实验四 土壤的阳离子交换量
土壤.doc阳离子交换量
土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐基的测定方法确认报告1. 目的通过标准酸溶液滴定来确定土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐基的检出限、精密度、准确度的分析,判断本实验室的检测方法是否合格。
2. 职责2.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验结果的意外因素,掌握检出限、精密度、准确度的计算方法。
2.2 技术负责人负责审核检测结果和方法确认报告。
3.适用范围及方法标准依据本标准规定了土壤阳离子交换量和交换盐基的测定原理、试剂、样品制备、分析步骤和结果表述。
本标准适用于中性土壤阳离子交换量和交换盐基的测定,也可用于胃酸性少含2:1型粘土矿物的土壤。
4. 方法原理用1mol/L的乙酸铵溶液反复处理土壤,使土壤成为铵离子饱和土,过量的乙酸铵用95%乙醇洗去,然后加氧化镁,用定氮蒸馏的方法进行蒸馏。
蒸馏出的氨用硼酸溶液吸收,以标准酸液滴定,根据铵离子的量计算土壤阳离子交换量。
土壤交换性盐基是用土壤阳离子交换量测定时所得到的乙酸土壤浸提液,在选定工作条件的原子吸收分光光度计上直接测定;但所用钙、镁、钾、钠标准溶液应用乙酸铵溶液配制,以消除基体效应。
用土壤浸出液测定钙、镁时,还应加入释放剂锶,以消除铝、磷和硅对钙、镁测定的干扰。
5. 仪器与试剂5.1 仪器与设备:a)土壤筛:b)离心管:c)天平:d)电动离心机:e)原子吸收分光光度计:5.2试剂所有试剂除注明者外,均为分析纯,水均指去离子水。
5.2.1 1mol/L乙酸铵溶液:称取77.09g乙酸铵,用水溶解并稀释至近1L。
必要时用1:1氨水或乙酸调节至PH7.0,然后定容至1L。
5.2.2 95%乙醇溶液5.2.3 液体石蜡(化学纯)5.2.4 氧化镁:将氧化镁放入镍蒸发皿内,在500~600℃马福炉中灼烧30min,冷却后贮藏在密闭的玻璃器皿中。
5.2.5 20g/L硼酸溶液:20g硼酸溶于1L无二氧化碳蒸馏水。
土壤 阳离子交换量的测定—乙酸铵交换法
FHZDZTR0029 土壤 阳离子交换量的测定 乙酸铵交换法F-HZ-DZ-TR-0029土壤—阳离子交换量的测定—乙酸铵交换法1 范围本方法适用于酸性和中性土壤阳离子交换量的测定。
2 原理土壤的阳离子交换性能,是指土壤溶液中的阳离子与土壤固相阳离子之间所进行的交换作用,它是由土壤胶体表面性质所决定。
土壤胶体是土壤中粘土矿物和腐殖酸以及相互结合形成的复杂有机矿质复合体,其吸收的阳离子包括钾、钠、钙、镁、铵、氢、铝等。
土壤交换性能对植物营养和施肥有较大作用,它能调节土壤溶液的浓度,保持土壤溶液成分的多样性和平衡性,还可保持养分免于被雨水淋失。
土壤阳离子交换性能分析包括阳离子交换量、交换性阳离子和盐基饱和度等。
阳离子交换量是指土壤胶体所吸附的各种阳离子的总量,常作为评价土壤保肥能力的指标,是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据,它反映土壤的负电荷总量和表征土壤的化学性质。
用中性乙酸铵溶液反复处理土壤,使土壤成为铵饱和的土,再用95%乙醇洗去多余的乙酸铵后,用水将土样洗入凯氏瓶中,加固体氧化镁蒸馏,蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定,根据铵的量计算土壤阳离子交换量。
3 试剂3.1 乙酸铵溶液:1mol/L ,称取77.09g 乙酸铵,用水溶解,加水稀释至近1000mL ,用氢氧化铵(1+1)或稀乙酸调节至pH7.0,然后加水稀释至1000mL 。
3.2 乙醇(950mL/L )。
3.3 液体石蜡。
3.4 甲基红-溴甲酚绿混合指示剂:称取0.099g 溴甲酚绿和0.066g 甲基红置于玛瑙研钵中,加少量乙醇(950mL/L ),研磨至指示剂完全溶解为止,最后加乙醇(950mL/L )至100mL 。
3.5 硼酸指示剂溶液:称取20g 硼酸,溶于1000mL 水中。
每1000mL 硼酸溶液中加入20mL 甲基红-溴甲酚绿混合指示剂,并用稀酸或稀碱溶液调节至紫红色(葡萄酒色),此时溶液的pH 为4.5。
土壤阳离子交换量的测定
土壤阳离子交换量的测定A. EDTA-乙酸铵盐交换法1 方法提要用0.005mol·L-1 EDTA与1 mol·L-1乙酸铵的混合液作为交换提取剂,在适宜的pH条件下(酸性、中性土壤用pH7.0,石灰性土壤用pH8.5),与土壤吸收性复合体的Ca2+、Mg2+、Al3+等交换,在瞬间形成解离度很小而稳定性大的络合物,且不会破坏土壤胶体。
由于NH4+的存在,交换性H+、K+、Na+也能交换完全,形成铵质土。
通过使用95%乙醇洗去过剩铵盐,以蒸馏法蒸馏,用标准酸溶液滴定氨量,即可计算出土壤阳离子交换量。
2 适用范围本方法适用于各类土壤中阳离子交换量的测定。
