变频器完全电路图
变频器基本电路图
变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。
1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。
同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。
为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。
通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。
另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。
因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。
3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。
逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。
最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。
三菱FR-D700系列变频器接线图_交直流调速系统(第2版)_[共2页]
7.1
通用变频器端子接线图
107 控制电路端子接线说明如下。
控制电路输入信号出厂设定为漏型逻辑。
在这种逻辑中,信号端子接通时,电流是从相应的输入端子流出,其结构如图
7-2所示。
图7-2 漏型逻辑控制电路结构图
在控制电路端子板的背面,把跳线从漏型逻辑位置移到源型逻辑位置,可以改变变频器的控制逻辑。
在源型逻辑中,信号接通时,电流是流入相应的输入端子,其结构如图7-3
所示。
图7-3 源型逻辑控制电路结构图
7.1.2 三菱FR-D700系列变频器接线图
三菱公司FR-D700系列变频器是多功能、紧凑型变频器,采用通用磁通矢量控制方式,功率范围为0.4~7.5kW ,具有15段速、PID 和漏-源型转换等功能。
三菱FR-D700变频器的端子接线图如图7-4所示。
各个端子功能参照FR-A740变频器。
变频器基本电路图
变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。
1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。
同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。
为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。
通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。
另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。
因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。
3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。
逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。
最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。
海尔变频空调电路原理及图纸
海尔变频空调电路原理及图纸海尔变频空调电路原理及图纸海尔牌变频空调器早期在市场上主要有:KFR-20Gw/(BP)、KFR-28GW/A(BP)、KFR-32Gw/(BP)、KFR-36GW /(BP)、KFR-40Gw/(BP)、KFR-50Lw/(BP)和带有负离子发生器的健康型空调器KFR-25Gw/BP×2(F)、KFR-50LW/(BPF)等。
他们的变频控制原理基本相同,本文主要以KFR-50LW(BP)金元帅柜机王为例,分析控制电路的工作原理,以抛砖引玉。
图1是室内机控制电路原理图,图2是室外机控制电路原理图,两个原理图均是作者依据实物绘制,仅供参考。
一、室内机控制电路原理室内机控制电路采用变频空调专用芯片47C862AN-Gc5l。
该芯片内部除了写入空调器专用程序外,还包含有CPU 微处理器、程序存贮器、数据存贮器、输入输出接口和定时计数器电路等电路,可对输入的信号进行运算和比较,根据运算和比较的结果,对室外机、风机、定时、制冷制热、抽湿等工作状态进行控制。
1.ICI(47C862AN-GC51)主要引脚功能(1)35、64脚为供电端,典型的工作电压为+5V。
(2)芯片的32、33、34、39、48、60为接地端。
(3)31脚是蜂鸣器接口。
CPU每接到一次用户指令,31脚便输出一个高电平,蜂鸣器鸣响一次,以告知用户CPU 已接到该项指令。
