康沃变频器电路图

合集下载

康沃变频器电路图CVF

康沃变频器电路图CVF

《康沃CVF-G-5.5kW变频器》主电路图《康沃CVF-G-5.5kW变频器》主电路图说这台5.5kW康沃变频器的主电路,就是一个模块加上四只电容器呀。

除了模块和电容,没有其它东西了。

在维修界,流行着这样的说法:宁修三台大的,不修一台小的;小机器风险大,大机器风险小。

小功率变频器结构紧凑,有时候检查电路都伸不进表笔去,只有引出线来测量,确实麻烦。

此其一;小功率变频器,主电路就一个模块,整流和逆变都在里面了。

内部坏了一只IGBT管子,一般情况下只有将整个模块换新,投入的成本高,利润空间小。

而且万一出现意外情况,换上的模块再坏一次,那就是赔钱买卖了。

要高了价,用户不修了,要低的价,有一定的修理风险。

如同鸡肋,食之无味,弃之可惜。

修理风险也大。

大机器空间大,在检修上方便,无论是整流电路还是逆变电路,采用分立式模块,坏一只换一只,维修成本偏偏低下来了。

而大功率变频器的维修收费上,相应空间也大呀。

修一台大功率机器,比修小的三台,都合算啊。

因变频器直流电路的储能电容器容量较大,且电压值较高,整流电路对电容器的直接充电,有可能会造成整流模块损坏和前级电源开关跳闸。

其实这种强Y 充电,对电容器的电极引线,也是一个大的冲击,也有可能造成电容器的损坏。

故一般在整流电路和储能电容器之间接有充电电阻和充电继电器(接触器)。

变频器在上电初期,由充电电阻限流给电容器充电,在电容器上建立起一定电压后,充电继电器闭合,整流电路才与储能电容器连为一体,变频器可以运行。

充电电阻起了一个缓冲作用,实施了一个安全充电的过程。

当负载转速超过变频器的输出转速,由U、V、W输出端子向直流电路馈回再生能量时,若不能及时将此能量耗散掉,异常升高的直流电压会危及储能电容和逆模块的安全。

BSM15GP120模块内置制动单元,机器内部内置制动电阻RXG28-60。

虽有内置制动电阻,但机器也有P1、PB外接制动电阻端子,当内置电阻不能完全消耗再行能量时,可由端子并接外部制动电阻,完成对电机发电的再生能量的耗散。

变频器基本电路图.

变频器基本电路图.

变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。

1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。

它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。

三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。

网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。

当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。

2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。

同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。

为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。

通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。

另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。

因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。

3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。

逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。

最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。

变频器基本电路图

变频器基本电路图

变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。

1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。

它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。

三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。

网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。

当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。

2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。

同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。

为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。

通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。

另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。

因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。

3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。

逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。

最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。

变频器电源电路图

变频器电源电路图

频器电路-电源电路1变频器的电源电路主要有三种:(1)串联稳压电源;(2)分立元件开关电源;(3)集成电路开关电源;第一种串联稳压电源是将220V或380V交流电压通过变压器变成各种所需的低压交流电,通过整流,滤波,稳压后输出稳定的直流电源。

早期的变频器有些是用这种电源,现在已经很少使用了,比如赫力,森兰。

下面主要介绍开关电源。

分立元件开关电源1.台安N2-2P5开关电源电路这个开关电源提供了4路电压:+12V,+15V,两路+5V。

2.安川G5A4015开关电源电路T1是高频变压器,Q1是开关管,R22,R24-R27是启动电阻,给开关管提供启动电压,开关管导通,反馈绕组产生的反馈电压经过R14,C7,D14到开关管,光耦PS2和Q2,D2,R4构成稳压电路。

R28,D16,C13是开关管截止时反向电压吸收电路,保护开关管。

开关管QM5HL-24可以用2SD2579替代。

这个开关电源提供了11路电压和一路欠压检测信号:上桥供电电压3路,下桥供电电压一路,+5V,+15V,-15V,+12V,+20V,两路24V变频器 ( Wed, 29 Jul 2009 18:21:39 +0800 )Description:变频器原理图变频器主要由模块,CPU控制板,电源驱动板组成,见上图.L1为进线电抗器,一般需外接,L2为直流电抗器,大部份变频器需要外接,象施耐德,丹佛斯变频器都内置了直流电抗器。

PM1为整流模块,PM2为逆变模块,一般小功率变频器是将整流和逆变整合在一起,大功率变频器整流和逆变都是分开的,功率越大电流越大,因为单一的整流和逆变的电流有限,所以整流和逆变可以并联使用。

PM3是制动晶体,15KW以下的变频器都内置制动晶体,外接一个制动电阻就能做能耗制动。

C1,C2是滤波电容,变频器功率越大,电容的容量就越大,滤波电容的耐压一般是450V,因为380V级的变频器整流滤流后的电压是600V,所以可以将两个耐压为450V的滤波电容串联使用,总的耐压就可以达到900V。

图解变频器接线,赶快收藏吧!

