2019-2020年九年级下第二次月考试卷
2019-2020学年吉林四平九年级下英语月考试卷
2019-2020学年吉林四平九年级下英语月考试卷一、单选题1. —Mum, I have had ________ bad toothache since last night.—Oh, my dear. You have to go to the dentist and get ________ X-ray.A.a; aB.a; theC.a; an2. Tony runs ________ of the three boys, but he is the shortest.A.fastB.fasterC.the fastest3. —Tom! Who is ________ English teacher?—It's Mrs. White. She teaches ________ English well.A.you; weB.your; usC.yours; ours4. I'm sure he is an honest boy. I have no ________ to doubt(质疑)what he said.A.reasonB.actionC.feeling5. —Must I have online classes, Dad?—No, you ________. You're free to make your own decision.A.can'tB.mustn'tC.needn't6. When you feel helpless and ______, just remember that you are not ______ in the world because your friends are around you.A.lonely; aloneB.alone; lonelyC.alone; alone7. I think parents are supposed to avoid ________ too hard ________ us when educating us.A.to be; withB.being; toC.being; on8. The 5G network will make it easier for us ________ our life.A.to enjoyB.enjoyingC.enjoyed9. I am looking for the pen ________ I bought last week.A.whichB.whatC.whose10. —Who is the girl in the picture?—It's me. The picture ________ when I was five.A.is takenB.was takenC.took二、七选五阅读11. 根据对话内容,从方框内的选项中选出能填入空白处的最佳选项,选项中有一个为多余选项。
九年级 英语第二次月考 (完整版)
和田市第三中学2019-2020学年九年级英语第二次月考试卷考试时间:100分钟总分:100分第一部分:选择题一、听力部分(20分)I.听对话,选择与对话内容相符的图片,将代表图片的字母填写在相应的序号后(5分)1.__________2.__________3.__________4.__________5.__________II.听对话,根据对话内容判断1~5小题所给句子的正误。
正确的写T,错误的写F (5分)( )6. Paul has some trouble in learning English.( )7.The girl used to worry about her tests.( )8. The boy used to study all the time after school.( )9. Anna went to school by bus.( )10. Anna was late for class today.III.听短文,选择最佳选项(10分)( )11. When was the computer invented?A. In the 2lst century.B. In the 20th century.C. In the 19th century.( )12. How was the computer in the 1960's?A. Small and light.B. Heavy but cheap.C. large and expensive.( )13. How many people use the Internet today?A. Millions of.B. Thousands of.C. Hundreds of.( )14. What is more and more popular among students?A. Shopping online.B. Sending e mails.C. Using the Internet.( )15. Why do some people like reading paper books?A. Because they don't know how to use the computers.B. Because they can't read or write online with friends.C. Because they think paper books are better for reading.二、单项选择(15分)( ) 16. 1. Steve often plays _______ basketball, but Amy often plays _____ piano.A. the: the B the:/ C/: the D./;/( )17. _____your father take you to concerts?-Yes, he didA Did: used to B. Did: used for C. Did; use for D. Did: use to( )18. Our home is far from the school. We have to____to school every day.A. walk B take the bus C on foot D by bike( ) 19. Lucy is only ______ ,but she looks like a _______ woman.A. 20 years old; 3o years oldB. 20-year-old; 30-year-oldC. 20 years old; 30-year-oldD. 20-year-old; 30 years old( )20. ---Bob used to ________ late for school.4---Yes, but now he is used ________ to up early.A. be; getB. being; gettingC. be; gettingD. being ; get( )21. Joe is good at ________ basketball.A. playingB. playsC. to playD. play( )22. He is afraid ________ alone in the street at night.A. of walkB. to walkC. walkingD. walk( )23. I spend little time ________ playing. Instead, I spend much time ________my study.A. in; onB. on; inC. in; withD. on ; with( )24. I am very busy these days, so I ________ watch TV.A. oftenB. seldomC. alwaysD. never( )25. )2. The chopsticks ______ of wood.A. madeB. is madeC. makingD. are made( )26. Hangzhou and Yangzhou are widely _______ for the silk.A. knowB. knewC. knownD. knows( )27. Tea ______ in many areas in China.A. produceB. producedC. is produceD. produces( )28. Many people _____ English and German ______ in Germany.A. speak: is spokenB. are spoken: is spokenC. speak: speaksD. are spoken; speaks( )29. ()13. My grandfather lives ____ and he often feels _____ So my parents and I often go to see him on weekends.A. alone: lonelyB. lonely; aloneC. alone: aloneD. lonely: lonely( )30. Paula used to be really quiet.-I know. ____________________A. She never stopped talkingB. She liked singing very muchC. She often chatted with usD. She was always silent in class三、阅读理解(30分)A阅读短文,判断正(T)误(F)The Chinese Traditional Dress--QipaoQipao is the traditional dress for women in China. It's also named cheongsam, meaning long dress". It is included in the English vocabulary from the dialect (方言) of China’s Guangdong Province. It comes from the Manchu (满族) women.Qipao is usually made of colorful silk and sometimes made of cotton. Its neck is high, colllar closed, and its sleeves may be either short, medium or full length, depending on season and taste.Qipao is liked by most of ladies. Song Meiling owned the most number of qi pao all over the world. She was known as the First Lady of Qi pao, The famous writer Zhang Ailing was addicted(上瘾) to qi pao. Deng Lijun, the famous singer, really made the beauty of qipao as famous as her songs.Qipao creates an impression of simple and quiet charm, elegance and neatness. It is so much liked by women not only from China but also many foreign countries.( )31. Cheongsam is another name of qipao( )32, Qipao comes from the Manchu women.( )33. Qipao is usually made of colorful silk and sometimes made of cotton.( )34. Qipao is liked by the ladies only in China.( )35. Zhang Ailing is known as the First Lady of Qipao.BParks are public spaces. They provide us with a place to enjoy and rest. In order to have a fun and safe time, we should follow the park rules. Here are some rules of some parks.Dolores Park RulesPark Closed: 10:00 p.m. to 6:00 a.m.▲No Smoking▲Dogs Must Be Kept on a Leash (系狗的皮带)▲Dog Walkers Must Pick Up and Remove Dog Waste▲Don’t Feed Birds or Animals▲No Camping▲No Fires▲Keep Dolores Park Clean Central Park RulesPark Closes at 1:00 a.m.▲Keep the Park Clean so Please Don’t Litter ▲No Unleas hed Dogs Except in Some Areas ▲No Feeding Birds▲Don’t Enter the Park After It Is Closed▲No PerformingBolin Park RulesPark Hours: Sunrise to Sunset▲Children Must Be with Adults▲No Climbing on Any Monuments (纪念碑) ▲No Overnight Camping Allowed▲Please Use Waste Containers (容器)▲No Restrooms in the Park Veterans Park RulesPark Hours: 5:30 a.m. to 10:00 p.m. ▲No Skateboarding▲No Bike Riding or Roller Skating ▲No Camping▲No Open Fires▲No Littering▲No Smoking根据材料内容选择最佳答案。
2022-2023学年河北省衡水重点中学九年级(下)第二次月考语文试卷(含答案)
2022-2023学年河北省衡水重点中学九年级(下)第二次月考语文试卷1. 阅读下面文字,回答后面的问题。
南来北往,千帆过尽;波光云影,儿女情长。
两千年来,运河沿岸留下(càn làn)的文化遗产,民俗、诗歌、戏曲、文学……这条贯穿自然和人力的人工河,以世所罕见的时空尺度流淌至今,成为“流动的文化”,成为奔流不息的历史瑰宝,(zī yǎng)着沿岸城镇、乡村和升腾着炊烟袅袅的千家万户。
一水如带,蜿埏千里。
古城、古镇、古村、古码头、古渡……运河两岸丰富的历史遗存,更见证着古老的贸易往来,蕴藏着古老的中国智慧。
(1) 根据文段中拼音写出相应的词语。
①(càn làn)②(zī yǎng)(2) 给文段中加着重号的词语注音。
①贸易②蕴藏2. 阅读下面图文,回答后面的问题。
[甲]《小石潭记》中柳宗元将日光、鱼影的静态描写与鱼儿“______,______”的动态描写结合起来,勾画出一幅生动活泼的游鱼图。
[乙]近期,唐长安城东市遗址新发现数百件唐代日常生活用品,唐代的“东市”店铺毗连,商贾云集,是长安城中的商业贸易中心之一,东市贵西市富,“买东西”中的“东西”就出自这里。
[丙]如图为“国际艺术名家”称号获得者王文斌教授的书法作品,作品中的文字纵任奔逸,潇洒自如。
(1) 请在甲段文字空缺处填上相应的诗句。
(2) 乙段文字中,加着重号的词语可以使我们联想到《木兰诗》中的诗句“ ,”。
(3) 丙段文字所配的图片,可以让我们联想到课文中杜甫的名篇《》。
3. 请根据下面圈点内容,完成批注任务。
《骆驼祥子》选段批注(1)城门洞里挤着各样的车、各样的人,谁也不敢快走,谁可都想快快过去,鞭声,喊声,骂声,喇叭声,铃声,笑声,都被门洞儿——像一架扩音机似的——嗡嗡的联成一片,仿佛人人都发着点声音,都嗡嗡的响。
(2)祥子的大脚东插一步,西跨一步,两手左右的拨落,像条瘦长的大鱼,随浪欢跃那样,挤进了城。
九年级历史下册月考试卷及答案
九年级历史下册月考试卷及答案一、单项选择题:(每题1分,共30分)1、中华民族是一个具有强大凝聚力的民族,下列被尊奉为中华民族人文始祖的是:①炎帝②黄帝③尧④舜A①②B②③C③④D①④2、“封建亲戚,以藩屏周”反映了西周时期实行的政治制度是:A禅让制B分封制C郡县制D行省制3、当今世界虽存在频繁的民族冲突,如巴以冲突、印巴冲突,但和平仍为主流。
在我国春秋战国时代就反对侵略战争,主张“非攻”的是:A孔子B老子C墨子D孙子4、商鞅变法措施中对后世的封建土地制度影响最深远的一项是:A奖励军功B奖励耕战C建立县制D承认土地私有5、汉武帝为巩固国家统一采取的措施有:①罢黜百家,独尊儒术②颁布推恩令③盐铁由国家垄断经营④设置西域都护A①③④B①②③C①②④D②③④6、目前世界上已知最早的纸出现于我国:A西汉以前B西汉早期C西汉末期D东汉早期7、从魏晋以来南方经济开发到南宋时期全国经济重心南移的主要原因不包括:A北人南迁为南方补充大量的劳动力B南方自然条件比北方优越C北人南迁带来先进的生产工具D“苏湖熟,天下足”谚语的流传8、关于北魏孝文帝改革的影响,表述正确的是:A实现了黄河流域的统一B为统一全国作好了准备C抑制了佛教的发展D促进了民族融合9、我国用考试方法选拔官员的科举制诞生于:A秦朝B汉朝C隋朝D唐朝10、每年的4~5月份,扬州都要举办“烟花三月扬州国际经贸旅游节”,该旅游节的宣传语“烟花三月下扬州”是唐代哪位诗人的名句:A.杜牧B.李白C.杜甫D.张若虚11、学习了隋唐史后,四位同学作了主题演讲,你认为能准确地概括这段历史的基本特征的是:A文明初露曙光B分裂奔向统一C封建国家陷入危机D繁荣与开放12、央视著名节目《幸运52》曾给选手出了这样一道题:世界上最早的纸币是:A美元B日元C会子D交子13、指南针是我国古代四大发明之一,下列人物的航海活动中较早使用指南针的是:A鉴真东渡B郑和下西洋C哥伦布发现新大陆D麦哲伦环球航行14、标志着我国封建君主专制主义中央集权制度发展到顶峰的是:A废丞相,设内阁B实行三省六部制C设立军机处D实行闭关政策15、现存东起鸭绿江、西到嘉峪关的长城建成于:A战国时期B秦朝时期C宋朝时期D明朝时期16、下列作品中属于意大利文艺复兴时期的有:①《神曲》②《蒙娜丽莎》③《最后的晚餐》④《哈姆雷特》A①②③B②③④C①③④D①②③④17、假如你有幸参加中央电视台“开心词典”的竞赛活动,主持人王小丫给你出了这样一道题:他是欧洲人,他率领船队横渡大西洋,到达美洲的巴哈马群岛,开辟了欧洲通往美洲的航路:A但丁B哥伦布C迪亚士D麦哲伦18、美国自1776年诞生,至今只有200多年的历史,可以说是一个年轻的国家,但却成为现今世界唯一的超级大国。
2019-2020学年河北邯郸九年级下英语月考试卷 (1)
I have made a(10)________ in Cindy's life. And I also get a new friend at the same time!
A.smellB.tasteC.feelD.look
5. Bruce works hard in our class. He ______ to be a scientist.
A.dreamsB.was dreamingC.will dreamD.dreamed
_ he can't speak it very well.
Many years ago, while he was sitting at a restaurant table enjoying his food, Leroy saw a woman cut in front of a girl who was waiting in line. That went against his belief that people should wait their turn. So he got up from his table and walked straight to the woman.
[10:23 p.m.]
Hi, thanks for contacting Hacer Electronics. How can I help you today?
[10:25 p.m.]
I just bought this new computer last week. I can't run anything on it, including simple word processing programs.