若整机已处于关机状态,遥接器再输出关机指令,蜂鸣器也不响。
(4)36、37、38是温度采集口,其中36、37脚为室内机热交换器温度输入口,38脚为室内温度输入口。
(5)复位电路由20脚和ICl03、R101、D101、C103、C109构成,低电平有效。
空调器每次上电后,复位电路产生一个低电压,使CPU程序复位。
当机器正常工作时,复位端为高电平。
(6)62脚为开关控制端开关控制口(多功能口),低电平有效。
应急运转时,按住电源开关,使该脚连续3秒以上持续高电平,蜂鸣器连响两下,机器即可进入应急运转状态。
变频器的工作原理图
变频器的工作原理图1、变频器的主回路电压型变频器主电路包括:整流电路、中间直流电路、逆变电路三部分组,交-直-交型变频器结构见附图11)整流电路: VD1~VD6组成三相不可控整流桥,220V系列采用单相全波整流桥电路;380V系列采用桥式全波整流电路。
2)中间滤波电路:整流后的电压为脉动电压,必须加以滤波;滤波电容CF除滤波作用外,还在整流与逆变之间起去耦作用、消除干扰、提高功率因素,由于该大电容储存能量,在断电的短时间内电容两端存在高压电,因而要在电容充分放电后才可进行操作。
3)限流电路:由于储能电容较大,接入电源时电容两端电压为零,因而在上电瞬间滤波电容CF的充电电流很大,过大的电流会损坏整流桥二极管,为保护整流桥上电瞬间将充电电阻RL串入直流母线中以限制充电电流,当CF充电到一定程度时由开关SL将RL短路。
4)逆变电路:逆变管V1~V6组成逆变桥将直流电逆变成频率、幅值都可调的交流电,是变频器的核心部分。
常用逆变模块有:GTR、BJT、GTO、IGBT、IGCT等,一般都采用模块化结构有2单元、4单元、6单元5)续流二极管D1~D6:其主要作用为:(1)电机绕组为感性具有无功分量,VD1~VD7为无功电流返回到直流电源提供通道(2)当电机处于制动状态时,再生电流通过VD1~VD7返回直流电路。
(3)V1~V6进行逆变过程是同一桥臂两个逆变管不停地交替导通和截止,在换相过程中也需要D1~D6提供通路。
6)缓冲电路由于逆变管V1~V6每次由导通切换到截止状态的瞬间,C极和E 极间的电压将由近乎0V上升到直流电压值UD,这过高的电压增长率可能会损坏逆变管,吸收电容的作用便是降低V1~V6关断时的电压增长率。
7)制动单元电机在减速时转子的转速将可能超过此时的同步转速(n=60f/P)而处于再生制动(发电)状态,拖动系统的动能将反馈到直流电路中使直流母线(滤波电容两端)电压UD不断上升(即所说的泵升电压),这样变频器将会产生过压保护,甚至可能损坏变频器,因而需将反馈能量消耗掉,制动电阻就是用来消耗这部分能量的。
康沃变频器电路图CVF
《康沃CVF-G-5.5kW变频器》主电路图《康沃CVF-G-5.5kW变频器》主电路图说这台5.5kW康沃变频器的主电路,就是一个模块加上四只电容器呀。
除了模块和电容,没有其它东西了。
在维修界,流行着这样的说法:宁修三台大的,不修一台小的;小机器风险大,大机器风险小。
小功率变频器结构紧凑,有时候检查电路都伸不进表笔去,只有引出线来测量,确实麻烦。
此其一;小功率变频器,主电路就一个模块,整流和逆变都在里面了。
内部坏了一只IGBT管子,一般情况下只有将整个模块换新,投入的成本高,利润空间小。
而且万一出现意外情况,换上的模块再坏一次,那就是赔钱买卖了。
要高了价,用户不修了,要低的价,有一定的修理风险。
如同鸡肋,食之无味,弃之可惜。
修理风险也大。
大机器空间大,在检修上方便,无论是整流电路还是逆变电路,采用分立式模块,坏一只换一只,维修成本偏偏低下来了。
而大功率变频器的维修收费上,相应空间也大呀。
修一台大功率机器,比修小的三台,都合算啊。
因变频器直流电路的储能电容器容量较大,且电压值较高,整流电路对电容器的直接充电,有可能会造成整流模块损坏和前级电源开关跳闸。
其实这种强Y 充电,对电容器的电极引线,也是一个大的冲击,也有可能造成电容器的损坏。
故一般在整流电路和储能电容器之间接有充电电阻和充电继电器(接触器)。
变频器在上电初期,由充电电阻限流给电容器充电,在电容器上建立起一定电压后,充电继电器闭合,整流电路才与储能电容器连为一体,变频器可以运行。
充电电阻起了一个缓冲作用,实施了一个安全充电的过程。
当负载转速超过变频器的输出转速,由U、V、W输出端子向直流电路馈回再生能量时,若不能及时将此能量耗散掉,异常升高的直流电压会危及储能电容和逆模块的安全。
BSM15GP120模块内置制动单元,机器内部内置制动电阻RXG28-60。
虽有内置制动电阻,但机器也有P1、PB外接制动电阻端子,当内置电阻不能完全消耗再行能量时,可由端子并接外部制动电阻,完成对电机发电的再生能量的耗散。
mm430变频器接线图(中文版)
MICROMASTER 430Siemens DA51.2 • 2002MICROMASTER 430变频器适合用于各种变速驱动装置,由于其灵活性而可以在广泛的领域得到应用。
这种变频器尤其适合用于工业部门的水泵和风机。