图解变频器接线,赶快收藏吧!

图解变频器接线,赶快收藏吧!变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。

变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的。

一、变频器工作原理变频器可分为电压型和电流型两种变频器:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。

电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。

是整流器,整流器,逆变器。

而变频器的主电路由整流器、平波回路和逆变器三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路。

上图是一副变频器接线图。

在变频器的安装中,有一些问题是需要注意的。

例如变频器本身有较强的电磁干扰,会干扰一些设备的工作,因此我们可以在变频器的输出电缆上加上电缆套。

又或变频器或控制柜内的控制线距离动力电缆至少100mm等等。

二、主电路的接线1F电源应接到变频器输入端R、S、T接线端子上,一定不能接到变频器输出端(U、V、W)上,否则将损坏变频器。

接线后,零碎线头必须清除干净,零碎线头可能造成异常,失灵和故障,必须始终保持变频器清洁。

在控制台上打孔时,要注意不要使碎片粉末等进入变频器中。

2F在端子+,PR间,不要连接除建议的制动电阻器选件以外的东西,或绝对不要短路。

3F电磁波干扰,变频器输入/输出(主回路)包含有谐波成分,可能干扰变频器附近的通讯设备。

因此,安装选件无线电噪音滤波器FR-BIF或FRBSF01或FR-BLF线路噪音滤波器,使干扰降到最小。

4F长距离布线时,由于受到布线的寄生电容充电电流的影响,会使快速响应电流限制功能降低,接于二次侧的仪器误动作而产生故障。

因此,最大布线长度要小于规定值。

不得已布线长度超过时,要把Pr.156设为1。

康沃变频器电路图CVF

康沃变频器电路图CVF

《康沃CVF-G-5.5kW变频器》主电路图《康沃CVF-G-5.5kW变频器》主电路图说这台5.5kW康沃变频器的主电路,就是一个模块加上四只电容器呀。

除了模块和电容,没有其它东西了。

在维修界,流行着这样的说法:宁修三台大的,不修一台小的;小机器风险大,大机器风险小。

小功率变频器结构紧凑,有时候检查电路都伸不进表笔去,只有引出线来测量,确实麻烦。

此其一;小功率变频器,主电路就一个模块,整流和逆变都在里面了。

内部坏了一只IGBT管子,一般情况下只有将整个模块换新,投入的成本高,利润空间小。

而且万一出现意外情况,换上的模块再坏一次,那就是赔钱买卖了。

要高了价,用户不修了,要低的价,有一定的修理风险。

如同鸡肋,食之无味,弃之可惜。

修理风险也大。

大机器空间大,在检修上方便,无论是整流电路还是逆变电路,采用分立式模块,坏一只换一只,维修成本偏偏低下来了。

而大功率变频器的维修收费上,相应空间也大呀。

修一台大功率机器,比修小的三台,都合算啊。

因变频器直流电路的储能电容器容量较大,且电压值较高,整流电路对电容器的直接充电,有可能会造成整流模块损坏和前级电源开关跳闸。

其实这种强Y 充电,对电容器的电极引线,也是一个大的冲击,也有可能造成电容器的损坏。

故一般在整流电路和储能电容器之间接有充电电阻和充电继电器(接触器)。

变频器在上电初期,由充电电阻限流给电容器充电,在电容器上建立起一定电压后,充电继电器闭合,整流电路才与储能电容器连为一体,变频器可以运行。

充电电阻起了一个缓冲作用,实施了一个安全充电的过程。

当负载转速超过变频器的输出转速,由U、V、W输出端子向直流电路馈回再生能量时,若不能及时将此能量耗散掉,异常升高的直流电压会危及储能电容和逆模块的安全。

BSM15GP120模块内置制动单元,机器内部内置制动电阻RXG28-60。

虽有内置制动电阻,但机器也有P1、PB外接制动电阻端子,当内置电阻不能完全消耗再行能量时,可由端子并接外部制动电阻,完成对电机发电的再生能量的耗散。

变频器的电路原理图及其调速原理

变频器的电路原理图及其调速原理

变频器的电路原理图及其调速原理————————————————————————————————作者:————————————————————————————————日期:变频器电路原理图一、变频器开关电源电路变频器开关电源主要包括输入电网滤波器、输入整流滤波器、变换器、输出整流滤波器、控制电路、保护电路。