2023年届九年级下学期月考语文试卷
2023年届九年级下学期月考语文试卷届九年级下学期月考语文试卷1一、书写阅读下列语段,把其中加点字的注音和拼音所表示的汉字依次填在方格内。
一个人对一片土地的zhì爱,是烙在生命里的,如何割舍得了?就像盐蒿之于滩涂。
滩涂的贫瘠与荒凉,给予盐蒿的,是酸涩,是苦咸,但也给予了它顽强与坚rèn。
岁月教会我们的,原是感恩。
(丁立梅《秋天的滩涂》)二、名句名篇默写。
(1)山重水复疑无路,。
(陆游《游山西村》)(2),飞鸟相与还。
(陶渊明《饮酒》)(3)伤心秦汉经行处,(张养浩《山坡羊潼关怀古》)(4),千树万树梨花开。
(岑参《白雪歌送武判官归京》)(5)桃李不言,(司马迁《史记·李将军列传》)(6)何处望神州______________。
(辛弃疾《京口北固亭怀古》)(7)直挂云帆济沧海。
(李白《行路难》)(8)但愿人长久,。
(苏轼《水调歌头》)三、文学作品阅读名著阅读。
(1)下列对名著内容的表述有错误的一项是()A.保尔脑袋被弹片击中,伤好后经朱赫来介绍,在铁路肃反委员会工作。
一次,在车站偶遇谢廖沙,却忘记将瓦莉亚英勇牺牲的事告诉他,一个星期后,谢廖沙在战场上牺牲了。
B.《水浒传》中拳打镇关西、倒拔垂杨柳、大闹野猪林等故事都与鲁智深有关,从中可见其虽有急躁莽撞、嫉恶如仇的一面,但也有粗中有细的一面。
C.《西游记》中,孙悟空假扮的“牛魔王”以吃斋为由不肯吃唐僧肉引起红孩儿怀疑,又因答不出红孩儿的生辰,被红孩儿识破。
最后,悟空只好请来观音菩萨,降服红孩儿。
D.《汤姆索亚历险记》“洞中历险”情节中,汤姆与艾米·劳伦斯在岩洞里探寻玩耍,因讨厌蝙蝠,选择其他路径,结果迷了路,后来还遇到了印第安·乔。
(2)阅读《红岩》选段,回答相关问题。
江姐热泪盈眶,胸口梗塞,不敢也不愿再看。
她禁不住要恸哭出声。
一阵又一阵头昏目眩,使她无力站稳脚跟……选段中江姐在城墙下为什么会有这种反应?(3)“怎知被冷水一逼,弄得火气攻心,三魂出舍,可怜气塞胸堂喉舌冷,魂飞魄散丧残生!”这句话说的是谁?他为什么“魂飞魄散丧残生”的?谁救了他?四、语言应用下面语段中标序号的句子都有语病,请加以改正。
九年级下学期第2次月考语文试卷
九年级下学期第二次月考语文试卷班级:学号:姓名:得分:一、积累与运用(22分)1、填补下列名句的空缺处或按要求填空。
(10分,每空1分)①几处早莺争暖树,。
②,千树万树梨花开。
③晨兴理荒秽,。
④,西北望,射天狼。
⑤《酬乐天扬州初逢席上见赠》一诗中蕴含新事物必将取代旧事物这一哲理的句子是:,。
⑥《木兰诗》中描写边塞军营的艰苦战斗生活的诗句是:,。
⑦我们即将跨入新的学习阶段,应该对未来充满希望,找两句诗来与同学共勉吧:,。
2.下列句子中没有错别字的一项是()(2分)A. 这里盛产优质雪花梨,可以就地取才办一个水果加工厂。
B. 当遇到重大问题需要他拿主意的时候,他反倒迟疑不绝了。
C. 今年春节期间,各地电视台的文艺节目多得令人目不暇接。
D. 北京办奥运,既展示传统文化又展现精神风貌,可谓两全齐美。
3.下列句子中有语病的一项是()(2分)A.这最后一天的劳动是同学们最紧张、最愉快、最有意义的一天。
B.在优裕的家庭里,子女一切得来容易,所以难以与长辈沟通。
C.中小学生课业负担过重是困扰我国基础教育的顽症D.宁静的夏夜,明月高悬,我们在树下听故事。
4.下列句子标点符号使用正确的一项是()(2分)A.他是真的没有听到我的话呢?还是故意装作没听见?B.“谁言寸草心,报得三春晖!”余光中的《乡愁》和《乡愁四韵》,是海外游子深情而优美的恋歌。
C.前几天,一个偶然的机会,我来到了古老而又充满活力的水乡小镇——南浔镇。
D.“我喜欢孩子们,”月亮说,“特别是那些非常有趣的小不点儿们。
”5.填入下面文字中横线上的句子,与上下文衔接最恰当的一项是()(2分)雨停的时候,。
或者说是风赶走了雨。
风的行为是那样粗暴,,让它觉得与其经受这种折磨还不如死去。
望望周围和自己受着同样折磨的兄弟,。
明天就会有人来把它拔走了。
①风就跟了上来②跟着,风就上来了③它的身子被抱住左扭右晃④抱着它的身子左扭右晃⑤有的已经倒在地上起不来了⑥倒在地上起不来了的有很多A.①③⑤ B.②③⑥ C.②④⑥ D.①④⑤6、语文实践活动可以培养综合能力。
2019-2020年广东省华南师大中山附中九年级(下)月考数学试卷(3月份) 解析版
2019-2020年广东省华南师大中山附中九年级(下)月考数学试卷(3月份)一、选择题(共10小题,每题3分,满分30分)1.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.2.(3分)去年汕头市经济发展成绩斐然,全市投资总额首次突破200000000000元,其中200000000000用科学记数法表示为()A.2×1012B.0.2×1012C.2×1011D.20×10113.(3分)下列计算正确的是()A.x6÷x2=x3B.1﹣(x﹣1)=﹣x+2C.(a﹣b)2=a2﹣b2D.(3x)2=6x24.(3分)下列根式中与是同类二次根式的是()A.B.C.D.5.(3分)在△ABC中,∠C=90°,BC=2,sin A=,则边AC的长是()A.B.3C.D.6.(3分)已知点A(5,﹣2)关于y轴的对称点A′在反比例函数y=(k≠0)的图象上,则实数k的值为()A.10B.﹣10C.D.﹣7.(3分)如图所示,△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若∠DEF=55°,则∠A的度数是()A.35°B.55°C.70°D.125°8.(3分)如图1是由大小相同的小正方体搭成的几何体,将它左侧的小正方体移动后得到图2.关于移动前后的几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同9.(3分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H 两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE 与△FGH的面积比为何?()A.2:1B.3:2C.5:2D.9:410.(3分)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为()A.3B.2C.1.5D.1二、填空题:(共7小题,每题4分,满分28分)11.(4分)比较大小:25(填“>,<,=”).12.(4分)若2m+n=3,则代数式6﹣2m﹣n的值为.13.(4分)分解因式:4a2﹣4a+1=.14.(4分)已知tan(α+15°)=,则tanα的值为.15.(4分)如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为.16.(4分)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC,AB于点D,E.如果BC=18,tan A=,那么CD=.17.(4分)如图,若△ABC内一点P满足∠P AC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PB=3,则P A+PC=.三、解答题(一):(共3小题,每题6分,满分18分)18.(6分)计算:+(﹣)﹣3tan30°﹣(π﹣)0.19.(6分)先化简,再求值:(1﹣)÷,其中a=﹣1.20.(6分)在△ABC中,AB=8,BC=6,∠B为锐角且cos B=.(1)求△ABC的面积.(2)求tan C.四.解答题(二):(共3小题,每题8分,满分24分)21.(8分)如图所示,小红想利用竹竿来测量旗杆AB的高度,在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他测得落在地面上的影长为10米,落在斜坡上的影长为4米,∠DCE=45°,求旗杆AB的高度?22.(8分)如图,在正方形ABCD中,在BC边上取中点E,连接DE,过点E做EF⊥ED 交AB于点G、交AD延长线于点F.(1)求证:△ECD∽△DEF;(2)若CD=4,求AF的长.23.(8分)已知:如图所示,一次函数y=﹣2x的图象与反比例函数y=的图象分别交于点A和点B,过点B作BC⊥y轴于点C,点E是x轴的正半轴上的一点,且S△BCE=2,∠AEB=90°.(1)求m的值及点E的坐标;(2)连接AC,求△ACE的面积.五、解答题(共2小题,每小题10分,满分20分)24.(10分)如图,在⊙O中,直线CD垂直直径AB于E,直线GF为⊙O的切线,切点为H,GF与直线CD相交于点F,与AB延长线交于点G,AH交CD于M,其中MH2=MD•MF.(1)连接OH,求证:△FMH为等腰三角形;(2)求证:AC∥FG;(3)若cos F=,AM=2,求线段GH的长.25.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+(k﹣1)x+k(k>0)交x轴的负半轴于点A,交x轴的正半轴于点B,交y轴的正半轴于点C,且AB=4.(1)如图1,求k的值;(2)如图2,点D在第一象限的抛物线上,点E在线段BC上,DE∥y轴,若DE=BE,求点D的坐标;(3)如图3,在(2)的条件下,F为抛物线顶点,点P在第四象限的抛物线上,FP交直线DE于点Q,点G与点D关于y轴对称,若GQ=DP,求点P的坐标.2019-2020年广东省华南师大中山附中九年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(共10小题,每题3分,满分30分)1.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项正确;B、是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.2.(3分)去年汕头市经济发展成绩斐然,全市投资总额首次突破200000000000元,其中200000000000用科学记数法表示为()A.2×1012B.0.2×1012C.2×1011D.20×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:200000000000用科学记数法表示为2×1011,故选:C.3.(3分)下列计算正确的是()A.x6÷x2=x3B.1﹣(x﹣1)=﹣x+2C.(a﹣b)2=a2﹣b2D.(3x)2=6x2【分析】根据同底数幂的除法、完全平方公式,积的乘方以及整式的加减,逐项进行计算可得出判断.【解答】解:x6÷x2=x6﹣2=x4,因此选项A不正确;1﹣(x﹣1)=1﹣x+1=﹣x+2,因此选项B正确;(a﹣b)2=a2﹣2ab+b2,因此选项C不正确;(3x)2=9x2,因此选项D不正确,故选:B.4.(3分)下列根式中与是同类二次根式的是()A.B.C.D.【分析】原式各项化简得到最简二次根式,找出与已知同类二次根式即可.【解答】解:与是同类二次根式的是=3,故选:D.5.(3分)在△ABC中,∠C=90°,BC=2,sin A=,则边AC的长是()A.B.3C.D.【分析】先根据BC=2,sin A=求出AB的长度,再利用勾股定理即可求解.【解答】解:∵sin A==,BC=2,∴AB=3.∴AC===.故选:A.6.(3分)已知点A(5,﹣2)关于y轴的对称点A′在反比例函数y=(k≠0)的图象上,则实数k的值为()A.10B.﹣10C.D.﹣【分析】根据对称性求出点A′的坐标,把点A′的坐标代入反比例函数y=可求出k 的值.【解答】解:∵点A′与点A(5,﹣2)关于y轴的对称,∴点A′(﹣5,﹣2),又∵点A′(﹣5,﹣2)在反比例函数y=(k≠0)的图象上,∴k=(﹣5)×(﹣2)=10,故选:A.7.(3分)如图所示,△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若∠DEF=55°,则∠A的度数是()A.35°B.55°C.70°D.125°【分析】根据三角形的内切圆与圆心和圆周角定理即可求解.【解答】解:连接OD,OF,OA,如下图所示,∵△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,∵∠DEF=55°,∴∠DOF=2∠DEF=2×55°=110°(圆心角是圆周角的2倍),∵在三角形AOD与三角形AOF中,∵∠A+∠ADO+∠AFO+∠DOF=360°,∵AD,AF是圆的切线,∴∠ADO=∠AFO=90°,∴∠A=360°﹣90°﹣90°﹣110°=70°,故选:C.8.(3分)如图1是由大小相同的小正方体搭成的几何体,将它左侧的小正方体移动后得到图2.关于移动前后的几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【分析】根据三视图画法分别解答即可.【解答】解:利用图1的三视图,图2的三视图可得左视图相同.故选:B.9.(3分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H 两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE 与△FGH的面积比为何?()A.2:1B.3:2C.5:2D.9:4【分析】只要证明△ADE∽△FGH,可得=()2,由此即可解决问题;【解答】解:∵BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,∵DE∥BC,FG∥AB,FH∥AC,∴四边形BGFD是平行四边形,四边形EFHC是平行四边形,∴DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠ADE,∠FHG=∠C=∠AED,∴△ADE∽△FGH,∴=()2=()2=.故选:D.10.(3分)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为()A.3B.2C.1.5D.1【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB,再根据反比例函数的比例系数k的几何意义得到S△OAB=|k|,便可求得结果.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=2,∴S△CAB=2,故选:B.二、填空题:(共7小题,每题4分,满分28分)11.(4分)比较大小:2>5(填“>,<,=”).【分析】首先分别求出两个数的平方各是多少;然后判断出两个数的平方的大小关系,即可判断出两个数的大小关系.【解答】解:,52=25,因为28>25,所以2>5.故答案为:>.12.(4分)若2m+n=3,则代数式6﹣2m﹣n的值为3.【分析】将6﹣2m﹣n化成6﹣(2m+n)代值即可得出结论.【解答】解:∵2m+n=3,∴6﹣2m﹣n=6﹣(2m+n)=6﹣3=3,故答案为:3.13.(4分)分解因式:4a2﹣4a+1=(2a﹣1)2.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:4a2﹣4a+1=(2a﹣1)2.故答案为:(2a﹣1)2.14.(4分)已知tan(α+15°)=,则tanα的值为1.【分析】首先确定α的度数,然后再利用三角函数值求答案.【解答】解:∵tan60°=,∴α+15°=60°,解得:α=45°,∴tanα=1,故答案为:1.15.(4分)如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为135°.【分析】根据相似三角形的对应角相等即可得出.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF,又∠DEF=90°+45°=135°,∴∠BAC=135°.故答案是:135°.16.(4分)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC,AB于点D,E.如果BC=18,tan A=,那么CD=5.【分析】解直角三角形求出AC,AB,再在Rt△BDE中求出BD即可解决问题.【解答】解:∵在Rt△ABC中,∠C=90°,BC=18,tan A=,∴AC===12,∴AB===6,cos B===,∵边AB的垂直平分线交边AB于点E,∴BE=AB=3.∵在Rt△BDE中,∠BED=90°,∴cos B==∴BD=13,∴CD=BC﹣BD=18﹣13=6故答案为5.17.(4分)如图,若△ABC内一点P满足∠P AC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PB=3,则P A+PC=4.【分析】作CH⊥AB于H,则AH=BH,∠ACH=∠BCH=60°,∠CAB=∠CBA=30°,得出AB=2BH=2•BC•cos30°=BC,证明△P AB∽△PBC,得出===,求出P A、PC,即可得出结果.【解答】解:作CH⊥AB于H,如图所示:∵CA=CB,CH⊥AB,∠ACB=120°,∴AH=BH,∠ACH=∠BCH=60°,∠CAB=∠CBA=30°,∴AB=2BH=2•BC•cos30°=BC,∵∠P AC=∠PCB=∠PBA,∴∠P AB=∠PBC,∴△P AB∽△PBC,∴===,∴P A=PB=3,PC===,∴P A+PC=3+=4,故答案为:4.三、解答题(一):(共3小题,每题6分,满分18分)18.(6分)计算:+(﹣)﹣3tan30°﹣(π﹣)0.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、立方根的性质分别化简得出答案.【解答】解:原式=3﹣﹣3×﹣1=3﹣﹣﹣1=﹣.19.(6分)先化简,再求值:(1﹣)÷,其中a=﹣1.【分析】根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:(1﹣)÷=×=,当a=﹣1时,原式==.20.(6分)在△ABC中,AB=8,BC=6,∠B为锐角且cos B=.(1)求△ABC的面积.(2)求tan C.【分析】(1)如图,过点A作AH⊥BC于H.解直角三角形求出AH即可解决问题.(2)解直角三角形求出AH,CH即可解决问题.【解答】解:(1)如图,过点A作AH⊥BC于H.∵cos B=,∴∠B=60°,∴BH=AB•cos B=4,AH=AB•sin B=4,∴S△ABC=•BC•AH=×6×4=12.(2)在Rt△ACH中,∵∠AHC=90°,AH=4,CH=BC﹣BH=7﹣4=2,∴tan C===2.四.解答题(二):(共3小题,每题8分,满分24分)21.(8分)如图所示,小红想利用竹竿来测量旗杆AB的高度,在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他测得落在地面上的影长为10米,落在斜坡上的影长为4米,∠DCE=45°,求旗杆AB的高度?【分析】延长AD交BC的延长线于点F,过点D作DE⊥BC于点E,根据勾股定理求出ED的长,再由同一时刻物高与影长成正比得出EF的长,根据DE∥AB可知△EDF∽△ABF,由相似三角形的对应边成比例即可得出AB的长.【解答】解:延长AD交BC的延长线于点F,过点D作DE⊥BC于点E,∵CD=4米,∠DCE=45°,∴DE=CE=4,∵同一时刻物高与影长成正比,∴,解得EF=2DE=8,∴BF=10+4+8=22,∵DE⊥BC,AB⊥BC,∴△EDF∽△BAF,∴=,即∴AB=11米.答:旗杆的高度约为11米.22.(8分)如图,在正方形ABCD中,在BC边上取中点E,连接DE,过点E做EF⊥ED 交AB于点G、交AD延长线于点F.(1)求证:△ECD∽△DEF;(2)若CD=4,求AF的长.【分析】(1)根据正方形的性质得出∠FED=∠C=90°,BC∥AD,根据平行线的性质得出∠CED=∠FDE,再根据相似三角形的判定得出即可;(2)根据正方形的性质得出∠C=90°,AD=BC=CD=4,求出CE,根据勾股定理求出DE,根据相似得出比例式,代入求出即可.【解答】(1)证明:∵四边形ABCD是正方形,EF⊥ED,∴∠FED=∠C=90°,BC∥AD,∴∠CED=∠FDE,∴△ECD∽△DEF;(2)解:∵四边形ABCD是正方形,∴∠C=90°,AD=BC=CD=4,∵E为BC的中点,∴CE=BC=2,在Rt△DCE中,由勾股定理得:DE===2,∵△ECD∽△DEF,∴,∴=,解得:DF=5,∵AD=4,∴AF=DF﹣AD=5﹣4=1.23.(8分)已知:如图所示,一次函数y=﹣2x的图象与反比例函数y=的图象分别交于点A和点B,过点B作BC⊥y轴于点C,点E是x轴的正半轴上的一点,且S△BCE=2,∠AEB=90°.(1)求m的值及点E的坐标;(2)连接AC,求△ACE的面积.【分析】(1)由题意得:S△BCE=2=S△BCO=|m|,求出m=﹣4,再证明∠NBE=∠AEM,则tan∠NBE=tan∠AEM,即,则,即可求解;(2)由题意得:△ACE的面积=S△ACO+S△AOE+S△OEC,求解即可.【解答】解:(1)∵BC∥x轴,故△BCE和△BCO高相等,故二者底均为BC,则S△BCE=2=S△BCO=|m|,解得m=﹣4(正值已舍去),故反比例函数表达式为y=﹣,联立一次函数和反比例函数表达式并整理得:x2=2,解得x=,故点A、B的坐标分别为(﹣,2)、(2,﹣2),设点E(s,0)(s>0),分别过点A、B作x轴的垂线,垂足分别为M、N,∵∠AEB=90°,∴∠BEN+∠AEM=90°,∵∠BEN+∠NBE=90°,∴∠NBE=∠AEM,∴tan∠NBE=tan∠AEM,即,则,解得s=(负值已舍去),故点E(,0);(2)由题意得:△ACE的面积=S△ACO+S△AOE+S△OEC=×2×+××2××2=2+4.