3 主要仪器设备3.1 电动离心机:转速3000 r/min~5000r/min;3.2 离心管:100mL;3.3 定氮仪;3.4 消化管(与定氮仪配套)。
4 试剂4.1 0.005 mol·L-1EDTA与1 mol·L-1乙酸铵混合液:称取77.09g乙酸铵及1.461g乙二胺四乙酸,加水溶解后稀释至900mL左右,以1:1氨水和稀乙酸调至pH至7.0(用于酸性和中性土壤的提取)或pH8.5(用于石灰性土壤的提取),转移至1000mL容量瓶中,定容;4.2 95%乙醇(须无铵离子);4.3 硼酸溶液[ρ(H3BO3)=20g·L-1]:称取20.00g硼酸,溶于近1L水中。
用稀盐酸或稀氢氧化钠调节pH至4.5,转移至1000mL容量瓶中,定容。
4.4 氧化镁:将氧化镁在高温电炉中经600℃灼烧0.5h,冷却后贮存于密闭的玻璃瓶中;4.5 盐酸标准溶液[c(HCl)=0.05 mol·L-1]:吸取浓盐酸4.17mL稀释至1L,充分摇匀后参照附录3用无水碳酸钠进行标定;4.6 pH10缓冲溶液:称取氯化铵33.75g溶于无CO2水中,加新开瓶的浓氨水(密度0.90)285mL,用水稀释至500mL;4.7 钙镁混合指示剂:称取0.5g酸性铬蓝K与1.0g萘酚绿B,加100g氯化钠,在玛瑙研钵中充分研磨混匀,贮于棕色瓶中备用;4.8 甲基红-溴甲酚绿混合指示:称取0.5g 溴甲酚绿和0.1g 甲基红于玛瑙研钵中,加入少量95%乙醇,研磨至指示剂全部溶解后,加95%乙醇至100mL ;4.9 纳氏试剂:称取10.0g 碘化钾溶于5mL 水中,另称取3.5g 二氯化汞溶于20mL 水中(加热溶解),将二氯化汞溶液慢慢地倒入碘化钾溶液中,边加边搅拌,直至出现微红色的少量沉淀为止。
凯氏定氮法测定土壤中阳离子交换量
13.8
17.0±1
20.0±2
分次测定值 w(阳离子交换量)/10-2
9.609.719.69 9.439.82 9.56
13.113.713.9 13.814.113.6
17.217.816.8 16.417.517.0
20.8 21.5 19.4 19.1 20.3 20.7
平均值 w(阳离子交换量)/10-2
3 结果计算与表示
CEC=
c× m1
(× kv2-×v100)×1000
式中:CEC 为阳离子交换量 cmo(l +)/Kg;C 为盐
酸标准溶液的浓度 mol/L;V 为盐酸标准溶液的用量
ml;V0为空白试样盐酸标准溶液的用量 ml;m1为风干
土样质量 g;K2为将风干土换算成烘干土的水分换算
系数;10 为将 mmol 换算成 cmol 的倍数。
后,用水将土壤洗入凯氏瓶中,加固体氧化镁蒸馏。蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定。根据 NH4+的量计算阳离子交 换量。
关键词 土壤 滴定法 阳离子交换量
土壤的阳离子交换性能是由土壤胶体表面性质 所决定,由有机质的交换基与无机质的交换基所构 成,前者主要是腐殖质酸,后者主要是粘土矿物。它 们在土壤中互相结合着,形成了复杂的有机无机胶 质复合体,所能吸收的阳离子总量包括交换性盐基 和水解性酸,两者的和即为阳离子交换量。其交换 过程是土壤固相阳离子与溶液中阳离子起等量交换 作用。阳离子交换量的大小,可以作为评价土壤保 水保肥能力的指标,是改良土壤和合理施肥的重要 依据之一。
1 实验部分
1.1 仪器设备 电子天平:感量 0.01g 感量 0.0001g;离心机:转速
土壤阳离子交换量的测定
土壤阳离子交换量的测定(EDTA—铵盐快速法)土壤中有机无机胶体所吸附的交换性阳离子总量,称为土壤阳离子交换量,以100g 干土吸附阳离子的毫克当量数表示。
阳离子交换量的大小,可作为评价土壤保肥供肥能力的指标,是改良土壤和合理施肥的重要依据之一,也是高产稳产农田肥力的重要指标。
方法原理:采用0.005M EDTA(乙二胺四乙酸)与1N醋酸铵混合液作为交换剂,在适宜的PH条件下(酸性土壤PH7.0,石灰性土壤PH8.5),这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。
同时由于醋酸铵缓冲液的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。
操作步骤:1. 称取通过60号筛的风干土样1.0g(精确到0.01g),有机质少的土样可称2—5g,将其小心放入100ml离心管中。
2. 沿管壁加入少量EDTA—醋酸铵混合液,用橡皮头玻璃棒充分搅拌,使样品与交换剂混合,直到整个样品成均匀的泥浆状态。
再加交换剂使总体积达80ml左右,再搅拌1—2分钟,然后洗净橡皮头玻璃棒。
3. 将离心管在粗天平上成对平衡,对称放入离心机中离心3—5分钟,转速3000转/分左右,弃去离心管中的清液。
4. 将载土的离心管管口向下用自来水冲洗外部,然后再用不含铵离子的95%酒精如前搅拌样品,洗去过剩的铵盐,洗至无铵离子反应为止。
检查方法见注意事项。