我们公司产品开关电源电路如下图,是由UC3844组成的开关电路:开关电源主要有以下特点:1,体积小,重量轻:由于没有工频变频器,所以体积和重量吸有线性电源的20~30%2,功耗小,效率高:功率晶体管工作在开关状态,所以晶体管的上功耗小,转化效率高,一般为60~70%,而线性电源只有30~40%二、二极管限幅电路限幅器是一个具有非线性电压传输特性的运放电路。

其特点是:当输入信号电压在某一范围时,电路处于线性放大状态,具有恒定的放大倍数,而超出此范围,进入非线性区,放大倍数接近于零或很低。

在变频器电路设计中要求也是很高的,要做一个好的变频器维修技术员,了解它也相当重要。

1、二极管并联限幅器电路图如下所示:2、二极管串联限幅电路如下图所示:三、变频器控制电路组成如图1所示,控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路.在图1点划线内,无速度检测电路为开环控制。

在控制电路增加了速度检测电路,即增加速度指令,可以对异步电动机的速度进行控制更精确的闭环控制。

1)运算电路将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。

2)电压、电流检测电路与主回路电位隔离检测电压、电流等。

3)驱动电路为驱动主电路器件的电路,它与控制电路隔离使主电路器件导通、关断。

4)I/0输入输出电路为了变频器更好人机交互,变频器具有多种输入信号的输入(比如运行、多段速度运行等)信号,还有各种内部参数的输出“比如电流、频率、保护动作驱动等)信号。

康沃变频器维修之电路图电路分析

康沃变频器维修之电路图电路分析

参考资料:/%C5%C9%BF%CB652/blog/item/66e972e120ef532aadaf d531.html康沃变频器原为一家民营企业,生产变频器将近10年,生产的G/P系列变频器应用广泛,目前已经进入产品老化期,需要维修的康沃变频器也有一定数量,我们根据康沃变频器的特点陆续整理了一些康沃变频器维修技术资料,下边是康沃变频器开关电源电路原理图和一些维修技巧分析。

该电路不算是一款很经典的开关电源电路,但并不意味着它是一款性能不好的电路,在实际运行中它的故障率并不高。

电路的输入取自主直流回家储能电容的两端的约550V直流电压,振荡与驱动采用了常用电源芯片38440由R40、R41、Z8提供电路的起振电压和电流,Z8稳压值未及测出,估测约为13V左右。

