)根据正方形的性质和相似三角形的判定和性质证明即可;(2)根据全等三角形的判定和性质,利用勾股定理解答即可;(3)根据相似三角形的性质得出函数解析式即可.【解答】(1)证明:∵四边形ABCD为正方形;∴∠BAP+∠QAE=∠B=90°,∵QE⊥AP;∴∠QAE+∠EQA=∠AEQ=90°∴∠BAP=∠EQA,∠B=∠AEQ;∴△ABP∽△QEA(AA)(2)∵△ABP≌△QEA;∴AP=AQ(全等三角形的对应边相等);在RT△ABP与RT△QEA中根据勾股定理得AP2=32+t2,AQ2=(2t)2即32+t2=(2t)2解得t1=,t2=﹣(不符合题意,舍去)答:当t取时△ABP与△QEA全等.(3)由(1)知△ABP∽△QEA;∴=()2∴=()2整理得:y=.26.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.【考点】二次函数综合题.【分析】(1)利用抛物线和x轴的两个交点坐标,设出抛物线的解析式y=a(x﹣x1)(x﹣x2),代入即可得出抛物线的解析式,再设出直线AC的解析式,利用待定系数法即可得出答案;(2)先求得抛物线的顶点D的坐标,再设点P坐标(0,P y),根据A,B,D三点在⊙P 上,得PB=PD,列出关于P y的方程,求解即可得出P点的坐标;(3)假设抛物线上存在这样的点Q使直线AQ与⊙P相切,设Q点的坐标为(m,m2﹣4),根据平面内两点间的距离公式,即可得出关于m的方程,求出m的值,即可得出点Q的坐标.【解答】解:(1)∵A(﹣2,0),B(2,0);∴设二次函数的解析式为y=a(x﹣2)(x+2)…①,把C(3,5)代入①得a=1;∴二次函数的解析式为:y=x2﹣4;设一次函数的解析式为:y=kx+b(k≠0)…②把A(﹣2,0),C(3,5)代入②得,解得,∴一次函数的解析式为:y=x+2;(2)设P点的坐标为(0,P y),由(1)知D点的坐标为(0,﹣4);∵A,B,D三点在⊙P上;∴PB=PD;∴22+P y2=(﹣4﹣P y)2,解得:P y=﹣;∴P点的坐标为(0,﹣);(3)在抛物线上存在这样的点Q使直线AQ与⊙P相切.理由如下:设Q点的坐标为(m,m2﹣4);根据平面内两点间的距离公式得:AQ2=(m+2)2+(m2﹣4)2,PQ2=m2+(m2﹣4+)2;∵AP=,∴AP2=;∵直线AQ是⊙P的切线,∴AP⊥AQ;∴PQ2=AP2+AQ2,即:m2+(m2﹣4+)2=+[(m+2)2+(m2﹣4)2]解得:m1=,m2=﹣2(与A点重合,舍去)∴Q点的坐标为(,).8月10日21 / 21。
内蒙古自治区赤峰市中考数学试卷(含答案)
2022年中考往年真题练习: 内蒙古赤峰市中考数学试卷一.挑选题(共8小题)1.(2021赤峰) 5-的 倒数是 ( ) A .15B .15-C .5D .5-考点分析: 倒数。
解答: 解: ∵|﹣5|=5, 5的 倒数是 , ∴|﹣5|的 倒数是 .故选A . 2.(2021赤峰) 下列运算正确的 是 ( ) A .532x x x -=B .222()a b a b +=+C .336()mn mn =D .624p p p ÷=考点分析: 完全平方公式;合并同类项;幂的 乘方与积的 乘方;同底数幂的 除法。
解答: 解: A .x 5与x 3不是 同类项, 无法合并, 故本选项错误; B .根据完全平方公式得: (a+b) 2=a 2+2ab+b 2, 故本选项错误; C .(mn 3) 3=m 3n 9, 故本选项错误; D .p 6÷p 2=p 4, 故本选项正确. 故选D . 3.(2021赤峰) 我们虽然把地球称为“水球”, 但可利用淡水资源匮乏.我国淡水总量仅约为899000亿米3, 用科学记数法表示这个数为( ) A .0. 899×104亿米3 B .8. 99×105亿米3 C .8. 99×104亿米3 D .89. 9×104亿米3 考点分析: 科学记数法—表示较大的 数。
解答: 解: 899000亿米3=8. 99×105亿米3, 故选: B . 4.(2021赤峰) 一个空心的 圆柱如图所示, 那么它的 主视图是 ( )A .B .C .D .考点分析: 简单组合体的 三视图。
解答: 解: 根据主视图的 定义, 得到它的 主视图是 :故选A . 5.(2021赤峰) 已知两圆的 半径分别为3cm 、 4cm, 圆心距为8cm, 则两圆的 位置关系是 ( ) A .外离 B .相切 C .相交 D .内含 考点分析: 圆与圆的 位置关系。
【数学】内蒙古赤峰市中考真题(解析版)
