静电纺丝制备纳米纤维膜的研究

合集下载

静电纺丝技术的原理与纳米纤维制备方法

静电纺丝技术的原理与纳米纤维制备方法

静电纺丝技术的原理与纳米纤维制备方法静电纺丝技术是一种常用于制备纳米纤维的方法,通过利用静电力将聚合物材料从液态转变为纤维状,具有较高的纤维直径可调性和良好的纤维组织结构控制能力。

本文将介绍静电纺丝技术的原理以及常用的纳米纤维制备方法。

一、静电纺丝技术的原理静电纺丝技术是利用静电力将高分子溶液或熔融物质直接纺丝成纤维的一种制备方法。

该技术基于静电现象,通过将高电压施加于过程中的高分子溶液或熔融物,使其电荷不平衡,形成电场分布。

当电场强度超过材料的电离场强度时,分子将逐渐变成带电的纳米尺寸细丝。

最后,带电的纤维在电场的作用下逐渐伸长并凝固成固态纤维。

静电纺丝技术的关键参数包括高电压、喷丝间距和收集距离。

高电压可以产生强大的静电力,促使溶液中的聚合物形成细丝。

喷丝间距决定了纤维形成的方式和纤维直径。

收集距离可以影响纤维凝固形态和纤维排列结构。

静电纺丝技术的原理简单而直观,适用于制备各种类型的纳米纤维材料,因此在纳米材料制备领域具有广泛的应用前景。

二、常用的纳米纤维制备方法1. 单向静电纺丝法单向静电纺丝法是静电纺丝技术中最基本、最常用的制备方法之一。

在该方法中,高电压施加于旋转的喷丝头和静置的收集器之间,通过控制高电压和喷丝间距,可以得到直径均匀、纤维排列有序的纳米纤维。

2. 多向静电纺丝法多向静电纺丝法在单向静电纺丝法的基础上进行了改进,通过使用多根喷丝头和多个收集器,使得纤维的纺织方向更加多样化。

这种方法可以制备出多孔的纳米纤维薄膜,应用于过滤、分离和组织工程等领域。

3. 旋转盘静电纺丝法旋转盘静电纺丝法是利用旋转盘上的多个喷丝孔,将高分子溶液均匀喷洒在盘面上,通过旋转盘和静电作用将纤维逐渐形成。

这种方法制备的纳米纤维表面光滑均匀,适用于电子器件、传感器和催化剂支撑材料等领域。

4. 共喷纺丝法共喷纺丝法是在静电纺丝过程中,将两种或多种不同的高分子溶液或熔融物质通过不同的喷丝孔同时喷射到收集器上。

静电纺丝制备纳米纤维的研究进展

静电纺丝制备纳米纤维的研究进展

静电纺丝制备纳米纤维的研究进展近年来,随着纳米技术的快速发展,纳米材料的应用领域也越来越广泛,其中纳米纤维作为一种新型材料备受关注。

静电纺丝技术作为一种制备纳米纤维的有效方法,其应用范围也越来越广泛。

本文将介绍静电纺丝制备纳米纤维的研究进展。

1. 静电纺丝技术概述静电纺丝技术是一种利用静电场将高分子材料制备成纳米纤维的方法。

该技术具有工艺简单、操作方便、成本低、制备纤维直径可调等优点。

静电纺丝技术离不开两个基本元素:溶液和电场。

高分子材料被溶解在溶液中,经过特定的处理后,在电场的作用下开始拉伸,形成纳米直径的纤维。

2. 静电纺丝技术的优缺点静电纺丝技术在制备纳米纤维方面具有以下优点:①纳米纤维可以制备成连续的纤维丝,其长度可达数百米以上,比传统制备方法的纤维连续性更好;②纳米纤维直径可在10纳米至数微米之间调节;③制备成纳米纤维的材料具有极高的比表面积和孔隙度,这些特性使得其在耐热性、膜分离、天然气储存等方面具有广泛的应用前景。

但是,静电纺丝技术也存在一些缺点:①纤维纳米化会导致纤维的拉伸力和断裂十分容易,因此在制备过程中需要控制拉伸度,避免出现纤维过于脆弱导致纤维丝断裂;②由于溶剂挥发以及电场造成的电荷分布不均,容易导致制备的纳米材料出现不均匀性和不稳定性。

3. 静电纺丝技术的进展目前,在静电纺丝技术领域已有许多研究成果。

例如,在制备金属氧化物、生物纳米纤维、纳米复合材料、药物等方面都有广泛的应用。

例如,学者们在制备PCL(聚己内酯)纳米纤维过程中,将X射线光谱法和原子力显微镜(AFM)技术结合,探究了纤维的结构、力学性能和表面形貌等。

研究结果表明,纤维直径的变化可以显著改变材料的力学性能。

在另一项研究中,学者们使用静电纺丝技术制备出药物包被的聚乳酸(PLA)纳米纤维,实现了药物的缓慢释放,有望在医药领域得到应用。

4. 静电纺丝技术未来发展随着人们对纳米材料需求的增加,静电纺丝技术的应用前景也越来越广阔。

静电纺丝技术制备聚合物纳米纤维膜的研究

静电纺丝技术制备聚合物纳米纤维膜的研究

静电纺丝技术制备聚合物纳米纤维膜的研究聚合物纳米纤维膜是一种新型的材料,由于其具有优异的物理和化学性质而受到越来越多的关注。

目前,研究人员开展了大量的工作,以开发制备这种材料的新方法。

静电纺丝技术是一种被广泛应用于聚合物纳米纤维膜制备的方法。

该方法以高压静电场为驱动力,通过将聚合物分子从液态转变为固态,从而制备具有纳米级尺度的聚合物纤维。

本文将介绍静电纺丝技术制备聚合物纳米纤维膜的原理、优点以及应用。

一、静电纺丝技术的原理静电纺丝技术是指将含有聚合物溶液的“滴”,通过高压静电场的作用,使溶液从液态转变为纳米级尺度的聚合物纤维的过程。

该技术涉及两个相反的过程:传输和荷电。

在传输过程中,溶液从喷嘴中被喷出,形成溶液“滴”,然后通过高压静电场的作用,这些滴获得了荷电,移动到地面或由电极吸附。

在荷电过程中,因为这些荷电粒子被静电力所吸引,所以它们沿着高压电极向下运动。

当这些荷电粒子接近到一定距离,它们之间的静电引力就足以克服表面张力,形成纳米级尺度的聚合物纤维。

二、静电纺丝技术的优点制备聚合物纳米纤维膜的传统方法包括溶液浸渍、熔融拉伸等技术,但这些方法都存在着一些局限性,如工艺复杂、成本高等。

相比之下,静电纺丝技术具有如下优点:1.高效性:该技术可在较短时间内制备大量的纳米级聚合物纤维,并可实现连续性生产。

2.灵活性:静电纺丝技术可以制备出不同形态、大小和形状的聚合物纳米纤维。

3.高质量:该技术制备的聚合物纳米纤维具有高度纯度、尺寸一致性好和结构紧密等特点,使其应用广泛。

三、聚合物纳米纤维膜的应用聚合物纳米纤维膜由于其纳米级尺度的尺寸和优良的物理化学性质,在多个领域中都有着广泛的应用。

下面简要介绍其主要应用领域。

1.过滤和分离领域:聚合物纳米纤维膜由于其纤维间距非常小,同样尺寸的纳米级颗粒、蛋白质等大分子物质可以被过滤掉,这使其在液体过滤和气体过滤领域有广泛的应用。

2.生物医学领域:在不同细胞之间建造三维聚合物纳米纤维膜支架,使得细胞能够依附并形成新的组织,有利于修复受损的组织和器官。

静电纺丝技术制备纳米纤维膜研究

静电纺丝技术制备纳米纤维膜研究

静电纺丝技术制备纳米纤维膜研究纳米材料在科技领域有着广泛应用,其中纳米纤维膜是一种重要的纳米材料。

静电纺丝技术是制备纳米纤维膜的一种常见方法,下面将详细介绍静电纺丝技术制备纳米纤维膜的原理、优势和应用。

一、静电纺丝技术的原理静电纺丝技术又称为电纺法、纺织电晕法等,是一种制备高分子材料纳米纤维膜的方法。

该技术使用高压电场使稀溶液产生强烈的电荷,经过过度拉伸后会产生电极化、沉积和电晕等现象,最终将溶液转变为具有纳米级直径的纤维。

静电纺丝技术的制备过程主要分为三个步骤:①将高分子溶解于有机溶剂中,制备出高分子稀溶液;②通过静电势场,将稀溶液产生电极化和增加表面能;③将带电的液滴通过冷凝作用凝聚成为纳米纤维膜。