在这里L E D兼作了电源指示。

3844起振后,由B T绕组经D13、D l 4、C30、C31等整流滤波电路,建立起3844的7脚供电电压。

同时,该路供电又承担输出电压采样、电压反馈的功能,经R1、R2分压后,送入3844的2脚,反馈电压输入脚。

这与其它品牌变频器开关电源电路电压反馈的方式有所不同。

也由于是电压采样不是直接取自变压器次级的供电支路,只能算作对各路输出电压的间接采样,则控制应变速度和精度不是太高。

但次级绕组的+18V、-18V供电,引入C P U主板后,又分别加入了7815、7915的稳压环节,电路稍嫌烦琐之下,其供电性能又有了相应的提升。

同时+8V供电引入主板后,加入了7805的稳压处理,作为C P U的供电。

对开关管电流的采样,按常规从开关管K2225源极相串联的电阻R37上取得。

送入了3844的3脚一一电流检测端。

1、2脚之间所接为内部电压放大器的反馈元件,决定对采样电压的放大倍率。

8脚为V r e f端,在正常工作中输出一个5v基准电压,为4脚外接R、C振荡定时元件提供电流通路,保障了振荡频率的稳定性。

6脚为脉冲输出脚,也可称之为驱动输出端。

变频器的工作原理以及接线图

变频器的工作原理以及接线图

变频器介绍:变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备.变频器主要由整流〔交流变直流〕、滤波、逆变〔直流变交流〕、制动单元、驱动单元、检测单元微处理单元等组成.变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的.变频器工作原理变频器可分为电压型和电流行两种变频器.电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容.电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感.是整流器,整流器,逆变器.而变频器的主电路由整流器、平波回路和逆变器三部分构成,将工频电源变换为直流功率的"整流器",吸收在变流器和逆变器产生的电压脉动的"平波回路.变频器接线图上图是一副变频器接线图.在变频器的安装中,有一些问题是需要注意的.例如变频器本身有较强的电磁干扰,会干扰一些设备的工作,因此我们可以在变频器的输出电缆上加上电缆套.又或变频器或控制柜内的控制线距离动力电缆至少100mm等等.变频器接线方法一、主电路的接线1、电源应接到变频器输入端R、S、T接线端子上,一定不能接到变频器输出端〔U、V、W〕上,否则将损坏变频器.接线后,零碎线头必须清除干净,零碎线头可能造成异常,失灵和故障,必须始终保持变频器清洁.在控制台上打孔时,要注意不要使碎片粉末等进入变频器中.2、在端子+,PR间,不要连接除建议的制动电阻器选件以外的东西,或绝对不要短路.3、电磁波干扰,变频器输入/输出〔主回路〕包含有谐波成分,可能干扰变频器附近的通讯设备.因此,安装选件无线电噪音滤波器FR-BIF或FRBSF01或FR-BLF线路噪音滤波器,使干扰降到最小.4、长距离布线时,由于受到布线的寄生电容充电电流的影响,会使快速响应电流限制功能降低,接于二次侧的仪器误动作而产生故障.因此,最大布线长度要小于规定值.不得已布线长度超过时,要把Pr.156设为1.5、在变频器输出侧不要安装电力电容器,浪涌抑制器和无线电噪音滤波器.否则将导致变频器故障或电容和浪涌抑制器的损坏.6、为使电压降在2%以内,应使用适当型号的导线接线.变频器和电动机间的接线距离较长时,特别是低频率输出情况下,会由于主电路电缆的电压下降而导致电机的转矩下降.7、运行后,改变接线的操作,必须在电源切断10min以上,用万用表检查电压后进行.断电后一段时间内,电容上仍然有危险的高压电.二、控制电路的接线变频器的控制电路大体可分为模拟和数字两种.1、控制电路端子的接线应使用屏蔽线或双绞线,而且必须与主回路,强电回路〔含200V继电器程序回路〕分开布线.2、由于控制电路的频率输入信号是微小电流,所以在接点输入的场合,为了防止接触不良,微小信号接点应使用两个并联的节点或使用双生接点.3、控制回路的接线一般选用0.3~0.75平方米的电缆.三、地线的接线1、由于在变频器内有漏电流,为了防止触电,变频器和电机必须接地.2、变频器接地用专用接地端子.接地线的连接,要使用镀锡处理的压接端子.拧紧螺丝时,注意不要将螺丝扣弄坏.3、镀锡中不含铅.4、接地电缆尽量用粗的线径,必须等于或大于规定标准,接地点尽量靠近变频器,接地线越短越好.变频器的作用1.变频器可以调整电机的功率,实现电机的变速运行,以此来达到省电的目的.例子体现在离心风机和水泵上,当离心风机和水泵使用了变频器后,操作人员变频调速,可根据需要轻松控制流量,从而节省了能源2.变频器可以降低电力线路中电压的波动,避免了一旦电压发生异常而导致设备的跳闸或者出现异常运行的现象.3.变频器可以减少对电网的冲击,从而有效地减少了无功损耗,增加了电网的有效功率.4.变频器还可以减少机械中传动部件之间的磨损,因此,在一定程度上也降低了成本,提高了系统的稳定性.5.此外,变压器的控制功能非常齐全,可以很好的配合其他的控制设备或者一起,从而实现集中监视和实时控制,为用户解决了很多系统兼容性的麻烦等问题。

变频器电路原理图

变频器电路原理图

变频器电路原理图四圈子类别:低压变频器(未知) 2008-8-28 16:17:00[我要评论] [加入收藏] [加入圈子]--------------------------------------------------------------------------------一、先来了解模电和数电的区别很多刚进入电子行业,自动化行业的人士对模似电子电路和数字电子电路存在一些疑惑,由其是刚进这行的人更是不明了,当然在接触变频器维修与维护时肯定要熟悉。

所谓模似电子电路实际是相对数字电子电路而言。

模电:一般指频率在百兆HZ以下,电压在数十伏以内的模似信号以及对此信号的分析/处理及相关器件的运用。

百兆HZ以上的信号属于高频电子电路范畴。

百伏以上的信号属于强电或高压电范畴。

数电:一般指通过数字逻辑和计算去分析、处理信号,数字逻辑电路的构成以及运用。

数电的输入和输出端一般由模电组成,构成数电的基本逻辑元素就是模电中三级管饱和特性和截止特性。

由于数电可大规模集成,可进行复杂的数学运算,对温度、干扰、老化等参数不敏感,因此是今后的发展方向。

但现实世界中信息都是模似信息(光线、无线电、热、冷等),模电是不可能淘汰的,但就一个系统而言模电部分可能会减少。

理想构成为:模似输入--AD采样(数字化)--数字处理--DA转换--模似输出。

二、运放与比较器的区别运算放大器与专用比较器在变频器主控板的控电路中比较常见,它的作用也不用我去形容了,做这行的都比我清楚。

1、运放可以连接成为比较输出,比较器就是比较。

那么市面上为何单独出售两种产品,他们有相同和不同之处是什么呢?2、比较器输出一般是OC便于电平转换;比较器没有频补,SLEW RATE比同级运放大,但接成放大器易自激。