内蒙古赤峰市中考真题一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共计36分)1. 等于( )|(3)5|--A .-8 B .-2 C .2 D .82.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.风景秀美的赤峰有“草原明珠”的美称,赤峰市全域总面积为90021平方公里.90021用科学记数法表示为( )A .B .C .D .59.002110⨯49.002110⨯390.02110⨯2900.2110⨯4.下列运算正确的是( )A .B .325()x y x y +=+34x x x +=C . D .236x x x =g 236()x x =5.直线,的直角顶点在直线上,若,则等于( )//a b Rt ABC ∆C a 135∠=o 2∠...(1)尺规作图:作的平分线交直线于点,交延长线于点(要求:尺BAD ∠BC E DC F 规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:.CE CF =19.为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A 喜欢吃苹果的学生;B 喜欢吃桔子的学生;C .喜欢吃梨的学生;D .喜欢吃香蕉的学生;E 喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:23.如图,点是直线与的交点,点在上, 垂足为,A AM O e B O e BD AM ⊥D 与交于点,平分.BD O e C OC ,60AOB B ∠∠=o(1)求证:是的切线;AM O e25.和分别是以为直角边的等腰直角三角形,点分别OPA ∆OQB ∆OP OQ 、C D E 、、是的中点.OA OB AB 、、(1)当时如图1,连接,直接写出与的大小关系;90AOB ∠=o PE QE 、EP EQ (2)将绕点逆时针方向旋转,当是锐角时如图2,(1)中的结论是否成OQB ∆O AOB ∠立?若成立,请给出证明;若不成立,请加以说明.(3)仍将绕点旋转,当为钝角时,延长交于点,使OQB ∆O AOB ∠PC QD 、G 为等边三角形如图3,求的度数.ABG ∆AOB ∠26.如图,二次函数的图象交轴于两点,交轴于点,2(0)y ax bx c a =++≠x A B 、y D 点的坐标为,顶点的坐标为.B (3,0)C (1,4)(1)求二次函数的解析式和直线的解析式;BD (2)点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在P BD P x M P 第一象限时,求线段长度的最大值;PM答案一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共计36分)1.【答案】D.【解析】试题分析:根据分式的减法和绝对值可以解答本题.|(﹣3)﹣5|=|﹣3﹣5|=|﹣8|=8,故选D.考点:有理数的减法;绝对值.2.【答案】C.【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选C.考点:中心对称图形;轴对称图形.3.【答案】B.【解析】考点:科学记数法—表示较大的数.4.【答案】D.【解析】试题分析:根据合并同类项、同底数幂的乘法、幂的乘方的计算法则计算,对各选项分析判断后利用排除法求解.A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、x2•x3=x5,故C错误;D、(x2)3=x6,故D正确.故选D.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.5.【答案】C.【解析】试题分析:先根据直角为90°,即可得到∠3的度数,再根据平行线的性质,即可得出∠2的度数.∵Rt△ABC的直角顶点C在直线a上,∠1=35°,∴∠3=90°﹣35°=55°,又∵a∥b,∴∠2=∠3=55°,故选C.从正面看,故选考点:一次函数图象与几何变换.12.【答案】A.考点:二元一次方程.二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分)13.【答案】x(y+4)2.【解析】试题分析:此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.xy2+8xy+16x=x(y2+8y+16)=x(y+4)2.故答案为:x(y+4)2.考点:提公因式法与公式法的综合运用.14.【答案】m<2.【解析】试题分析:根据方程的系数结合根的判别式,即可得出△=16﹣8m>0,解之即可得出m的取值范围.∵关于x的方程x2﹣4x+2m=0有两个不相等的实数根,∴△=(﹣4)2﹣4×2m=16﹣8m>0,解得:m<2.故答案为:m<2.考点:根的判别式.15.【答案】16.考点:众数;算术平均数;中位数.16.【答案】(2,0).【解析】试题分析:求得点P2、P3、P4、P5的值,即可发现其中规律,即可解题.∵P1(2,0),则P2(1,4),P3(﹣3,3),P4(﹣2,﹣1),P5(2,0),∴P n的坐标为(2,0),(1,4),(﹣3,3),(﹣2,﹣1)循环,∵2017=2016+1=4×504+1,∴P2017坐标与P1点重合,故答案为(2,0).考点:规律型:点的坐标.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤,共10题,满分102分)17.【答案】-2.