五、解答题(共2小题,每小题10分,满分20分)24.(10分)如图,在⊙O中,直线CD垂直直径AB于E,直线GF为⊙O的切线,切点为H,GF与直线CD相交于点F,与AB延长线交于点G,AH交CD于M,其中MH2=MD•MF.(1)连接OH,求证:△FMH为等腰三角形;(2)求证:AC∥FG;(3)若cos F=,AM=2,求线段GH的长.【分析】(1)由切线的性质得出∠OHA+∠MHF=90°,得出∠OAH+∠AME=90°,则∠MHF=∠AME,证得∠MHF=∠HMF,则结论得出;(2)证明△HMF∽△DMH,由相似三角形的性质得出∠HDM=∠MHF,得出∠MHF=∠CAH,则可得出结论;(3)证出∠CMA=∠CAM,得出AC=CM,设CE=3x,AC=4x,则AE=x,EM=x,根据AM=2,求出x=,得出CE=3,AE=,连接OC,可求出半径OC 的长,证明△CEA∽△OHG,由相似三角形的性质得出,则可求出答案【解答】(1)证明:∵直线GF为⊙O的切线,∴OH⊥GF,∴∠OHA+∠MHF=90°,又∵OA=OB,∴∠OHA=∠OAH,∵CD⊥AB,∴∠AEM=90°,∴∠OAH+∠AME=90°,∴∠MHF=∠AME,又∠AME=∠HMF,∴∠MHF=∠HMF,∴HF=MF,∴△FNH为等腰三角形;(2)证明:∵MH2=MD•MF.∴,又∵∠HMD=∠FMH,∴△HMF∽△DMH,∴∠HDM=∠MHF,∵∠HDM=∠CAH,∴∠MHF=∠CAH,∴AC∥GF;(3)解:∵AC∥GF,∴∠C=∠F,∴cos C=cos F=,∵∠FHM=∠HMF,∠CAM=∠MHF,∠HMF=∠CMA,∴∠CMA=∠CAM,∴AC=CM,设CE=3x,AC=4x,∴AE=x,EM=x,∴AM==2,解得x=,∴CE=3,AE=,连接OC,在Rt△OCE中,OC2=OE2+CE2,设OC=OA=a,∴,解得a=,∵AC∥GF,∴∠G=∠CAE,又∵∠OHG=∠CEA=90°,∴△CEA∽△OHG,∴,∴,∴GH=.25.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+(k﹣1)x+k(k>0)交x轴的负半轴于点A,交x轴的正半轴于点B,交y轴的正半轴于点C,且AB=4.(1)如图1,求k的值;(2)如图2,点D在第一象限的抛物线上,点E在线段BC上,DE∥y轴,若DE=BE,求点D的坐标;(3)如图3,在(2)的条件下,F为抛物线顶点,点P在第四象限的抛物线上,FP交直线DE于点Q,点G与点D关于y轴对称,若GQ=DP,求点P的坐标.【分析】(1)令y=0,求得A、B两点的坐标,根据AB=4列出k的方程,便可求得k 的值;(2)用待定系数法求出直线BC的解析式,再设D点的横坐标为m,用m表示DE与BE,再由DE=BE,列出m的方程,便可求得结果;(3)由点F、P的坐标得,直线PF的表达式为y=(1﹣m)x+m+3,求出点Q(2,5﹣m),由GQ=DP,列出m的方程,即可求解.【解答】解:(1)令y=0,得y=﹣x2+(k﹣1)x+k=0,解得,x=﹣1,或x=k,∴A(﹣1,0),B(k,0),∵AB=4,∴k+1=4,∴k=3;(2)由(1)知,抛物线的解析式为:y=﹣x2+2x+3,B(3,0),令x=0,得y=﹣x2+2x+3=3,∴C(0,3),设直线BC的解析式为y=kx+b(k≠0),则,解得,,∴直线BC的解析式为y=﹣x+3,设D点的坐标为(m,﹣m2+2m+3),则E(m,﹣m+3),∴DE=﹣m2+3m,BE=,∵DE=BE,∴﹣m2+3m=2(3﹣m),解得,m=2或m=3(舍),∴D(2,3);(3)点G与点D关于y轴对称,则点G(﹣2,3),由抛物线的表达式知,点F(1,4),设点P(m,﹣m2+2m+3),由点F、P的坐标得,直线PF的表达式为y=(1﹣m)x+m+3,当x=2时,y=(1﹣m)×2+m+3=5﹣m,故点Q(2,5﹣m),则DP2=(m﹣2)2+(﹣m2+2m+3﹣3)2,GD2=(2+2)2+(5﹣m﹣3)2,∵GQ=DP,∴(m﹣2)2+(﹣m2+2m+3﹣3)2=(2+2)2+(5﹣m﹣3)2,解得m=1(舍去负值),故点P(1+,﹣1).。
北京市丰台区第十二中学2019-2020学年九年级下学期3月月考数学试题(含答案及解析)
北京十二中2019~2020学年第二学期月考试题初三数学说明:本试卷共4页,共2道大题,25道小题,满分100分,考试时间为40分钟一、选择题(每题均有四个选项,符合题意的选项只有一个,每题4分,共52分)1.北京大兴国际机场直线距天安门约46公里,占地1400000平方米,相当于63个天安门广场!被英国《卫报》等媒体评为“新世界七大奇迹”榜首。
其中数据1400000用科学记数法应表示为()A. 8⨯ D. 514101.410⨯⨯ B. 7⨯ C. 60.14101.410【答案】C【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】科学记数法表示:1400 000=1.4×106故选:C.【点睛】此题考查科学记数法,解题关键在于掌握科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a <10,n 为正整数.)2.若a为非零实数,则下列各式的运算结果一定比a大的是()a+ B. 2a C. a D. 2aA. 1【答案】A【解析】【分析】根据实数的运算法则进行计算即可.【详解】A.a+1>a,选项正确;B.当a<0时2a<a,选项错误;C.当a>0时|a|=a,选项错误;D.当a<0时2a<a,选项错误;故选:A.【点睛】此题考查实数的大小比较,解题关键在于掌握一个数加1,减1,乘1,除以1,值的大小变化规律.基础题.3.下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念逐一进行判断即可得.【详解】A 、是轴对称图形,故不符合题意;B 、是轴对称图形,故不符合题意;C 、是轴对称图形,故不符合题意;D 、不是轴对称图形,故符合题意,故选D .【点睛】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.4.在数轴上,点A 、B 在原点O 的两侧,分别表示数a ,2,将点A 向左平移1个单位长度,得到点C .若CO BO =,则a 的值为( )A. 3-B. 2-C. 1-D. 1【答案】C【解析】【分析】根据CO=BO 可得点C 表示的数为-2,据此可得a 的值.【详解】解:∵点A 、B 在原点O两侧,分别表示数a ,2, ∴点A 在原点的左侧,∵将点A 向左平移1个单位长度,得到点C ,∴点C 在原点的左侧,∵CO=BO , ∴点C 表示的数为-2,∴a=-2+1=-1.故选:C .【点睛】本题考查的是数轴,相反数的几何意义,熟知相反数的几何意义是解答此题的关键.在数轴上,表示互为相反数的两个点,分别位于原点的两旁,并且到原点的距离相等.5.已知正多边形的一个内角为144°,则该正多边形的边数为()A. 12B. 10C. 8D. 6【答案】B【解析】【分析】根据正多边形的一个内角是144°,则知该正多边形的一个外角为36°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是144°,∴该正多边形的一个外角为180°-144°=36°,∵多边形的外角之和为360°,∴边数=360=10 36,∴这个正多边形的边数是10,故选:B.【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是知道多边形的外角之和为360°,此题难度不大.6.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A. ﹣2B. ﹣12C. 0D.12【答案】A【解析】【分析】反例中的n满足n<1,使n2-1≥0,从而对各选项进行判断.【详解】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选A.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.箱子内装有53颗白球及2颗红球,小芬打算从箱子内抽球,以每次抽出一球后将球再放回的方式抽53次球.若箱子内每颗球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小芬抽到红球的机率为何?()A. 12B. 13C. 253D. 255【答案】D【解析】【分析】红球的个数除以球的总数即为所求的概率.【详解】解:∵一个盒子内装有大小、形状相同的53255+=个球,其中红球2个,白球53个, ∴小芬抽到红球的概率是:2253255=+. 故选D .【点睛】本题考查了概率公式,熟练掌握概率的概念是解题的关键.8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A. 平均分不变,方差变大B. 平均分不变,方差变小C. 平均分和方差都不变D. 平均分和方差都改变 【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41, ∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.9.当5b c +=时,关于x 的一元二次方程230x bx c +-=的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定【答案】A【解析】【分析】首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解.【详解】由已知,得()224312b c b c =-⨯⨯-=+△∵5b c +=∴5b c =-∴()()()222243125121240b c b c c c c =-⨯⨯-=+=-+=++△> ∴方程有两个不相等的实数根故答案为A .【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题.10.如图的ABC ∆中,AB AC BC >>,且D 为BC 上一点.今打算在AB 上找一点P ,在AC 上找一点Q ,使得APQ ∆与PDQ ∆全等,以下是甲、乙两人的作法:(甲)连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求(乙)过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求对于甲、乙两人作法,下列判断何者正确?( )A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确【答案】A【解析】【分析】 如图1,根据线段垂直平分线的性质得到PA PD =,QA QD =,则根据“SSS ”可判断APQ DPQ ∆∆≌,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形APDQ 为平行四边形,则根据平行四边形的性质得到PA DQ =,PD AQ =,则根据“SSS ”可判断APQ DQP ∆∆≌,则可对乙进行判断.【详解】解:如图1,PQ ∵垂直平分AD ,PA PD ∴=,QA QD =,而PQ PQ =,()APQ DPQ SSS ∴∆∆≌,所以甲正确;如图2,//PD AQ ,//DQ AP ,∴四边形APDQ 为平行四边形,PA DQ ∴=,PD AQ =,而PQ QP =,()APQ DQP SSS ∴∆∆≌,所以乙正确.故选A .【点睛】本题考查作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.11.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( )A. aB. bC. cD. d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.12.如图,坐标平面上有一顶点为A 的抛物线,此抛物线与方程式2y =的图形交于B 、C 两点,ABC ∆为正三角形.若A 点坐标为()3,0-,则此抛物线与Y 轴的交点坐标为何?( )A. 90,2⎛⎫ ⎪⎝⎭ B. 270,2⎛⎫ ⎪⎝⎭ C. ()0,9 D. ()0,19【答案】B【解析】【分析】设()3,2B m --,()3,2C m -+,()0m >,可知2BC m =,再由等边三角形的性质可知233,23C ⎛⎫-+ ⎪⎝⎭,设抛物线解析式()23y a x =+,将点C 代入解析式即可求a ,进而求解.【详解】解:设()3,2B m --,()3,2C m -+,()0m > A 点坐标为()3,0-,2BC m ∴=,ABC ∆为正三角形,2AC m ∴=,C 60AO ∠=︒ ,233m ∴= 233,23C ⎛⎫∴-+ ⎪⎝⎭设抛物线解析式()23y a x =+, 2233323a ⎛⎫-++= ⎪ ⎪⎝⎭, 32a ∴=, ()2332y x ∴=+, 当0x =时,272y =; 故选B .【点睛】本题考查二次函数的图象及性质,等边三角形的性质;结合函数图象将等边三角形的边长转化为点的坐标是解题的关键.13.随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中2.5PM 的值1y (3/ug m )随时间t (h )的变化如图所示,设2y 表示0时到t 时 2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t 的函数关系大致是( )A. B. C. D.【答案】B【解析】【分析】根据极差的定义,分别从0t =、010t <≤、1020t <≤及2024t <≤时,极差2y 随t 的变化而变化的情况,从而得出答案.【详解】当0t =时,极差285850y =-=,当010t <≤时,极差2y 随t 的增大而增大,最大值为43;当1020t <≤时,极差2y 随t 的增大保持43不变;当2024t <≤时,极差2y 随t 的增大而增大,最大值为98;故选B .【点睛】本题主要考查极差,解题的关键是掌握极差的定义及函数图象定义与画法.二、填空题(每题4分,共48分)14.若分式1x x -的值为0,则x 的值为__________. 【答案】0【解析】【分析】根据分式的值为零的条件可以求出x 的值. 【详解】∵分式1x x -的值为0, ∴x=0,x-1≠0,故答案为:0.【点睛】此题考查分式值为零的条件,解题关键在于掌握若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.在平面直角坐标系中,点()4,2P 到x 轴的距离是__________. 【答案】2【解析】【分析】 根据点的坐标的意义求解.【详解】点P (4,2)到x 轴的距离为2.故答案为2.【点睛】此题考查点的坐标,解题关键在于掌握把有顺序的两个数a 和b 组成的数对,叫做有序数对,记作(a ,b ).建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限;坐标平面内的点与有序实数对是一一对应的关系.16.不等式组x 12x 74⎧-⎪⎨⎪-+>⎩的解集是_____.【答案】2x -≤【解析】 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式12x ≤-,得:2x -≤, 解不等式+7>4x -,得:x<3,则不等式组的解集为2x -≤,故答案为2x -≤.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(2013tan 602π-⎛⎫--︒+= ⎪⎝⎭__________.【答案】5【解析】【分析】根据二次根式的性质,负整数指数幂,特殊角的三角函数值,零指数幂,进行计算即可.【详解】原式=33+4-33+1⨯=5,故答案为:5.【点睛】此题考查二次根式的性质,负整数指数幂,特殊角的三角函数值,零指数幂,解题关键在于掌握运算法则.18.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.这四种矿泉水某天的销售量如图所示,则这天销售的矿泉水的平均单价是__________元.【答案】2.25【解析】【分析】根据加权平均数的定义列式计算可得.【详解】这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故答案为:2.25.【点睛】此题考查加权平均数,解题的关键是掌握加权平均数的定义.19.当99x =时,代数式2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭的值为__________. 【答案】1100【解析】 【分析】先根据分式的混合运算化简原式,再把x=99,代入即可解答. 【详解】2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭=()()()21-11111x x x x x x x +⎛⎫-÷ ⎪--+-⎝⎭=()()()211-1111x x x x x x x +-⎛⎫- ⎪--⎝⎭+ =1-11+1x x x - =1+1x 把99x =代入可得:11=99+1100, 故答案为:1100. 【点睛】此题考查分式化简求值,解题关键在于掌握运算法则.20.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式为2y ax bx =+,小强骑自行车从拱梁一端O 匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶到10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需__________秒.【答案】36【解析】【分析】10秒时和26秒时拱梁的高度相同,则A ,B 一定是关于对称轴对称的点,据此即可确定对称轴,则O 到对称轴的时间可以求得,进而即可求得OC 之间的时间.【详解】如图所示:设在10秒时到达A 点,在26秒时到达B ,∵10秒时和26秒时拱梁的高度相同,∴A ,B 关于对称轴对称.则从A 到B 需要16秒,则从A 到D 需要8秒.∴从O 到D 需要10+8=18秒.∴从O 到C 需要2×18=36秒.故答案为:36.【点睛】此题考查二次函数的应用,注意到A 、B 关于对称轴对称是解题的关键.21.如图,直线()0y kx b k =+<经过点()3,1A ,当13kx b x +<时,x 的取值范围为__________.【答案】3x >【解析】【分析】根据题意结合图象首先可得13y x =的图象过点A ,因此便可得13kx b x +<的解集. 【详解】解:∵正比例函数13y x =也经过点A , ∴13kx b x +<的解集为3x >, 故答案为3x >.【点睛】本题主要考查函数的不等式的解,关键在于根据图象来判断,这是最简便的解题方法.22.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)【答案】π-1【解析】【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为π−1.【点睛】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键. 23.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD x ∥轴,反比例函数()0,0k y k x x=>>的图象经过矩形对角线的交点E ,若点20A (,),04D (,),则k 的值为__________.【答案】20【解析】【分析】根据平行于x 轴的直线上任意两点纵坐标相同,可设B (x ,4).利用矩形的性质得出E 为BD 中点,∠DAB=90°.根据线段中点坐标公式得出E (12x ,4).由勾股定理得出AD 2+AB 2=BD 2,列出方程22+42+(x-2)2+42=x 2,求出x ,得到E 点坐标,代入y=k x ,利用待定系数法求出k . 【详解】∵BD ∥x 轴,D (0,4), ∴B 、D 两点纵坐标相同,都为4,∴可设B (x ,4).∵矩形ABCD 的对角线的交点为E ,∴E 为BD 中点,∠DAB=90°.∴E (12x ,4). ∵∠DAB=90°,∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4),∴22+42+(x-2)2+42=x 2,解得x=10,∴E (5,4).∵反比例函数y=k x(k >0,x >0)的图象经过点E , ∴k=5×4=20. 故答案为20.【点睛】此题考查矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E 点坐标是解题的关键.24.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用,已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车,若他们缆车费用的总花费为4100元,则此旅行团共有__________人.【答案】16【解析】【分析】设此旅行团有x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y 人,根据题意列出二元一次方程,求出其解.【详解】设此旅行团有x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y 人,根据题意得, 2003004100(15)(10)x y y y x +⎧⎨-+-⎩== , 解得79x y ⎧⎨⎩==, 则总人数为7+9=16(人)故答案为16.【点睛】此题考查二元一次方程组的应用,解题关键是读懂题意,找出等量关系,列出方程组. 25.如图,正方形ABCD 和Rt AEF ,10AB =,8AE AF ==,连接BF ,DE .若AEF 绕点A 旋转,当ABF ∠最大时,ADE S =__________.【答案】24【解析】【分析】作DH ⊥AE 于H ,如图,由于AF=8,则△AEF 绕点A 旋转时,点F 在以A 为圆心,8为半径的圆上,当BF 为此圆的切线时,∠ABF 最大,即BF ⊥AF ,利用勾股定理计算出BF=6,接着证明△ADH ≌△ABF 得到DH=BF=6,然后根据三角形面积公式求解.【详解】作DH ⊥AE 于H ,如图,∵AF=8,当△AEF 绕点A 旋转时,点F 在以A 为圆心,8为半径的圆上,∴当BF 为此圆的切线时,∠ABF 最大,即BF ⊥AF ,在Rt △ABF 中,22108-=6,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF ,在△ADH 和△ABF 中AHD AFB DAH BAF AD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△ADH ≌△ABF (AAS ),∴DH=BF=6,∴S △ADE =12AE•DH=12×6×8=24. 故答案为24.【点睛】此题考查旋转的性质,正方形的性质,解题关键在于掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.。