二、静电纺丝技术的优势(1)高纳米纤维膜产量:静电纺丝技术可以同时制备多个纳米纤维膜,可大幅提高产量。

(2)低成本、高效率:静电纺丝技术制备的纳米纤维膜采用的有机溶剂可以再生利用,不仅成本低,而且制备速度非常快。

(3)纳米纤维膜直径可调:可以通过调节静电场、流量、距离和喷嘴的直径等参数,控制纳米纤维膜的大小,进一步优化纳米纤维膜的性质。

三、静电纺丝技术的应用(1)纳米滤膜:静电纺丝技术可以制备出高效纳米滤膜,例如空气过滤器和水处理过滤器等。

(2)纳米材料:纳米纤维膜可以用于制备纳米材料,例如非常完美的是一簇具有纤维维度的SiO2微晶。

(3)医用纱线:静电纺丝技术可以制备含有药物的医用纱线,用于缓释药物,使药物更加高效和准确。

总之,静电纺丝技术作为制备纳米纤维膜的一种常见方法,具有优越性能,并有着广泛的应用前景。

在未来的生产和科研中,这种技术将大大促进纳米材料的发展和应用。

静电纺丝技术制备纳米纤维材料的研究

静电纺丝技术制备纳米纤维材料的研究

静电纺丝技术制备纳米纤维材料的研究随着科学技术的发展,纳米材料已经成为了一个重要的研究领域。

而其中,纳米纤维材料的制备技术也成为了纳米科技研究中的一个重要领域。

静电纺丝技术作为一种先进的纳米纤维材料制备技术,其制备的纳米纤维材料广泛应用在各个领域,如生物医学、环境保护和能源材料等领域。

一、静电纺丝技术的原理与过程静电纺丝技术是利用静电力和表面张力将高分子溶液或熔融物在高电场下的电荷作用下进行拉丝成纤维。

在高电场下,液体表面张力对于电场的效应会产生剥离力,而相互作用较弱的分子会在电场力的作用下被拉伸成纤维形状,产生纳米纤维材料。

静电纺丝技术的整个过程包括物料预处理、电极设计、高电压电场设置、喷丝电极喷液和纤维成形过程。

通常情况下,静电纺丝技术需要一个能够提供高电压的电源和一个线圈,以及能够喷液的电极。

液体从电极中喷出,并在电场的作用下生成纳米纤维材料。

静电纺丝技术的优点在于:可以制备高比表面积、高孔隙率和高表面活性的纳米纤维膜,可以用于材料性能的调整和优化。

二、静电纺丝技术制备纳米纤维材料在生物医学中的应用1. 纳米纤维支架静电纺丝技术制备的纳米纤维支架被广泛应用于人工血管、人造骨的制备等领域。

纳米纤维支架具有良好的生物相容性和力学性能,能够促进细胞分裂和细胞增殖,从而促进组织生长和恢复。

2. 组织构建材料静电纺丝技术能够制备出精细的纳米纤维纺织品,这些纳米纤维纺织品可以被用于构建人工组织、生物芯片等生物医学领域的应用。

三、静电纺丝技术制备纳米纤维材料在环境保护中的应用1. 空气净化材料利用静电纺丝技术制备的纳米纤维材料可以被应用于空气污染治理中。

通过建立一些纤维过滤织物,可以有效地实现对空气中挥发性有机物(VOCs)和颗粒物的过滤和除去,达到净化空气和改善空气质量的目的。

2. 水净化材料静电纺丝技术可以制备出超细的纳米纤维膜,这些膜可以被广泛应用于水净化中。

纳米纤维膜的微孔结构可以有效地过滤水中的大分子杂质和细菌等微生物,从而得到更清洁、更安全的水源。

静电纺丝技术制备纳米纤维的研究进展

静电纺丝技术制备纳米纤维的研究进展

静电纺丝技术制备纳米纤维的研究进展近年来,随着纳米科技的快速发展,纳米材料的研究在各个领域得到了广泛应用。

其中制备纳米纤维的技术,成为了研究热点之一。

静电纺丝技术便是一种制备纳米纤维的重要手段,由于其简单易行、成本低廉、操作方便等优点,已经成为应用最为广泛的方法。

本文将从静电纺丝技术的基本原理、研究进展、应用展望三个方面进行论述。

第一部分:静电纺丝技术的基本原理静电纺丝技术是一种通过电场作用将溶液中的大分子材料拉伸成纳米级别的纤维的方法。

该技术主要依靠静电相互作用力和表面张力之间的竞争关系,来控制和定向溶液中的高分子纤维进行拉伸。

静电纺丝技术的基本原理可归纳为以下三个步骤:1. 溶液制备:制备静电纺丝纤维的首要步骤是制备高分子材料的溶液。

该溶液需要具有一定的粘度和表面张力,一般可以使用有机溶剂来溶解高分子材料。

2. 高电场加薄膜涂布:在静电纺丝设备上沉积一个高电场,并用喷雾器将高分子溶液轻松喷射在一个导电性或吸附性基底上。

溶液被均匀覆盖在导电性或吸附性基底上的一个细长的液体线。

3. 拉伸和固化:在高电场的作用下,溶液会变成一条液体纤维,并开始在导电性或吸附性基底上放置。

同时,高分子纤维的拉伸也在进行中。

将纤维固化并从基底上分离出来即可。

第二部分:静电纺丝技术的研究进展在纳米科技的发展进程中,静电纺丝技术是一种应用领域十分广泛的制备纳米材料的方法。

自2006年被应用于生物材料制备以来,该技术受到了越来越多的关注和研究。

近年来,静电纺丝技术发展的主要方向是,探索新型高分子材料,提高制备效率,改善纤维纳米结构控制技术。

下面,我们分别从这三个方面进行探讨。

1. 探索新型高分子材料静电纺丝技术的应用范围很广,主要用于制备聚合物、纺织品、纳米印刷等领域的高分子材料。

近几年,研究人员广泛探索各种新型的高聚物材料,如壳聚糖、聚乳酸、DNA、蛋白质等。

这些新型材料的引入,不仅增加了高分子材料领域的研究深度,同时也拓宽了静电纺丝技术在工业上的应用范围。

静电纺丝法制备PVDF纳米纤维

静电纺丝法制备PVDF纳米纤维

摘 要: 静电纺丝法是聚合物溶液或熔体在静电作用下进行喷射拉伸而获得纳米级纤维的纺丝方法ꎮ 聚偏氟乙烯 ( PVDF) 具有优异的压电性能ꎬ而通过静电纺丝技术制得的聚偏氟乙烯静电纺丝膜具有高孔隙率、轻薄柔韧、透气性好等 优点从而广泛应用在传感材料、电池隔膜和生物材料等领域ꎮ 为了研究最适纺丝工艺ꎬ本文通过调节不同的纺丝电压、聚 合物溶液浓度以及 NꎬN - 二甲基甲酰胺( DMF) 和四氢呋喃( THF) 的溶剂配比ꎬ利用静电纺丝的方法制备 PVDF 纳米纤维ꎬ 并使用扫描电镜对纤 维的微观形貌表征ꎬ 以及乌式黏度计对纺丝液 黏度进行测试ꎮ 结果表明: 当纺丝液浓 度 为 10% PVDFꎬ混合溶剂配比为 DMF∶ THF 为 60∶ 40ꎬ纺丝电压为 15 kV 时ꎬ电纺的 PVDF 纤维膜直径分布均匀ꎬ具有良好的微观形 貌ꎬ并且孔隙率高ꎮ
积比为 80∶ 20 时ꎬ由于溶液黏度过大ꎬ导致纺丝困 难ꎬ所得到的制品呈由细小纤维相互连接的片状结 构ꎬ不具备使用性能ꎬ如图 4(d)所示ꎮ
( a) DMF / THF 体积比 40∶ 60 ( b) DMF / THF 体积比 60∶ 40
( c) DMF / THF 体积比 70∶ 30
目前大量研究人员对静电纺丝法制备 PVDF 纳 米纤维膜的工艺参数进行研究ꎮ Lígia 等[2] 研究了 PVDF 溶液的浓度对 PVDF 结晶相的影响ꎮ 低浓度 PVDF 溶液制得的薄膜中的小液滴主要以 β 相存在 ( 静电喷雾) ꎬ高浓度 PVDF 溶液制得的无纺布网的 纤维主要为特定的 β 相ꎬ其直径在纳米到微米之 间ꎮ C. Ribeiro[3] 研究纺丝电压、 推料流量、 针头直 径和转速等因素对 PVDF 薄膜纳米纤维形态及其多 态性的影响后ꎬ发现在 15 ~ 30 kV 内外加电压越高ꎬ 薄膜中 β 相的含量就会越低ꎬ但差别很小ꎮ 毛梦烨 等[4] 研究了静电纺丝聚偏氟乙烯纳米纤维膜的晶 型结构与纺丝参数的关系ꎮ 发现当溶液质量分数为 12% 时制得的 PVDF 中 β 相含量较高ꎬ且随着纺丝 电压的增加ꎬ纤维结晶度和 β 相的含量也会增大ꎮ Luongo[5] 探究了聚偏氟乙烯受强电场后熔融结晶形 态的变化ꎬ提出了调控聚偏氟乙烯 β 相晶结构的新 思路ꎮ Andrcw 等[6] 探究了电纺制备 β 相聚偏氟乙

基于静电纺丝技术的纳米纤维材料的制备与应用

基于静电纺丝技术的纳米纤维材料的制备与应用

基于静电纺丝技术的纳米纤维材料的制备与应用随着科技的不断发展,纳米材料已经成为了热门研究领域之一。

纳米技术在各个领域都有着广泛的应用,其中基于静电纺丝技术的纳米纤维材料更是备受关注。

静电纺丝技术是一种通过静电力将聚合物溶液转换成纳米级纤维的制备技术。

这种技术制备出的纳米纤维材料具有很多优异的特性,如表面积大、孔隙度高、硬度高、柔软性好等,因此在医药、环保、能源等各个领域都有着广泛的应用前景。

一、静电纺丝技术的原理静电纺丝技术的核心原理是通过静电力将聚合物溶液转换成纳米级纤维。

其具体制备过程为:将聚合物溶解在有机溶剂中,加入适量的表面活性剂,并通过高压泵将溶液液滴喷射到高压电场中,在电场的作用下,液滴被拉长成纤维状,并在收集器上形成纳米纤维膜。