比较器的开环增益比一般放大器高很多,因此比较器正负端小的差异就引起输出端变化。

3、频响是一方面,另处运放当比较器时输出不稳定,不一定能满足后级逻辑电路的要求。

变频器基本电路图

变频器基本电路图

变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。

1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。

它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。

三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。

网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。

当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。

2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。

同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。

为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。

通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。

另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。

因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。

3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。

逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。

最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。

变频器原理及接线图

变频器原理及接线图

变频器原理及接线图。

变频器(VFD )是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。

变频器靠内部IGBT 的开断来调整输出电源的电压和频率,根据电进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。

变频器工作原理主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。

电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。

它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。

变频器接线图变频器接线方法一、主电路的接线1、电源应接到变频器输入端R 、S 、T 接线端子上,一定不能接到变频器输出端(U 、V 、W )上,否则将损坏变频器。

接线后,零碎线头必须清除干净,零碎线头可能造成异常,失灵和故障,必须始终保持变频器清洁。

等进入变频器中。

2、在端子+,PR 间,不要连接除建议的制动电阻器选件以外的东西,或绝对不要短路。

/article/zhishi/bpq/3、电磁波干扰,变频器输入/输出(主回路)包含有谐波成分,可能干扰变频器附近的通讯设备。

因此,安装选件无线电噪音滤波器FR-BIF 或FRBSF01或FR-BLF 线路噪音滤波器,使干扰降到最小。

4、长距离布线时,由于受到布线的寄生电容充电电流的影响,会使快速响应电流限制功能降低,接于二次侧的仪器误动作而产生故障。

因此,最大布线长度要小于规定值。

不得已布线长度超过时,要把Pr .156设为1。

5、在变频器输出侧不要安装电力电容器,浪涌抑制器和无线电噪音滤波器。

否则将导致变频器故障或电容和浪涌抑制器的损坏。

变频器基本电路图

变频器基本电路图

变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。

1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。

它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。

三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。

网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。

当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。

2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。

同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。

为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。

通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。

另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。

因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。

3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。

逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。

最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。

康沃变频器的主要故障及处理方法

康沃变频器的主要故障及处理方法

康沃变频器的主要故障及处理方法1 引言近年来随着电力电子技术、功率半导体器件及变频控制理论的发展,变频器作为一种智能控制电源已被广泛应用于各行业,90年代初期主要以进口品牌为主如富士、三菱、西门子、ABB等,90年代中期国产变频器日渐出现在市场上,主要以通用型变频器为主。

目前国产变频器技术已逐渐成熟,国产变频器市场占有率也逐渐提高,作为国内变频器专业生产厂家之一的深圳康沃电气技术有限公司,经过短短几年时间的发展,康沃变频器凭借其优越的性能,日渐被客户所接受。

康沃公司目前生产的变频器主要有通用型G1/G2系列、风机水泵专用型P1/P2系列、注塑机专用型ZS/ZC系列及高性能单相变频器S1系列,其它各类专用变频器、更高性能的矢量型变频器也将陆续推向市场。

本文主要讲述康沃变频器通用型在应用中出现的常见故障及处理方法,以便用户参考。

2 通用型变频器主电路目前市场上国产变频器主要以低压通用型变频器为主,为下文叙述方便,现简要介绍通用型变频器的主电路结构,从变频器结构上分有交-交变频器与交-直-交变频器,从变频性质分主要电压源型变频器与电流源型变频器,目前国内生产的变频器主要以电压源型交-直-交变频器为主,其结构示意如图1示。

图1 电压源型交-直-交变频器主电路示意图其主电路主要由整流电路、滤波电路、逆变电路及制动单元等几部分构成,其中IGBT(绝缘栅双极晶体管)构成了变频器主要硬件,各部分电路功能简述如下:(1) 整流电路由VD1~VD6组成三相桥式全波整流电路将三相交流电整流成直流电。

(2) 滤波电路整流电路输出的直流电压为脉动的直流电压,因而需滤波电路滤去电压波纹,同时它还在整流电路与逆变电路起到储能作用。

(3) 逆变电路由开关管V1~V6构成逆变电路将直流电压逆变成三相频率、电压可调的交流电以驱动三相电动机,是变频器实现变频的关键环节。

(4) 限流电路由限流电阻R及开关K构成,由于上电瞬间滤波电容端电压为零,上电瞬间电容充电电流较大,过大的电流可能损坏整流电路,为保护整流电路在变频器上电瞬间限流电阻串联到直流回路中,当电容充电到一定时间后通过开关K将电阻短路。