齐齐哈尔市2019届九年级下月考数学试卷(3月)(有答案)
2019-2020学年黑龙江省齐齐哈尔市龙沙十中九年级(下)月考数学试卷(3月份)一、选择题(共15小题,每小题2分,满分30分)1.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×1092.下列各式:①x2+x3=x5 ;②a3•a2=a6 ;③;④;⑤(π﹣1)0=1,其中正确的是()A.④⑤B.③④C.②③D.①④3.数字,,π,sin60°,中是无理数的个数是()A.1个B.2个C.3个D.4个4.不等式组的解集在数轴上表示为()A.B.C.D.5.已知点P(a+1,2a﹣1)关于x轴的对称点在第一象限,则a的取值范围是()A.a>﹣1 B.a<C.﹣1 D.﹣16.已知,则的值为()A.B.±2 C.±D.7.如图,矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路PQMN及一条平行四边形道路EFGH,其余部分都进行了绿化,若PQ=EF=c,则花园中绿化部分的面积为()A.bc﹣ab+ac+b2B.a2+ab+bc﹣ac C.b2﹣bc+a2﹣ab D.ab﹣bc﹣ac+c28.关于x的函数y=k(x+1)和y=kx﹣1(k≠0)在同一坐标系中的图象大致是()A .B .C .D .9.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5);②它的图象经过第一、二、三象限;③当x >1时,y <0;④y 的值随x 值的增大而增大. 其中正确的个数是( ) A .0B .1C .2D .310.若关于x 的分式方程无解,则m 的值为( )A .﹣1.5B .1C .﹣1.5或2D .﹣0.5或﹣1.511.抛物线y=ax 2+bx+c 与x 轴的公共点是(﹣1,0),(3,0),则这条抛物线的对称轴是直线( )A .直线x=﹣1B .直线x=0C .直线x=1D .直线x=312.在平面直角坐标系中,正方形OABC 的面积为16,反比例函数图象的一个分支经过该正方形的对角线交点,则反比例函数的解析式为( )A .y=B .y=﹣C .y=D .y=﹣13.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,现有下列结论:①abc >0;②b 2﹣4ac <0;③4a ﹣2b+c <0;④b=﹣2a .则其中结论正确的是( )A .①③B .③④C .②③D .①④14.定义新运算:a ⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x (x ≠0)的图象大致是()A. B. C. D.15.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1 B.﹣3 C.4 D.1或﹣3二、填空题(本大题共有10小题)16.科学家测得肥皂泡的厚度约为0.000 000 73米,用科学记数法表示为米.17.函数y=+中,自变量x的取值范围是.18.如果要使关于x的方程+1﹣3m=有唯一解,那么m的取值范围是.19.若关于x的方程+=2的解不大于8,则m的取值范围是.20.小明参加学校组织的素描社团,需要购买甲、乙两种铅笔,甲种铅笔7角1支,乙种铅笔3角1支,恰好用去6元钱.可以买两种铅笔共支.21.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支,若干小分支、支干和主干的总数是73,则每个支干长出个小分支.22.若直线y=3x+k与两坐标轴围成的三角形的面积是24,则k= .=3,23.如图,二次函数y=﹣x2﹣2x的图象与x轴交于点A,O,在抛物线上有一点P,满足S△AOP则点P的坐标是.24.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为.25.如图,在平面直角坐标系中有一被称为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2020的坐标为.三、解答题26.计算:.27.先化简、再求值:﹣a﹣2),其中a=﹣3.28.解方程:3x2=6x﹣2.29.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A 的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.30.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP 的周长最小?若存在,请求出点P的坐标,若不存在,请说明理由.31.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?32.甲、乙两车先后从M地驶向N地,甲车出发一小时后,乙车出发,用了两个小时追上甲车,乙车此时马上改变速度又用了1小时到达N地.图中折线表示两车距离y(千米)与甲车行驶时间x(小时)之间的函数关系(0≤x≤4).甲、乙两车匀速行驶.请根据图象信息解答下列问题:(1)求图象中线段AB所在直线的解析式.(2)M、N两地相距多少千米?(3)若乙车到达N地后,以100千米/时的速度马上掉头去接甲车,几小时后与甲车相遇?请直接写出结果.33.如图,在平面直角坐标系中,点A,B,C在坐标轴上,∠ACB=90°,OC,OB的长分别是方程x2﹣7x+12=0的两个根,且OC<OB.(1)求点A,B的坐标;(2)过点C的直线交x轴于点E,把△ABC分成面积相等的两部分,求直线CE的解析式;(3)在平面内是否存在点M,使以点B、C、E、M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2019-2020学年黑龙江省齐齐哈尔市龙沙十中九年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(共15小题,每小题2分,满分30分)1.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1.62亿用科学记数法表示为1.62×108.故选C.2.下列各式:①x2+x3=x5 ;②a3•a2=a6 ;③;④;⑤(π﹣1)0=1,其中正确的是()A.④⑤B.③④C.②③D.①④【考点】二次根式的性质与化简;合并同类项;同底数幂的乘法;零指数幂;负整数指数幂.【分析】利用合并同类项、同底数幂的乘法、二次根式的化简、负指数幂与零指数幂的性质求解即可求得答案.【解答】解:①x2+x3≠x5 ,故错误;②a3•a2=a5,故错误;③=|﹣2|=2,故错误;④=3,故正确;⑤(π﹣1)0=1,故正确.故正确的是:④⑤.故选A.3.数字,,π,sin60°,中是无理数的个数是()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式解答即可.【解答】解:sin60°=, =2,∴无理数有,π,sin60°,共三个,故选C4.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,在数轴上表示出来,找出符合条件的选项即可.【解答】解:,由①得,x<1,由②得,x≤2,故此不等式组的解集为:x<1,在数轴上表示为:故选B.5.已知点P(a+1,2a﹣1)关于x轴的对称点在第一象限,则a的取值范围是()A.a>﹣1 B.a<C.﹣1 D.﹣1【考点】关于x轴、y轴对称的点的坐标;解一元一次不等式组.【分析】首先得出点P(a+1,2a﹣1)关于x轴的对称点(a+1,1﹣2a),进而求出a的取值范围.【解答】解:∵点P(a+1,2a﹣1)关于x轴的对称点为(a+1,1﹣2a),∴,∴解得:﹣1<a<.故选:C.6.已知,则的值为()A.B.±2 C.±D.【考点】二次根式的化简求值.【分析】把的两边平方,得出x2+的数值,再把两边平方,代入x2+的数值,进一步开方得出结果即可.【解答】解:∵,∴(x+)2=7∴x2+=5(x﹣)2=x2+﹣2=5﹣2=3,x﹣=±.故选:C.7.如图,矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路PQMN及一条平行四边形道路EFGH,其余部分都进行了绿化,若PQ=EF=c,则花园中绿化部分的面积为()A.bc﹣ab+ac+b2B.a2+ab+bc﹣ac C.b2﹣bc+a2﹣ab D.ab﹣bc﹣ac+c2【考点】整式的混合运算.【分析】由长方形的面积减去PQMN与EFGH的面积,再加上重叠部分面积即可得到结果.【解答】解:根据题意得:ab﹣bc﹣ac+c2,则花园中绿化部分的面积为ab﹣bc﹣ac+c2.故选D.8.关于x的函数y=k(x+1)和y=kx﹣1(k≠0)在同一坐标系中的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据反比例函数的图象和一次函数的图象判断k的符号,确定两个式子中的k是否能取相同的值即可.【解答】解:A、根据反比例函数的图象可得,y=kx﹣1中,k>0;根据一次函数的图象,y随x的增大而减小,则k<0,故选项错误;B、根据反比例函数的图象可得,y=kx﹣1中,k<0;根据一次函数的图象,y随x的增大而增大,则k>0,故选项错误;C、根据反比例函数的图象可得,y=kx﹣1中,k>0;根据一次函数的图象与y轴交于负半轴,则常数项k<0,故选项错误;D、根据反比例函数的图象可得,y=kx﹣1中,k<0;根据一次函数的图象,y随x的增大而增大,则k<0,据一次函数的图象与y轴交于负半轴,则常数项k<0,故选项正确.故选D.9.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5);②它的图象经过第一、二、三象限;③当x>1时,y<0;④y的值随x值的增大而增大.其中正确的个数是()A.0 B.1 C.2 D.3【考点】一次函数的性质.【分析】根据一次函数的性质对各小题进行逐一判断即可.【解答】解:∵当x=﹣1时,y=﹣5×(﹣1)+1=﹣6≠5,∴此点不在一次函数的图象上,故①错误;∵k=﹣5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=﹣5×1+1=﹣4,又k=﹣5<0,∴y随x的增大而减小,∴当x>1时,y<﹣4,故③错误,④错误.故选:A.10.若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5【考点】分式方程的解.【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.11.抛物线y=ax2+bx+c与x轴的公共点是(﹣1,0),(3,0),则这条抛物线的对称轴是直线()A.直线x=﹣1 B.直线x=0 C.直线x=1 D.直线x=3【考点】抛物线与x轴的交点;二次函数的性质.【分析】因为点A和B的纵坐标都为0,所以可判定A,B是一对对称点,把两点的横坐标代入公式x=求解即可.【解答】解:∵抛物线与x轴的交点为(﹣1,0),(3,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==1.故选C.12.在平面直角坐标系中,正方形OABC的面积为16,反比例函数图象的一个分支经过该正方形的对角线交点,则反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义;正方形的性质.【分析】根据正方形的面积确定正方形的边长,从而确定点B的坐标,然后确定对角线的交点坐标,利用待定系数法确定反比例函数的解析式即可.【解答】解:∵正方形OABC的面积为16,∴正方形的边长为4,∴点B的坐标为(﹣4,4),∴对角线的交点坐标为(﹣2,2),设反比例函数的解析式为y=,∴k=﹣2×2=﹣4,∴反比例函数的解析式为y=﹣,故选B.13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0;②b2﹣4ac <0;③4a﹣2b+c<0;④b=﹣2a.则其中结论正确的是()A.①③B.③④C.②③D.①④【考点】二次函数图象与系数的关系.【分析】由抛物线开口向下,得到a小于0,再由对称轴在y轴右侧,得到a与b异号,可得出b大于0,又抛物线与y轴交于正半轴,得到c大于0,可得出abc小于0,选项①错误;由抛物线与x轴有2个交点,得到根的判别式b2﹣4ac大于0,选项②错误;由x=﹣2时对应的函数值小于0,将x=﹣2代入抛物线解析式可得出4a﹣2b+c小于0,最后由对称轴为直线x=1,利用对称轴公式得到b=﹣2a,得到选项④正确,即可得到正确结论的序号.【解答】解:由抛物线的开口向下,得到a<0,∵﹣>0,∴b>0,由抛物线与y轴交于正半轴,得到c>0,∴abc<0,选项①错误;又抛物线与x轴有2个交点,∴b2﹣4ac>0,选项②错误;∵x=﹣2时对应的函数值为负数,∴4a﹣2b+c<0,选项③正确;∵对称轴为直线x=1,∴﹣=1,即b=﹣2a,选项④正确,则其中正确的选项有③④.故选B14.定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A. B. C. D.【考点】反比例函数的图象.【分析】根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.【解答】解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合.故选:D.15.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1 B.﹣3 C.4 D.1或﹣3【考点】待定系数法求反比例函数解析式;矩形的性质.【分析】设C(x,y).根据矩形的性质、点A的坐标分别求出B(﹣2,y)、D(x,﹣2);根据“矩形ABCD的对角线BD经过坐标原点”及直线AB的几何意义求得xy=4①,又点C在反比例函数的图象上,所以将点C的坐标代入其中求得xy=k2+2k+1②;联立①②解关于k的一元二次方程即可.【解答】解:设C(x,y).∵四边形ABCD是矩形,点A的坐标为(﹣2,﹣2),∴B(﹣2,y)、D(x,﹣2);∵矩形ABCD的对角线BD经过坐标原点,∴设直线BD的函数关系式为:y=kx,∵B(﹣2,y)、D(x,﹣2),∴k=,k=,∴=,即xy=4;①又∵点C在反比例函数的图象上,∴xy=k2+2k+1,②由①②,得k2+2k﹣3=0,即(k﹣1)(k+3)=0,∴k=1或k=﹣3,故选D.二、填空题(本大题共有10小题)16.科学家测得肥皂泡的厚度约为0.000 000 73米,用科学记数法表示为7.3×10﹣7米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 73用科学记数法可表示为7.3×10﹣7.故答案为:7.3×10﹣7.17.函数y=+中,自变量x的取值范围是x<1且x≠0 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:x<1且x≠0,故答案是:x<1且x≠0.18.如果要使关于x的方程+1﹣3m=有唯一解,那么m的取值范围是m≠且m≠3 .【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,根据分式方程有唯一解得到2﹣2m≠0,分式有意义的条件可得3(2﹣2m)≠3﹣5m,解不等式即可得到m的取值范围.【解答】解:分式方程去分母得:x﹣3m(x﹣3)+(x﹣3)=m,整理得(2﹣3m)x=3﹣8m,由分式方程有唯一解得到2﹣3m≠0,即m≠,由分式有意义的条件可得3(2﹣3m)≠3﹣8m,解得m≠3.故答案为:m≠且m≠3.19.若关于x的方程+=2的解不大于8,则m的取值范围是m≥﹣18且m≠0 .【考点】分式方程的解;解一元一次不等式.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解不大于8求出m的范围即可.【解答】解:去分母得:2﹣x﹣m=2x﹣4,解得:x=,由分式方程的解不大于8,得到,解得:m≥﹣18且m≠0,则m的取值范围是m≥﹣18且m≠0,故答案为:m≥﹣18且m≠020.小明参加学校组织的素描社团,需要购买甲、乙两种铅笔,甲种铅笔7角1支,乙种铅笔3角1支,恰好用去6元钱.可以买两种铅笔共16或12 支.【考点】二元一次方程的应用.【分析】设购买甲种铅笔x支,乙种铅笔y支根据题意可知:0.7x+0.3y=6,然后利用试值法求解即可.【解答】解:设购买甲种铅笔x支,乙种铅笔y支.0.7x+0.3y=6当x=1时,y=舍去;当x=2时,y=舍去;当x=3时,y=13,当x=4时,y=舍去;当x=5时,y=舍去;当x=6时,y=6;当x=7时,y=舍去;当x=8时,y=舍去;当x=9时,y=﹣舍去;所以可购买两种铅笔共16支和12支.故答案为:16或12.21.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支,若干小分支、支干和主干的总数是73,则每个支干长出8 个小分支.【考点】一元二次方程的应用.【分析】设每个支干长出的小分支的数目是x个,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程求得x的值.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:1+x+x•x=73,即x2+x﹣72=0,(x+9)(x﹣8)=0,解得x1=8,x2=﹣9(舍去).答:每个支干长出8个小分支.故答案为8.22.若直线y=3x+k与两坐标轴围成的三角形的面积是24,则k= ±12 .【考点】一次函数图象上点的坐标特征.【分析】根据题意画出图形,求出图形与x轴、y轴的交点坐标,然后根据三角形面积公式求出k的值即可.【解答】解:如图,当x=0时,y=k;当y=0时,x=﹣,则当y=3x+k为图中m时,k>0,=××k=,则S△AOB又∵三角形的面积是24,∴=24,解得,k=12或k=﹣12(负值舍去).同理可求得,k<0时,k=﹣12.故答案为k=±12.23.如图,二次函数y=﹣x2﹣2x的图象与x轴交于点A,O,在抛物线上有一点P,满足S=3,△AOP则点P的坐标是(1,﹣3)或(﹣3,﹣3).【考点】抛物线与x 轴的交点.【分析】根据抛物线的解析式,即可确定点A 的坐标,由于OA 是定长,根据△AOP 的面积即可确定P 点纵坐标的绝对值,将其代入抛物线的解析式中,即可求得P 点的坐标. 【解答】解:抛物线的解析式中,令y=0,得:﹣x 2﹣2x=0, 解得:x=0,x=﹣2; ∴A (﹣2,0),OA=2; ∵S △AOP =OA•|y P |=3, ∴|y P |=3;当P 点纵坐标为3时,﹣x 2﹣2x=3,x 2+2x+3=0,△=4﹣12<0,方程无解,此种情况不成立; 当P 点纵坐标为﹣3时,﹣x 2﹣2x=﹣3,x 2+2x ﹣3=0, 解得:x=1,x=﹣3;∴P (1,﹣3)或(﹣3,﹣3); 故答案为:(1,﹣3)或(﹣3,﹣3).24.二次函数y=x 2的图象如图,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在二次函数y=x 2的图象上,四边形OBAC 为菱形,且∠OBA=120°,则菱形OBAC 的面积为 2.【考点】菱形的性质;二次函数图象上点的坐标特征.【分析】连结BC 交OA 于D ,如图,根据菱形的性质得BC ⊥OA ,∠OBD=60°,利用含30度的直角三角形三边的关系得OD=BD ,设BD=t ,则OD=t ,B (t ,t ),利用二次函数图象上点的坐标特征得t 2=t ,解得t 1=0(舍去),t 2=1,则BD=1,OD=,然后根据菱形性质得BC=2BD=2,OA=2OD=2,再利用菱形面积公式计算即可.