此过程需要注意控制聚合物溶液的质量浓度、电场的强度和纤维收集器的旋转速度等因素。

二、纳米纤维材料的优异特性静电纺丝技术制备出的纳米纤维材料具有很多优异的特性,如表面积大、孔隙度高、硬度高、柔软性好等。

其中,表面积大是原因之一。

由于纤维的直径非常小,因此单位质量的纳米纤维材料表面积非常大,这可以使得纳米纤维材料可以更好地去吸附和固定其他物质。

另外,纳米纤维材料的孔隙度也是比较高的,可以作为高效的过滤材料,可以过滤掉一些微小的颗粒和微生物。

纳米纤维材料的硬度比较高,还有较好的柔软性,可以被用于一些需要高强度和柔软性的领域。

三、纳米纤维材料在医药领域的应用纳米纤维材料在医药领域有着广泛的应用。

例如,在伤口的治疗方面,纳米纤维材料可以用来制造敷料。

普通的敷料很难贴合到伤口处,导致注入药物的过程中药物流失,而纳米纤维敷料则可以完美地贴合伤口处,不仅能够阻止药物的流失,还可以在敷料上注入药物,促进伤口的愈合。

另外,纳米纤维材料还可以用于制备人工组织,如人工心脏瓣膜等。

四、纳米纤维材料在环保领域的应用在环保领域中,纳米纤维材料可以用来制备高效的过滤材料。

例如,在空气净化领域,纳米纤维材料可以制备成高效的空气净化器,可以过滤掉一些危险有害气体中的颗粒,如PM2.5等,从而保证室内空气的清洁。

静电纺丝制备聚合物纳米纤维膜的研究

静电纺丝制备聚合物纳米纤维膜的研究

静电纺丝制备聚合物纳米纤维膜的研究纳米科技的发展引发了对纳米材料的广泛关注。

纳米纤维膜由于其良好的性能被广泛用于燃料电池和生物医学等领域。

静电纺丝技术作为一种独特的制备纳米纤维膜的方法,凭借其简单易操作、成本低廉的优点,被广泛应用于纳米材料的制备中。

本文将介绍静电纺丝技术和静电纺丝制备聚合物纳米纤维膜的研究进展。

一、静电纺丝技术静电纺丝是一种利用电场将高分子聚合物纺成纳米级高分子纤维的工艺。

该工艺分为溶液静电纺丝和熔融静电纺丝两种类型。

溶液静电纺丝主要是将溶解在有机溶剂中的聚合物通过静电纺丝装置进行喷枪淋浆、电荷均匀化和纤维拉伸加工,形成纳米级的高分子纤维。

熔融静电纺丝则是将熔融的高分子材料通过静电纺丝装置进行电荷均匀化和纤维拉伸加工,形成纳米级高分子纤维。

二、静电纺丝制备聚合物纳米纤维膜的研究进展随着纳米科技的发展,静电纺丝制备聚合物纳米纤维膜在材料科学、生物医学等领域得到了广泛应用。

下面将介绍四个方面的静电纺丝制备聚合物纳米纤维膜的研究进展。

1. 聚合物材料的选择聚合物材料的选择是静电纺丝制备聚合物纳米纤维膜的关键。

通常选择的聚合物材料包括聚乳酸、聚酯、聚丙烯酸、聚苯乙烯等。

这些聚合物材料有良好的可纺性、生物相容性和耐久性,并能够制备出高质量的聚合物纳米纤维膜。

2. 溶液电导率的控制溶液电导率是影响聚合物纳米纤维膜形态的主要因素之一。

电导率的增加会导致电荷的不均匀分布和纤维的跳跃现象。

因此,控制溶液电导率是制备高质量聚合物纳米纤维膜的重要手段之一。

3. 后处理技术静电纺丝制备的聚合物纳米纤维膜具有良好的形态和性能,但由于其表面积大和纳米级孔隙率高,会导致纤维膜对周围环境的敏感性增加。

为了改善聚合物纳米纤维膜的稳定性和使用寿命,需要对其进行后处理。

目前常用的后处理技术包括等离子体处理、UV辐射、热处理等。

4. 应用领域静电纺丝制备的聚合物纳米纤维膜在能源领域、生物医学领域和环境领域等方面得到了广泛应用。

静电纺丝制备取向纳米纤维的研究进展

静电纺丝制备取向纳米纤维的研究进展
以通 过 机械 方式 实 现 纤 维 的有 序排 列 , 与辊 筒 接 收极 装 置相 比, 以在 较 低 转 速 下 收 集 到有 序 程 可 度较 高 的纤 维 。本实 验室 也尝试 了旋转 收集装 置 制备取 向纤维 的研 究 。
收 稿 日期 :0 0 0 2 2 1 — 62
旋转式收集 装置是 当今 制备 有序 纤维 最 为常 用 的一种方法 , 原理是利用旋转物体 对射流 的物 其
作 者简 介 : 佳林 (92 )男 , 吴 18 , 湖北 黄 冈人 , 教 。 助
以接收 到高度定 向排 列 的纤 维 , 是 当接 收 的纤 但 维较 厚之后 , 若仍 保持原 来 的转速 , 维 的定 向程 纤
较 大的定 向排列 的纤维 , 但仍存在较 多 的无定 向排 列 的纤 维 , 而且 当转速过高时 , 纤维会 被拉 断 , 纤维 间也会 出现空隙 。C re 等在 滚筒 接收装 置后 面 anl l 增加 了三个平行辅助 电极 , 中间的辅 助 电极 与喷丝 头带相 反的电荷 , 两边 的电极则是带 有与喷丝 头相 同的电荷 。这种方法与一般 的点对 点纺丝相 比, 纺
2 取 向纳 米 纤 维 的 制 备
2 1 旋 转 式 收 集 装 置 .
的时 间有 密 切 的联 系 。S n aa u d ry等 人 也 进 行 了
相 似 的工作 , L e等 人则 用 这种 方 法 进行 了更 而 e
进 一步 的工作 , 他们 研 究 了收集 到 的纤 维 的力 学 性 能与滚 筒转速 的关 系 。 Th rn等 制作 了薄碟式 收集 装置 , eo 由于充 分 集 中 了电场 , 以高 速旋 转 的 圆 盘作 为接 收装 置 可
理牵伸作用达 到控 制纤维 排列 方 向 的 目的。如 图

材料科学与工程学科中静电纺丝技术制备TiO2纳米纤维薄膜的研究

材料科学与工程学科中静电纺丝技术制备TiO2纳米纤维薄膜的研究

材料科学与工程学科中静电纺丝技术制备TiO2纳米纤维薄膜的研究静电纺丝技术在材料科学与工程学科中具有广泛应用,其中之一是用于制备TiO2纳米纤维薄膜。

TiO2纳米纤维薄膜具有很高的比表面积和优异的光催化性能,在环境净化、光电催化制氢、染料敏化太阳能电池等领域具有重要的应用前景。

在本文中,我们将介绍静电纺丝技术制备TiO2纳米纤维薄膜的研究进展,并分析其在各个领域中的应用。

首先,静电纺丝技术是一种将高分子溶液通过高电压静电场作用下形成纤维的方法。

通过调整高分子聚合物的浓度、电场强度和纺丝距离等参数,可以获得不同直径和形态的纳米纤维。

在制备TiO2纳米纤维薄膜中,通常使用聚合物作为模板材料,将TiO2颗粒或前驱体分散在聚合物溶液中,然后通过静电纺丝技术制备纳米纤维薄膜。

制备的纳米纤维薄膜可以通过热处理或光照等后续步骤进行晶化,得到TiO2具有优异性能的薄膜。

在环境净化领域,TiO2纳米纤维薄膜具有良好的光催化性能。

光催化过程中,纳米纤维薄膜可以通过对有害气体的吸附和光解作用,将其分解为无害物质。

由于TiO2纳米纤维薄膜具有很高的比表面积和较好的可见光响应性能,可以有效提高光催化反应的效率。

此外,纳米纤维薄膜还具有良好的机械稳定性和低压降特性,可以实现高效的气体处理。

因此,TiO2纳米纤维薄膜在室内空气净化、有机废气处理等方面具有广阔的应用前景。

在光电催化制氢领域,TiO2纳米纤维薄膜可以作为光电极材料,用于水光电解制氢。

纳米纤维薄膜具有大量的活性表面,可以有效提高光生电子-空穴对的分离效率。

通过对纳米纤维薄膜的表面进行修饰,如导入负载剂、调整晶相结构等,可以进一步提高其催化活性和稳定性。

研究表明,静电纺丝制备的TiO2纳米纤维薄膜在光电催化制氢中具有良好的性能,在利用太阳能进行无污染氢能生产方面具有巨大潜力。

此外,TiO2纳米纤维薄膜还可以应用于染料敏化太阳能电池。

染料敏化太阳能电池是一种新兴的太阳能转化技术,其基本原理是通过将染料吸附在光电极上,利用光生电子-空穴对的分离产生电流。

静电纺丝制备纳米纤维的研究进展

静电纺丝制备纳米纤维的研究进展

静电纺丝制备纳米纤维的研究进展鲍桂磊;张军平;赵雯;朱娟娟;王改娥【摘要】Due to tiny diameter, big specific surface area, and the ability to achieve surface functionalization easily, nanofibers are attracting great attention, and electrospinning technology is considered to be the most simplest and effective way to prepare polymer nanofibers, many researchers at home and abroad have studied the electrospinning technology in detail. In this paper, the working principle of electrospinning was introduced briefly, and influential factors on the electrospinning process were analyzed, such as solvent, consistency and viscosity, conductance, applied voltage, flow rate and distence between the gaps. In addition, application of electrospun nanofibers in the fields of filter media material, sensors and biomedical engineering was described, and some problems of this technique were pointed out as well as countermeasures.%纳米纤维具有直径小、比表面积大和易于实现表面功能化等优点,受到了广泛的关注,而静电纺丝技术被认为是制备聚合物纳米纤维最简单有效的方法,因此国内外学者对静电纺丝技术进行了详细的研究。

静电纺丝技术制备纳米纤维膜的研究

静电纺丝技术制备纳米纤维膜的研究

静电纺丝技术制备纳米纤维膜的研究随着科技的不断发展,我们的生活中出现了越来越多的高科技产品。

其中,纳米材料是近年来备受关注的一种材料,因为它具有独特的物理和化学性质,具有广泛的应用前景,尤其是在医学、环保和能源等领域。

纳米纤维膜就是纳米材料的一种,它由纳米级直径的纤维组成,具有较大的比表面积和特殊的物理、化学性质。

本文将重点关注静电纺丝技术制备纳米纤维膜的研究。

一、静电纺丝技术的原理静电纺丝技术是一种通过静电力将聚合物液滴拉成纤维的技术。

该技术的原理是利用高电场或者静电场的作用下,将聚合物液体(或溶胶)通过微型喷嘴高速喷出,然后在飞行过程中被拉伸成纤维。

在空气中,由于液滴表面带有电荷,因此液滴在飞行过程中受到一个静电场的作用,使得表面电荷分布不均,造成了液滴内部的拉伸和电荷的再分布。

这种电荷分布在液滴各处都不同,从而使得液滴逐渐成为了一个不规则的形状,最后拉成了一个纤维。

二、静电纺丝技术制备纳米纤维膜的优势相较于传统的制备材料的方法,静电纺丝技术制备纳米纤维膜有以下的一些优势:1、材料易得:静电纺丝的材料可以是各种聚合物,包括天然聚合物和合成聚合物,为制备不同艺术品提供了很大的便利。