考点:分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.18.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF 平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.试题解析:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.考点:作图—基本作图;平行四边形的性质.∴a2+b2=c2+ab,∴S1+S2=S3+S4.考点:等边三角形的性质,解直角三角形.25.【答案】(1)EP=EQ;(2)成立,证明见解析;(3)150°.【解析】试题分析:1)先判断出点P,O,Q在同一条直线上,再判断出△APE≌△BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;(2)先判断出CE=DQ,PC=DE,进而判断出△EPC≌△QED即可得出结论;(3)先判断出CQ,GP分别是OB,OA的垂直平分线,进而得出∠GBO=∠GOB,∠GOA=∠GAO,即可得出结论.试题解析:(1)如图1,延长PE,QB交于点F,∵△APO和△BQO是等腰直角三角形,∴∠APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠AOB=90°,∴∠AOP+∠AOB+∠BOQ=180°,∴点P,O,Q在同一条直线上,∵∠APO=∠BQO=90°,∴AP∥BQ,∴∠PAE=∠FBE,∵点E是AB中点,∴AE=BE,∵∠AEP=∠BEF,∴△APE≌△BFE,∴PE=EF,∴点E是Rt△PQF的斜边PF的中点,∴EP=EQ;(3)如图2,连接GO,∵点D,C分别是OB,OA的中点,△APO与△QBO都是等腰直角三角形,∴CQ,GP分别是OB,OA的垂直平分线,∴GB=GO=GA,∴∠GBO=∠GOB,∠GOA=∠GAO,设∠GOB=x,∠GOA=y,∴x+x+y+y+60°=360°,∴x+y=150°,∴∠AOB=150°.。
内蒙古赤峰市中考化学试卷真题及答案
内蒙古赤峰市中考化学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑。
每小题2分,共28分)1.(2分)2022北京冬奥会期间,国家环保部门加大了对奥运场馆周边地区空气质量的监测力度。
下列物质没有被列入空气质量监测项目的是()A.二氧化硫B.臭氧C.细颗粒物D.稀有气体【解析】解:A、二氧化硫属于空气污染物,是列入空气质量监测的物质,故选项错误。
B、臭氧属于空气污染物,是列入空气质量监测的物质,故选项错误。
C、细颗粒物属于空气污染物,是列入空气质量监测的物质,故选项错误。
D、稀有气体是空气的成分之一,不属于空气污染物,没有列入空气质量监测,故选项正确。
故选:D。
2.(2分)中考期间小红妈妈为她准备了丰富的午餐:米饭、红烧排骨、清蒸鲈鱼。
从营养均衡的角度考虑,你认为还应该补充下列食物中的()A.鸡蛋B.凉拌黄瓜C.炖牛肉D.馒头【解析】解:人体需要的六大营养物质:蛋白质、糖类、油脂、维生素、无机盐和水;结合题意,米饭中富含淀粉,淀粉属于糖类;红烧排骨、清蒸鲈鱼中含有油脂、蛋白质和无机盐,可知食物中维生素含量较少;故为使营养搭配更加合理,需要补充富含维生素的食物。
A、鸡蛋中富含蛋白质,故选项错误。
B、凉拌黄瓜中富含维生素,故选项正确。
C、炖牛肉中富含蛋白质,故选项错误。
D、馒头中富含淀粉,淀粉属于糖类,故选项错误。
故选:B。
3.(2分)分子、原子、离子都是构成物质的微粒。
下列物质由离子构成的是()A.石墨B.水银C.五氧化二磷D.氯化钠【解析】解:A、石墨属于固态非金属单质,是由碳原子直接构成的,不符合题意,故选项错误。
B、水银是金属汞的俗称,属于金属单质,是由汞原子直接构成的,不符合题意,故选项错误。
C、五氧化二磷是由非金属元素组成的化合物,是由五氧化二磷分子构成的,不符合题意,故选项错误。
D、氯化钠是含有金属元素和非金属元素的化合物,氯化钠是由钠离子和氯离子构成的,符合题意,故选项正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年内蒙古赤峰市中考数学试卷一、选择题:每小题3分,共30分1.(3分)(2016•赤峰)的倒数是()A.﹣B.C.2016 D.﹣20162.(3分)(2016•赤峰)等腰三角形有一个角是90°,则另两个角分别是()A.30°,60°B.45°,45°C.45°,90°D.20°,70°3.(3分)(2016•赤峰)平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称4.(3分)(2016•赤峰)中国的领水面积约为370000km2,其中南海的领水面积约占我国领水面积的,用科学记数法表示中国南海的领水面积是()A.37×105km2B.37×104km2C.0.85×105km2D.1.85×105km25.