【解答】解:连结BC 交OA 于D ,如图, ∵四边形OBAC 为菱形, ∴BC ⊥OA , ∵∠OBA=120°, ∴∠OBD=60°, ∴OD=BD ,设BD=t ,则OD=t ,∴B (t , t ),把B (t ,t )代入y=x 2得t 2=t ,解得t 1=0(舍去),t 2=1,∴BD=1,OD=,∴BC=2BD=2,OA=2OD=2,∴菱形OBAC 的面积=×2×2=2.故答案为2.25.如图,在平面直角坐标系中有一被称为1的正方形OABC ,边OA 、OC 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB 1为边作第三个正方形OB 1B 2C 2,照此规律作下去,则点B 2020的坐标为 (﹣21010,﹣21010) .【考点】规律型:点的坐标.【分析】根据正方形的性质找出部分点B n 的坐标,由坐标的变化找出变化规律“B 8n+1(0,24n+1),B 8n+2(﹣24n+1,24n+1),B 8n+3(﹣24n+2,0),B 8n+4(﹣24n+2,﹣24n+2),B 8n+5(0,﹣24n+3),B 8n+6(24n+3,﹣24n+3),B 8n+7(24n+4,0),B 8n+8(24n+4,24n+4)”,依此规律即可得出结论.【解答】解:观察,发现规律:B 1(0,2),B 2(﹣2,2),B 3(﹣4,0),B 4(﹣4,﹣4),B 5(0,﹣8),B 6(8,﹣8),B 7(16,0),B 8(16,16),B 9(0,32),∴B 8n+1(0,24n+1),B 8n+2(﹣24n+1,24n+1),B 8n+3(﹣24n+2,0),B 8n+4(﹣24n+2,﹣24n+2),B 8n+5(0,﹣24n+3),B 8n+6(24n+3,﹣24n+3),B 8n+7(24n+4,0),B 8n+8(24n+4,24n+4). ∵2020=8×252+4, ∴B 2020(﹣21010,﹣21010). 故答案为:(﹣21010,﹣21010).三、解答题 26.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负指数幂法则计算,第二项利用绝对值代数意义化简,第三项利用零指数幂法则计算,第四项利用乘方的意义化简,最后一项利用立方根及特殊角的三角函数值计算即可得到结果.【解答】解:原式=9﹣+1﹣1+4×=9+.27.先化简、再求值:﹣a ﹣2),其中a=﹣3.【考点】分式的化简求值.【分析】这道求代数式值的题目,通常做法是先把代数式化简,然后再代入求值. 【解答】解:原式=,=,=,=; 当a=﹣3时,原式=﹣.28.解方程:3x 2=6x ﹣2.【考点】解一元二次方程﹣公式法.【分析】移项后求出b2﹣4ac的值,再代入公式求出即可.【解答】解:3x2=6x﹣2,3x2﹣6x+2=0,b2﹣4ac=(﹣6)2﹣4×3×2=12,x=,x 1=,x2=.29.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A 的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入直线解析式求出m的值,再将点A的坐标代入反比例函数解析式可求出k的值,继而得出反比例函数关系式;(2)将点P的纵坐标代入反比例函数解析式可求出点P的横坐标,将点P的横坐标和点F的横坐标相等,将点F的横坐标代入直线解析式可求出点F的纵坐标,将点的坐标转换为线段的长度后,即可计算△CEF的面积.【解答】解:(1)将点A的坐标代入y=x﹣1,可得:m=﹣1﹣1=﹣2,将点A(﹣1,﹣2)代入反比例函数y=,可得:k=﹣1×(﹣2)=2,故反比例函数解析式为:y=.(2)将点P的纵坐标y=﹣1,代入反比例函数关系式可得:x=﹣2,将点F的横坐标x=﹣2代入直线解析式可得:y=﹣3,故可得EF=3,CE=OE+OC=2+1=3,=CE×EF=.故可得S△CEF30.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP 的周长最小?若存在,请求出点P的坐标,若不存在,请说明理由.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式;轴对称﹣最短路线问题.【分析】(1)由OA与OC的长确定出A与C的坐标,代入抛物线解析式求出b与c的值,即可确定出解析式;(2)连接AD,与抛物线对称轴于点P,P为所求的点,设直线AD解析式为y=mx+n,把A与D 坐标代入求出m与n的值,确定出直线AD解析式,求出抛物线对称轴确定出P横坐标,将P 横坐标代入求出y的值,即可确定出P坐标.【解答】解:(1)∵OA=2,OC=3,∴A(﹣2,0),C(0,3),代入抛物线解析式得:,解得:b=,c=3,则抛物线解析式为y=﹣x2+x+3;(2)连接AD,交对称轴于点P,则P为所求的点,设直线AD解析式为y=mx+n(m≠0),把A(﹣2,0),D(2,2)代入得:,解得:m=,n=1,∴直线AD解析式为y=x+1,对称轴为直线x=,当x=时,y=,则P坐标为(,).31.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【考点】二次函数的应用.【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则y=﹣x2+30x(0<x<40);(2)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.32.甲、乙两车先后从M地驶向N地,甲车出发一小时后,乙车出发,用了两个小时追上甲车,乙车此时马上改变速度又用了1小时到达N地.图中折线表示两车距离y(千米)与甲车行驶时间x(小时)之间的函数关系(0≤x≤4).甲、乙两车匀速行驶.请根据图象信息解答下列问题:(1)求图象中线段AB所在直线的解析式.(2)M、N两地相距多少千米?(3)若乙车到达N地后,以100千米/时的速度马上掉头去接甲车,几小时后与甲车相遇?请直接写出结果.【考点】一次函数的应用.【分析】(1)设线段AB所在直线的解析式为y=kx+b,将A(1,60),B(3,0)代入,利用待定系数法即可求解;(2)根据图象,求出甲车的速度为60千米/时,再根据甲车3小时行驶的路程=乙车2小时行驶的路程,求出乙车的速度为90千米/时.再根据甲车行驶4小时时,乙车到达N地,两车相距40千米,即可得出M、N两地相距的千米数;(3)设x小时后与甲车相遇,根据相遇时,两车行驶的路程和为40千米路程方程,求解即可.【解答】解:(1)设线段AB所在直线的解析式为y=kx+b,∵A(1,60),B(3,0),∴,解得,∴线段AB所在直线的解析式为y=﹣30x+90;(2)∵甲车一小时行驶60千米,∴甲车的速度为60÷1=60(千米/时).∵甲、乙两车先后从M地驶向N地,甲车出发一小时后,乙车出发,用了两个小时追上甲车,∴乙车的速度为(60×3)÷2=90(千米/时).由图象可知,甲车行驶4小时时,乙车到达N地,两车相距40千米,∴M、N两地相距60×4+40=280(千米);(3)设x小时后与甲车相遇,根据题意得(60+100)x=40,解得x=.答:小时后与甲车相遇.33.如图,在平面直角坐标系中,点A,B,C在坐标轴上,∠ACB=90°,OC,OB的长分别是方程x2﹣7x+12=0的两个根,且OC<OB.(1)求点A,B的坐标;(2)过点C的直线交x轴于点E,把△ABC分成面积相等的两部分,求直线CE的解析式;(3)在平面内是否存在点M,使以点B、C、E、M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)通过解方程x2﹣7x+12=0可求出线段OC、OB的长度,再根据角的计算找出∠OAC=∠OCB,从而得出△AOC∽△COB,根据相似三角形的性质即可求出线段OA的长度,由此即可得出点A、B的坐标;(2)由直线CE把△ABC分成面积相等的两部分,可知点E为线段AB的中点,根据点A、B的坐标即可得出点E的坐标,再由(1)中OC的长可得出点C的坐标,根据点C的坐标设直线CE的解析式为y=kx+3,结合点E的坐标利用待定系数法即可得出结论;(3)假设存在,分别以△CBE的三边为平行四边形的对角线作平行四边形,根据平行四边形对角线互相平分的性质,结合点C、B、E的坐标即可得出点M的坐标,从而得出结论.【解答】解:(1)∵OC,OB的长分别是方程x2﹣7x+12=(x﹣3)(x﹣4)=0的两个根,且OC <OB,∴OC=3,OB=4.∵∠OAC+∠OCA=90°,∠OCA+OCB=∠ACB=90°,∴∠OAC=∠OCB,又∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴,∴OA=,∴点A的坐标为(﹣,0),点B的坐标为(4,0),点C的坐标为(0,3).(2)根据题意画出图形,如图1所示.∵直线CE把△ABC分成面积相等的两部分,∴点E为线段AB的中点.∵点A(﹣,0)、点B(4,0),∴点E的坐标为(,0).设直线CE的解析式为y=kx+3,将点E(,0)代入y=kx+3中,得:0=k+3,解得:k=﹣,∴直线CE的解析式为y=﹣x+3.(3)假设存在,以点B、C、E、M为顶点的四边形是平行四边形分三种情况,如图2、3、4所示.①如图2,以线段BE为对角线,∵点C(0,3),点B(4,0),点E(,0),∴点M(4+﹣0,0+0﹣3),即(,﹣3);②如图3,以线段CE为对角线,∵点C(0,3),点B(4,0),点E(,0),∴点M(+0﹣4,0+3﹣0),即(﹣,3);③如图4,以线段BC为对角线,∵点C(0,3),点B(4,0),点E(,0),∴点M(4+0﹣,3+0﹣0),即(,3).综上可知:在平面内存在点M,使以点B、C、E、M为顶点的四边形是平行四边形,点M的坐标为(,﹣3)、(﹣,3)或(,3).。
2022~2023年九年级第二次月考(湖南省长沙市同升湖实验学校)
选择题2019年10月17日是我国第六个国家扶贫日,习近平对脱贫攻坚工作作出重要指示强调,当前,脱贫攻坚已到了决战决胜、全面收官的关键阶段。
各地区各部门务必咬定目标、一鼓作气,坚决攻克深度贫困堡垒,着力补齐贫困人口义务教育、基本医疗、住房和饮水安全短板,确保农村贫困人口全部脱贫,同全国人民一道迈入小康社会。
下列说法正确的是()①减贫成效举世瞩目,实现同步富裕指日可待②脱贫攻坚利国利民,改革发展成果人人共享③不忘初心牢记使命,全面小康你我共同努力④扶贫工作战略部署,响应党号召奋斗新时代A.①②④B.①③④C.①②③④D.②③④【答案】D【解析】题干材料体现我国高度重视扶贫问题,体现党和政府坚持以人民为中心的发展思想,中国共产党人不忘初心,牢记使命,为人民谋福祉,让全体人民共享发展成果,全体人民要团结奋斗,为全面建成小康社会积极进取。
②③④说法正确,符合题意。
①错误,共同富裕不是同步富裕。
故选D。
选择题《中华人民共和国监察法》第三条规定,各级监察委员会是行使国家监察职能的专责机关,依照本法对所有行使公权力的公职人员进行监察,调查职务违法和职务犯罪,开展廉政建设和反腐败工作。
这-规定有利于①推进国家治理体系和能力现代化②公民更好表达批评和建议的权利③建设公正透明、廉洁高效的政府④增强公民的守法意识和执法水平A. ③④B. ①②C. ②④D. ①③【答案】D【解析】依据教材内容,监察委员会依法行使的监察权,是在党的直接领导下,代表党和国家对所有行使公权力的公职人员进行监督,既调查职务违法行为,又调查职务犯罪行为,依托纪检、拓展监察、衔接司法,实现监察全覆盖。
推动形成风清气正的良好的政治生态;坚持治标与治本、惩处和预防相结合,通过有力的监督,推动强化不敢腐的震慑,扎牢不能腐的笼子,增强不想腐的自觉。
由此可见,①③正确。
②与题意无关,排除。
④观点错误,公民无权执法。
故选D。
选择题近期,美国及其个别盟国抵制华为5G技术事件持续发酵,美国商务部宣布禁止美国公司向华为销售零部件和关键技术,给华为公司的生产、经营和发展带来了一定影响。
2019-2020年九年级下第二次月考试题
2019-2020年九年级下第二次月考试题一、选择题:(本大题8个小题,每小题3分,共24分) 以下每个小题均给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号直接填在题后的括号中.1、-31的相反数是A .3B .-3C .31 D .-31 2.在函数y =x 的取值范围是( ) A.2x -≥且0x ≠ B.2x ≤且0x ≠ C.0x ≠D.2x -≤3.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿米3,用科学记数法表示这个数为( )A .8.99×105亿米3 B .0.899×106亿米3C .8.99×104亿米3D .89.9×103亿米34.图(3)为一个多面体的表面展开图,每个面内都标注了 数字.若数字为3的面是底面,则朝上一面所标注的数字为 ( ) A.2 B.4 C.5 D.65.如图2,O 是ABC △的外接圆,已知50ABO ∠=,则ACB ∠的大小为( )A.40B.30C.45D.506.在同一坐标系中一次函数y ax b =+和二次函数 2y ax bx =+的图象可能为( )7.“五一”黄金周,巴中人民商场“女装部”推出“全部服装八折”,男装部推出“全装八五折”的优惠活动,某顾客在女装部购买了原价x 元,男装部购买了原价为y 元服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为( ) A.5800.80.85700x y x y +=⎧⎨+=⎩B.7000.850.8580x y x y +=⎧⎨+=⎩C.7000.80.85700580x y x y +=⎧⎨+=-⎩D.7000.80.85580x y x y +=⎧⎨+=⎩8. 某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是( )A 、30吨B 、31吨C 、32吨 D、33吨二、填空题:(本大题4个小题,每小题3分,共12分)在每小题中,请将答案直接填在题中的横线上.9.因式分解:3222a ab a b +-= . 10在四边形ABCD 中,已知AB//CD ,请补充条件 (写一个即可),使得四边形ABCD 为平行四边形;若ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 为菱形。
2022年广西省九年级英语下学期第二次月考试题(附答案)
广西省九年级英语下学期第二次月考试题(本试卷共十二大题,满分120分考试时间120分钟)听力部分(30分)一、听句子,选画面。
(每小题1分,共5分)你将听到五个句子,请从下列六幅图中选出与所听句子内容相符的图片,并把答案填在答题卷上。
每个句子只读一遍。
A B C D E F 1.2.3.4.5.二、听对话,选择最佳答案(共10小题,每小题1分,共10分。
)你将听到三段对话,请根据对话内容,选出每个问题的最佳答案,并把答案填在答题卷上。
每段对话读两遍。
请听第1段对话,回答第6-8小题。
6. Where will the woman go?A. Nanning.B. Beihai.C. Guilin.7. How will the woman go there?A. By train.B. By bus.C. By plane.8. Who will go with the woman?A. Her sister.B. Her brother.C. Her son.请听第2段对话,回答第9-11小题。
9. What's wrong with Mrs. West?A. She has a headache.B. She has a cold. C She has a fever.10. When will Mrs. West take the medicine?A. After lunch.B. Before lunch.C. At lunch.11. Where are the two speakers probably talking?A. In the hospital.B. In the office.C. At home.请听第3段对话,回答第12-15小题。
12. Where does the man dance?A. In the park.B. In the club.C. In the gym.13. How is the woman these days?A. She's very well.B. She's getting fat.C. She feels tired.14. Which sport does the man do in the morning?A. Tennis.B. V olleyball.C. Basketball.15. How often will the woman swim?A. Once a week.B. Twice a week.C. Three times a week.三、听短文,选择最佳答案(共5小题,每小题2分,共10分)你将听到一篇短文,请根据短文内容,选出每个问题的最佳答案,并把答案填在答题卷上。
九年级第二次月考 (数学)(含答案)082250
九年级第二次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 的相反数是( )A.B.C.D.2. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量约为亿立方米,人均占有淡水量居全世界第位,因此我们要节约用水,亿用科学记数法表示为(精确到十亿位)( )A.B.C.D.3. 如图,是一个由多个相同小正方体搭成的几何体的俯视图,图中所标的数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.−120192019−12019−2019120192750011027500275×1042.750×1042.750×101227.5×10114. 下列运算正确的是( )A.B.C.D.5. 如图,,,则的度数为 ( )A.B.C.D.6. 若数据,,,,的平均数为,方差为,则数据,(其中的平均数,方差′.下列式子正确的是( )A.B.C.D.7. 下列一元二次方程中,有两个相等的实数根的是( )A.B.C.D.8. 某公益组织在国外采购某医疗物资,每名志愿者平均每天只能采购到该物资万个,原计划采购该物资万个.实际采购中,在当地又招募到名志愿者,结果比原计划推迟一天结束采购任务并实际购得万个.设原有采购志愿者名.则据题意可列方程为( )A.B.C.D.9. 心理学家发现:课堂上,学生对概念的接受能力与提出概念的时间(单位:)之间近似满足=−(a −b)2a 2b 2⋅=a 3a 2a 6+a =a 2a 3÷a =a 3a 2AB//CD ∠A+∠E =75∘∠C 60∘65∘75∘80∘12345a b 1+2m ,2+m ,34−m ,5−2m 0<m<1)a ′b <a,=b a ′b ′=a,<b a ′b ′=a,>b a ′b ′>a,=b a ′b ′−8x+16=0x 2−8=0x 2=4(x−2)2−13x−48=0x 2120010300x −=1300x 200x+10−=1300x+10200x −=1200x 300x+10−=1200x+10300xs t min s =a +bt+c(a ≠0)2函数关系,值越大,表示接受能力越强.如图记录了学生学习某概念时与的三组数据,根据上述函数模型和数据,可推断出当学生接受能力最强时,提出概念的时间为A.B.C.D.10. 如图,点是等边的边上一点,以为边作等边,点,在同侧,下列结论:①=;②;③平分;④=,其中错误的有( )A.个B.个C.个D.个二、填空题(本题共计 5 小题,每题 5 分,共计25分)11. 已知一次函数,请你补充一个条件________,使随的增大而减小.12. 若不等式组无解,则实数的取值范围为________.13. 某学校举行“少年心向党”庆祝建党周年主题教育活动,准备从小明、小庆两名男生和小岩、小红、小慧三名女生中各随机选取一名男生和一名女生担当主持人,则小庆和小红被同时选中的概率是________.14. 如图,四边形和都是正方形,点,分别在,上,点在扇形的上,已知正方形的边长为,则图中阴影部分的面积为________.15. 如图,在正方形中,,与直线的夹角为,延长交直线于点,作正方形,延长交直线于点,作正方形;延长交直线于点,,依此规律,则 _________.s=a+bt+c(a≠0)t2s ts()8min13min20min25minD△ABC AC BD△BDE C E BD ∠ABD30∘CE//AB CB∠ACE CE AD123y=kx−b y x{x−a≥0,1−2x>x−2a100ABCD AEFG E G AB AD F ADBABCD1ABCB1AB=1AB l30∘CB1l A1A1B1C1B2C1B2l A2A2B2C2B3C2B3l A3⋯=A2021B2021三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 计算:;. 17. 为庆祝中国共产党建党周年,讴歌中华民族实现伟大复兴的奋斗历程,继承革命先烈的优良传统,某中学开展了建党周年知识测试,该校七、八年级各有名学生参加,从中各随机抽取了名学生的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息:.