2、适用范围广:静电纺丝技术不仅适用于制备聚合物纳米纤维膜,同时也可用于生命科学和药物分子的制备。

3、控制性能优良:静电纺丝技术可在控制的条件下制备纳米纤维膜,从而使得材料的柔软度、强度、厚度、直径、形状等物理化学性质都可以进行调整。

三、静电纺丝技术制备纳米纤维膜的应用静电纺丝技术制备的纳米纤维膜由于具有独特的物理和化学性质,因此在许多领域都有着广泛的应用前景。

1、医疗领域:静电纺丝技术制备的纳米纤维膜具有较大的比表面积,可以作为支架、修复组织损伤等医学应用方面使用。

2、环保领域:静电纺丝技术制备的纳米纤维膜在气体过滤、液体过滤和水处理等环境资源方面有着广泛的应用。

3、能源领域:静电纺丝技术制备的纳米纤维膜具有高比表面积和通道数量,对于电池、电解质、太阳能电池、传感器等领域都有重要影响。

静电纺丝技术制备纳米纤维材料的研究

静电纺丝技术制备纳米纤维材料的研究

静电纺丝技术制备纳米纤维材料的研究一、前言近年来,静电纺丝技术广泛应用于纳米纤维材料的制备中。

通过该技术,可以制备出具有高比表面积、高孔隙率、高通透性等多种优异性能的纳米纤维材料,在能源、环境、医疗等领域得到了广泛的应用。

二、静电纺丝技术的原理静电纺丝技术是一种通过高电场将聚合物溶液或熔体喷射成纳米级纤维的技术。

其主要原理是:将高压电源接在喷液口附近,形成强电场,使聚合物溶液或熔体加速运动,并在射流过程中产生链段拉伸、分子排列等现象,最终形成纳米级纤维。

三、静电纺丝技术的优点静电纺丝技术具有以下几个优点:1. 制备成本低。

静电纺丝技术所需的设备简单,生产成本较低。

2. 制备的纳米纤维材料性能优异。

制备出的纳米纤维材料具有高比表面积、高孔隙率、高通透性等优异性能,适用于能源、环境、医疗等领域。

3. 制备精度高。

静电纺丝技术可以制备出直径从几十纳米到几百纳米的纳米纤维。

4. 生产效率高。

静电纺丝技术可以实现连续生产,生产效率较高。

四、静电纺丝技术在纳米纤维材料制备中的应用静电纺丝技术可以制备出各种形状、尺寸、结构的纳米纤维材料,目前已经在以下领域得到了广泛的应用。

1. 软件复合材料领域。

静电纺丝技术制备的纳米纤维材料可以用于增强软件复合材料的力学性能和导热性能。

2. 组织工程领域。

静电纺丝技术制备的纳米纤维材料可以作为组织工程载体,用于修复和再生组织。

3. 能源领域。

静电纺丝技术制备的纳米纤维材料可以用于太阳能电池、锂离子电池等能源领域。

4. 过滤材料领域。

静电纺丝技术制备的纳米纤维材料可以用于空气过滤、水处理等领域。

五、未来发展方向随着对纳米纤维材料需求的不断增加,静电纺丝技术在纳米纤维材料制备中的应用将不断扩大。

未来,静电纺丝技术还有很大的发展空间,可以通过改进材料的制备工艺和结构,提高纳米纤维材料的性能,扩大其应用领域。

六、结论静电纺丝技术是一种简单、高效的纳米纤维材料制备技术。

随着对纳米材料需求的不断增加,它在能源、环境、医疗等领域的应用将会越来越广泛。

《化学纤维》静电纺丝方法制备纳米纤维膜实验

《化学纤维》静电纺丝方法制备纳米纤维膜实验

《化学纤维》静电纺丝方法制备纳米纤维膜实验为止;②静置10分钟,得到稳定的聚乳酸氯仿溶液。

静电纺丝过程: ①用注射器抽取一定量的的电纺溶液,保证注射器针尖为锥状;②将高压正极金属夹夹在注射器金属针头上;③在收集滚轴上裹上一层锡纸;④关上电纺仪器门,打开电源;⑤调节仪器参数:负高压(电压表:- 9.99;电流表: -0.05)正高压(电压表: 10. 04;电流表: 0.00)速度设定2mm/min距离设定30mm增量控制1.00;⑥点击仪器开始按钮进行纺丝;⑦得到适量纤维后,关闭仪器,取出覆有纤维的锡纸;干燥处理:将纤维用锡纸包裹起来放入烘箱进行烘干,除去未干燥完的溶剂和水。

纤维电镜观察拍照:取部分纤维进行电镜观察并拍照分析。

数据处理放大倍数:5000倍Area Mean Min Max Angle Length1 0.53 95.873 50.595 194 52.784 10.24放大倍数:2000倍Area Mean Min Max Angle Length1 1.385 92.629 53 197 52.696 10.421 放大倍数:500倍Area Mean Min Max Angle Length1 9.204 103.57 69.979 161.26 61.928 17.4362 9.73 123.619 69 232.167 48.366 18.526放大倍数:500倍Area Mean Min Max Angle Length1 59.172 113.917 87 158 14.036 21.1442 78.895 119.5 60 175 0 28.2053 52.597 117.536 52 176 4.086 17.9944 72.321 128.545 80 192 0 25.641分析结果随着电压的升高,纤维的平均直径减小,这是因为随着纺丝电压的增加,纤维的外观形态变化不大,但是聚合物射流表面聚集了越来越多的电荷,这些电荷在射流表面相互排斥,从而使得电场力对射流有更强的拉伸,最终生成更细的纤维网。

静电纺丝法制备纳米纤维的探讨

静电纺丝法制备纳米纤维的探讨
收 稿 日期 :o 2 0 ~ 3 2 1 — 72
Krn h l e c e 曾提 出一 个估算 抗 张模量 的方 程 :
E 一

r + ( 一V ) E, 1 ,
式 中 E, E 分别 表示 分散 相 ( 强填 料 ) 连续 和 增 和 的模量 , 为 填 料 的体 积 分 数 , 叩和 分 别 为 Vr 而 ,

种高 效低 耗 的纳米 纤维 制备 方法 , 年 , 近 开发 和
完: 善电纺丝 技术 已成 为 研 究 热 点 , 有较 大 的发 具
展 前 景 。
1 纳 米 纤 维 的 制 备 技 术
根 据制备 方 法 的 不 同 , 将 纳米 纤 维 的制 备 可 技 术分 为两种 : 一种 是 用 分 子 技 术 制备 无 机 纳米
纳米 级金 属微 纤 的应 用 提供 了理论 依据 。 1 2 2 催 化 挤 出聚合纳 米纤 维 .. 19 9 9年 , l 东 京 大学 的 Ka e a E本 g y ma等 人 在 S i c 杂 志上 发 表 了 通 过 在 聚合 过 程 中直 接 制 c ne e 备 聚 乙烯 ( E) P 纳米 纤维 的 文章 , 工艺 类 似 于结 其
化物 和氮 化物 的纳 米丝 和纳 米棒 。 1 2 有 机纳米 纤 维的 制备 方法 . 1 2 1 海 岛型双 组分 纺丝 技术 制备 纳米纤 维 . .
的: , 目前 国 内外 开 发 的 热 点 。纳 米 纤 维 的 重视 是 制备 技 术有 电纺 丝 、 岛 形双组 分 复合 纺丝 、 海 催化 挤 出聚 合 、 子 喷丝 板纺 丝等 , 中 电纺 丝技 术是 分 其
除去海 组分 就 可得 到仅 为岛组 分 的超 细纤维 。该 方 法 制 得 连 续 纤 维 直径 在 1 0n 左 右 , 纤 维 0 m 且 各方 向不 同部 分截 面形状 相 同 。

《静电纺丝法制备聚酰亚胺复合纳米纤维膜及性能研究》范文

《静电纺丝法制备聚酰亚胺复合纳米纤维膜及性能研究》范文

《静电纺丝法制备聚酰亚胺复合纳米纤维膜及性能研究》篇一一、引言随着纳米科技的快速发展,纳米纤维膜因其独特的物理化学性质和广泛的应用领域,如过滤、分离、传感等,受到了广泛关注。

聚酰亚胺(PI)作为一种高性能聚合物,具有优良的绝缘性、高温稳定性及良好的机械性能,被广泛应用于航空航天、生物医疗等领域。

因此,研究聚酰亚胺复合纳米纤维膜的制备工艺及其性能,对于拓展其应用范围具有重要意义。

本文采用静电纺丝法,制备了聚酰亚胺复合纳米纤维膜,并对其性能进行了深入研究。

二、实验部分1. 材料与试剂实验所需材料包括聚酰亚胺(PI)树脂、溶剂(如N-甲基吡咯烷酮)以及其他复合材料(如碳纳米管、金属氧化物纳米粒子等)。

所有试剂均为分析纯,使用前未经过进一步处理。

2. 静电纺丝法制备聚酰亚胺复合纳米纤维膜将PI树脂与溶剂混合,制备出均匀的PI纺丝液。

然后,将复合材料(如碳纳米管、金属氧化物纳米粒子等)加入纺丝液中,充分搅拌使其分散均匀。

接着,将纺丝液装入静电纺丝机的注射器中,调节纺丝参数(如电压、流量、接收距离等),进行静电纺丝。

最后,将得到的纳米纤维膜进行热处理,以提高其性能。

3. 性能测试与表征采用扫描电子显微镜(SEM)观察纳米纤维膜的形貌;利用透射电子显微镜(TEM)分析纳米纤维的内部结构;通过红外光谱(IR)和X射线衍射(XRD)表征材料的化学结构和结晶性能;使用万能材料试验机测试材料的机械性能;通过热重分析(TGA)评估材料的热稳定性。

三、结果与讨论1. 形态与结构分析SEM和TEM结果表明,采用静电纺丝法制备的聚酰亚胺复合纳米纤维膜具有连续、均匀的纤维结构。

纤维直径分布较窄,表明纺丝过程具有较好的可控制性。

IR和XRD分析显示,PI分子链在热处理过程中发生了亚胺化反应,形成了稳定的聚酰亚胺结构。

2. 机械性能分析万能材料试验机测试结果表明,聚酰亚胺复合纳米纤维膜具有较高的拉伸强度和断裂伸长率,表明其具有良好的机械性能。

静电纺丝技术制备纳米材料的研究

静电纺丝技术制备纳米材料的研究

静电纺丝技术制备纳米材料的研究随着科技的不断进步,人类对于材料的研究也越来越深入。

其中,纳米材料的研究和制备是当前材料科学领域的一个热点。

静电纺丝技术作为一种有效的制备纳米材料的方法,备受研究者们的关注。

本文将介绍静电纺丝技术制备纳米材料的研究。

一、静电纺丝技术的原理与特点静电纺丝技术利用高压电场作用下的静电力将聚合物材料或其它可纺丝材料逐渐拉成纳米级的纤维丝,最终制备得到纳米材料。

静电纺丝技术的制备过程简单易行,无需使用有害催化剂或高温等条件,因此受到广泛关注。

静电纺丝技术的纺丝方式是将含有聚合物溶液的芯棒放在高电压静电场中,通过溶液的表面张力和附着力在电极附近形成高线速领域,同时触发纤维化过程,最终得到纳米级感性纤维。