(3分)(2016•赤峰)从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A.B.C.D.6.(3分)(2016•赤峰)如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交7.(3分)(2016•赤峰)一个长方体的三视图如图所示,则这个长方体的体积为()A.30 B.15 C.45 D.208.(3分)(2016•赤峰)如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.πC.πD.2π9.(3分)(2016•赤峰)函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A. B.C.D.10.(3分)(2016•赤峰)8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A.东风 B.百惠 C.两家一样 D.不能确定二、填空题:每小题3分,共18分11.(3分)(2016•赤峰)分解因式:4x2﹣4xy+y2=.12.(3分)(2016•赤峰)数据499,500,501,500的中位数是.13.(3分)(2016•赤峰)如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是.14.(3分)(2016•赤峰)下列图表是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是(填序号)15.(3分)(2016•赤峰)如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于cm.16.(3分)(2016•赤峰)甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.三、解答题:共102分17.(6分)(2016•赤峰)计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.18.(6分)(2016•赤峰)化简:÷并任选一个你认为合理的正整数代入求值.19.(10分)(2016•赤峰)在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).(1)以(0,0)为圆心,3为半径画圆;(2)以(0,﹣1)为圆心,1为半径向下画半圆;(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.(向上、向下指在经过圆心的水平线的上方和下方)20.(10分)(2016•赤峰)下表是博文学校初三•一班慧慧、聪聪两名学生入学以来10次数(1)分别求出慧慧和聪聪成绩的平均数;(2)分别计算慧慧和聪聪两组数据的方差;(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;(4)由于初三•二班、初三•三班和初三•四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三•二班和初三•三班的概率.21.(10分)(2016•赤峰)为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在A岛测得B岛在北偏西30°,C岛在北偏东15°,航行100海里到达B 岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离(≈2.45,结果保留到整数)22.(10分)(2016•赤峰)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.23.(12分)(2016•赤峰)如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求圆的半径及圆心P的坐标;(2)M为劣弧的中点,求证:AM是∠OAB的平分线;(3)连接BM并延长交y轴于点N,求N,M点的坐标.24.(12分)(2016•赤峰)如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x﹣2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.25.(12分)(2016•赤峰)如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)26.(14分)(2016•赤峰)在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.2016年内蒙古赤峰市中考数学试卷参考答案与试题解析一、选择题:每小题3分,共30分1.(3分)(2016•赤峰)的倒数是()A.﹣B.C.2016 D.﹣2016【分析】根据倒数的定义,即可解答.【解答】解:的倒数是2016.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2016•赤峰)等腰三角形有一个角是90°,则另两个角分别是()A.30°,60°B.45°,45°C.45°,90°D.20°,70°【分析】由于等腰三角形的两底角相等,所以90°的角只能是顶角,再利用三角形的内角和定理可求得另两底角.