八年级的频数分布直方图如下(数据分为组: ,,,,;.八年级学生成绩在的这一组是:.七、八年级学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七年级八年级根据以上信息,回答下列问题:表中的值为________;在随机抽样的学生中,建党知识成绩为分的学生,在________年级排名更靠前,理由是________.若各年级建党知识测试成绩前名将参加线上建党知识竞赛,预估八年级分数至少达到________分的学生才能入选;若成绩分及以上为“优秀”,请估计八年级达到“优秀”的人数.18. 疫情期间,为了保障大家的健康,各地采取了多种方式进行预防,某地利用无人机规劝居民回家.如图,一条笔直的街道,在街道处的正上方处有一架无人机,该无人机在处测得俯角为的街道处有人聚集,然后沿平行于街道的方向再向前飞行米到达处,在处测得俯角为 的街道处也有人聚集,已知两处聚集点,之间的距离为米,求无人机飞行的高度.(参考数据: . ) 19. 如图,在直角坐标系中,直线与反比例函数的图象交于关于原点对称的,两(1)−|−4|−+(3)2–√2(−)13−2(−4−2)0(2)(1−)÷x x+3−9x 2+6x+9x 210010030050a 550≤x <6060≤x <7070≤x <8080≤x <9090≤x ≤100)b 80≤x <90808182838383.583.58484858686.587888989c 87.2859185.3m 90(1)m (2)84(3)90(4)85DC C A A 45∘B DC 60E E 37∘D B D 120AC sin ≈0.60,cos ≈0.80,tan ≈0.75,≈1.4137∘37∘37∘2–√y =−x 12y =k xA B点,已知点的纵坐标是.求反比例函数的表达式;将直线向上平移后与反比例函数在第二象限内交于点,如果的面积为,求平移后的直线的函数表达式. 20. 【阅读理解】在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.(1)解方程组(2)已知,求的值解:(1)把②代入①得:=.解得:=.把=代入②得:=.所以方程组的解为(2)①得:=.③②-③得:=.【类比迁移】(3)若,则=________.(4)解方程组【实际应用】打折前,买件商品,件商品用了元.打折后,买件商品,件商品用了元,比不打折少花了多少钱? 21. 已知二次函数(为常数).求证:不论为何值,该函数的图象与轴总有公共点;当取什么值时,该函数的图象与轴的交点在轴的上方?22. 如图,在圆中,弦于,弦于,与相交于点.(1)求证:.(2)如果=,=,求圆的半径.23. 边长为的正方形中,点是上一点,过点作交射线于点,连接.A 3(1)(2)y =−x 12C △ABC 36{x+2(x+y)=3x+y =1{ 4x+3y+2z =10,9x+7y+5z =25x+y+z x+2×13x 1x 1y 0{ x =1y =0×28x+6y+4z 20x+y+z 5{ x+y+z =13x+3y+5z =23x+2y+3z 2x−y−2=0,+2y =9.2x−y+5739A 21B 108052A 28B 1152y =2(x−1)(x−m−3)m (1)m x (2)m y x O AB ⊥CD E AG ⊥BC F CD AG M =BD^BG ^AB 12CM 4O 4ABCD E BD E EF ⊥AE CB F CE若点在边上(如图).①求证:;②若,求的长.若点在延长线上,,请直接写出的长为________.(1)F BC CE =EF BC =2BF DE (2)F CB BC =2BF DE参考答案与试题解析九年级第二次月考 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】D【考点】相反数【解析】直接利用相反数的定义分析得出答案.【解答】解:的相反数是:.故选.2.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】解:将亿用科学记数法表示为:.故选.3.【答案】D【考点】由三视图判断几何体简单组合体的三视图【解析】根据几何体的三视图来解答即可.【解答】解:由俯视图的数字可知,该几何体的左视图有三列,−1201912019D a ×10n 1≤|a |<10n n a n ≥1n <1n 27500 2.750×1012C从左到右分别是,,个正方形,∴这个几何体的左视图为:故选.4.【答案】D【考点】同底数幂的乘法完全平方公式合并同类项同底数幂的除法【解析】根据完全平方公式、同底数幂的乘法、同底数幂的除法,合并同类项逐项分析即可.【解答】解:,,故该选项错误;,,故该选项错误;,与不是同类项,不能合并,故该选项错误;,,故该选项正确.故选.5.【答案】C【考点】平行线的性质三角形的外角性质【解析】【解答】解:设与相交于点,如图所示:232D A (a −b =−2ab +)2a 2b 2B ⋅==a 3a 2a 3+2a 5C a 2a D ÷a ==a 3a 3−1a 2D CE AB O∵,∴.∵,∴.故选.6.【答案】B【考点】方差算术平均数【解析】先后利用方差和算术平方根的计算公式分别计算出变化前后的方差和算术平方根,再进行比较,即可解答.【解答】解:,,.,,,,,, 又,,.故选.7.【答案】A【考点】根的判别式【解析】分别求出每个方程判别式的值,根据判别式的值与方程的解的个数间的关系得出答案.【解答】∠A+∠E =75∘∠BOE =∠A+∠E =75∘AB//CD ∠C =∠BOE =75∘C ∵a =(1+2+3+4+5)=315=(1+2m+2+m+3+4−m+5−2m)=3a ′15∴a =a ′∵b =×[++++]15(1−3)2(2−3)2(3−3)2(4−3)2(5−3)2=×[++++]15(−2)2(−1)2021222=2=×[++++]b ′15(1+2m−3)2(2+m−3)2(3−3)2(4−m−3)2(5−2m−3)2=×(10−20m+10)15m 2=2−4m+2m 2=2(m−1)2∵0<m<1∴0<=2(m−1)<2b ′∴<b b ′B Δ=−4×1×16=02解:.∵∴方程有两个相等的实数根,符合题意;.∵∴有两个不相等的实数根,不符合题意;.方程化为∵∴方程有两个不相等的实数根,不符合题意;.∵∴方程有两个不相等的实数根,不符合题意;故选.8.【答案】B【考点】由实际问题抽象为分式方程【解析】设原有采购志愿者名.根据“结果比原计划推迟一天”列出方程.【解答】解:设原有采购志愿者名,根据题意,得.故选.9.【答案】B【考点】二次函数的应用二次函数的最值【解析】此题暂无解析【解答】解:由题意得:函数过点、、,把以上三点坐标代入得:,解得,则函数的表达式为:,,则函数有最大值,当时,有最大值,即学生接受能力最强.故选.10.【答案】B A Δ=−4×1×16=0(−8)2B Δ=−4×1×(−8)=32>002C −4x =0x 2Δ=−4×1×0=16>0(−4)2D Δ=−4×1×(−48)=361>0(−13)2A x x −=1300x+10200xB (0,43)(20,55)(30,31)s =a +bt+c(a ≠0)t 2 43=c,55=a +20b +c,20231=a +30b +c,302 a =−,110b =,135c =43;s =−+t+43110t 2135∵a =−<0110t =−=13b 2a s B【考点】全等三角形的性质与判定等边三角形的性质等腰三角形的性质与判定【解析】由等边三角形的性质和全等三角形的判定与性质,分别对各个结论进行推理判断即可.【解答】∵和是等边三角形,∴====,=,=,∴=,①不正确;在和中,,∴,∴==,=,④正确;∴=,∴,②正确;∵==,∴平分,③正确;∴错误的有个,二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】一次函数的性质【解析】此题暂无解析【解答】解:根据一次函数的基本性质可知,在一次函数中,当时,随的增大而减小.故答案为:.12.【答案】【考点】解一元一次不等式组【解析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出的取值范围.△ABC △BDE ∠A ∠ACB ∠ABC ∠DBE 60∘AB BC BD BE ∠ABD ∠CBE △ABD △CBE AB =CB∠ABD =∠CBE BD =BE△ABD ≅△CBE(SAS)∠A ∠BCE 60∘AD CE ∠BCE ∠ABC CE//AB ∠CBE ∠ACB 60∘CB ∠ACE 1k <0y =kx−b k <0y x k <0a ≤−1a【解答】解:,由①得,,由②得,.∵不等式组无解,∴,解得:.故答案为:.13.【答案】【考点】列表法与树状图法概率公式【解析】用列表法表示所有可能出现的结果,进而求出相应的概率.【解答】解:利用列表法表示所有可能出现的结果如下:男生 女生小岩小红小惠小明小明,小岩小明,小红小明,小惠小庆小庆,小岩小庆,小红小庆,小惠共有种可能出现的结果,其中小庆和小红同时被选中的有种,∴(小庆和小红被同时选中).故答案为:.14.【答案】【考点】正方形的性质扇形面积的计算【解析】此题暂无解析【解答】此题暂无解答15.【答案】【考点】{x+a ≥0①1−2x >x−2②x ≥−a x <1−a ≥1a ≤−1a ≤−11661P =1616()3–√2021正方形的性质含30度角的直角三角形规律型:图形的变化类【解析】根据含度的直角三角形三边的关系得到,,再利用四边形为正方形得到,接着计算出,然后根据的指数变化规律得到的长度.【解答】解:四边形为正方形,.,,,.四边形为正方形,.,,,,.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:原式.原式 . 【考点】实数的运算分式的化简求值【解析】【解答】解:原式.原式 . 30=A =A 1B 13–√B 13–√A =2A =2A 1B 1A 1B 1C 1B 2==A 1B 2A 1B 13–√=A 2B 2()3–√23–√A 2018B 2019∵ABCB 1∴A =AB =1B 1∵C//AB A 1∴∠A =B 1A 130∘∴=A =A 1B 13–√B 13–√A =2A =2A 1B 1∵A 1B 1C 1B 2∴==A 1B 2A 1B 13–√∵//A 2C 1A 1B 1∴∠=B 2A 2A 130∘∴==×=A 2B 23–√A 1B 23–√3–√()3–√2⋯∴=A 2021B 2021()3–√2021()3–√2021(1)=18−4−9+1=6(2)=÷3x+3−9x 2+6x+9x 2=⋅3x+3+6x+9x 2−9x 2=⋅3x+3(x+3)2(x+3)(x−3)=3x−3(1)=18−4−9+1=6(2)=÷3x+3−9x 2+6x+9x 2=⋅3x+3+6x+9x 2−9x 2=⋅3x+3(x+3)2(x+3)(x−3)=3x−317.【答案】八,该学生的成绩大于八年级的中位数,但小于七年级的中位数根据题意得:(人),答:八年级达到“优秀”的人数约为人.【考点】频数(率)分布直方图中位数用样本估计总体【解析】(1)根据中位数的定义直接求解即可;(2)从七、八年级的中位数进行分析,即可得出在八年级排名更靠前;(3)先求出从抽取的名学生中参加线上建党知识竞赛得人数,再结合统计图给出的数据,即可得出答案;(4)用总人数乘以达到“优秀”的人数所占的百分比即可.【解答】解:八年级共抽取名学生,第,名学生的成绩为分,分,所以(分).故答案为:.在八年级排名更靠前,理由如下:七年级的中位数是分,八年级的中位数是分,该学生的成绩大于八年级成绩的中位数,小于七年级成绩的中位数,在八年级排名更靠前.故答案为:八,该学生的成绩大于八年级成绩的中位数,小于七年级成绩的中位数;根据题意得:(人),则在抽取的名学生中,必须有人参加线上建党知识竞赛,所以至少达到分才能入选.故答案为:.根据题意得:(人),答:八年级达到“优秀”的人数约为人.18.【答案】解:如图,过点作于.∵,∴,∵,,∴,∴四边形为矩形.∴米.设米.则米,米.在中,∵,8389(4)300×=1207+135012050(1)5025268383m==8383+83283(2)∵8583∴∴(3)×50=159030050158989(4)300×=1207+1350120E EM ⊥DC M AE//CD ∠ABC =∠BAE =45∘BC ⊥AC EM ⊥DC AC//EM AEMC CM =AE =60BM =x AC =BC =EM =(60+x)DM =(120+x)Rt △EDM ∠D =37∘∠D ===0.75EM 60+x∴,解得:,∴(米).∴飞机高度为米.答:无人机飞行的高度为米.【考点】解直角三角形的应用-仰角俯角问题【解析】【解答】解:如图,过点作于.∵,∴,∵,,∴,∴四边形为矩形.∴米.设米.则米,米.在中,∵,∴,解得:,∴(米).∴飞机高度为米.答:无人机飞行的高度为米.19.【答案】解:令一次函数中,,则,解得,即点的坐标为.∵点在反比例函数的图象上,∴,∴反比例函数的表达式为.设平移后直线于轴交于点,连接,如图所示,设平移后的解析式为,∵该直线平行直线,∴,tan ∠D ===0.75EM DM 60+x 120+x x =120AC =60+x =60+120=180180AC 180E EM ⊥DC M AE//CD ∠ABC =∠BAE =45∘BC ⊥AC EM ⊥DC AC//EM AEMC CM =AE =60BM =x AC =BC =EM =(60+x)DM =(120+x)Rt △EDM ∠D =37∘tan ∠D ===0.75EM DM 60+x 120+x x =120AC =60+x =60+120=180180AC 180(1)y =−x 12y =33=−x 12x =−6A (−6,3)A(−6,3)y =k x k =−6×3=−18y =−18x (2)y F AF BF y =−x+b12AB =S △ABC S △ABF∵的面积为,∴,由对称性可知,,∵,∴,∴,∴,∴平移后的直线的函数表达式为.【考点】待定系数法求反比例函数解析式反比例函数与一次函数的综合一次函数图象与几何变换三角形的面积【解析】将代入一次函数解析式中,求出的值,即可得出点的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;平移后直线于轴交于点,连接,,设平移后的解析式为,由平行线的性质可得出,结合正、反比例函数的对称性以及点的坐标,即可得出关于的一元一次方程,解方程即可得出结论.【解答】解:令一次函数中,,则,解得,即点的坐标为.∵点在反比例函数的图象上,∴,∴反比例函数的表达式为.设平移后直线于轴交于点,连接,如图所示,设平移后的解析式为,∵该直线平行直线,∴,∵的面积为,∴,由对称性可知,,∵,∴,∴,∴,∴平移后的直线的函数表达式为.20.【答案】△ABC 48=OF ⋅(−)=36S △ABF 12x B x A =−x B x A =−6x A =6x B =b ×12=36S △ABF 12b =6y =−x+612(1)y =3x A (2)y F AF BF y =−x+b 12=S △ABC S △ABF A b (1)y =−x 12y =33=−x 12x =−6A (−6,3)A(−6,3)y =k x k =−6×3=−18y =−18x (2)y F AF BF y =−x+b12AB =S △ABC S △ABF △ABC 48=OF ⋅(−)=36S △ABF 12x B x A =−x B x A =−6x A =6x B =b ×12=36S △ABF 12b =6y =−x+612+),得:=.故答案为:.,由,将(1)代入(2)中得:=,解得:=,将=代入(3)中得:=.∴方程组的解为.【实际应用】设打折前商品每件元,商品每件元,根据题意得:=,即=,将两边都乘得:=,=(元).答:比不打折少花了元.【考点】二元一次方程组的应用——行程问题二元一次方程的应用解三元一次方程组【解析】【类比迁移】(1)利用①+②可得出=,此问得解;(2)利用代入法解方程组,即可求出结论;【实际应用】设打折前商品每件元,商品每件元,由买件商品件商品用了元,可得出关于、的二元一次方程,变形后可得出=,用原价-现价即可求出少花钱数.【解答】+),得:=.故答案为:.,由得:=,将(1)代入(2)中得:=,解得:=,将=代入(3)中得:=.∴方程组的解为.【实际应用】设打折前商品每件元,商品每件元,根据题意得:=,即=,将两边都乘得:=,=(元).答:比不打折少花了元.21.【答案】证明:当时,,解得:,.当,即时,方程有两个相等的实数根;当,即时,方程有两个不相等的实数根,∴不论为何值,该函数的图象与轴总有公共点.解:当时,,÷2x+2y+3z 1818(2) 2x−y−2=0+2y =92x−y+57181+2y 9y 4y 4x 3{ x =3y =4A xB y 39x+21y 108013x+7y 360452x+28y 14401440−1152288288()÷2x+2y+3z 18A x B y 39A 21B 1080x y 52x+28y 1440÷2x+2y+3z 1818(2) 2x−y−2=0+2y =92x−y+572x−y 21+2y 9y 4y 4x 3{ x =3y =4A xB y 39x+21y 108013x+7y 360452x+28y 14401440−1152288288(1)y =02(x−1)(x−m−3)=0=1x 1=m+3x 2m+3=1m=−2m+3≠1m≠−2m x (2)x =0y =2m+6∴该函数的图象与轴交点的纵坐标是,∴当,即时,该函数的图象与轴的交点在轴的上方.【考点】抛物线与x 轴的交点二次函数图象上点的坐标特征【解析】此题暂无解析【解答】证明:当时,,解得:,.当,即时,方程有两个相等的实数根;当,即时,方程有两个不相等的实数根,∴不论为何值,该函数的图象与轴总有公共点.解:当时,,∴该函数的图象与轴交点的纵坐标是,∴当,即时,该函数的图象与轴的交点在轴的上方.22.【答案】证明:连结、、,如图所示,∵,,∴==,∴=,=,∴=,即=,∴;连接、、、、,作于,于,如图所示:则=,==,∵=,=,=,∴=,∵=,∴=,∴==,∴=,∵,∴=,∴=,∴的度数的度数=,∴=,∴=,∵=,∴=,在和中,,∴,∴==,∴;即的半径为.y 2m+62m+6>0m>−3y x (1)y =02(x−1)(x−m−3)=0=1x 1=m+3x 2m+3=1m=−2m+3≠1m≠−2m x (2)x =0y =2m+6y 2m+62m+6>0m>−3y x AD BD BG 1AB ⊥CD AG ⊥BC ∠CEB ∠AFB 90∘∠ECB+∠B 90∘∠BAF +∠B 90∘∠ECB ∠BAF ∠DCB ∠BAG =BD^BG ^OA OB OC OG CG OH ⊥CG H OK ⊥AB K 2CH GH =CG 12AK BK =AB 126∠DCB ∠BAG ∠DCB+∠CMF 90∘∠BAG+∠ABF 90∘∠CMF ∠ABF ∠ABF ∠AGC ∠CMF ∠AGC CG CM 4GH 2AG ⊥BC ∠AFB 90∘∠FAB+∠FBA 90∘BG^+AC ^180∘∠COG+∠AOB 180∘∠HOG+∠BOK 90∘∠HGO +∠HOG 90∘∠HGO ∠BOK △HOG △KBO ∠OHG =∠BKO =90∠HGO =∠BOK OG =OB△HOG ≅△KBO(AAS)OK HG 2OB ===2O +B K 2K 2−−−−−−−−−−√+2262−−−−−−√10−−√⊙O 210−−√【考点】勾股定理垂径定理圆心角、弧、弦的关系【解析】(1)连结、、,由,得到==,根据等角的余角相等得到=,即可得出结论;(2)连接、、、、,作于,于,由垂径定理得出=,==,由圆周角定理和角的互余关系证出=,得出==,因此=,由证出的度数的度数=,得出=,因此=,证出=,由证明,得出对应边相等==,再由勾股定理求出即可.【解答】证明:连结、、,如图所示,∵,,∴==,∴=,=,∴=,即=,∴;连接、、、、,作于,于,如图所示:则=,==,∵=,=,=,∴=,∵=,∴=,∴==,∴=,∵,∴=,∴=,∴的度数的度数=,∴=,∴=,∵=,∴=,在和中,,∴,∴==,∴;即的半径为.AD BD BG AB ⊥CD AG ⊥BC ∠CEB ∠AFB 90∘∠ECB ∠BAF OA OB OC OG CG OH ⊥CG H OK ⊥AB K CH GH =CG 12AK BK =AB 126∠CMF ∠AGC CG CM 4GH 2AG ⊥BC BG ^+AC^180∘∠COG+∠AOB 180∘∠HOG+∠BOK 90∘∠HGO ∠BOK AAS △HOG ≅△KBO OK HG 2OB AD BD BG 1AB ⊥CD AG ⊥BC ∠CEB ∠AFB 90∘∠ECB+∠B 90∘∠BAF +∠B 90∘∠ECB ∠BAF ∠DCB ∠BAG =BD^BG ^OA OB OC OG CG OH ⊥CG H OK ⊥AB K 2CH GH =CG 12AK BK =AB 126∠DCB ∠BAG ∠DCB+∠CMF 90∘∠BAG+∠ABF 90∘∠CMF ∠ABF ∠ABF ∠AGC ∠CMF ∠AGC CG CM 4GH 2AG ⊥BC ∠AFB 90∘∠FAB+∠FBA 90∘BG^+AC ^180∘∠COG+∠AOB 180∘∠HOG+∠BOK 90∘∠HGO +∠HOG 90∘∠HGO ∠BOK △HOG △KBO ∠OHG =∠BKO =90∠HGO =∠BOK OG =OB△HOG ≅△KBO(AAS)OK HG 2OB ===2O +B K 2K 2−−−−−−−−−−√+2262−−−−−−√10−−√⊙O 210−−√23.【答案】①证明:∵正方形关于对称,∴,∴.又∵,∴,∴,∴.②解:如图,过作平行于.∵,, ,∴四边形为矩形,∴,,∵∴.∵,,∴,∴.∵,∴,∴.【考点】正方形的性质矩形的判定与性质勾股定理等腰直角三角形全等三角形的性质【解析】(1)ABCD BD △ABE ≅△CBE ∠BAE =∠BCE ∠ABC =∠AEF =90∘∠BAE+∠BFE =∠CFE+∠BFE =180∘∠BAE =∠CFE =∠BCE CE =EF 1E MN CD MN//CD MD//CN ∠ADC =90∘CDMN EN ⊥FC MD =NC CE =EF,NC =FC 12BC =2BF BC =4FC =BC 12MD =NC =BC =114∠ADB =45∘MD =MEDE ==M +M D 2E 2−−−−−−−−−−−√2–√32–√此题暂无解析【解答】①证明:∵正方形关于对称,∴,∴.又∵,∴,∴,∴.②解:如图,过作平行于.∵,, ,∴四边形为矩形,∴,,∵∴.∵, ,∴,∴.∵,∴,∴.如图,过点作,垂直为,交于.∵,∴是的中点.∵,正方形边长为,∴,,∴.又∵四边形是矩形,为等腰直角三角形,∴,∴.故答案为:.(1)ABCD BD △ABE ≅△CBE ∠BAE =∠BCE ∠ABC =∠AEF =90∘∠BAE+∠BFE =∠CFE+∠BFE =180∘∠BAE =∠CFE =∠BCE CE =EF 1E MN CD MN//CD MD//CN ∠ADC =90∘CDMN EN ⊥FC MD =NC CE =EF ,NC =FC 12BC =2BF BC =4FC =BC 12MD =NC =BC =114∠ADB =45∘MD =ME DE ==M +M D 2E 2−−−−−−−−−−−√2–√(2)E MN ⊥BC N AD M CE =EF N CF BC =2BF ABCD 4BF =2FC =2+4=6CN =FN =FC =312CDMN △DME DM =CN =ME =3ED ==3+3232−−−−−−√2–√32–√。