静电纺丝技术实质是利用高电压产生的强电场拉伸材料达到制备纳米级纤维的方法。

二、静电纺丝技术制备纳米材料的优点静电纺丝技术制备纳米材料的优点主要体现在以下几个方面:1. 纳米材料制备工艺简单,易于掌握。

2. 制备出的纳米材料具有高比表面积和高表面能,能够提高材料的性能。

3. 静电纺丝技术制备出的纳米材料形态多样,可以制备出纳米纤维、纳米微球、纳米管和纳米膜等多种形态的纳米材料。

4. 静电纺丝技术制备纳米材料的成本低,无需高温高压等条件,对环境友好。

三、静电纺丝技术在制备纳米材料方面的应用静电纺丝技术在制备纳米材料方面应用广泛,如防护服、织物、滤芯、治疗药物、纳米材料催化剂等。

1. 医药领域静电纺丝技术可以制备出用于药物缓释的纳米纤维、膜和粒子等纳米材料。

这些纳米材料可以显著提高药物的生物可利用度和稳定性,并大大降低药物剂量和副作用。

2. 环保领域静电纺丝技术可以制备出用于空气、水和地表清洗的滤芯和其他环保材料。

这些纳米材料的高比表面积和高表面能可以使其有效吸附和过滤有害物质。

3. 工业领域静电纺丝技术制备的纳米材料可以用作基材、衬底和附属设备的改性材料。

同时,在汽车、电子和建筑等行业中广泛应用。

静电纺丝制备多孔纳米纤维的研究进展

静电纺丝制备多孔纳米纤维的研究进展

㊀第37卷㊀第6期2018年6月中国材料进展MATERIALSCHINAVol 37㊀No 6Jun2018收稿日期:2018-01-01基金项目:国家自然科学基金资助项目(51202188ꎬ51672211)第一作者:刘照伟ꎬ男ꎬ1993年生ꎬ博士研究生通迅作者:汤玉斐ꎬ男ꎬ1982年生ꎬ教授ꎬ博士生导师ꎬEmail:yftang@xaut edu cnDOI:10 7502/j issn 1674-3962 2018 06 02静电纺丝制备多孔纳米纤维的研究进展刘照伟ꎬ汤玉斐ꎬ赵㊀康(西安理工大学材料科学与工程学院ꎬ陕西西安710048)摘㊀要:静电纺丝是一种能够制备连续纳米纤维的简单㊁方便㊁高效的方法ꎬ在组织工程㊁药物缓释和催化剂负载等领域应用广泛ꎬ近年来该方法制备的表面或内部具有多孔结构的纳米纤维因具有超高的比表面积而备受关注ꎮ综述了电纺多孔纳米纤维的制备方法和成孔机理ꎬ详细讨论了液相分离致孔和固相分离致孔的研究现状和未来发展方向ꎮ从纺丝液溶剂性质展开ꎬ结合混溶㊁控温㊁控湿等实验条件ꎬ分析了射流固化速率和溶剂挥发速率的相互作用关系ꎬ并提出多手段共用制备孔结构可控的多孔纳米纤维的方法ꎮ关键词:静电纺丝ꎻ纳米纤维ꎻ多孔纤维ꎻ孔结构可控ꎻ比表面积中图分类号:TB321㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2018)06-0410-09ProgressofElectrospunNano ̄FiberswithPorousStructureLIUZhaoweiꎬTANGYufeiꎬZHAOKang(SchoolofMaterialsScienceandEngineeringꎬXi anUniversityofTechnologyꎬXi an710048ꎬChina)Abstract:Electrospinningisasimpleꎬconvenientandefficienttechniquetofabricatecontinuousnanofibersꎬwhichcanbeappliedtothefieldsoftissueengineeringꎬdrugdeliveryandcatalystloadingwidely.Inrecentyearsꎬmuchattentionhasbeenpaidtoelectrospunnano ̄fiberswithporousstructureduetotheirultrahighspecificsurfacearea.Preparationmethodsandporeformingmechanismofnano ̄fiberswithporousstructurewerereviewed.Theprogressanddevelopmenttrendofnano ̄fiberswithporousstructurecausedbyliquidphaseseparationandsolidphaseseparationwerediscussedindetail.Theinter ̄actionbetweenconsolidationrateofjetsandevaporationrateofsolventswasanalyzedbasedonthesolventpropertiesandtheexperimentalconditionsꎬsuchasmiscibilityꎬtemperatureandhumidity.Methodsforpreparingporestructurecontrollednano ̄fibersbymulti ̄waywerealsoproposed.Keywords:electrospinningꎻnanofibersꎻporousfibersꎻcontrolledporestructureꎻspecificsurfacearea1㊀前㊀言纳米纤维是一种直径在纳米尺度的连续一维材料ꎬ因其具有小尺寸效应㊁表面效应和界面效应[1]ꎬ在物理和化学性质方面表现出特殊的性能[2]ꎮ在纳米纤维的制备方法[3]中ꎬ静电纺丝是一种利用高压电场的拉伸作用形成纤维的技术[4]ꎬ具有工艺简单和可操控性好的优点ꎮ自1930年Formals[5]首次报道静电纺丝技术以来ꎬ因其制备出的纳米纤维具有高比表面积而被广泛应用[6-8]ꎬ且在生物医用[9]㊁超敏感传感器[10]㊁过滤阻隔材料[11]及纳米制造[12]领域具有广阔的应用前景[13]ꎮ随着科学技术的进步ꎬ上述领域对纳米纤维材料提出了更高的要求[14-16]ꎬ即具有超高的比表面积[17-19]ꎮ因此ꎬ表面具有多孔结构的纳米纤维[20]吸引了研究者的目光[21]ꎬ其相对于常规的纳米纤维具有更高的孔隙率和比表面积ꎬ能够更好地发挥纤维材料在各领域中的作用ꎬ因此研究多孔纤维材料的制备技术[22]成为目前纳米材料领域中的重要课题之一ꎮ按照影响孔结构形成的主要因素ꎬ可将多孔纳米纤维制备的方法分为两种ꎬ液相分离致孔和固相分离致孔ꎮ2㊀液相分离致孔液相分离致孔是指电纺过程中ꎬ射流中的液相(溶剂或非溶剂等)挥发去除后在纤维内部或表面形成多孔结构的方法ꎮ在高压静电场中ꎬ纺丝液被拉伸成射流ꎬ溶剂㊀第6期刘照伟等:静电纺丝制备多孔纳米纤维的研究进展快速挥发降低了射流温度ꎬ纺丝液成分变化出现液相分离区域ꎬ当射流固化成纤维后富集溶剂或非溶剂的区域形成多孔结构ꎮ如2001年ꎬBognitzki等[23]首次将聚合物(聚乳酸㊁聚碳酸酯和聚乙烯等)加入挥发性溶剂二氯甲烷中配制成纺丝液ꎬ电纺后可以直接得到表面多孔纤维ꎬ其形貌如图1所示ꎮ纤维表面的孔近似椭圆形ꎬ这是由于纺丝液经过高压静电作用形成射流后ꎬ溶剂快速挥发导致聚合物与溶剂相分离[24]ꎬ形成聚合物相和溶剂相ꎬ最终溶剂相挥发形成孔ꎬ并在电场牵引拉伸作用下表面孔沿纤维轴向伸长ꎮ这种方法所得的表面多孔结构受溶剂物理性质的影响ꎬ还受纺丝环境温度及湿度的影响ꎬ水分子会凝结在纤维表面ꎬ促进孔的形成ꎬ但是实现表面孔结构可控制备的难度较大ꎮ图1㊀采用聚乳酸/二氯甲烷纺丝液静电纺丝所得的多孔聚乳酸纤维SEM照片[23]Fig 1㊀SEMimagesofporousPLLAfibersobtainedviaelectrospinningofasolutionofPLLAindichloromethane[23]:(a)low ̄magnifi ̄cationꎬ(b)high ̄magnification为深入了解纺丝液中的溶剂对纤维表面多孔结构[25]的影响ꎬMegelski等[26]系统研究了不同溶剂对纳米纤维表面孔形貌的影响ꎬ发现溶剂的挥发引起纺丝液温度的降低ꎬ而温度降低导致溶液不稳定ꎬ从而发生相分离产生多孔结构ꎬ如果相分离集中发生在表层附近ꎬ则多孔结构主要存在于纤维的表层[27]ꎮ而Moroni等[28]将PEOT/PBT共聚物分别溶于二恶烷㊁二氯乙烷㊁氯仿㊁二氯甲烷以及氯仿与六氟异丙醇等不同溶剂配制纺丝液ꎬ静电纺丝后发现溶剂挥发使得纤维上产生微小孔洞ꎬ且随着溶剂沸点的增加ꎬ纤维表面孔径减小ꎮ上述研究表明ꎬ采用高挥发性溶剂配制纺丝液时纤维易出现多孔结构ꎬ采用多溶剂[29]/溶剂与非溶剂混溶等方式可以改变溶剂的挥发速率ꎬ最终得到不同孔结构的多孔纤维ꎮ表1为近年来静电纺丝结合液相分离制备多孔纤维的实例ꎬ可以看出不同溶剂或非溶剂共混[30]所得纺丝溶液体系中各溶剂的挥发速率不同ꎬ高挥发性溶剂有利于表面多孔结构的形成ꎬ低挥发性溶剂则有利于产生内部多孔结构ꎬ而在高挥发溶剂中引入其他溶剂[31]后也有利于内部多孔结构的形成ꎮQi等[32]将聚乳酸(PL ̄LA)加入到二氯甲烷(DCM)/丁醇(BuOH)混合溶液中配制纺丝液ꎬ电纺后得到表面和内部均有多孔结构的PLLA纤维ꎬ其中BuOH的添加使得纤维内部出现了多孔结构ꎮ实际上ꎬ纳米纤维的比表面积主要取决于纤维表面的孔隙结构ꎬ而溶剂挥发使得纤维内部形成的孔隙结构会引起纤维力学性能的下降ꎬ这已成为该领域亟待解决的问题之一ꎮ表1㊀静电纺丝结合液相分离制备多孔纤维的实例Table1㊀Examplesofporousnanofibersfabricatedbyelectrospinningandliquid ̄phaseseparationAuthorsSolutionResultWeietal.[31]PES/H2O/DMSOsolutionTheporousultrafinefiberswerepreparedWuetal.[33]PBS/CFsolutionThemorphologyofporousstructurewasobviousꎬandthediametersofnano ̄holesweremoreuniformDemiretal.[34]PS/DMFsolutionThefibersexhibithighlyporousinternalstructureandsmoothsurfacealongwithslightporosityMiyauchiYetal.[35]PS/THF/DMFsolutionAtaTHF/DMFratioof3/1ꎬthePSmicrofiberscontainedtworegimesofporesizesincludingmicro ̄andnanoporesLinetal.[36]PS/THF/DMFsolutionPolystyrene(PS)fiberswithmicro ̄andnanoporousstructuresbothinthecoreand/oronthefibersurfaceswereelectrospunYuetal.[37]PAN/DMF/H2OsolutionThePANfiberswithporousstructureswereobtainedCaoetal.[38]PLLA/DMF/DCMsolutionThePLLAporousfiberswereobtainedCelebiogluetal.[39]CA/DCM/acetonesolutionRibbon ̄likeporousCAfiberswereobtainedWangetal.[40]CA/DCM/acetonesolutionTheporousCAfiberswereobtainedSeoetal.[41]PCL/THF/DMFsolutionꎬPCL/MC/DMFsolutionꎬPCL/chloroformsolutionHighlyporousPCLmicrofibersweresuccessfullyfabricatedbycollectingthefibersintoawaterbathduringelectrospinning114中国材料进展第37卷续表AuthorsSolutionResultLeeetal.