它在应用中得到证明的良好性能和使用中的简便舒适尤其显得突出,与MICROMASTER 420 变频器相比,这种变频器具有更多的输入和输出端,具有手动/自动切换功能的操作面板,以及自适应的软件功能。
调试简单,便捷 采用模块化结构,因此组态特别灵活 具有6 个可编程的带电位隔离的数字输入 2 个模拟输入 (0V 至10V ,0mA 至 20mA ,可标定的)可以作为第 7/8 个数字输入使用 2 个可编程的模拟输出 (0mA 至 20mA) 3 个可编程的继电器输出(30V 直流/5A ,电阻性负载;250V 交流/2A ,电感性负载)由于采用较高的脉冲开关频率,电动机运行的噪声很小,脉冲开关频率是可调的(在开关频率较高的情况下,额定输出功率要降格使用)完善的电动机和变频器保护功能基于 PID —调节器对三个附加传动装置的控制 (电动机分级控制)传动装置可以直接接在电网上运行 (带有外接的旁路开关电路)节能运行方式应用于水泵的驱动时,可以识别水泵是否无水空转 (传动皮带故障检测功能)MICROMASTER 430 变频器符合 EC —低电压规范的要求;变频器带有滤波器时,也符合 EC-EMC规范的要求 MICROMASTER 430 变频 C-tick 线路换流电抗器 输出电抗器 密封盖 对变频器进行参数化的基本操作板 (BOP-2) 通讯组件-PROFIBUS -DeviceNet PC 连接组合件 在控制柜门上安装操作板的组合件 PC 调试工具,在 Windows 95/98 和 NT/2000 环境下运行MICROMASTER 430 变频器采用模块化结构设计,操作面板和通讯部件是可以更换的。
变频器的电路原理图及其调速原理
变频器电路原理图一、变频器开关电源电路变频器开关电源主要包括输入电网滤波器、输入整流滤波器、变换器、输出整流滤波器、控制电路、保护电路。
我们公司产品开关电源电路如下图,是由UC3844组成的开关电路:开关电源主要有以下特点:1,体积小,重量轻:由于没有工频变频器,所以体积和重量吸有线性电源的20~30%2,功耗小,效率高:功率晶体管工作在开关状态,所以晶体管的上功耗小,转化效率高,一般为60~70%,而线性电源只有30~40%二、二极管限幅电路限幅器是一个具有非线性电压传输特性的运放电路。
其特点是:当输入信号电压在某一范围时,电路处于线性放大状态,具有恒定的放大倍数,而超出此范围,进入非线性区,放大倍数接近于零或很低。
在变频器电路设计中要求也是很高的,要做一个好的变频器维修技术员,了解它也相当重要。
1、二极管并联限幅器电路图如下所示:2、二极管串联限幅电路如下图所示:三、变频器控制电路组成如图1所示,控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路。
在图1点划线内,无速度检测电路为开环控制。
在控制电路增加了速度检测电路,即增加速度指令,可以对异步电动机的速度进行控制更精确的闭环控制。
1)运算电路将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
2)电压、电流检测电路与主回路电位隔离检测电压、电流等。
3)驱动电路为驱动主电路器件的电路,它与控制电路隔离使主电路器件导通、关断。
4)I/0输入输出电路为了变频器更好人机交互,变频器具有多种输入信号的输入(比如运行、多段速度运行等)信号,还有各种内部参数的输出“比如电流、频率、保护动作驱动等)信号。
5)速度检测电路以装在异步电动轴机上的速度检测器(TG、PLG等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
台安N2 3.7kW变频器电源 驱动板电路图
《台安N2-405-1013 3.7kW变频器》主电路图《台安N2-405-1013 3.7kW变频器》主电路图说电工师傅都清楚的,三相380V电源,三根交流母线的标注,是L1、L2、L3。
而变频器的三相电源输入端子,以标注R、S、T的为多,也有标注L1、L2、L3的,甚至也有这样标注的:L1/R、L2/S、L3/T,R、S、T好像是为L1、L2、L3加的注释。
变频器的三相逆变电压输出端子标注为U、V、W,与电机接线端子的标注是统一的。
变频器的输入、输出端子接线一旦反接,上电逆变模块就有炸掉的危险!而三相供电与单相供电的变频器,有的厂家仍标注为R、S、T,这是不应该的。
电源输入端子标注不明,220V供电误接入380V时,整流模块与储能电容器,有可能保不住啊。
储能电容的鼓顶与喷液,是确定无疑的。
本机为小功率机型,采用7MBR25NE120模块,模块的额定电流为25A,耐压1200V。
内含整流与逆变电路。
在模块逆变电路的正供电端,串入了FUSE1快熔保险,以保护逆变输出模块的安全。
逆变电路由六只IGBT管子和反向并联的六只二极管组成。
IGBT管子的等效电路及符号如下图:场效应管子有开关速度快、电压控制的优点,但也有导通压降大,电压与电流容量小的缺点。
而双极型器件恰恰有与其相反的特点,如电流控制、导通压降小,功率容量大等,二者复合,正所谓优势互补。