广西壮族自治区南宁天桃教育集团2023-2024学年九年级下学期第二次月考数学试题(含答案)
3月单元作业(二) 九年级数学学科试卷(考试形式:闭卷 考试时间:120分钟 满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.请在答题卡上作答,在本试卷上.....作答无效..... 2.答题前,请认真阅读答题卡上的注意事项............... 3. 不能使用计算器.考试结束时,将答题卡交回............. 第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡...上对应题目的答案标号涂黑.) 1.-2的倒数是( ) A .2B .12C .12-D .-22.我国古代典籍《周易》用“卦”描述万物的变化.下图为部分“卦”的符号,其中是中心对称图形的是( )A .B .C .D .3.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没⋅逆转时空》《第二十条》在网络上持续引发热议,据国家电影局2月18日发布数据,我国2024年春节档电影票房达8016000000元,创造了新的春节档票房纪录.其中数据8016000000用科学记数法表示为( ) A .880.1610⨯B .1080.1610⨯C .100.801610⨯D .98.01610⨯4.下列计算正确的是( ) A .3a 2﹣a 2 3B .(a 2)3a 6C .a 2•a 3a 6D .a 6÷a 2a 35.以下调查中,最适合用来全面调查的是( ) A .调查邕江流域水质情况 B .了解全国中学生的心理健康状况 C .了解全班学生的身高情况D .调查春节联欢晚会收视率61x -x 的取值范围是( ) A.x ≥1B.x >1C.x ≠1D.x <17.已知圆锥的母线长为10,侧面展开图面积为60π,则该圆锥的底面圆的半径长等于( ) A .4B .6C .8D .128.某学校开设了劳动教育课程.小韦从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小韦恰好选中“烹饪”的概率为( )A .18B .16C .14D .129.2024年春节联欢晚会为海内外受众奉上了一道心意满满、暖意融融的除夕“文化大餐”.截至2月10日2时,总台春晚中“竖屏看春晚”直播播放量4.2亿次.据统计,2022年首次推出的“竖屏看春晚”累计观看2亿次,设“竖屏看春晚”次数的年平均增长率为x ,则可列出关于x 的方程( ) A .24.2(1)2x +=B .4.2(12)2x +=C .2(12) 4.2x +=D .22(1) 4.2x +=10.如图,ABC DEC ∆∆≌,点A 和点D 是对应顶点,点B 和点E 是对应顶点,过点A 作AF CD ⊥,垂足为点F ,若65BCE ∠=︒,则CAF ∠的度数为( )第10题图 A .25︒B .30︒C .35︒D .65︒11.若点(,)P m n 在抛物线2(0)y ax a =≠上,则下列各点在抛物线2(1)y a x =-上的是( ) A .(,1)m n +B .(1,)m n +C .(,1)m n -D .(1,)m n -12.如图,已知点A 是一次函数()104y x x =≥的图像上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数()0k y x x=>的图像过点B ,C ,若∆OAB 的面积为16,则∆ABC 的面积是( )第12题图 A.3B .4C .6D .12第Ⅱ卷二、填空题(本大题共6小题,每小题2分,共12分.)13.单项式-3ab 的系数是______. 14.分解因式:a 2-36=______.15.如图,在Rt ∆ABC 中,90C ∠=︒,2AC BC =,则tan A 为______.第15题图16.若正多边形的一个中心角为60°,则这个正多边形的一个内角等于______°.17.如图,矩形ABCD 中,3AB =,6BC =,将矩形沿对角线BD 对折,BC 的对应边BE 与AD 相交于点P ,则PD 的长为______.第17图18.如图,等边三角形ABC 的边长为4cm ,动点P 从点A 出发以1/cm s 的速度沿AB 向点B 匀速运动,过点P 作PQ AB ⊥,交边AC 于点Q ,以PQ 为边作等边三角形PQD ,使点A ,D 在PQ 异侧,当点D 落在BC 边上时,点P 需移动______s .第18图三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分6分)计算:()23(6)(8)2--+-÷.20.(本题满分6分)解不等式组:2(1)11023x x x x +>-⎧⎪+⎨≥⎪⎩,并用数轴确定不等式组的解集.21.(本题满分10分)如图,已知ABC ∆中,D 为AB 的中点.第21题图(1)请用尺规作边AC 的垂直平分线,交AC 于点E ,交BC 于点F ,并连接DE (保留作图痕迹,不要求写作法).(2)在(1)的条件下,若ADE ∆的周长为3,求ABC ∆的周长... 22.(本题满分10分)为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图. 初中学生视力情况统计表视力人数百分比0.6及以下8 4%0.7 16 8% 0.8 28 14%0.9 3417% 1.0 m34%1.1及以上 46 n合计200100%(1)m =______,n =______;(2)被调查的高中学生视力情况的样本容量为______;(3)约定:视力达到1.0及以上视为视力良好.若该区有10000名中学生,估计该区有多少名中学生视力良好?并对视力保护提出一条合理化建议.23.(本题满分10分)如图,在ABC ∆中,6AB =,65C ∠=︒,以AB 为直径的O 与AC 相交于点D ,E 为ABD 上一点,且40ADE ∠=︒.第23题图 (1)求BE 的长;(2)若75EAD ∠=︒,求证:CB 为O 的切线.24.(本题满分10分)为提升学生身体素质,落实教育部门“在校学生每天锻炼时间不少于1小时”的文件精神.某校利用课后服务时间,在九年级开展“体育赋能,助力成长”班级篮球赛,共13个班级参加. (1)比赛积分规定:每场比赛都要分出胜负,胜一场积3分,负一场积1分.某班级在12场比赛中获得总积分为32分,问该班级胜负场数分别是多少?(2)投篮得分规则:在3分线外投篮,投中一球可得3分,在3分线内(含3分线)投篮,投中一球可得2分,某班级在其中一场比赛中,共投中22个球(只有2分球和3分球),所得总分不少于50分,问该班级这场比赛中至少投中了多少个3分球? 25.(本题满分10分)综合与实践:第25题图问题背景:数学小组发现国旗上五角星的五个角都是顶角为36︒的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现:如图1,在ABC ∆中,36A ∠=︒,2AB AC ==.(1)操作发现:将ABC ∆折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,①ABC ∠=______︒;②设BC x =,则CD =______(用含x 的式子表示); (2)进一步探究发现:512BC AC -=底腰,这个比值被称为黄金比.请你在(1)的条件下,证明:512BC AC -=底腰.(3)拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形. 如图1中的ABC ∆是黄金三角形.如图2,在菱形ABCD 中,72BAD ∠=︒,2AB =,求菱形较长对角线的长.26.(本题满分10分)如图,在平面直角坐标系中,抛物线23y ax bx =++过点(2,3),且交x 轴于点(1,0)A -,B 两点,交y 轴于点C .第26题图(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E .①当点P 运动到抛物线顶点时,求此时PDE ∆的面积.②点P 在运动的过程中,是否存在PDE ∆周长的最大值,若存在,请求出PDE ∆周长的最大值及此时点P 的坐标;若不存在,请说明理由.3月单元作业(二)九年级数学学科答案一、选择题(共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADBCABCDABD二、填空题(共6小题,每小题2分,共12分)13.3- 14.(6)(6)a a +- 15.1216.120 17.154 18.43三、解答题(共8小题,共72分)19.(本题满分6分)解:2(3)(6)(8)2--+-÷364=+-945=-= 20.(本题满分6分)解:2(1)11023x x x x +>-⎧⎪⎨+≥⎪⎩①②解不等式①,得:3x >- 解不等式②,得:2x ≤ 解集在数轴上表示如图所示:∴该不等式组的解集为:32x -<≤21.(本题满分10分)解:(1)如图所示:,EF DE 即为所求;(2)EF 是AC 的垂直平分线,∴E 为AC 的中点,D 为AB 的中点,∴DE 是ABC △的中位线, ∴1,2DE BC DE BC =∥, ∴ADE ABC △△∽,∴12ADE ABC C C ∆∆=, 3ADE C ∆=,∴6ABC C ∆=,答:ABC △的周长为6. 22.(本题满分10分) 解:(1)68,23%;(2)320;【解析】(1)20034%68,46200100%23%m n =⨯==÷⨯=, 故答案为:68,23%;(2)被调查的高中学生视力情况的样本容量为144460826555320+++++=, 故答案为:320; (3)68466555100004500200320+++⨯=+(名),答:估计该区有4500名中学生视力良好,建议学生坚持每天做眼保健操,养成良好的用眼习惯. 23.(1)解:如图,连接OE ,40ADE ∠=︒,∴280AOE ADE ∠=∠=︒,∴180100EOB AOE ∠=︒-∠=︒,6AB =,∴O 半径长是3,∴BE 的长100351803ππ⨯==;答:BE 的长为53π. (2)证明:1502EAB EOB ∠=∠=︒∴755025BAC EAD EAB ∠=∠-∠=︒-︒=︒,65C ∠=︒,∴90C BAC ∠+∠=︒,∴180()90ABC C BAC ∠=︒-∠+∠=︒, ∴直径AB BC ⊥, ∴CB 为O 的切线.24.(本题满分10分)解:(1)设胜了x 场,负了y 场, 根据题意得:33212x y x y +=⎧⎨+=⎩,解得102x y =⎧⎨=⎩,答:该班级胜负场数分别是10场和2场;(2)设该班级这场比赛中投中了m 个3分球,则投中了(22)m -个2分球, 根据题意得:32(22)50m m +-≥, 解得6m ≥,答:该班级这场比赛中至少投中了6个3分球. 25.(本题满分10分) 解:(1)①72;②2x -; (2)36,2A AB AC ∠=︒==,∴72ABC C ∠=∠=︒,由折叠得:12CBD DBA ABC ∠=∠=∠, ∴36CBD ∠=︒,∴A CBD ∠=∠,C C ∠=∠,∴BDC ABC △△∽,∴BC CDAC BC=, ∴22x x x-=,解得:121,1x x =(舍);经检验1x =是原分式方程的解.∴BC AC =底要(3)如图2,连接AC ,延长AD 至点E ,使AE AC =,连接CE ,在菱形ABCD 中,72,2BAD AB ∠=︒=∴36,2CAD ACD CD AD ∠=∠=︒==,∴()172,180722EDC DAC ACD ACE AEC DAC ∠=∠+∠=︒∠=∠=︒-∠=︒, ∴EDC AEC ∠=∠,∴2CE CD ==, ∴ACE △为黄金三角形,∴512CE AC -=, ∴251512AC ==+-. 即菱形的较长的对角线的长为51+.26.(本题满分10分) 解:(1)由题意得:423330a b a b ++=⎧⎨-+=⎩,解得:12a b =-⎧⎨=⎩,则抛物线的表达式为:223y x x =-++; (2)①令2230y x x =-++=, 解得1x =-或3,即点(3,0)B , 令0x =,则3y =,即点(0,3)C ,∴直线BC 的表达式为:3y x =-+,3,3OB OC ==90BOC ∠=︒,∴193322BOC S ∆=⨯⨯=,2232BC OB OC =+=,点P 是抛物线的顶点,∴点(1,4)P ,PE y∥轴,∴点E的横坐标为1,PED BCO∠=∠∴点(1,2)E,∴2PE=,PD BC⊥,∴90PDE BOC∠=∠=︒,∴PDE BOC△△∽,PEBC==,∴229PDEBOCSS∆∆==⎝⎭,∴29192PDES∆=⨯=,∴PDE△的面积为1.②存在,设点()2,23P m m m-++,则点(,3)E m m-+,则()2223(3)3PE m m m m m=-++--+=-+,10-<,∴抛物线开口向下,∴当332(1)2m=-=⨯-时,PE最大,为:23393224⎛⎫-+⨯=⎪⎝⎭,PDE BOC△△∽∴PDEBOCC PEC BC∆∆=,∴PDE BOCPEC CBC∆∆=⋅∴当PE最大时,即94PE=时,PDEC∆最大336BOCC OB OC BC∆=++=++=+,∴99(64PDEC∆=+=,∴PDE△周长的最大值为94,此时点P的坐标为:315,24⎛⎫⎪⎝⎭.。
九年级下学期第二次月考数学试卷
富平中学2019—2020学年度下学期第二次检测九年级数学试题命题人:杨剑锋审题人:李明注意事项:1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,将选项填在答题卡对应位置上。
第Ⅱ卷为非选择题,用0.5mm黑色签字笔将答案答在答题纸上。
考试结束后,只收答题卡2.全卷满分100分,考试时间90分钟。
一、选择题(10小题共30分)1.−12019的相反数是()A.2019 B.﹣2019 C.12019D.−120192、如图,是一个几何体的表面展开图,则该几何体是A.正方体B.长方体C.三棱柱D.四棱锥3.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为()A.55°B.60°C.70°D.65°4.设正比例函数y=kx的图象经过点A(k,4),且y的值随x值的增大而减小,则k=()A.2 B.﹣2 C.4 D.﹣45.下列运算正确的是()A.a2+a3=a5B.(-b2)3=-b6C.2x·2x2=2x3D.(m-n)2=m2-n26.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin ∠E的值为()A. B. C. D.7.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=30°,CD=6,则圆的半径长为()A.2 B.2 C.4 D.8.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°9.已知二次函数y=ax2+4x+a﹣1的最小值为2,则a的值为()A.3 B.﹣1 C.4 D.4或﹣110.已知二次函数y=ax2+bx+c的图象经过点(0,m)、(4,m)和(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=0二、填空题(6小题共18分)11.不等式﹣13x+1<0的解集是.12. 在正六边形 ABCDEF中,若边长为3,则正六边形 ABCDEF的边心距为_________.13、如图,反比例函数y=kx经过正方形ABCD的顶点C,D,若正方形的边长为4,则k的值为_____.14.函数y=2x 2+4x-5中,当-3≤x ≤2时,y 的最大值是_______.15.如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于_______.16.如图, 正方形ABCD 的边长为4,点M 在AD 边上,且AM=1,点P 在正方形ABCD 所在平面内,且∠BPD=90°,则PM 的最大值为_________.三、解答题(6小题共52分)17.(6分)计算:(−2019)0−│4−2√3│+(−12)−2−6tan30°18.(6分)如图,已知ABC ,求作☉O ,使它过点A 、B 、C 三点。
2019-2020年四川省成都市武侯区棕北中学九年级(下)月考数学试卷(3月份)(A卷) 解析版