[42]FourdifferentsolventsystemsElectrospunfiberswithdifferentmorphologiesincludingroundꎬtwistedwitharoughenedtextureꎬcurledandtwisted ̄ribbonshapeswereformedParketal.[43]PLA/MC/acetonesolutionThePLAporousfiberswereobtainedParketal.[44]Ethylcellulose/THF/DMAcsolutionRegularporeswereformedonthesurfaceoffiberfrompureTHFand80%THFinDMAcꎬwhilesmoothsurfacewasobservedforthepureDMAcand80to20%DMAcratioinTHFKonghlangTetal.[45]POM/HFIPsolutionTheelectrospunPOMnanofiberwithnanoporousstructureandhighspecificsurfaceareawaspreparedWuetal.[46]PCL/chloroform/acetonesolutionTheporousmicrostructureofPCLparticlescanbecontrolledbytailoringtheevaporationofsolventsNayanietal.[47]PAN/DMFsolutionThePANfiberswithporousstructureinsideandoutsidewereobtainedZhuetal.[48]PLLA/DCMsolutionTheorderedporousPLLApiezoelectricnanofiberswerefabricatedNairetal.[49]CA/CNC/DCM/acetonesolutionPorousCA/CNCelectrospunnanocompositefiberswerefabricatedWuetal.[50]PCL/DCMsolutionTheporousPCLfiberswerefabricated㊀㊀除改变纺丝液溶剂外ꎬ改变纺丝环境控制纤维中溶剂的挥发速率也可以获得多孔结构ꎮ采用水浴接收[46]可以降低溶剂的挥发速率ꎬ从而提高射流的固化速率[51]得到多孔纤维ꎮ通过调控纺丝环境温度也可以改变溶剂的挥发速率ꎬ如通过强制控温(将收集板浸入液氮浴)制备多孔聚合物纤维[52]ꎬ纤维表层与内部均产生多孔结构ꎬ环境温度的降低导致溶剂挥发速率急剧降低ꎬ部分溶剂在纤维固化过程中残留ꎬ固化后挥发形成多孔结构ꎮKim等[53]通过改变收集板温度制备了多孔聚合物(PLLA㊁PS㊁PVAC)纤维ꎬ图2为聚乳酸多孔纤维的微观形貌ꎬ可以看出随着温度从室温升高到40ħꎬ纤维表面的孔径增大(图2b)ꎬ继续增大到60ħ时孔径减小ꎬ这是由于溶剂二氯甲烷(MC)的快速挥发在纤维中形成了小孔ꎬ随后增加到70ħ后纤维上的孔坍塌ꎬ主要是因为收集板温度接近PLLA玻璃化转变温度(Tg)后使得纤维无法固化ꎮ图2㊀不同温度收集板所得的聚乳酸纤维的SEM照片[53]Fig 2㊀SEMimagesofelectrospunPLLAfibersobtainedunderdifferentcollectortemperature[53]:(a)roomtemperature(21ħ)ꎬ(b)40ꎬ(c)50ꎬ(d)60and(e)70ħ㊀㊀实际上ꎬ研究发现降低或提高纺丝液中溶剂的挥发速率都可以使得纳米纤维出现多孔结构ꎬ这可归结于静电纺丝射流固化速率和溶剂挥发速率的相互作用ꎮ环境温度较低时ꎬ射流中溶剂不能及时挥发ꎬ大部分残留在纤维中ꎬ纤维固化后会在纤维中形成多孔结构ꎻ而提高纺丝环境温度后ꎬ溶剂的快速挥发提高了射流的固化速率ꎬ使得溶剂快速挥发形成的孔洞来不及收缩ꎬ从而形成多孔结构ꎮ因此ꎬ提高射流固化速率的同时降低溶剂214㊀第6期刘照伟等:静电纺丝制备多孔纳米纤维的研究进展的挥发速率是获得高比表面积多孔纤维的前提ꎮ有研究者发现通过调节纺丝环境湿度[54]也可以影响射流中溶剂的挥发速率ꎬ从而可以方便㊁有效地获得不同孔隙结构的多孔纤维ꎮLee等[55]将PS溶于THF/DMF混合溶剂中ꎬ发现所得多孔纤维中孔隙的形状和尺寸取决于溶剂的挥发速率和环境湿度ꎮ随后Casper等[56]构建不同湿度的纺丝环境ꎬ对PS/THF纺丝液进行电纺ꎬ发现当环境湿度小于25%时只能得到表面平滑的纤维ꎬ而当湿度大于30%后ꎬ纤维表面开始形成细孔ꎬ表明提高湿度可以增加纤维表面孔的数量ꎬ这可能是 呼吸图案 机理[57]与相分离机理[24]结合而形成的现象ꎬTHF快速挥发使射流温度降低ꎬ水蒸气凝结在纤维中产生多孔结构ꎮ而Pai等[58]将PS溶于低挥发性溶剂DMF后ꎬ发现高湿度环境下所得纤维表面光滑ꎬ而低湿度环境所得纤维的表面反而有褶皱出现ꎬ如图3所示ꎮFashandi等[59]将聚合物PS分别加入到DMF和THF混合溶液中配制纺丝液ꎬ然后在不同温度和湿度的环境中进行静电纺丝ꎬ进一步证明了湿度对于多孔纤维孔结构的重要影响ꎬ如图4和图5所示ꎮ由图4可以看出ꎬ采用低挥发性溶剂后ꎬ随着湿度的提高ꎬ纤维内部的孔结构明显增多ꎬ结合图3发现此时纤维表面将变得光滑ꎮ当采用高挥发性溶剂时(图5)ꎬ随着湿度的提高ꎬ纤维表面的孔洞变得密集ꎮ这说明纺丝环境的湿度对纤维中孔的分布起到重要的作用ꎬ只有采用高挥发性溶剂同时在高湿度环境中纺丝才能够获得表面多孔的纳米纤维ꎮ图3㊀采用质量分数为30%PS/DMF纺丝液在不同相对湿度下静电纺丝所得纤维的SEM照片[58]Fig 3㊀SEMimagesofas ̄spunfiberselectrospunfroma30wt%PS/DMFsolutionunderdifferentrelativehumidity[58]:(a)43%ꎬ(b)37%ꎬ(c)24%ꎬ(d)22%ꎬ(e)15%and(f)11%(scalebar:5μm)图4㊀采用质量分数为20%PS/DMF纺丝液在不同相对湿度下静电纺丝所得纤维的截面SEM照片[59]Fig 4㊀Cross ̄sectionalSEMimagesoffiberselectrospunfrom20wt%PS/DMFsolutionat20ħanddifferentlevelsofRelativeHumidity(RH):(a)20%ꎬ(b)30%ꎬ(c)40%ꎬ(d)50%ꎬ(e)60%314中国材料进展第37卷图5㊀采用质量分数为20%PS/DMF纺丝液在不同环境条件下静电纺丝所得纤维的SEM照片[59]Fig 5㊀SEMimagesofelectrospunfibersfrom20wt%PS/THFsolutionsatdifferentenvironmentalconditions:(a)20ħ-20%RHꎬ(b)20ħ-60%RHꎬ(c)40ħ-20%RHꎬ(d)40ħ-60%RH㊀㊀此外ꎬ也有学者发现非溶剂蒸汽也可以用来制备多孔纤维ꎮShen等[60]提出在临界CO2环境中进行电纺ꎬLiu等[61]将PVP/DCM㊁PVP/乙醇㊁PVDF/DMAC和PVDF/DMF4个体系放入近临界或超临界CO2环境进行电纺ꎬ发现在适当的CO2压力和温度下ꎬ可生成表面凹凸不平的PVP纤维或PVDF纤维ꎮ上述发现说明静电纺丝时CO2相对于水蒸汽具有更好的扩散和溶解能力ꎬ可以在纤维中形成CO2富集相和富聚合物相ꎬ聚合物固化后即形成多孔纤维ꎮ这意味着改变湿度制备多孔纤维不再是调节纳米纤维多孔分布的唯一手段ꎬ同时采用CO2还可以大幅提高制备多孔纤维的成功率ꎮ3㊀固相分离致孔除了液相分离致孔以外ꎬ固相分离致孔也常被用来制备具有多孔结构的纳米纤维ꎮ固相分离致孔是指在纺丝液中添加固态物质(包括其他聚合物[62]或无机盐[63]等)ꎬ静电纺丝后通过后处理将其去除ꎬ固相所占位置保留下来形成多孔结构ꎬ该方法易于实现孔尺寸和孔形状的调控ꎮWendorff等[62]最先尝试配制聚合物共混纺丝液ꎬ电纺制备出聚乙烯吡咯烷酮(PVP)/聚乳酸(PLA)复合纤维ꎬ在水中萃取选择性去除PVPꎬ最终得到多孔PLA纳米纤维ꎬ或在一定温度下进行退火处理ꎬ去除PLA后得到PVP多孔纤维ꎮ随后Gupta等[63]另辟蹊径ꎬ添加无机盐GaCl3到纺丝液中ꎬ得到了多孔尼龙纤维ꎮ仅在聚合物体系方面ꎬ研究者们对相容聚合物㊁部分相容聚合物㊁不相容聚合物体系以及添加聚合物单体经过化学反应等均进行了探索ꎬ经过后处理都得到了多孔聚合物纳米纤维ꎮ表2为静电纺丝结合固相分离制备多孔聚合物纤维的实例ꎮ由表中可以看出ꎬ电纺以后利用复合纤维组分的性质差异ꎬ在交联(如紫外线照射)后进行水洗[64]㊁有机溶解[65]或煅烧[66]等步骤ꎬ去除纤维中的固相添加物ꎬ可得到多孔聚合物纤维ꎮ除此之外ꎬ固相分离致孔在制备多孔陶瓷纤维[67]以及多孔碳纤维[68]方面也发挥着重要的作用ꎮ表2㊀静电纺丝结合固相分离制备多孔聚合物纳米纤维的实例Table2㊀Examplesofporouspolymernanofibersfabricatedbyelectrospinningandsolid ̄phaseseparationAuthorsSolutionResultWangetal.[64]PCL/NaCl/chloroform/methanolsolutionMicro ̄/nanosizesaltparticleswereremovedthroughaleachingprocessafterelectrospinningꎬandtheporousPCLfibersweresuccessfullyfabricatedMoonetal.[66]PAN/PS/DMFsolutionPoresizesoftheporousPANfibersweredecreasedtoapproximately25nmafteroxidationLyooetal.[69]PVCi/PHBV/chloroformsolutionPVCi/PHBVblendfiberswereelectrospun.AndafterthePVCiwasphoto ̄crosslinkedbyUVirradiationꎬPHBVwasextractedfromtheblendfiberswithchloroformMaetal.[70]PAN/NaHCO3/DMFsolutionTheobtainedPANfibersshowedhighlyporoussurfacesaftertheextractionofNaHCO3Hanetal.[71]PEI/PHBV/chloroformsolutionPorousultra ̄finefiberswerepreparedviaselectivethermaldegradationofelectrospunPEI/PHBVfibersLietal.[72]PAN/PVP/DMFsolutionPVPmicrodomainsintheblendfiberswereleachedoutinwaterꎬandporousPANultrafinefiberswereobtained414㊀第6期刘照伟等:静电纺丝制备多孔纳米纤维的研究进展续表AuthorsSolutionResultYouetal.[73]PGA/PLA/HFIPsolutionUltrafinePGA/PLAblendfiberswereelectrospunandthenthePLAwasremovedviaaselectivedissolutiontechniquewithchloroformZhangetal.[74]PAN/PEO/DMFsolutionTheporousPANfiberswereobtainedbyremovingthePEOinwaterZhangetal.[75]Gt/PCL/TFEsolution3DporousnanofiberswereobtainedbyselectivelyremovingthewatersolublecomponentofgelatininphosphatebufferedsalineSunetal.[76]PVDF ̄HFP/PVP/DMFsolutionTheporousfiberswereobtainedbyremovingPVPinwaterLiuetal.