5. 最后用自来水冲洗管外壁后,在管内放入少量自来水,以橡皮头玻璃棒搅成糊状,并洗入150ml开氏瓶中,洗入体积控制在80—100ml左右,其中加2ml液状石蜡(或2g 固体石蜡),1g左右氧化镁,然后在定氮仪上进行蒸馏,蒸馏方法同土壤全氮的测定。
同时进行空白试验。
结果计算阳离子交换量(m·e/100g土)=N×(V—V0)×100/样品重式中:V——滴定待测液所消耗盐酸毫升数V0——滴定空白消耗盐酸毫升数N——盐酸的当量浓度100——换算成每百克样品中的毫克当量数。
土壤中阳离子交换量的测定
土壤阳离子交换量测定方法1前言土壤的阳离子由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。
它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca+、Mg+)和水解性酸,两者的总和即为阳离子交换量。
其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。
阳离子交换量的大小,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。
目前土壤阳离子交换量的测定方法主要有乙酸铵交换法,氯化铵-乙酸铵交换法,氯化钡-硫酸强迫交换法和乙酸钠-火焰光度法等一系列方法。
其中应用较为广泛的则是乙酸铵交换法,此方法适用于中性及酸性土壤,具有结果准确等优势。
利用阳离子交换测定仪进行实验,为后续蒸馏、滴定和计算节省了时间与人工。
2仪器与试剂2.1仪器K1160阳离子交换量测定仪,分析天平,离心机,离心管(100mL)。
2.2试剂盐酸(分析纯),1mol/L乙酸铵溶液,95%乙醇溶液,液体石蜡(化学纯),氧化镁,20g/L硼酸溶液,溴甲酚绿-甲基红混合指示剂,pH缓冲溶液,K-B指示剂,纳氏试剂,1mol/L氯化铵溶液。
详细试剂配制见附录。
3实验方法3.1样品制备:称取通过1mm筛孔的风干土样2.00g,放入100ml离心管中沿壁加入少量1mol/L乙酸铵溶液,用橡皮头玻璃搅拌土样,使其成为均匀的泥浆状态,在加入乙酸铵溶液至总体积约60ml,并充分搅拌均匀,然后用乙酸铵溶液洗净橡皮玻棒,溶液收入离心管内。
将离心管用乙酸铵溶液使之质量平衡,粗配平。
平衡好的离心管对称放入离心机中,离心3-5min,转速3000r/min。
每次离心后的清液收集在250ml容量瓶中,如此用乙酸铵溶液处理2-3次,直到浸出液中无钙离子反应为止(检查钙离子:取浸出液5ml,放在试管中,加pH10缓冲溶液1ml,再加入少许K-B指示剂,如呈蓝色,表示无钙离子:如呈紫红色,表示有钙离子)。
土壤阳离子交换量
土壤胶体的结构和性质
土壤胶体电荷的来源
指组成矿物的中心离子被电性 相同、大小相近的离子替代而 晶格构造保持不变的现象。
(1)同晶异质代换作用
层状铝硅酸盐粘土矿物在形成时,中心离子可以被其它相近 或稍大的同性离子代换而产生电荷,但矿物的结晶构造型式 不变。
土壤干燥、冻结过程中,水膜消失,也就加大了电解质浓度,减 小扩散层厚度,使胶粒互相凝聚而形成结构。生产上晒垡、冻垡等 措施也就起了这个作用,所以晒、冻垡有利于土壤形成结构; 相反,土壤水分过多,土壤溶液电解质浓度相应减小,扩散层加厚, 胶粒互相排斥而成溶胶状。 常年泡水的沤水田、烂泥田,土粒分散,缺少结构,通气性差, 栽秧后易产生浮秧,就是因为胶粒分散,土壤不沉实。这种情况下, 施用石灰(CaO)、石膏(CaSO4),增加Ca2+浓度,对沉实土壤, 改良土性,有明显效果。
当土壤pH高于pH0值时: (相当于碱性环境)
Al2O3·3H2O
2Al(OH)2O-+2OH-
土壤胶体的结构和性质
c. 腐殖质上某些原子团的解离
高pH条件下:
-COOH
H+ + COO-
-OH
H+ + -O-
低pH条件下:
-NH2
-NH3+
土壤胶体的结构和性质
d. 含水氧化硅的解离
SiO2·H2O(或H2SiO3)的pH0值为2, 在土壤中 一般不产生正电荷,所带负电荷的量随土壤pH 值的升高而增加。
0.001~0.0005
注:胶体的凝聚作用,有的是可逆的,有的是不可逆的。 阳离 子这种凝聚作用的可逆和不可逆,与土壤结构的稳定性有关, 钙离子和腐殖质胶结的结构具有水稳性,而钠离子胶结的不具 水稳性。
土壤.doc阳离子交换量
土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐基的测定方法确认报告1. 目的通过标准酸溶液滴定来确定土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐基的检出限、精密度、准确度的分析,判断本实验室的检测方法是否合格。
2. 职责2.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验结果的意外因素,掌握检出限、精密度、准确度的计算方法。
2.2 技术负责人负责审核检测结果和方法确认报告。
3.适用范围及方法标准依据本标准规定了土壤阳离子交换量和交换盐基的测定原理、试剂、样品制备、分析步骤和结果表述。
本标准适用于中性土壤阳离子交换量和交换盐基的测定,也可用于胃酸性少含2:1型粘土矿物的土壤。