2019-2020学年四川省成都市武侯区棕北中学九年级(下)月考数学试卷(3月份)(A卷)一.选择题(共10小题)1.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2B.3C.4D.52.如图是由6个棱长均为1的正方体组成的几何体,从左面看到的该几何体的形状为()A.B.C.D.3.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×1074.要使式子有意义,则x的值可以是()A.2B.0C.1D.95.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个6.下列运算正确的是()A.5a2﹣2a2=3B.a2÷a=a2C.a2•a3=a6D.(﹣ab)2=a2b27.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m 8.如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AO:AD的值为()A.2:3B.2:5C.4:9D.4:139.若方程的根为正数,则k的取值范围是()A.k<2B.﹣3<k<2C.k≠﹣3D.k<2且k≠﹣3 10.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m的取值范围是()A.m≤0B.0<m≤1C.m≤1D.m≥1二.填空题(共4小题)11.若(x﹣1)0=1,则x需要满足的条件.12.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.13.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过l1上的点A1(1,)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为.14.如图,在▱ABCD中,按以下步骤作图:①以C为圆心,以适当长为半径画弧,分别交BC,CD于M,N两点;②分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P;⑨连接CP并延长交AD于E.若AE=2,CE=6,∠B=60°,则ABCD的周长等于.三.解答题15.(1)计算:(﹣)﹣2+2﹣8cos30°﹣|﹣3|(2)解不等式组:16.先化简,再求值:,其中x满足x2+3x﹣1=0.17.为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类女生有名,D类男生有名,将上面条形统计图补充完整;(2)扇形统计图中“课前预习不达标”对应的圆心角度数是;(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,18.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(≈1.414,≈1.732,结果精确到0.1海里)19.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA、AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.①连接AC,求△ABC的面积;②在图上连接OC交AB于点D,求的值.20在Rt△ABC中,∠A=90°,AB=AC=4,O是BC边上的点且⊙O与AB、AC都相切,切点分别为D、E.(1)求⊙O的半径;(2)如果F为上的一个动点(不与D、E),过点F作⊙O的切线分别与边AB、AC 相交于G、H,连接OG、OH,有两个结论:①四边形BCHG的周长不变,②∠GOH 的度数不变.已知这两个结论只有一个正确,找出正确的结论并证明;(3)探究:在(2)的条件下,设BG=x,CH=y,试问y与x之间满足怎样的函数关系,写出你的探究过程并确定自变量x的取值范围,并说明当x=y时F点的位置.参考答案与试题解析一.选择题(共10小题)1.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2B.3C.4D.5【分析】根据相反数的定义,有理数的乘方和绝对值的性质化简,然后根据正数和负数的定义判定即可.【解答】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选:B.2.如图是由6个棱长均为1的正方体组成的几何体,从左面看到的该几何体的形状为()A.B.C.D.【分析】从左面看到的是两列,其中第一列是三层,第二列是一层,进而画出左视图.【解答】解:从左面面看,看到的是两列,第一列是三层,第二列是一层,故选:D.3.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示1326000的结果是1.326×106,故选:B.4.要使式子有意义,则x的值可以是()A.2B.0C.1D.9【分析】根据二次根式的性质意义,被开方数大于等于0,即可求得.【解答】解:依题意得:x﹣5≥0,解得:x≥5.观察选项,只有选项D符合题意.故选:D.5.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图是轴对称图形,是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个,故选:B.6.下列运算正确的是()A.5a2﹣2a2=3B.a2÷a=a2C.a2•a3=a6D.(﹣ab)2=a2b2【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵5a2﹣2a2=3a2,故选项A错误;∵a2÷a=a,故选项B错误;∵a2•a3=a5,故选项C错误;∵(﹣ab)2=a2b2,故选项D正确;故选:D.7.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m 【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用出现次数最多的数是众数找到众数即可.【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,9.7m出现了2次,最多,所以众数为9.7m,故选:B.8.如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AO:AD的值为()A.2:3B.2:5C.4:9D.4:13【分析】由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质得到AB:DO═2:3,进而得出答案.【解答】解:∵△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,∴=,AC∥DF,∴==,∴=.故选:B.9.若方程的根为正数,则k的取值范围是()A.k<2B.﹣3<k<2C.k≠﹣3D.k<2且k≠﹣3【分析】先求出分式方程的解,得出6﹣3k>0,求出k的范围,再根据分式方程有解得出x+3≠0,x+k≠0,求出x≠﹣3,k≠3,即可得出答案.【解答】解:方程两边都乘以(x+3)(x+k)得:3(x+k)=2(x+3),3x+3k=2x+6,3x﹣2x=6﹣3k,x=6﹣3k,∵方程的根为正数,∴6﹣3k>0,解得:k<2,∵分式方程的解为正数,x+3≠0,x+k≠0,x≠﹣3,k≠3,即k的范围是k<2,故选:A.10.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m的取值范围是()A.m≤0B.0<m≤1C.m≤1D.m≥1【分析】根据函数解析式可知,开口方向向下,在对称轴的右侧y随x的增大而减小,在对称轴的左侧,y随x的增大而增大.【解答】解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.二.填空题(共4小题)11.若(x﹣1)0=1,则x需要满足的条件x≠1.【分析】直接利用零指数幂的性质得出答案.【解答】解:若(x﹣1)0=1,则x需要满足的条件是:x≠1.故答案为:x≠1.12.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=74度.【分析】利用三角形的内角和外角之间的关系计算.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90﹣72=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.13.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过l1上的点A1(1,)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为﹣31009.【分析】根据题意可以发现题目中各点的坐标变化规律,每四个点符号为一个周期,依此规律即可得出结论.【解答】解:由题意可得,A1(1,),A2(1,﹣),A3(﹣3,﹣),A4(﹣3,3),A5(9,3),A6(9,﹣9),…,可得A2n+1的横坐标为(﹣3)n∵2019=2×1009+1,∴点A2019的横坐标为:(﹣3)1009=﹣31009,故答案为:﹣31009.14.如图,在▱ABCD中,按以下步骤作图:①以C为圆心,以适当长为半径画弧,分别交BC,CD于M,N两点;②分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P;⑨连接CP并延长交AD于E.若AE=2,CE=6,∠B=60°,则ABCD的周长等于28.【分析】首先证明△DEC是等边三角形,求出AD,DC即可解决问题.【解答】解:由作图可知∠ECD=∠ECB,∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D=60°,∴∠DEC=∠ECB=∠ECD,∴DE=DC,∴△DEC是等边三角形,∴DE=DC=EC=6,∴AD=BC=8,AB=CD=6,∴四边形ABCD的周长为28,故答案为28.三.解答题15.(1)计算:(﹣)﹣2+2﹣8cos30°﹣|﹣3|(2)解不等式组:【分析】(1)先根据实数的负整数指数幂,二次根式的化简及绝对值的性质、三角函数等计算出各数,再根据实数混合运算的法则进行计算即可;(2)分别求出两个不等式的解集,再求其公共解集.【解答】解:(1)原式=4+4﹣8×﹣3=1;(2)解不等式①,得:x>﹣3,解不等式②,得:x≤2,所以不等式组的解集为:﹣3<x≤2.16.先化简,再求值:,其中x满足x2+3x﹣1=0.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据x2+3x﹣1=0即可解答本题.【解答】解:====3x2+9x,∵x2+3x﹣1=0,∴x2+3x=1,∴原式=3x2+9x=3(x2+3x)=3×1=3.17.为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类女生有3名,D类男生有1名,将上面条形统计图补充完整;(2)扇形统计图中“课前预习不达标”对应的圆心角度数是36°;(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,【分析】(1)根据B类有6+4=10人,所占的比例是50%,据此即可求得总人数;(2)利用(1)中求得的总人数乘以对应的比例即可求得C类的人数,然后求得C类中女生人数,同理求得D类男生的人数;(3)利用列举法即可表示出各种情况,然后利用概率公式即可求解.【解答】解:(1)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),故C类女生有3名,D类男生有1名;补充条形统计图,故答案为:3,1;(2)360°×(1﹣50%﹣25%﹣15%)=36°,答:扇形统计图中“课前预习不达标”对应的圆心角度数是36°;故答案为:36°;(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)==.18.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(≈1.414,≈1.732,结果精确到0.1海里)【分析】(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长;(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD 的长.【解答】解:(1)过点B作BH⊥CA交CA的延长线于点H(如图),∵∠EBC=60°,∴∠CBA=30°,∵∠F AD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×=75(海里),答:B点到直线CA的距离是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH==,∴AH=25,∴AD=DH﹣AH=75﹣25≈31.7(海里),答:执法船从A到D航行了31.7海里.19.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA、AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.①连接AC,求△ABC的面积;②在图上连接OC交AB于点D,求的值.【考点】GB:反比例函数综合题.【专题】534:反比例函数及其应用;554:等腰三角形与直角三角形;55D:图形的相似;67:推理能力.【分析】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)①由三角形面积公式可求解;②由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.【解答】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH===6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12;(2)①∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH⊥OB,∴AH∥BC,∴点A到BC的距离=BH=2,∴S△ABC=×3×2=3;②∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴=.20在Rt△ABC中,∠A=90°,AB=AC=4,O是BC边上的点且⊙O与AB、AC都相切,切点分别为D、E.(1)求⊙O的半径;(2)如果F为上的一个动点(不与D、E),过点F作⊙O的切线分别与边AB、AC 相交于G、H,连接OG、OH,有两个结论:①四边形BCHG的周长不变,②∠GOH 的度数不变.已知这两个结论只有一个正确,找出正确的结论并证明;(3)探究:在(2)的条件下,设BG=x,CH=y,试问y与x之间满足怎样的函数关系,写出你的探究过程并确定自变量x的取值范围,并说明当x=y时F点的位置.【考点】MC:切线的性质.【专题】16:压轴题;25:动点型;2B:探究型.【分析】(1)连接OD、OE、OA;构造正方形和直角三角形,利用勾股定理和正方形的性质解答;(2)连接OF、OG、OH;根据切线长定理和圆的半径相等,构造全等三角形,即△DOG ≌△FOG,△FOH≌△EOH;得到相等的角∠DOG=∠FOG,∠FOH=∠EOH;进而得到∠GOH==45°;(3)当x=y时,有AG=AH,根据平行线分线段成比例定理的逆定理,判定GH∥BC,根据切线性质,判断F为AO与圆的交点同时F是的中点.【解答】解:(1)连接OD、OE、OA,∵O是BC边上的点且⊙O与AB、AC都相切,∴OD⊥AB,AC⊥OE,又∵∠BAC=90°,且OD=OE,∴四边形ADOE为正方形,∴OE=AE,∴∠OAE=45°;又∵∠C=45°,∴OE=2,△OAC为等腰直角三角形,AE=EC=AC=×4=2,即⊙O的半径是2;(2)②的结论正确;理由如下:连接OF、OG、OH,由题意,GD、GF以及HF、HE与圆相切,所以GD=GF,HE=HF,∠DOG=∠FOG,∠FOH=∠HOE,而∠DOE=90°,所以可以得到∠GOH==45°.(3)BG=x,CH=y,易得:GF=GD=x﹣2,FH=HE=y﹣2,AG=4﹣x,AE=4﹣y,所以GH=x+x﹣4,由∠A=90°,可得GH2=AG2+AH2,代入上述各数值,化简可得y=,由AG≥0,AE≥0,可得x≤4,y≤4,所以2≤x≤4,当x=y时,有AG=AH,由于AB=AC所以可得GH与BC平行,连接AO,设AO交GH于F',有∠OFH=90°,所以F'为切点F,即F为AO与圆的交点同时F是的中点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级下第二次月考试卷
一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的
空格内,每小题3分,共24分)
l、
1
4
-的值是
A、一1
4
B、
1
4
C、4
D、一4
2、数据3800000用科学记数法表示为3.8×10n,则n的值是
A、5
B、6
C、7
D、8
3、如果两个相似三角形的相似比是1:2,那么它们的面积之比是
A、1:2
B、2:1
C、1:2
D、1:4
4、衡量样本和总体的波动大小的特征是
A、平均数
B、众数
C、方差
D、中位数
5、如图所示,已知ABCD,∠ABC、∠DCB的平分线交于AD边上一点E,延长BE交CD
的延长线于点F,下列结论不一定正确的是
A、∠BEC=90°
B、AD=2AB
C、BC=CF
D、梯形ABCE是等腰梯形
6、如图是一个正方体纸盒的平面展开图,在其中的三个正方形内标有数字1、3、5,要在其余正方形内
A 、一1
B 、-3
C .-5
D 、一1或一5
7、如图所示,直线y 1=2。
与双曲线22y x
=
交于点A 、B , 若y 1>y 2,则x 的取值范围是
A 、一1<x<0或x>1
B 、-1<x<1
C 、x<一1或0<x<1
D 、x<一1或x>1
8、如图,A 、B 的坐标为(2,0)(O ,1)若将线段AB 平移至A 1B 1,
则a + b 的值为
A 、2
B 、3
C 、4
D 、5
二、填空题(每小题3分。
共24分)
9、分解因式:32244x x y xy -+=_________________。
10、在函数1x y x
+=中,自变量x 的取值范围是______________。
11、如图所示,已知圆柱体底面圆的直径AB 长为8cm ,高BC 为10cm ,则圆柱体的侧面为
__________________㎝
2。
(结果保留π)
12、如图所示,点C 为圆中优弧AmB (除A 、B 外)的任意一点,则sin<ACB=___________。
13、已知关于x 的二次函数y=ax 2+ bx + c (a ≠0)图象如图所示,有下列三个结论:
①a>0 ②b<0 ③c=0,把正确结论的序号填在横线上_____________。
14、如图所示,在平面直角坐标系中,直线y=2x 一2与x 轴、y 轴分别交于A 、B 两点,把
∆AOB 绕点A 顺时针旋转90°后得到△AO 1B 1,则点B 1的坐标是_____________。
15、如图所示,地面上ABCD 被分成了有不同颜色的四个区域,其中点E 为BC 边的中点,BD 、AE 交于
点F ,小刚随意向其内部抛一小石子,则小石子落在黄色区域内的概率
是____________。
16、观察下面一列数,按某种规律在横线上填入适当的数。
1,7,17,37,______________,71,…。
三、解答题(每题8分。
共16分)
17、计算
011322009()tan 303
--+--+
18、如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于
点G、H。
(1)求证:ABE ADF;
(2)若AG=AH,求证:四边形ABCD是菱形。
四、解答题(每题10分。
共20分)
19、某家电商场为落实国家“开拓农村市场,拉动内需,让利与民”的政策,3月底新采购了一批家电
投放市场,根据第二季度的销售情况,绘制了家电(彩电、冰箱、洗衣机)销售的条形统计图(图①)和扇形统计图(图②)(不完整),已知冰箱销量占第二季度家电
销量的20%,回答下列问题:
(1)第二季度该商场共销售家电__________台;
(2)将图①和图②补充完整:
(3)图②中洗衣机所在扇形的圆心角是____________;
(4)你对该商场下次进货有哪些建议?
20、今年2月份,电脑被列为国家惠农政策的“家电下乡”商品,小亮家在这个月买了一台电脑和一套
沙发共消费4560元,购买这台电脑享受政府补贴13%(即电脑销售价格的13%由政府支付),沙发价格也比上月降价10%,这样小亮家购买这两种商品比上月购买少花640元。
小亮家购买电脑和沙发各消费多少元?
五、解答题(每题10分,共20分)
21、已知一只口袋中放有x只白球和Y只红球,这两种球除颜色以外没有任何区别,袋中的
球已经搅匀,蒙上眼睛从袋中取一只球,取出白球的概率是3
4。
(1)试写出y与x的函数关系式:
(2)当x=3时,第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表
法,求两次摸到都是白球的概率。
22、一艘小船从码头A出发,沿着北偏东53°方向航行,航行一段时间到达小岛B处后,又沿着北偏西
22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东
≈≈,结果保留整数)
23°的方向上,求此时小船与码头之间的距离(2 1.4,3 1.7
六、解答题(每题10分。
共20分)
23、如图所示,在平面直角坐标系中,⊙P 的圆心在x 轴上,其坐标为(40,0),⊙P 的半径是20,在Rt ABC
中, ACB=90°,A(0,12)、C(O ,一12)、B(一18,一12),将Rt ABC 沿x 轴向右平移m(0<m<40)个单位长度得到DEF ,使得D ,F 两点落在圆上,其中A 、B 、C 三点分别与D 、E 、F 三点对应,DE 、DF 分别交x 轴于点H 、G
(1)求Rt ABC 移动的距离m ;
(2)判断直线DE 与⊙P 的位置关系,并证明你的结论。
24、某旅行社准备购买价格为20元的旅行包若干个,采购员考察了甲、乙两商场,并根据两商场给出的打折方案绘制了如下图象,x 表示旅行包的个数,y 1、y 2分别表示在甲、乙两商场购买旅行包所需的费用。
.
(1)求y 1、y 2与x 的函数关系式:
(2)甲、乙两商场给出的打折方案分别是什么?
(3)在哪个商场购买旅行包所需费用少?
七、解答题(本题12分)
25、已知Rt △ABC 中,AC=BC ,∠C=90°,D 为AB 边的中点,∠EDF=90°,∠EDF 绕D 点 旋转,它的两边分别交AC 、CB(或它们的延长线)于E 、F 。
当∠EDF 绕D 点旋转到DE 上AC 于E 时(如图1),易证12
DEF CEF ABC S S S ∆∆∆+=当EDF ∠ 绕D 点旋转到DE 和AC 不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,DEF S ∆,CEF S ∆,ABC S ∆又有怎样的数量关系?请写出你的猜想,
不需证明。
八、解答题(本题14分)
26、已知:抛物线2
y ax bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 在x 轴的负半轴上,
点C 在y 轴的负半轴上,线段OA 、OC 的长(OA<OC)是方程x 2一5x+4=O 的两个根,且抛物线的对称轴是直线x=1
(1)求A 、B 、C 三点的坐标;
(2)求此抛物线的解析式;
(3)若点D 是线段AB 上的一个动点(与点A 、B 不重合),过点D 作DE ∥BC 交AC 于点E ,连结CD ,设
BD 的长为m ,△CDE 的面积为S ,求S 与m 的函数关系式,并写出自
变量m 的取值范围,S 是否存在最大值?若存在,求出最大值并求此时D 点坐标;若不存在,请
说明理由。