[77]UPM/PHBV/chloroformsolutionAfterphoto ̄crosslinkingofUPMꎬPHBVwasextractedfromtheblendfiberswithchloroformChenetal.[78]PES/PVA/DMSOsolutionTheporousPESfiberswereobtainedbyremovingPVAinwaterPantetal.[79]MPEG/PCL/chloroformsolutionTheporousfiberswereobtainedbyremovingMPEGinwaterChenetal.[80]PAN/PMMA/DMFsolutionTheporousPANfiberswereobtainedbyremovingPMMAYangetal.[81]PVDF/PEO/DMF/H2OsolutionPorousPVDFfiberswerepreparedJietal.[82]PAN/Si/DMFsolutionTheporousPANfiberswereobtainedbyremovingSiinhydrofluoric(HF)acidZhangetal.[83]PES/salt/DMSOsolutionPoresonthefiberwereinducedbywater ̄solublesaltduringelectrospinningprocessinahumidspinningenvironment㊀㊀自2002年静电纺丝开始被用于制备陶瓷纤维[84]以来ꎬ具有高比表面积的多孔陶瓷纤维也逐渐受到研究者的广泛关注ꎮ首先将陶瓷前驱体或纳米颗粒等加入纺丝液中ꎬ电纺以后得到聚合物/陶瓷前驱体或陶瓷颗粒复合纤维ꎬ再经煅烧或退火处理即可得到纳米多孔陶瓷纤维[85]ꎮ多孔陶瓷纤维综合了陶瓷材料[86]耐高温㊁高化学稳定性以及多孔纳米纤维的优点[87]ꎬ在光催化㊁太阳能电池㊁传感器等领域有着广阔的应用前景[88]ꎮLi等[89]首次将含有聚合物和钛的醇盐前驱体的纺丝液进行静电纺丝ꎬ然后经煅烧去除聚合物ꎬ前驱体化学反应生成锐钛矿型TiO2ꎬ最终形成具有多孔结构的TiO2纤维ꎮ一般来说ꎬ电纺制备多孔聚合物纤维的方法均可以用来制备多孔陶瓷纤维[90]ꎮKatoch等[91]结合多孔聚合物纤维的制备方法ꎬ利用溶剂快速挥发时ꎬ纤维表面会留下孔隙的原理ꎬ通过电纺后煅烧制备出表面具有孔隙的SiO2纳米纤维ꎬ其比表面积得到了大幅的提高ꎬ进一步拓展了该类材料在吸附过滤㊁隔音吸声㊁催化剂载体等方面的应用ꎮ表3为近年来采用固相分离制备的多孔陶瓷纤维及碳纤维的实例ꎮ由表可以看出ꎬ利用制备多孔聚合物纳米纤维的方法ꎬ在纺丝液中加入另一种聚合物或可去除的固体颗粒等都可以制备多孔陶瓷或多孔碳纤维ꎬ其孔尺寸也在一定范围内可控[92]ꎮ利用陶瓷前驱体配制的纺丝液经电纺和煅烧后所得陶瓷或碳纤维表面均存在孔尺寸较小(如介孔[93])的多孔结构ꎬ这是由于纺丝液中的可纺聚合物在煅烧时分解留下孔洞ꎬ同时前驱体分解氧化成无机成分(无定型[94]或结晶[95])时体积大幅收缩ꎬ从而减小了纤维表面的孔尺寸ꎮ然而ꎬ纳米纤维上的多孔结构使得陶瓷纤维的力学性能大幅下降ꎬ同时由于自身的脆性ꎬ在使用时易于断裂ꎬ这也是目前该领域亟待解决的关键问题之一ꎮ同时ꎬ在超级电容器电极材料领域[96]ꎬ通过固相分离制备多孔碳纤维的方法也备受关注[97]ꎮ通过添加固体颗粒或无机盐的纺丝液经电纺和煅烧后得到复合纤维ꎬ后处理时对纤维的直径影响不大ꎬ固体颗粒或无机盐被去除后可以获得与添加物尺寸相同的孔尺寸ꎬ因此可以通过改变添加物的尺寸来实现多孔纤维中孔尺寸的调控ꎮ如Kim等[98]在PAN纺丝液中加入金属盐氯化锌ꎬ电纺后再经后处理成功制备出了可用于超级电容器的多孔碳纳米纤维ꎬ其孔尺寸与氯化锌的尺寸一致ꎮ然而ꎬ在静电纺丝时ꎬ添加物的分布是不可控的ꎬ后处理时仅仅去除了表面的添加物ꎬ而纤维内部的添加物仍然存在ꎬ这对于多孔纤维的力学性能有重要的影响ꎮ此外ꎬ由于纳米颗粒难于分散ꎬ该类方法对于获得具有均匀介孔的多孔结构纳米纤维也存在着较大的难度ꎮ514中国材料进展第37卷表3㊀静电纺丝结合固相分离制备多孔陶瓷纳米纤维和多孔碳纳米纤维的实例Table3㊀Examplesofporousceramicnanofibersandporouscarbonnanofibersfabricatedbyelectrospinningandsolid ̄phaseseparationAuthorsSolutionResultChenetal.[93]TTIP/PVP/aceticacid/ethanolsolutionTitaniamesoporousnanofiberswerefabricatedLimetal.[94]PEO/SiO2/H2OsolutionTheporousSiO2nanofiberswerefabricatedKokuboetal.[95]PVAC/titaniumisopropoxide/DMFsolutionTheporousTiO2nanofiberswerefabricatedPengetal.[99]PMMA/DMF/TEOS/THF/HClsolutionAmorphousporoussilicafiberswerefabricatedZhanetal.[100]TitanicacidandsilicicacidMesoporousTiO2/SiO2compositenanofiberswithadiameterof100~200nmandsilicashellthicknessof5~50nmwerefabricatedQiuetal.[101]PAN/DMF/Ni(NO3)2solutionTheporousNiOnanofiberswerefabricatedYunetal.[102]PAN/DMF/TiO2solutionTheporouscarbonfiberswerefabricatedGaoetal.[103]PAN/Cu(OAc)2/CNTs/DMFsolutionPorousC/Cu/CNTsnanocompositeswithmesoporespossesslargerspecificsurfaceareaandnarrowerporesizedistributionthanthatofC/Cunanofi ̄berswerepreparedZhangetal.[104]UHMWPA6/CaCl2/FA/acetonesolutionPorousnylon ̄6fiberswereobtainedYanetal.[105]PVP/Zn(Ac)2 2H2O/Fe(acac)3/DMFsolutionThemulti ̄porousZnFe2O4nanotubeswerefabricatedbythedirectannea ̄lingprocessofZFOprecursornanofibersZhangetal.[106]PAN/PMMA/DMF/SiO2solutionPoroussilicafiberswerefabricatedviaelectrospinningandcalcinationsDuanetal.[107]PVP/In(NO3)3/DMF/ethanolsolutionIn2O3nanotubesandporousnanotubesweresynthesizedbyconventionalelectrospinningprocessandfollowingcalcinationChenetal.[108]PVP/TEOS/Zn(NO3)2/AgNO3/H2O/ethanolsolutionPorousstructuredZnO/AgcompositefibersweresynthesizedbychemicallyetchingZnO/Ag/SiO2fibersmadefromanelectrospinningprocess4㊀结㊀语目前ꎬ随着纳米技术的发展ꎬ基于静电纺丝技术制备的多孔纳米纤维由于超高的比表面积和吸附容量在药物缓释㊁吸附过滤和催化剂负载等领域发挥着越来越重要的作用ꎮ通过控制外界环境(湿度㊁温度等)来控制射流固化速率和溶剂挥发速率可以快速方便地制备不同形貌的多孔纤维ꎬ但其孔尺寸不易控制ꎬ同时纤维内部也会形成孔洞ꎬ对于纤维的力学性能影响较大ꎮ而加入适当尺寸的固体颗粒充当造孔剂时则能够控制纤维的孔尺寸和形状ꎬ但添加物易残余在聚合物纤维内部ꎬ无法完全去除ꎬ对纳米纤维的纯度㊁力学性能等均存在着负面影响ꎮ实际上ꎬ仅在纳米纤维表面造孔的同时保证纤维内部致密ꎬ既可以满足大幅提高纳米纤维比表面积的要求ꎬ也可以保证其力学性能ꎮ例如利用复溶剂或反溶剂等表面后处理方法ꎬ或者通过静电纺丝时射流内部组分的可控分布ꎬ使得纤维表面具有均匀介孔的多孔结构ꎬ再结合现有的技术制备出孔尺寸㊁孔形状㊁孔分布可控的多孔纳米纤维将是未来该领域的主要研究方向ꎮ参考文献㊀References[1]㊀WuDacheng(吴大诚)ꎬDuZhongliang(杜仲良)ꎬGaoXushan(高绪珊).Nanofiber(纳米纤维)[M].Beijing:ChemicalIndustryPressꎬ2002.[2]㊀LiDꎬXiaY.AdvancedMaterials[J]ꎬ2004ꎬ16(14):1151-1170.[3]㊀GreinerAꎬWendorffJH.AngewandteChemie-InternationalEdition[J]ꎬ2007ꎬ46(30):5670-5703.[4]㊀FongHꎬRenekerDH.ElectrospinningandtheFormationofNanofibers[M].Munich:Hanserꎬ2001:225-246.[5]㊀FormalsA.USꎬ1975504[P].1934-10-02.[6]㊀YangYing(杨㊀颖)ꎬJiaZhidong(贾志东)ꎬLiQiang(李㊀强)ꎬetal.HighVoltageEngineering[J]ꎬ2006ꎬ32(11):91-95.[7]㊀WangXingxue(王兴雪)ꎬWangHaitao(王海涛)ꎬZhongWei(钟㊀伟)ꎬetal.Nonwovens[J]ꎬ2007ꎬ15(2):14-20.[8]㊀LuPꎬDingB.RecentPatentsonNanotechnology[J]ꎬ2008ꎬ2(3):169-182.[9]㊀LiuXꎬMaPX.Biomaterials[J]ꎬ2009ꎬ30(25):4094-4103.[10]LuohRꎬHahnHT.CompositesScience&Technology[J]ꎬ2006ꎬ66(14):2436-2441.[11]IsmailAFꎬMansourizadehA.JournalofMembraneScience[J]ꎬ2010ꎬ365(1):319-328.[12]BabelAꎬLiDꎬXiaYNꎬetal.Macromolecules[J]ꎬ2005ꎬ38(11):4705-4711.[13]TengLetian(滕乐天)ꎬZhaoKang(赵㊀康)ꎬTangYufei(汤玉斐).JournaloftheChineseCeramicSociety[J]ꎬ2012ꎬ40(08):1215-1219.[14]HeChuanglong(何创龙)ꎬHuangZhengming(黄争鸣)ꎬHan614㊀第6期刘照伟等:静电纺丝制备多孔纳米纤维的研究进展Xiaojian(韩晓建)ꎬetal.HighTechnologyLetters[J]ꎬ2006ꎬ16(9):934-938.[15]HuangHuimin(黄绘敏)ꎬLiZhenyu(李振宇)ꎬYangFan(杨㊀帆)ꎬetal.ChemicalJournalofChineseUniversities[J]ꎬ2007ꎬ28(6):1200-1202.[16]ZhangLei(张㊀磊)ꎬLiJiayan(李佳艳)ꎬSunYan(孙㊀妍)ꎬetal.JournalofMaterialsEngineering[J]ꎬ2008(6):331-336. [17]SunLꎬChengHꎬChuZꎬetal.ActaPolymericaSinica[J]ꎬ2009(1):61-65.