变频器直流母线电路示意图分析

变频器直流母线电路示意图分析

变频器直流母线电路示意图分析有关变频器直流母线电路的示意图,P、N直流母线电路示意图,变频器直流母线电路短路故障的现象与处理方法,整流和逆变电路中元件损坏造成的短路故障等。

变频器直流母线电路示意图变频器主电路的所有部件,都是直接并联(或者说是“挂在”)直流母线上的,如图1。

常规小功率机型,大致有A~E等6部分电路并接于P、N直流母线,中、大功率机型,只有直流制动电路,需在变频器外部接入。

A~E等6部分电路中的任一部分出现短路故障时,都会直接造成P、N端点的电阻变化。

同理,当测量其它无故障电路时,也会因故障电路的“牵连”,使正常电路(被无辜)表现出“短路”的故障现象。

因而在故障检修过程中,遇有这种现象,要沉思一下再动手,避免对无辜元件的大拆大卸——如对一体化功率模块的拆卸,有可能造成器件的损坏!图1 P、N直流母线电路示意图当开关电源电路中的开关管出现短路故障时,因开关变压器初级线圈的直流电阻值近于零,和电流采样电阻一般小于1Ω的原因,开关管的漏、源极相当于并联于P、N端,1、若此时用万用表的电阻挡直接检测P、N两点,会得到P、N之间存在直流短路的故障判断;2、检测整流管D1~D6的正、反向电阻值,是相等的,有可能得出整流模块不良的误判;3、检测U、V、W输出端与P、N端之间的正、反向电阻值,发现其正、反向电阻值也是相等的,都与正向电阻值接近,也易得出逆变模块损坏的误判;4、此时若凑巧是检测C1、C2电容的两端,则易得出C1~C5电容元件可能短路的误判。

曾有检修人员,接手变频器后,先下手检测U、V、W输出端与P、N端之间的正、反向电阻值,发现皆为较小的电阻值,且无正、反向特性,贸然拆下一体化模块化,才后悔莫及,一体化模块是好,原来仅为故障仅为开关管VT01短路,由此造成较大的经济损失。

这种低级错误,一时头脑发热,也是可能干得出来的。

如果细心一点,对挂于P、N直流母线的各部分电路,能有个大概认识,并细心分析检测结果,结合故障概率分析,当不难得出准确判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《康沃CVF-G-5.5kW变频器》主电路图《康沃CVF-G-5.5kW变频器》主电路图说这台5.5kW康沃变频器的主电路,就是一个模块加上四只电容器呀。

除了模块和电容,没有其它东西了。

在维修界,流行着这样的说法:宁修三台大的,不修一台小的;小机器风险大,大机器风险小。

小功率变频器结构紧凑,有时候检查电路都伸不进表笔去,只有引出线来测量,确实麻烦。

此其一;小功率变频器,主电路就一个模块,整流和逆变都在里面了。

内部坏了一只IGBT管子,一般情况下只有将整个模块换新,投入的成本高,利润空间小。

而且万一出现意外情况,换上的模块再坏一次,那就是赔钱买卖了。

要高了价,用户不修了,要低的价,有一定的修理风险。

如同鸡肋,食之无味,弃之可惜。

修理风险也大。

大机器空间大,在检修上方便,无论是整流电路还是逆变电路,采用分立式模块,坏一只换一只,维修成本偏偏低下来了。

而大功率变频器的维修收费上,相应空间也大呀。

修一台大功率机器,比修小的三台,都合算啊。

因变频器直流电路的储能电容器容量较大,且电压值较高,整流电路对电容器的直接充电,有可能会造成整流模块损坏和前级电源开关跳闸。

其实这种强Y 充电,对电容器的电极引线,也是一个大的冲击,也有可能造成电容器的损坏。

故一般在整流电路和储能电容器之间接有充电电阻和充电继电器(接触器)。

变频器在上电初期,由充电电阻限流给电容器充电,在电容器上建立起一定电压后,充电继电器闭合,整流电路才与储能电容器连为一体,变频器可以运行。

充电电阻起了一个缓冲作用,实施了一个安全充电的过程。

当负载转速超过变频器的输出转速,由U、V、W输出端子向直流电路馈回再生能量时,若不能及时将此能量耗散掉,异常升高的直流电压会危及储能电容和逆模块的安全。

BSM15GP120模块内置制动单元,机器内部内置制动电阻RXG28-60。

虽有内置制动电阻,但机器也有P1、PB外接制动电阻端子,当内置电阻不能完全消耗再行能量时,可由端子并接外部制动电阻,完成对电机发电的再生能量的耗散。

制动单元的开关信号由GB、N两个控制端子引入,制动开关信号是由CPU主板提供的。

对IGBT逆变电路的保护,1、过流、短路保护电路——IGBT管压降检测电路,又称为模块故障检测电路。

驱动电路一般也兼有模块故障检测功能。

在IGBT 模块内流通异常电流时,实施快速停机保护;2、电压保护电路——直流电路的电压检测电路,逆变电路供电异常时,实施停机保护;3、个别机器还有输入三相电源检测电路,和输出三相电压检测电路,在输入电源电压缺相和缺出异常时,均会实施停机保护;4、温度保护电路——模块温度检测电路,在运行状态中检测模块温度异常上升时,实施停机保护。