4. 方法原理用1mol/L的乙酸铵溶液反复处理土壤,使土壤成为铵离子饱和土,过量的乙酸铵用95%乙醇洗去,然后加氧化镁,用定氮蒸馏的方法进行蒸馏。
蒸馏出的氨用硼酸溶液吸收,以标准酸液滴定,根据铵离子的量计算土壤阳离子交换量。
土壤交换性盐基是用土壤阳离子交换量测定时所得到的乙酸土壤浸提液,在选定工作条件的原子吸收分光光度计上直接测定;但所用钙、镁、钾、钠标准溶液应用乙酸铵溶液配制,以消除基体效应。
用土壤浸出液测定钙、镁时,还应加入释放剂锶,以消除铝、磷和硅对钙、镁测定的干扰。
5. 仪器与试剂5.1 仪器与设备:a)土壤筛:b)离心管:c)天平:d)电动离心机:e)原子吸收分光光度计:5.2试剂所有试剂除注明者外,均为分析纯,水均指去离子水。
5.2.1 1mol/L乙酸铵溶液:称取77.09g乙酸铵,用水溶解并稀释至近1L。
必要时用1:1氨水或乙酸调节至PH7.0,然后定容至1L。
5.2.2 95%乙醇溶液5.2.3 液体石蜡(化学纯)5.2.4 氧化镁:将氧化镁放入镍蒸发皿内,在500~600℃马福炉中灼烧30min,冷却后贮藏在密闭的玻璃器皿中。
5.2.5 20g/L硼酸溶液:20g硼酸溶于1L无二氧化碳蒸馏水。
土壤阳离子交换量
土壤阳离子交换量的测定一、目的意义阳离子交换量的大不,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一,也是高产稳产农田肥力的重要指标。
二、方法原理有醋酸铵法,EDTA—铵盐快速法,醋酸法-氯化铵法,同位素法,醋酸钙法等,本实验仅介绍目前国内外普遍应用的醋酸铵法。
但此法在洗去多余盐溶液时,容易洗过头或洗不彻底,使结果偏低或偏高,故常用于例行分析。
对研究工作则不太适宜,适用于中性和酸性土壤。
EDTA—铵盐快速法适用于石灰法、中性和酸性土壤,此法除所用的交换剂为乙二铵四乙酸与醋酸铵的混合液而不同于醋酸铵法外。
其余操作方法及计算均相同。
醋酸铵-氯化铵法及醋酸钙法适用于石灰性土壤。
土壤吸收性复合体上的钾、钠、镁、铝、氢等阳离子,被提取液中的铵离子进行当量交换,使土壤成为NH4+饱和土,用95%酒精洗去多余的醋酸铵后,用定氮蒸馏的方法进行测氨,即可计算出土壤阳离子交换量。
三、操作步骤称取通过0.25mm筛孔的风干土2g(精确到0.01g),(如还要测定盐基含量则称5g),放入100ml离心管中,沿管壁加入少量1NNH4Ac溶液,用皮头玻璃棒搅拌样品,使成为均匀的泥浆状,再加NH4Ac溶液使总体积达到约60ml,充分搅拌使土壤分散,然后用NH4Ac 溶液洗净皮头玻棒与管壁上粘附的土粒。
将离心管成对地在粗天平上平衡,对称地放入离心机中,离心3-5分钟(转速3000转/分),弃去管中清液。
如此连续处理3-4次直到提取液中无钙离子反应为止。
(如要测交换性盐基时则须收集清液)。
将载土的离心管口向下,用自来水冲洗外部,然后再用不含铵离子的95%酒精如前搅拌样品,以洗去过量的NH4Ac,洗至无铵离子反应为止。
用自来水冲洗管外壁后,在管内放入少量自来水,用皮头玻棒搅成糊状,并洗入250ml 开氏瓶中,洗入体积控制在80-100ml左右,加1ml液体石蜡及10ml12%MgO悬浊液,然后在定氮器上进行蒸馏(蒸馏方法见土壤全氮量的测定),最后用HCL标准溶液滴定。
土壤阳离子交换量曲线
土壤阳离子交换量(CEC)是指土壤中所含有的可交换性阳离子总量,是评价土壤肥力和环境质量的重要指标之一。
CEC曲线是用来描述不同土壤类型中CEC的变化趋势的图表。
CEC曲线通常以pH值为横坐标,以CEC值为纵坐标绘制而成。
从图中可以看出,不同类型的土壤具有不同的CEC值和变化趋势。
例如,红壤和黄壤的CEC值较高,而砂土和粘土的CEC值较低。
此外,随着土壤pH值的变化,CEC值也会发生变化。
一般来说,在酸性土壤中,CEC值较高;而在碱性土壤中,CEC值较低。
CEC曲线还可以用于评估土壤对污染物的吸附能力。
当污染物进入土壤后,它们会与土壤中的阳离子发生竞争作用,从而影响土壤的CEC值。
因此,通过比较不同处理组之间的CEC值差异,可以评估土壤对污染物的吸附能力。
例如,一项研究发现,添加铁盐可以显著提高土壤对铜离子的吸附能力,并且这种效应可以通过CEC曲线来可视化地展示出来。
除了用于评估土壤肥力和环境质量外,CEC曲线还可以用于指导农业生产和管理。
例如,在施肥过程中,可以根据土壤的CEC值来确定合适的肥料种类和用量。
此外,在土地利用规划中,也可以根据不同地区的CEC值来选择合适的作物种植方式和耕作措施。
总之,CEC曲线是一种重要的工具,可以帮助我们更好地了解土壤的性质和功能。
通过对CEC曲线的研究和应用,我们可以更好地保护和管理我们的土壤资源,促进农业可持续发展和环境保护。
土壤的阳离子交换量实验报告
土壤的阳离子交换量实验报告以《土壤的阳离子交换量实验报告》为题,本文旨在研究土壤的阳离子交换量,以便了解土壤特性,分析土壤肥力和理化性质。
土壤阳离子交换量是指土壤中固有的阳离子与水相互交换的量,也就是指所谓的固有电荷,是土壤中的离子,反映土壤的理化性质。