【解答】解:∵等腰三角形的两底角相等,∴两底角的和为180°﹣90°=90°,∴两个底角分别为45°,45°,故选B.【点评】本题考查了等腰三角形的性质,及三角形内角和定理;确定90°的角是三角形的顶角是正确解答本题的关键.3.(3分)(2016•赤峰)平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.【解答】解:平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于x轴对称.故选:B.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.4.(3分)(2016•赤峰)中国的领水面积约为370000km2,其中南海的领水面积约占我国领水面积的,用科学记数法表示中国南海的领水面积是()A.37×105km2B.37×104km2C.0.85×105km2D.1.85×105km2【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:370000×=185000=1.85×105,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2016•赤峰)从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A.B.C.D.【分析】先画树状图展示所有9种等可能的结果数,再找出组成的数是偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中组成的数是偶数的结果数为4,所以组成的数是偶数的概率==.故选A.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.6.(3分)(2016•赤峰)如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交【分析】根据同旁内角互补,两直线平行即可求解.【解答】解:∵∠ABC=150°,∠BCD=30°,∴∠ABC+∠BCD=180°,∴AB∥DC.故选:C.【点评】本题考查的是平行线的判定,即内错角相等,两直线平行;同位角相等两直线平行;同旁内角互补两直线平行.7.(3分)(2016•赤峰)一个长方体的三视图如图所示,则这个长方体的体积为()A.30 B.15 C.45 D.20【分析】易得该长方体长为3,宽为2,高为5,根据长方体的体积=长×宽×高列式计算即可求解.【解答】解:观察图形可知,该几何体为长3,宽2,高5的长方体,长方体的体积为3×2×5=30.故选:A.【点评】本题考查了由三视图判断几何体,得到该几何体长,宽,高是解决本题的突破点.8.(3分)(2016•赤峰)如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.πC.πD.2π【分析】将下面阴影部分进行对称平移,根据半圆的面积公式列式计算即可求解.【解答】解:π×12×=π×1×=π.答:图中阴影部分的面积为π.故选:B.【点评】考查了圆的认识,关键是熟练掌握半圆的面积公式,注意对称平移思想的应用.9.(3分)(2016•赤峰)函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A. B.C.D.【分析】将一次函数解析式展开,可得出该函数图象与y轴交于负半轴,分析四个选项可知,只有C选项符合,由此即可得出结论.【解答】解:一次函数y=k(x﹣k)=kx﹣k2,∵k≠0,∴﹣k2<0,∴一次函数与y轴的交点在y轴负半轴.A、一次函数图象与y轴交点在y轴正半轴,A不正确;B、一次函数图象与y轴交点在y轴正半轴,B不正确;C、一次函数图象与y轴交点在y轴负半轴,C可以;D、一次函数图象与y轴交点在y轴正半轴,D不正确.故选C.【点评】本题考查了一次函数的图象,解题的关键是分析一次函数图象与y轴的交点.本题属于基础题,难度不大,解决该题时,由一次函数与y轴的交点即可排除了A、B、D三个选项,因此只需分析一次函数图象即可得出结论.10.(3分)(2016•赤峰)8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A.东风 B.百惠 C.两家一样 D.不能确定【分析】分析:本题可以直接求出郝爱在两家书店购买学习用品或工具书的钱数,比较一下便可得到答案.【解答】解:依题意,若在东风书店购买,需花费:60+(300﹣60)×50%=180(元),若在百惠书店购买,需花费:50+(300﹣50)×60%=200(元).∵180<200∴郝爱同学在东风书店购买学习用品或工具书便宜.故选:A【点评】本题是一道简单的实际问题,主要考查有理数的运算和有理数的大小比较,正确应用有理数的运算法则便可得到答案.二、填空题:每小题3分,共18分11.