一般的温度检测电路,由温度传感元件与后续电路构成。

BSM15GP120模块内部,内置有模块温度检测电路,模块温升异常时输出高电平信号给CPU。

早期生产的变频器产品,逆变功率电路有采用可控硅器件的,在可控硅的关断和换相上控制较为复杂,载波频率往往也较低。

电机运行的噪声和振动都要大一些。

是不是也有人考虑过用双极型器件(晶体三极管)做功率逆变电路的,但因三极管为电流驱动型器件,驱动电路须提供很大的驱动功率,这会带来极大驱动功耗和驱动电路应做成一块相当大的线路板,这样不光考虑模块的散热,还要考虑驱动电路的散热了。

也有人考虑用场效应晶体管来做,但场效应晶体管的导导通压降太大,这会形成管子本身的功耗,而且场效应晶体管的功率容量也是有限的。

再后来,随着技术的进步,出现了新型器件——IGBT管子。

该器件融合了双极型器件和场效应器件两者的优点——电压控制、较小的导通压降和较大的功率容量。

使驱动电路和IGBT模块本身的功耗都大为降低,并且易于驱动。

所以现在所有的变频器的功率输出电路,一律都是采用IGBT模块了。

《康沃CVF-G-5.5kW变频器》开关电源电路图《康沃CVF-G-5.5kW变频器》开关电源电路图说任何电子设备,电源电路的故障率总是相当高的——因其要提供整机的电源供应,负担最重。

看家电维修有关彩色电视机的文章,对于开关电源的修理,那是需要拿出专门章节来讨论的。

变频器的开关电源电路,形式上比较单一,相差倒不大,不像彩电的电源电路那么五花八门。

别以为电路简单,修理就会相对简单,简单电路也是有疑难故障的哟!检修起来不像线性电源那么直观,开关电源的任一个小环节——振荡、稳压、保护、负载等出现异常,都会使电路出现千奇百怪的故障现象!人干电气、电子修理这个行当越久、越深入,便越是自负不起来,同一种电路,你修过了一千种故障,但说不定哪一天,在你觉得踌躇满志不在话下的当儿,第一千零一种故障现身了,也能让你挠会儿头。

R40、R41、LED组成上电启动电路,为振荡芯片U1-3844B提供上电时的起振电流。

在电路起振工作后,由自供电绕组、D13、D14、C30构成的整流滤波电路为U1提供工作电源。

自供电绕组、D13、C31整流滤波电路输出的电压,同时也作为反馈电压信号输入到U1的2脚,由内部误差放大器与基准电压比较,输出控制电压控制内部PWM波发生器,改变U1的6脚输出脉冲的占空比,从而控制开关管K2225的导通与截止时间,维持次级绕组输出电压的稳定。

自供电绕组、D13、D14、C30、C31既是U1的供电电源,同时构成了稳压电路,将因电网电压波动或负载电流变动引起的次级绕组输出电压的变化,反馈到U1的2脚,实现稳压控制。

在U1的7脚供电电压值超过16V以上时,U1的8脚输出5V基准电压,为U1的4脚外接振荡电路的定时元件提供充、放电能量,4脚R、C元件与内部电路配合,在4脚产生锯齿波振荡脉冲,该脉冲送入内部PWM波形成电路。

开关变压器BT的初级绕组与开关管串接,由开关管的导通和截止,将直流供电能量经BT绕组转变为交变能量(电磁能量),再耦合到次级电路。

与主绕组相并联的D15、C32、R39等元件,提供开关管截止时主绕组感生反向电流的泄放通路,抑制了反向电压的峰值,并加快了开关管的截止速度,同时也避免了开关管承受过高反压而损坏,具有一定保护作用;开关管源极串联的电流采样电路R37,将流过主绕组和开关管的电流转化为电压信号,输入到U1的3脚,当开关管流过异常电流时,R37上电压降上升,U1的3脚内部电流信号处理电路,输出控制信号,或改变6脚脉冲信号的占空比,使开关管截止时间变长,以降低电源的输出电流。