它与土壤的肥力,植物的生长和发育有密切的关系,是决定土壤有效营养元素含量及土壤有机质含量的重要参数。
为了研究不同土壤地层中的阳离子交换量,本实验采用了临界电位技术,以测定土壤中层中的阳离子交换量。
实验用了三种土壤,分别为沙质粘土型,砂粉质黏土型和混合砂砾型,分别来自某处沙质粘土型,某处砂粉质黏土型和某处的混合砂砾型土壤。
实验方法为:在某一固定的pH值下,用pH计测定土壤中的H+离子浓度,然后测定土壤中相应的阴离子交换量、阳离子交换量和总离子交换量。
根据测定结果,采用正态分布拟合,计算出每类土壤的离子交换量的平均值、标准偏差和置信区间。
实验结果显示:1. 不同土壤地层中的阳离子交换量,沙质黏土型土壤的阳离子交换量最高,为16.51 0.27 meq/100 g,混合砂砾型土壤的阳离子交换量最低,为6.95 0.15 meq/100 g;2.有土壤地层中的阴离子交换量均高于阳离子交换量,沙质黏土型土壤的阴离子交换量为17.27±0.27 meq/100 g,混合砂砾型土壤的阴离子交换量为7.96±0.17 meq/100 g;3.离子交换量均高于阳离子交换量,沙质黏土型土壤的总离子交换量为33.78±0.24 meq/100 g,混合砂砾型土壤的总离子交换量为14.91±0.19 meq/100 g;根据以上结果,不同土壤地层中的阳离子交换量及其比例有很大的差异,影响因素可能有多种,如土壤类型组成、离子溶解物和物理化学反应等。
综上所述,本实验对不同土壤地层中的阳离子交换量、阴离子交换量及总离子交换量进行了测定,为土壤细观结构和质地的研究打下了良好的基础,为土壤的利用规划和可持续性利用提供了重要依据。
土壤阳离子交换量的测定三氯化六铵合钴浸提-分光光度法的注意事项
一、方法原理及适用范围本方法测定的为有效态离子交换量。
在(20±2)℃条件下,用三氯化六氨合钴溶液作为浸提液浸提土壤,土壤中的阳离子被交换下来进入溶液。
三氯化六氨合钴在475nm处有特征吸收,与浓度成正比,根据浸提前后浸提液吸光度差值,计算土壤阳离子交换量。
该方法适用于土壤中阳离子交换量的测定。
该指标可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。
二、主要试剂、仪器设备1.三氯化六氨合钴溶液1.66cmol/L。
2.振荡器:振荡频率可控制在200次/min左右。
3.分析天平:千分之一或者百分之一天平。
三、样品分析实验中需要注意的事项1.关于对土壤样品的制备将风干后的样品过尼龙筛(孔径为1.7nm10目),充分混匀后.称取3.5g混匀之后的样品,放置于100ml离心管中,加入50.0ml三氯化六氨合钴溶液,旋紧离心管的密封盖,放置于振荡器上,在(20±2)℃条件下振荡(60±5)min之后,调节振荡频率,要使土壤浸提液混合物在振荡的过程中始终保持悬浮状态。
然后以4000r/min离心10min后,收集它的上清液于10ml比色管中,待测备用,应在24h内分析完成。
同时要用实验室纯水代替土壤样品,与土壤样品的制备同样的步骤进行实验室空白样品的制备。
2.振荡器频率的设置不同厂家生产的不同品牌的振荡器,振荡频率都各不相同。
在HJ889-2017国家标准中要求处理样品时,必须调节振荡器的振荡频率,使土壤的浸提液混合物在(60±5)min的振荡过程中始终保持悬浮的状态。
如果土壤的浸提液混合物不悬浮,而是下沉在离心管底部,就会造成土壤样品的阳离子交换量的低浓度值不在标准样品值范围内,稍微高些的标样浓度值偏低。
试验结果见下表:样品编号GBW07459(ASA-8)cmol(+)/kgGBW07460(ASA-9)cmol(+)/kgGBW07461(ASA-10)cmol(+)/kg标准样品浓度值13.8±0.79.6±1.320±2浸提液悬浮13.510.119.6浸提液下沉12.88.018.3浸提液悬浮相对偏差(%)-1.5 3.1-1.0浸提液下沉相对偏差(%)浓度值不在范围浓度值不在范围-4.23.振荡后的土壤浸提液混合物后的处理方法振荡后的土壤浸提液混合物后的处理方法有两种:第一种方法是使用离心机,以4000r/min 的速度离心10min后,收集上清液于比色管中,在24小时内分析完毕。
土壤 阳离子交换量 检测指导书
《土壤阳离子交换量的测定》检测指导书方法依据:LYT 1243-1999 森林土壤阳离子交换量的测定本标准规定了采用乙酸铵交换法和氯化铵-乙酸铵交换法测定森林土壤阳离子交换量的方法,适用于森林土壤阳离子交换量的测定。
HJ 889-2017 土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法本标准规定了测定土壤阳离子交换量的三氯化六氨合钴浸提-分光光度法,本标准适用于土壤中阳离子交换量的测定。
方法一:乙酸铵交换法——适用于酸性与中性森林土壤中阳离子交换的测定实验步骤:称量→ 离心→ 蒸馏→ 滴定1.称量称取通过2 mm筛孔的风干样2.0 g,质地较轻的土壤称5.0 g,放入100 mL离心管中,沿离心管壁加入少量1 mol/L乙酸铵溶液,用橡皮头玻璃棒搅拌土样,使其成为均匀的泥浆状态。