(3分)(2016•赤峰)分解因式:4x2﹣4xy+y2=(2x﹣y)2.【分析】符合完全平方公式的特点:两项平方项,另一项为两底数积的2倍,直接利用完全平方公式分解因式即可.【解答】解:4x2﹣4xy+y2,=(2x)2﹣2×2x•y+y2,=(2x﹣y)2.【点评】本题考查运用完全平方公式分解因式,熟练掌握公式结构特点是解题的关键.12.(3分)(2016•赤峰)数据499,500,501,500的中位数是500.【分析】先将题中的数据按照从小到大的顺序排列,再根据中位数的概念解答即可.【解答】解:将该组数据按照从小到大的顺序排列为:499,500,500,501,可得改组数据的中位数为:=500,故答案为:500.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)(2016•赤峰)如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是8cm.【分析】根据切线的性质以及垂径定理,在Rt△BOC中利用勾股定理求出BC,即可得出AB的长.【解答】解:∵AB是⊙O切线,∴OC⊥AB,∴AC=BC,在Rt△BOC中,∵∠BCO=90°,OB=5,OC=3,∴BC==4(cm),∴AB=2BC=8cm.故答案为:8cm.【点评】本题考查切线的性质、垂径定理.勾股定理等知识,解题的关键是熟练运用这些知识解决问题,属于基础题中考常考题型.14.(3分)(2016•赤峰)下列图表是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是①②③④(填序号)【分析】结合图象根据轴对称图形的概念解答即可.【解答】解:根据轴对称图形的概念,可得出①②③④均为轴对称图形.故答案为:①②③④.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.15.(3分)(2016•赤峰)如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于或cm.【分析】如图,作DH∥MN,先证明△ADH≌△BAE推出MN⊥AE,在RT△AFM中求出AM即可,再根据对称性求出AM′,由此即可解决问题.【解答】解:如图,作DH∥MN,∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠B=90°,AB∥CD,∴四边形DHMN是平行四边形,∴DH=MN=AE,在RT△ADH和RT△BAE中,,∴△ADH≌△BAE,∴∠ADH=∠BAE,∴∠ADH+∠AHD=∠ADH+∠AMN=90°,∴∠BAE+∠AMN=90°,∴∠AFM=90°,在RT△ABE中,∵∠B=90°,AB=,∠BAE=30°,∴AE•cos30°=AB,∴AE=2,在RT△AFM中,∵∠AFM=90°,AF=1,∠FAM=30°,∴AM•cos30°=AF,∴AM=,根据对称性当M′N′=AE时,BM′=,AM′故答案为或.【点评】本题科学正方形的性质、全等三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.16.(3分)(2016•赤峰)甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.【分析】直接利用时针和分针第一次相遇,则时针比分针少转了一周,再利用分针转动一周60分钟,时针转动一周720分钟,进而得出等式求出答案.【解答】解:设分针旋转x周后,时针和分针第一次相遇,则时针旋转了(x﹣1)周,根据题意可得:60x=720(x﹣1),解得:x=.故答案为:.【点评】此题主要考查了一元一次方程的应用,根据题意结合时针与分针转动的时间得出等式是解题关键.三、解答题:共102分17.(6分)(2016•赤峰)计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(﹣)﹣1+3tan30°﹣+(﹣1)2016的值是多少即可.【解答】解:(﹣)﹣1+3tan30°﹣+(﹣1)2016=﹣3+3×﹣3+1=﹣3+﹣3+1=﹣2﹣2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.18.(6分)(2016•赤峰)化简:÷并任选一个你认为合理的正整数代入求值.【分析】根据分式的除法法则把原式进行化简,再选取合适的a的值代入进行计算即可.【解答】解:原式=÷=×=﹣,当a=1时,原式=﹣【点评】本题考查的是分式的化简求值,在解答此类题目时要注a的取值保证分式有意义.19.(10分)(2016•赤峰)在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).(1)以(0,0)为圆心,3为半径画圆;(2)以(0,﹣1)为圆心,1为半径向下画半圆;(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.