IGBT管子,或者IGBT模块的由来,即基于此。
从结构上看,类似于我们都早已熟悉的复合放大管,输出管为一只PNP型三极管,而激励管是一只场效应管,后者的漏极电流形成了前者的基极电流。
放大倍数为两管之积。
对逆变电路的在线测量,从U、V、W端子对直流电路的P、N端,好像一个三相整流桥电路一样,具有正、反向电阻特性。
而实际检测的是六只IGBT管子的C、E极上并联的六只二极管。
我们所能测量的,仅为二极管的正、反向电阻,假设IGBT有开路性损坏,是测量不出的。
拆机测量:MOSFET管子的栅阴极间有一个结电容的存在,故由此决定了极高的输入阻抗和电荷保持功能。
安川变频器主电路图及图说
D9
R29 2.2k R30 2k D13 R43 3k C1 0.33 R41 3.3k C18 R42 3k D14
R44 1.2k
U4 TLP250 1 Nc 2 IN+ Vcc 8 Nc 7 OUT 6 GND 5
R31 75R Vcc GF/OC Vss
Q8 C3694 R40 5R3W Q9 A1444 2CN
《616G3-55kW 安川变频器》主电路图说
所有变频器主电路的结构都是相似的,乃至于是相同的。而安川变频器的主 电路和台湾东元变频器的主电路更是如出一辙。稍后我观察到两机的控制面板是 一样的,控制面板和参数的设置也是相似的。发现两种从硬件到软件都相似甚至 于是相同的机器,给安装调试与维修,都会带来很多的方便。只要手头有一种技 术资料参考,就可以调试和维修二种设备了。 打开这两种大功率变频器的外壳,检查主电路时,安装于逆变模块上方(与 模块并联的)的六只长方形盒体状的大东西,首先会引起我们的兴趣——与每相 上臂 IGBT 管子并联的是型号为 MS1250D225P,与下臂 IGBT 管子并联的型号为 MS1250D225N。用句网络上的话说:这究竟是个什么东东?安装于此处意欲何为 呢? 大凡并联在 IGBT 管子上的东西,或电容或阻容网络,均是为保护 IGBT 管子 而设置的。即当该管子截止时,快速消耗掉反向电压所形成的能量,提供一个反 向电流的通路,以保护 IGBT 管子不承受(实质上是使其承受得少一点罢了)反压 的冲击。众所周知,无论是双极型或是场效应器件,在承受正向电压上往往有一 定的富裕量, 但对于反向电压的耐受能力却是极其脆弱的。 所以在 IGBT 管子上并 联的一嘟喽一嘟喽的东西,可以说都是完成此一消耗反压任务的。 需要说明的是:MS1250D225P 和 MS1250D225N 的内部电路,笔者并未打开实 物进行验证,模块损坏后,这两种器件往往都是完好的,所以也不便将其破坏后 拆解。上图的内部电路是据测量揣摩画出的,仅为读者朋友提供一个参考。我查 找了大量资料和在网络上进行了搜寻,均未找到此元件的资料。从揣测电路的基 础上进行原理上的分析,显然容易产生误导。故暂时省略对其原理的解析。 但在模块上并联了此类元件后,将在检修上给我们带来新的体验。见下述。 按照常规的检修方法,我们在更换损坏的模块后,进行通电试验前,须将上
安川变频器图纸
HI-35E2T2CU-U/70ARr/R U V W3CN/416CN风扇故障检测端子2.3开路时跳FAN故障开路时跳FU故障开路时跳OH故障14CN/15CN开路时跳OH故障《616G3-55kW 安川变频器》主电路图说所有变频器主电路的结构都是相似的,乃至于是相同的。
而安川变频器的主电路和台湾东元变频器的主电路更是如出一辙。
稍后我观察到两机的控制面板是一样的,控制面板和参数的设置也是相似的。
发现两种从硬件到软件都相似甚至于是相同的机器,给安装调试与维修,都会带来很多的方便。
只要手头有一种技术资料参考,就可以调试和维修二种设备了。
打开这两种大功率变频器的外壳,检查主电路时,安装于逆变模块上方(与模块并联的)的六只长方形盒体状的大东西,首先会引起我们的兴趣——与每相上臂IGBT管子并联的是型号为MS1250D225P,与下臂IGBT管子并联的型号为MS1250D225N。
用句网络上的话说:这究竟是个什么东东?安装于此处意欲何为呢?大凡并联在IGBT管子上的东西,或电容或阻容网络,均是为保护IGBT管子而设置的。
即当该管子截止时,快速消耗掉反向电压所形成的能量,提供一个反向电流的通路,以保护IGBT管子不承受(实质上是使其承受得少一点罢了)反压的冲击。
众所周知,无论是双极型或是场效应器件,在承受正向电压上往往有一定的富裕量,但对于反向电压的耐受能力却是极其脆弱的。
所以在IGBT管子上并联的一嘟喽一嘟喽的东西,可以说都是完成此一消耗反压任务的。
需要说明的是:MS1250D225P和MS1250D225N的内部电路,笔者并未打开实物进行验证,模块损坏后,这两种器件往往都是完好的,所以也不便将其破坏后拆解。
上图的内部电路是据测量揣摩画出的,仅为读者朋友提供一个参考。
我查找了大量资料和在网络上进行了搜寻,均未找到此元件的资料。
从揣测电路的基础上进行原理上的分析,显然容易产生误导。
故暂时省略对其原理的解析。