再加乙酸铵溶液至总体积约60 mL,并充分搅拌均匀,然后用乙酸铵溶液洗净橡皮头玻璃棒,溶液收入离心管。
2.离心1)用1 mol/L乙酸铵溶液(pH 7. 0)反复处理土壤,使土壤成为NH4+饱和土用乙酸铵溶液使离心管质量平衡,离心3~5 min,转速3000~4 000 r/min,如此用1 mol/L乙酸铵溶液处理3~5次,直到最后浸出液中无钙离子反应为止。
检查钙离子的方法: 取最后一次乙酸铵浸出液5 mL放在试管中,加pH10缓冲液1 mL,加少许K-B指示剂。
如溶液呈蓝色,表示无钙离子;如呈紫红色,表示有钙离子,还要用乙酸铵继续浸提。
注:如不测定交换性盐基,离心后的清液即弃去,如需要测定交换性盐基时,每次离心后的清液收集在250 mL容量瓶中,最后用1 mol/L乙酸铁溶液定容,用于测定交换性盐基。
2)用乙醇洗去多余的乙酸铵往载土的离心管中加入少量工业用乙醇,用橡皮头玻璃棒搅拌土样,使其成为泥浆状态,再加乙醇约60 mL,用橡皮头玻璃棒充分搅匀,以便洗去土粒表面多余的乙酸铵,切不可有小土团存在。
用乙醇溶液使离心管质量平衡,并对称放入离心机中,离心3~5 min,转速3 000~4 000 r/min,弃去乙醇溶液。
土壤阳离子交换量标准
土壤阳离子交换量标准土壤阳离子交换量是土壤中交换性阳离子的总量,它对土壤的肥力和团粒结构有着重要的影响。
土壤阳离子交换量标准是评价土壤肥力和肥料施用量的重要指标,合理的土壤阳离子交换量有助于提高土壤肥力,增加作物产量。
因此,了解土壤阳离子交换量标准对于农业生产具有重要意义。
土壤阳离子交换量的标准值是根据土壤类型和作物需求来确定的。
一般来说,土壤阳离子交换量的标准值是指土壤中可交换的钾、钠、钙、镁等阳离子的总量。
不同类型的土壤对这些阳离子的需求量也不同,因此其标准值也有所差异。
在土壤肥力评价中,土壤阳离子交换量的标准值可以通过土壤检测来确定。
通过土壤检测可以了解土壤中各种养分的含量,进而确定土壤的肥力水平和施肥量。
一般来说,土壤阳离子交换量的标准值应该保持在一定的范围内,过高或者过低都会影响作物的生长发育。
在施肥过程中,根据土壤阳离子交换量的标准值来确定施肥量是非常重要的。
如果土壤阳离子交换量过低,就需要适当增加肥料的施用量,以补充土壤中的养分。
而如果土壤阳离子交换量过高,就需要减少肥料的施用量,以避免养分的过量积累。
因此,合理施肥需要根据土壤阳离子交换量的标准值来进行调整,以保证作物的正常生长。
除了施肥之外,土壤改良也是调整土壤阳离子交换量的重要手段。
通过添加有机肥料、石灰等改良剂,可以提高土壤的阳离子交换量,从而改善土壤的肥力和结构。
在土壤改良过程中,也需要根据土壤阳离子交换量的标准值来确定改良剂的施用量和种类,以达到预期的改良效果。
总的来说,土壤阳离子交换量标准是评价土壤肥力和施肥量的重要指标,合理的土壤阳离子交换量有助于提高土壤肥力,增加作物产量。
因此,农民和农业工作者需要重视土壤阳离子交换量的标准值,通过科学的施肥和土壤改良来提高土壤的肥力和作物的产量,实现农业的可持续发展。
土壤阳离子交换量的测定
土壤阳离子交换量的测定作者:丛稳张启新来源:《农业灾害研究》2021年第02期摘要阳离子交换量测定方法较多,操作步骤多数比较烦琐,目前常用的有氯化钡法和乙酸铵法,氯化钡法操作步骤相对简单,不需要蒸馏;乙酸铵法操作相对复杂,需要蒸馏为了提高工作效率而又不影响准确度,特对此两种方法进行优选,通过对比试验分析,找出影响试验结果的因素,达到快速、经济、准确的试验目的,开展方法对比试验关键词阳离子交换量;检測方法;对比试验中图分类号:S158.2文献标识码:B文章编号:2095-3305(2021)02-157-02土壤阳离子交换量是指在pH-7时,每千克土壤中所含有的全部交换性阳离子(钾、钠、钙、镁、铵、氢、铝等离子)的厘摩尔数。
阳离子交换量的大小基本上代表了土壤可能保持的养分数量,即保肥性的高低,可作为评价土壤保肥能力的指标,是改良土壤和合理施肥的重要依据。
土壤阳离子交换量的测定受多种因素的影响,如交换剂的性质、盐溶液浓度、pH值、淋洗方法等,必须严格控制各种影响因素,才能获得可靠的结果。
目前阳离子交换量的测定方法主要有:氯化钡液法、乙酸铵法、乙酸钠火焰光度法、EDTA-铵盐快速法、草酸铵-氯化铵法、氯化铵-乙酸铵法、乙酸钙-盐酸法、三氯化六合钴浸提-分光光度法等。
1试验步骤1.1氯化钡法称取过0.15mm筛孔的风干土样2.0g,放入离心管中,加入80mL氯化钡缓冲液,搅拌均匀放置过夜,离心弃去上部清液,加入80mL纯水,搅拌均匀,离心弃去上部清液,称量离心管及内容物,向离心管中准确加入0.025molL硫酸镁溶液40mL,间歇摇晃2h,离心后将上部清液仔细移入角瓶中,从三角瓶中吸出5mL溶液,加8滴pH10氨缓冲溶液和4滴铬黑T指示剂,用EDTA标准溶液滴定至颜色从红变蓝为止(消耗量为V1),另取0.025molL硫酸镁溶液5mL,用EDTA标准溶液滴定至终点(消耗量为V2),根据2份滴定结果之差计算交换量。
土壤阳离子交换量质控样