(向上、向下指在经过圆心的水平线的上方和下方)【分析】(1)直接利用坐标系结合圆心的位置以及半径长画出圆即可;(2)直接利用坐标系结合圆心的位置以及半径长画出半圆即可;(3)直接利用坐标系结合圆心的位置以及半径长画出圆即可;(4)直接利用坐标系结合圆心的位置以及半径长画出半圆即可.【解答】解:(1)如图所示:⊙O,即为所求;(2)如图所示:半圆O1,即为所求;(3)如图所示:⊙O2,⊙O3,即为所求;(4)如图所示:半圆O2,半圆O3,即为所求.【点评】此题主要考查了复杂作图,根据题意正确结合圆心位置以及半径的长画图是解题关键.20.(10分)(2016•赤峰)下表是博文学校初三•一班慧慧、聪聪两名学生入学以来10次数(1)分别求出慧慧和聪聪成绩的平均数;(2)分别计算慧慧和聪聪两组数据的方差;(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;(4)由于初三•二班、初三•三班和初三•四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三•二班和初三•三班的概率.【分析】(1)把慧慧和聪聪的成绩都减去125,然后计算她们的平均成绩;(2)根据方差公式计算两组数据的方差;(3)根据平均数的大小和方差的意义进行判断;(4)画树状图展示所有6种等可能的结果数,再找出两名学生分别在初三•二班和初三•三班的结果数,然后根据概率公式计算.【解答】解:(1)慧慧的平均分数=125+(﹣9﹣1+5+1+6+2+1﹣3+0﹣2)=125(分),聪聪的平均分数=125+(﹣3﹣1+0+3﹣6﹣5+6+3﹣11﹣6)=123(分);(2)慧慧成绩的方差S2=[92+12+52+12+42+22+12+32+02+22]=14.2,聪聪成绩的方差S2=[12+12+22+52+42+32+82+52+92+42]=24.2,(3)根据(1)可知慧慧的平均成绩要好于聪聪,根据(2)可知慧慧的方差小于聪聪的方差,因为方差越小越稳定,所以慧慧的成绩比聪聪的稳定,因此选慧慧参加全国数学竞赛更合适一些.(4)画树状图为:共有6种等可能的结果数,其中两名学生分别在初三•二班和初三•三班的结果数为2,所以两名学生分别在初三•二班和初三•三班的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了平均数的计算方法和方差的计算.21.(10分)(2016•赤峰)为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在A岛测得B岛在北偏西30°,C岛在北偏东15°,航行100海里到达B 岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离(≈2.45,结果保留到整数)【分析】过点B作BD⊥AC于点D,由等腰直角三角形的性质求出AD的长,再由直角三角形的性质即可得出结论.【解答】解:由题意知:∠BAC=45°,∠FBA=30°,∠EBC=45°,AB=100海里;过B点作BD⊥AC于点D,∵∠BAC=45°,∴△BAD为等腰直角三角形;∴BD=AD=50,∠ABD=45°;∴∠CBD=180°﹣30°﹣45°﹣45°=60°,∴∠C=30°;∴在Rt△BCD中BC=100≈141海里,CD=50,∴AC=AD+CD=50+50≈193海里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.(10分)(2016•赤峰)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.【分析】(1)设条纹的宽度为x米,根据等量关系:配色条纹所占面积=整个地毯面积的,列出方程求解即可;(2)根据总价=单价×数量,可分别求出地毯配色条纹和其余部分的钱数,再相加即可求解.【解答】解:(1)设条纹的宽度为x米.依题意得2x×5+2x×4﹣4x2=×5×4,解得:x1=(不符合,舍去),x2=.答:配色条纹宽度为米.(2)条纹造价:×5×4×200=850(元)其余部分造价:(1﹣)×4×5×100=1575(元)∴总造价为:850+1575=2425(元)答:地毯的总造价是2425元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意判断所求的解是否符合题意,舍去不合题意的解.23.(12分)(2016•赤峰)如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求圆的半径及圆心P的坐标;(2)M为劣弧的中点,求证:AM是∠OAB的平分线;(3)连接BM并延长交y轴于点N,求N,M点的坐标.【分析】(1)先利用勾股定理计算出AB=10,再利用圆周角定理的推理可判断AB为⊙P的直径,则得到⊙P的半径是5,然后利用线段的中点坐标公式得到P点坐标;(2)根据圆周角定理由=,∠OAM=∠MAB,于是可判断AM为∠OAB的平分线;(3)连接PM交OB于点Q,如图,先利用垂径定理的推论得到PM⊥OB,BQ=OQ=OB=4,再利用勾股定理计算出PQ=3,则MQ=2,于是可写出M点坐标,接着证明MQ为△BON 的中位线得到ON=2MQ=4,然后写出N点的坐标.