在有过流状况发生但R36上电压降在1V以下时,内部电流信号处理电路输入信号,控制6脚输出信号的占空比,实施限流控制。

而当过流严重使R36上电压上升为1V以上时,内部电流信号处理电路使U1停振,以实施过流保护。

当听到开关电源发出“打嗝”声,处于时振时停状态下,说明负载电路有严重过流情况发生,处于过流停振保护的临界点上。

“打嗝”现象,实质上是电路本身实施的保护动作。

次级绕组输出电压经D9、C25整流滤波成+8V直流电源,送入CPU主板,再经后级电路稳压成+5V,供CPU电路;次级绕组输出电压经D6、C20整流滤波成24V直流电源,供充电继电器MC的线圈供电,变频器上电时,先由充电电阻给直流电路的储能电容器充电,CPU再输出一个MC闭合指令(由CON1端子的29脚进入),MC闭合,将充电电阻短接。

24V电源还作为两只散热风扇的供电电源,两只散热风扇由三极管T2、T3驱动,风扇运转指令也由CPU以端子CON1的27脚输入,控制T2、T3的导通与截止。

另有两组D10、C27和D8、C23等整流滤波电源,分别输出+18V和-18V两路供电,送入CPU主板,再由后级稳压电路处理成+15V、-15V直流稳压电源,供电流、电压保护检测电路和控制电路。

-18V的供电绕组,同时还由D7正向整流成正电压,作为直流电压的检测信号,送入后级直流电路电压检测电路,进一步处理后,送入CPU,供过、欠压保护、直流电压显示、参与输出电路控制等。

《康沃CVF-G-5.5kW变频器》驱动电路图《康沃CVF-G-5.5kW变频器》驱动电路图说小功率变频器主电路、开关电源电路、驱动电路,往往是做于一块线路板上的,不能简单地称为电源/驱动板了,三相整流、三相逆变和储能电容器也在线路板上呀。

该块线路板的故障率较高,能占到变频器总故障率的80%左右。

CPU主板故障相对较小,低电压小电流信号嘛。

主电路器件,如逆变模块,和驱动电路,有故障共生的特点,模块的损坏,必将波及驱动电路受冲击;驱动电路的异常,也往往危及到模块。

所谓变频器维修,维修人员的大部分时间是耗费在这块板子上的。

电源/驱动板的电路结构是大同小异的,各个品牌的变频器的电源/驱动板——你要是修理多了经手多了——感觉都差不多的。

CPU主板,这是一个不太准确的称谓,变频器的中心控制部件国人习惯上称为单片机,国际上称其为微控制器(因结构性能上高于微处理器)。

但大家吆喝CPU主板已经成习惯了,仿佛约定俗成似的,我也随大溜,把以微控制器为中心的那块板子,称为CPU主板了。

CPU主板电路,包括单片机及外单片机外围电路,控制端子的输入、输出信号电路、电流电压检测电路、温度检测电路、其它控制电路等。

对CPU主板电路的维修,在无电路原理图的情况下,难度是较大的。

尤其是多层印刷线路和小体积贴片元件构成的CPU主板。

一般变频器都是都是由这两块板子构成的,当然也有例外的啊,也有把开关电源与单片机做在一个板子上的。

驱动IC由TLP250担任,对驱动IC的供电来说(以U相上桥臂驱动电路为例),是由D5、C19整流滤波电路直接提供24V单电源供电的,但24V电源回路中,由R26、Z1、C5的稳压电路又“人为”分离出一个零电位点来,这个零电位点经模块触发端子加到逆变模块内部IGBT管子的射极。

假定稳压管Z1的击穿电压值为9V,则供电电源的正端对零电位点的电压值为+15V,对供电电源的负端电压值为-9V。

因而,当U1的6/7脚输出高电平的激励电压时,IGBT的栅-射结被接入+15V的激励电压,IGBT管子被驱动而开通,这个驱动过程实质上是+15V 电压对栅-射结电容充电的过程;当U1的6/7脚输出低电平的激励电压时,IGBT 的栅-射结被接入-9V的截止电压,IGBT管子的栅-射结承受反偏压而截止,这个截止过程实质上是-9V供电对IGBT管子的栅-射结电容内储存的电荷进行中和而使其快速消失的过程。

可以说,对IGBT管子的开通的控制是由+15V电源对其栅-射结电容“灌入电流”的结果使然;而对IGBT管子的截止的控制,则是由-9V 电源对栅-射结电容内储存电荷进行快速“拉出电流”的结果使然。

我一直对IGBT 管子是电压型控制器件的理论颇有微言,而认为此类管子仍为电流型控制器件,在写作此文的过程中,觉得我的说法有点矫枉过正的意思了。

相关文档
最新文档