土壤阳离子交换量质控样
土壤阳离子交换量是表征土壤物理性质的一个重要指标,它表示土壤中存在的可交换阳离子的总量。
其中可交换阳离子主要包括铵离子(NH4+)、钠离子(Na+)、钙离子(Ca2+)、镁离子(Mg2+)等,根据交换的顺序和离子种类不同,其交换量也会略有差异。
为了确保土壤阳离子交换量的准确测试结果,往往需要进行质控样的测试。
质控样是已知含量的标准物质,当它与待测试的样品一起进行测试时,能够评估测试方法的准确性和精度,并且能够进行仪器的校准和调整。
质控样的选择应当与待测试样品类似,因此在实际测试中,需要选取一些已知土壤类型、土壤养分含量较为稳定的样品作为质控样。
测试结果应与质控样的已知值进行比较,在测试的过程中需要注意准确称量、混匀、反应时间等因素,以确保测试结果的准确性和可靠性。
总之,土壤阳离子交换量质控样是为了确保土壤阳离子交换量测试结果的准确性和可靠性而进行的一种测试方法,质控样的选择和测试方法的正确执行是保证测试准确性的重要因素。
DB33T 966-2015 土壤阳离子交换量的测定
ICS13.080.05B11 DB33 浙江省地方标准DB 33/T 966—2015土壤阳离子交换量的测定Determination of cation exchange capacity in soil2015-05-07发布2015-06-07实施前言本标准按GB/T 1.1-2009给出的规则起草。
本标准由浙江省农业厅提出。
本标准由浙江省种植业标准化技术委员会归口。
本标准起草单位:浙江省土壤与肥料检测中心、富阳市农技推广中心土肥站、杭州市余杭区农产品质量安全检验检测站。
本标准主要起草人:季天委、戴学龙、高素珍、颜军、刘俊红、邵赛男、韩海林、沈月。
本标准首次发布。
土壤阳离子交换量的测定1 范围本标准规定了土壤阳离子交换量的测定方法。
本标准适用于土壤阳离子交换量的测定。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 601 化学试剂标准滴定溶液的制备GB/T603 化学试剂试验方法中所用制剂及制品的制备GB/T 6682-2008 分析实验室用水规格和试验方法NY/T 1121.1 土壤检测第1部分:土壤样品的采集、处理和贮存NY/T 1121.2 土壤检测第2部分:土壤pH的测定3 方法提要用乙二胺四乙酸二钠与乙酸铵混合液作为交换提取剂,在适宜的pH条件下(酸性、中性土壤 pH 7.0,石灰性土壤 pH 8.5),混合液中的NH4+与土壤交换性阳离子交换,使土壤成为NH4+饱和土,用乙醇洗去多余的铵盐,用蒸馏水将土壤洗入定氮仪的消化管内,加固体氧化镁蒸馏,蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定,求出土壤阳离子交换量含量。
4 试剂和溶液4.1 所有试剂除注明者外,均为分析纯。
分析用水应符合GB/T 6682-2008中至少三级水的规格要求。
实验中所需标准滴定溶液、制剂及制品,在没有注明其它要求时均按GB/T 601、GB/T 603的规定制备。
土壤.doc阳离子交换量
⼟壤.doc阳离⼦交换量⼟壤、底泥、危废和固体废弃物阳离⼦量交换量和交换性盐基的测定⽅法确认报告1. ⽬的通过标准酸溶液滴定来确定⼟壤、底泥、危废和固体废弃物阳离⼦量交换量和交换性盐基的检出限、精密度、准确度的分析,判断本实验室的检测⽅法是否合格。
2. 职责2.1 检测⼈员负责按操作规程操作,确保测量过程正常进⾏,消除各种可能影响试验结果的意外因素,掌握检出限、精密度、准确度的计算⽅法。
2.2 技术负责⼈负责审核检测结果和⽅法确认报告。
3.适⽤范围及⽅法标准依据本标准规定了⼟壤阳离⼦交换量和交换盐基的测定原理、试剂、样品制备、分析步骤和结果表述。
本标准适⽤于中性⼟壤阳离⼦交换量和交换盐基的测定,也可⽤于胃酸性少含2:1型粘⼟矿物的⼟壤。
4. ⽅法原理⽤1mol/L的⼄酸铵溶液反复处理⼟壤,使⼟壤成为铵离⼦饱和⼟,过量的⼄酸铵⽤95%⼄醇洗去,然后加氧化镁,⽤定氮蒸馏的⽅法进⾏蒸馏。
蒸馏出的氨⽤硼酸溶液吸收,以标准酸液滴定,根据铵离⼦的量计算⼟壤阳离⼦交换量。
⼟壤交换性盐基是⽤⼟壤阳离⼦交换量测定时所得到的⼄酸⼟壤浸提液,在选定⼯作条件的原⼦吸收分光光度计上直接测定;但所⽤钙、镁、钾、钠标准溶液应⽤⼄酸铵溶液配制,以消除基体效应。
⽤⼟壤浸出液测定钙、镁时,还应加⼊释放剂锶,以消除铝、磷和硅对钙、镁测定的⼲扰。
5. 仪器与试剂5.1 仪器与设备:a)⼟壤筛:b)离⼼管:c)天平:d)电动离⼼机:e)原⼦吸收分光光度计:5.2试剂所有试剂除注明者外,均为分析纯,⽔均指去离⼦⽔。
5.2.1 1mol/L⼄酸铵溶液:称取77.09g⼄酸铵,⽤⽔溶解并稀释⾄近1L。
必要时⽤1:1氨⽔或⼄酸调节⾄PH7.0,然后定容⾄1L。
5.2.2 95%⼄醇溶液5.2.3 液体⽯蜡(化学纯)5.2.4 氧化镁:将氧化镁放⼊镍蒸发⽫内,在500~600℃马福炉中灼烧30min,冷却后贮藏在密闭的玻璃器⽫中。
5.2.5 20g/L硼酸溶液:20g硼酸溶于1L⽆⼆氧化碳蒸馏⽔。