【解答】解:(1)∵O(0,0),A(0,﹣6),B(8,0),∴OA=6,OB=8,∴AB==10,∵∠AOB=90°,∴AB为⊙P的直径,∴⊙P的半径是5∵点P为AB的中点,∴P(4,﹣3);(2)∵M点是劣弧OB的中点,∴=,∴∠OAM=∠MAB,∴AM为∠OAB的平分线;(3)连接PM交OB于点Q,如图,∵=,∴PM⊥OB,BQ=OQ=OB=4,在Rt△PBQ中,PQ===3,∴MQ=2,∴M点的坐标为(4,2);∵MQ∥ON,而OQ=BQ,∴MQ为△BON的中位线,∴ON=2MQ=4,∴N点的坐标为(0,4).【点评】本题考查了圆的综合题:熟练掌握垂径定理和圆周角定理;理解坐标与图形的性质,记住线段的中点坐标公式,会利用勾股定理计算线段的长.此类题目通常解由半径、弦心距和弦的一半所组成的直角三角形.24.(12分)(2016•赤峰)如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x﹣2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.【分析】(1)根据点A(3,2)在反比例函数y=,和一次函数y=k(x﹣2)上列出m和k 的一元一次方程,求出k和m的值即可;联立两函数解析式,求出交点坐标;(2)设C点的坐标为(0,y c),求出点M的坐标,再根据△ABC的面积为10,知×3×|y c﹣(﹣4)|+×1×|y c﹣(﹣4)|=10,求出y C的值即可.【解答】解:(1)∵点A(3,2)在反比例函数y=,和一次函数y=k(x﹣2)上;∴2=,2=k(3﹣2),解得m=6,k=2;∴反比例函数解析式为y=,和一次函数解析式为y=2x﹣4;∵点B是一次函数与反比例函数的另一个交点,∴=2x﹣4,解得x1=3,x2=﹣1;∴B点的坐标为(﹣1,6);(2)∵点M是一次函数y=2x﹣4与y轴的交点,∴点M的坐标为(0,﹣4),设C点的坐标为(0,y c),由题意知×3×|y c﹣(﹣4)|+×1×|y c﹣(﹣4)|=10,解得|y c+4|=5,当y c+4≥0时,y c+4=5,解得Yc=1,当y c+4≤0时,y c+4=﹣5,解得Yc=﹣9,∴点C的坐标为(0,1)或(0,﹣9).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出两个函数的解析式以及直线AB与y轴的交点坐标,此题难度一般.25.(12分)(2016•赤峰)如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)【分析】(1)根据正方形的性质和相似三角形的判定和性质证明即可;(2)根据全等三角形的判定和性质,利用勾股定理解答即可;(3)根据相似三角形的性质得出函数解析式即可.【解答】(1)证明:∵四边形ABCD为正方形;∴∠BAP+∠QAE=∠B=90°,∵QE⊥AP;∴∠QAE+∠EQA=∠AEQ=90°∴∠BAP=∠EQA,∠B=∠AEQ;∴△ABP∽△QEA(AA)(2)∵△ABP≌△QEA;∴AP=AQ(全等三角形的对应边相等);在RT△ABP与RT△QEA中根据勾股定理得AP2=32+t2,AQ2=(2t)2即32+t2=(2t)2解得t1=,t2=﹣(不符合题意,舍去)答:当t取时△ABP与△QEA全等.(3)由(1)知△ABP∽△QEA;∴=()2∴=()2整理得:y=.【点评】本题主要考查的是相似三角形的综合应用,解答本题主要应用了正方形的性质、全等三角形的性质和判定、勾股定理是解题的关键.26.(14分)(2016•赤峰)在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.【分析】(1)利用抛物线和x轴的两个交点坐标,设出抛物线的解析式y=a(x﹣x1)(x﹣x2),代入即可得出抛物线的解析式,再设出直线AC的解析式,利用待定系数法即可得出答案;(2)先求得抛物线的顶点D的坐标,再设点P坐标(0,P y),根据A,B,D三点在⊙P 上,得PB=PD,列出关于P y的方程,求解即可得出P点的坐标;(3)假设抛物线上存在这样的点Q使直线AQ与⊙P相切,设Q点的坐标为(m,m2﹣4),根据平面内两点间的距离公式,即可得出关于m的方程,求出m的值,即可得出点Q的坐标.【解答】解:(1)∵A(﹣2,0),B(2,0);∴设二次函数的解析式为y=a(x﹣2)(x+2)…①,把C(3,5)代入①得a=1;∴二次函数的解析式为:y=x2﹣4;设一次函数的解析式为:y=kx+b(k≠0)…②把A(﹣2,0),C(3,5)代入②得,解得,∴一次函数的解析式为:y=x+2;(2)设P点的坐标为(0,P y),由(1)知D点的坐标为(0,﹣4);∵A,B,D三点在⊙P上;∴PB=PD;∴22+P y2=(﹣4﹣P y)2,解得:P y=﹣;∴P点的坐标为(0,﹣);(3)在抛物线上存在这样的点Q使直线AQ与⊙P相切.理由如下:设Q点的坐标为(m,m2﹣4);根据平面内两点间的距离公式得:AQ2=(m+2)2+(m2﹣4)2,PQ2=m2+(m2﹣4+)2;∵AP=,。