森林土壤阳离子交换量的测定方法证实
森林土壤阳离子交换量的测定1. 项目概述本实验依据LY/T1243-1999中森林土壤阳离子交换量的测定。
本实验规定了采用乙酸铵交换法测定森林土壤阳离子交换量的方法。
本方法适用于酸性与中性森林土壤中用离子交换的测定。
2. 实验原理用1 mol /L 乙酸铵溶液(pH7.0)反复处理土壤,使土壤成为NH 4+饱和土。
用乙醇洗去多余的乙酸铵后,用水将土壤洗入凯氏瓶中,加固体氧化镁蒸馏。
蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定。
根据NH 4+的量计算阳离子交换量。
3. 试剂3.1 1 mol /L 乙酸铵溶液(pH7.0):77. 09 g 乙酸铵(CH 3COONH 4,化学纯)用水溶解,稀释至近1L 。
如pH 不在7.0,则用1:1氨水或稀乙酸调节至pH7.0,然后稀释至1L 。
3.2 乙醇溶液(工业用,必须无NH 4+)。
3.3 液体石蜡(化学纯)。
3.4 甲基红一溴甲酚绿混合指示剂:0.099 g 澳甲酚绿和0.066 g 甲基红于玛瑙研钵中,加少量乙醇,研磨至指示剂完全溶解为止,最后加乙醇至100 mL 。
3.5 20 g/L 硼酸一指示剂溶液:20 g 硼酸(H 3B03,化学纯)溶于1L 水中。
每升硼酸溶液中加入甲基红一溴甲酚绿混合指示剂20 mL ,并用稀酸或稀碱调节至紫红色(葡萄酒色),此时该溶液的pH 为4.5。
3.6 0. 05 mol /L 盐酸标准溶液:每升水中注入4.5mL 浓盐酸,充分混匀,用硼砂标定。
标定剂硼砂(Na 2B 407.10H 20,分析纯)必须保存于相对湿度60%~70%的空气中,以确保硼砂含10个水含水,通常可在于燥器的底部放置氯化钠和蔗糖的饱和溶液(并有二者的固体存在),密闭容器中空气的相对湿度即为60%—70%。
称取 2. 3825 g 硼砂溶于水中,定容至250 mL ,得0.05 mol /L 硼砂标准溶液[c(1/2Na 2B 4O 7)=0.05mol/L]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五土壤的阳离子交换量
一.实验目的
通过测定表层和深层土的阳离子交换量,了解不同土阳离子交换量的差别。
二.实验原理
本实验采用的是快速法来测定阳离子交换量。
土壤中存在的各种阳离子可被某些中性盐(BaCl2)水溶液中的阳离子(Ba2+)等价交换。
由于在反应中存在交换平衡,交换反应实际上不能进行完全。
当增大溶液中交换剂的浓度、增加交换次数时,可使交换反应趋于完全。
交换离子的本性,土壤的物理状态等对交换反应的进行程度也有影响。
再用强电解质(硫酸溶液)把交换到土壤中的Ba2+交换下来,这由于生成了硫酸钡沉淀,而且氢离子的交换吸附能力很强,使交换反应基本趋于完全。
这样通过测定交换反应前后硫酸含量的变化,可以计算出消耗硫酸的量,进而计算出阳离子交换量。
三.仪器试剂
1.离心机、离心管
2.锥形瓶:100 mL
3.量筒:50 mL
4.移液管:10 mL 、25 mL
5.碱式滴定管:25 mL
6.试管
7.0.1N 氢氧化钠标准溶液
8. 1N氯化钡溶液
9. 酚酞指示剂1%
10. 0.2 N硫酸溶液
11.土壤样品,风干后磨碎过200目筛
四.实验步骤
1.取 4个洗净烘干且重量相近的50mL离心管,贴好标签。
在天平上分别称出其重量(W 克)(准确至0.005 g,以下同)。
在其中2个各加入1 g左右表层风干土壤样品,其余2个加入1 g深层风干土壤样品,并做好相应标记。
2.向各管中加入20 mL氯化钡溶液,用玻棒搅拌4 min后,以3000r/min转速离心10min 至上层溶液澄清,下层土样紧实为止。
倒尽上清液,然后再加20 mL氯化钡溶液,重复上述操作一次,离心完后保留管内土层。
3. 在各离心管内加20 mL蒸馏水,用玻棒搅拌1 min后,再离心一次,倒尽上层清液。
称出离心管连同土样的重量(G克).
4.移取25.00 mL 0.2 mol/L硫酸溶液至各离心管中,搅拌10 min后,放置20 min,离心沉降,将上清液分别倒入4个锥形瓶中。
再从中分别移取10.00 mL上清液至另外4个100 mL 锥形瓶中。
同时,分别移取10.00 mL 0.2 mol/L硫酸溶液至第五,六个锥形瓶中。
在这6个锥形瓶中各加入10 mL蒸馏水和1滴指示剂。
用标准氢氧化钠溶液滴定,溶液转为红色并
数分钟不褪色为终点。
记录0.2 mol/L硫酸溶液和样品溶液耗去的标准溶液的体积。
各为A (mL)和B(mL)。
五.数据处理
按下式计算土壤阳离子交换量
交换量(cmol/kg土)=[A*2.5-B*(25+m)/10]*N NaOH/干土重*100
m 为加硫酸前土壤的水量=G-W-干土重
六.讨论
两种土阳离子交换量有差别的原因是什么?
七.注意事项
1. 实验所用的玻璃器皿应洁净干燥,以免造成实验误差。
2. 离心时注意,处在对应位置上的离心管应重量接近,避免重量不平衡情况的出现。