[18]TangYꎬLiuZꎬZhaoKꎬetal.RSCAdvances[J]ꎬ2017ꎬ7(67):42505-42512.[19]ZhangXiaobo(张校菠)ꎬChenMinghai(陈名海)ꎬetal.ActaPhysico-ChimicaSinica[J]ꎬ2010ꎬ26(12):3169-3174.[20]QuWeifeng(区炜锋)ꎬYanYurong(严玉蓉).ChemicalIndustryandEngineeringProgress[J]ꎬ2009ꎬ28(10):1766-1770.[21]ZhuXLꎬCuiWGꎬLiXHꎬetal.Biomacromolecules[J]ꎬ2008ꎬ9(7):1795-1801.[22]KhajaviRꎬAbbasipourM.ScientiaIranica[J]ꎬ2012ꎬ19(6):2029-2034.[23]BognitzkiMꎬCzadoWꎬFreseTꎬetal.AdvancedMaterials[J]ꎬ2001ꎬ13(1):70-72.[24]VanWPꎬDijkstraPJ.JournalofMembraneScience[J]ꎬ1996ꎬ117(1):1-31.[25]KimGTꎬLeeJSꎬShinJHꎬetal.KoreanJournalofChemicalEngi ̄neering[J]ꎬ2005ꎬ22(5):783-788.[26]MegelskiSꎬStephensJꎬChaseDꎬetal.Macromolecules[J]ꎬ2002ꎬ35(22):8456-8466.[27]WijmansJGꎬSmoldersC.NATOASISeries[J]ꎬ1986ꎬ181:39-56. [28]MoroniLꎬLichtRꎬDeBJꎬetal.Biomaterials[J]ꎬ2006ꎬ27(28):4911-4922.[29]McCannJTꎬLiDꎬXiaYN.JournalofMaterialsChemistry[J]ꎬ2005ꎬ15(7):735-738.[30]HanSOꎬSonWKꎬYoukJHꎬetal.MaterialsLetters[J]ꎬ2005ꎬ59(24-25):2998-3001.[31]WeiZꎬZhangQꎬWangLꎬetal.ColloidandPolymerScience[J]ꎬ2013ꎬ291(5):1293-1296.[32]QiZꎬYuHꎬChenYꎬetal.MaterialsLetters[J]ꎬ2009ꎬ63(3-4):415-418.[33]WuYꎬYuJꎬMaC.TextileResearchJournal[J]ꎬ2008ꎬ78(9):812-815.[34]DemirMM.ExpressPolymerLetters[J]ꎬ2010ꎬ4(1):2-8. [35]MiyauchiYꎬDingBꎬShiratoriS.Nanotechnology[J]ꎬ2006ꎬ17(20):5151-5156.[36]LinJYꎬDingBꎬYuJYꎬetal.ACSAppliedMaterials&Interfaces[J]ꎬ2010ꎬ2(2):521-528.[37]YuXꎬXiangHꎬLongYꎬetal.MaterialsLetters[J]ꎬ2010ꎬ64(22):2407-2409.[38]CaoSGꎬHuBHꎬLiuHQ.ActaPolymericaSinica[J]ꎬ2010ꎬ1(10):1193-1198.[39]CelebiogluAꎬUyarT.MaterialsLetters[J]ꎬ2011ꎬ65(14):2291-2294.[40]WangJiangnan(王江南)ꎬLiuHaiqing(刘海清).PolymericMaterialsScienceandEngineering[J]ꎬ2011(5):133-136.[41]SeoYAꎬPantHRꎬNirmalaRꎬetal.JournalofPorousMaterials[J]ꎬ2012ꎬ19(2):217-223.[42]LeeKHꎬGivensSꎬChaseDBꎬetal.Polymer[J]ꎬ2006ꎬ47(23):8013-8018.[43]ParkJYꎬLeeIH.JournalofPolymerResearch[J]ꎬ2011ꎬ18(6):1287-1291.[44]ParkJYꎬHanBWꎬLeeIH.JournalofIndustrialandEngineeringChemistry[J]ꎬ2007ꎬ13(6):1002-1008.[45]KonghlangTꎬKotakiMꎬKousakaYꎬetal.Macromolecules[J]ꎬ2008ꎬ41(13):4746-4752.[46]WuYꎬClarkRL.JournalofColloidandInterfaceScience[J]ꎬ2007ꎬ310(2):529-535.[47]NayaniKꎬKatepalliHꎬSharmaCSꎬetal.Industrial&EngineeringChemistryResearch[J]ꎬ2012ꎬ51(4):1761-1766.[48]ZhuJꎬJiaLꎬHuangR.JournalofMaterialsScience:MaterialsinE ̄lectronics[J]ꎬ2017(2):1-6.[49]NairSSꎬMathewAP.CarbohydratePolymers[J]ꎬ2017ꎬ175:149-157.[50]WuSꎬWangB.MaterialsLetters[J]ꎬ2017ꎬ204:73-76. [51]Xi anUniversityofTechnology(西安理工大学).Chinaꎬ104928789[P].2017-06-20.[52]McCannJTꎬMarquezMꎬXiaYN.JournaloftheAmericanChemicalSociety[J]ꎬ2006ꎬ128(5):1436-1437.[53]KimCHꎬJungYHꎬKimHYꎬetal.MacromolecularResearch[J]ꎬ2006ꎬ14(1):59-65.[54]LuoCJꎬNangrejoMꎬEdirisingheM.Polymer[J]ꎬ2010ꎬ51(7):1654-1662.[55]LeeKHꎬKimHYꎬBangHJꎬetal.Polymer[J]ꎬ2003ꎬ44(14):4029-4034.[56]CasperCLꎬStephensJSꎬTassiNGꎬetal.Macromolecules[J]ꎬ2004ꎬ37(2):573-578.[57]SrinivasaraoMꎬCollingsDꎬPhilipsAꎬetal.Science[J]ꎬ2001ꎬ292(5514):79-83.[58]PaiCLꎬBoyceMCꎬRutledgeGC.Macromolecules[J]ꎬ2009ꎬ42(6):2102-2114.[59]FashandiHꎬKarimiM.Polymer[J]ꎬ2012ꎬ53(25):5832-5849. [60]ShenZꎬBowlinETꎬMarkAM.Macromolecules[J]ꎬ2006ꎬ39(25):8553-8555.[61]LiuJꎬShenZꎬLeeSHꎬetal.TheJournalofSupercriticalFluids[J]ꎬ2010ꎬ53(1):142-150.[62]BognitzkiMꎬSteinhartMꎬGreinerAꎬetal.PolymerEngineeringandScience[J]ꎬ2001ꎬ41(6):982-989.[63]GuptaAꎬSaquingCDꎬAfshariMꎬetal.Macromelecules[J]ꎬ2009ꎬ42(3):709-715.[64]WangYZꎬWangBCꎬWangGXꎬetal.PolymerBulletin[J]ꎬ714中国材料进展第37卷2009ꎬ63(2):259-265.[65]Xi anUniversityofTechnology(西安理工大学).Chinaꎬ104746149[P].2017-09-22.[66]MoonSꎬChoiJꎬFarrisRJ.FibersandPolymers[J]ꎬ2008ꎬ9(3):276-280.[67]LiSꎬHeZꎬWangXꎬetal.AppliedPhysicsA[J]ꎬ2014ꎬ117(3):1381-1386.[68]PengMꎬLiDꎬShenLꎬetal.Langmuir[J]ꎬ2006ꎬ22(22):9368-9374.[69]LyooWSꎬYoukJHꎬLeeSWꎬetal.MaterialsLetters[J]ꎬ2005ꎬ59(28):3558-3562.[70]MaGPꎬYangDZꎬNieJ.PolymersforAdvancedTechnologies[J]ꎬ2009ꎬ20(2):147-150.[71]HanSOꎬSonWKꎬChoDWꎬetal.PolymerDegradationandStabil ̄ity[J]ꎬ2004ꎬ86(2):257-262.[72]LiXꎬNieG.ChineseScienceBulletin[J]ꎬ2004ꎬ49(21):2160-2163. [73]YouYꎬYoukJHꎬLeeSWꎬetal.MaterialsLetters[J]ꎬ2006ꎬ60(6):757-760.[74]ZhangLFꎬHsiehYL.Nanotechnology[J]ꎬ2006ꎬ17(17):4416-4423.[75]ZhangYZꎬFengYꎬHuangZMꎬetal.Nanotechnology[J]ꎬ2006ꎬ17(3):901-908.[76]SunFuqian(孙复钱)ꎬLiXinsong(李新松).NewChemicalMaterials(化工新型材料)[J]ꎬ2006ꎬ(06):12-14.[77]LiuJꎬYuZꎬYuHꎬetal.JournalofAppliedPolymerScience[J]ꎬ2009ꎬ112(4):2247-2254.[78]ChenJing(陈㊀璟)ꎬWangXiaojun(王孝军)ꎬLiuSuilin(刘岁林)ꎬetal.PolymericMaterialsScienceandEngineering(高分子材料科学与工程)[J]ꎬ2009ꎬ(5):150-153.[79]PantHRꎬNeupaneMPꎬPantBꎬetal.ColloidsandSurfacesBBiointerfaces[J]ꎬ2011ꎬ88(2):587-592.[80]ChenZꎬFengXꎬHanDꎬetal.FibersandPolymers[J]ꎬ2014ꎬ15(7):1364-1368.[81]YangYꎬAndreaC.Carbon[J]ꎬ2011ꎬ49(11):3395-3403. [82]JiLWꎬSaquingCꎬKhanSAꎬetal.Nanotechnology[J]ꎬ2008ꎬ19(8):0856058.[83]ZhangQꎬLiMꎬLiuJꎬetal.ColloidandPolymerScience[J]ꎬ2012ꎬ290(9):793-799.[84]ShaoCꎬKimHꎬGongJꎬetal.Nanotechnology[J]ꎬ2002ꎬ13(5):635-637.[85]SigmundWꎬYuhJꎬParkHꎬetal.JournaloftheAmericanCeramicSociety[J]ꎬ2006ꎬ89(2):395-407.[86]RamaseshanRꎬSundarrajanSꎬJoseRꎬetal.JournalofAppliedPhysics[J]ꎬ2007ꎬ102(11):111101-111117.[87]KirshVA.ColloidJournal[J]ꎬ2007ꎬ69(5):609-614.[88]BonyadiSꎬChungTS.JournalofMembraneScience[J]ꎬ2009ꎬ331(1-2):66-74.[89]LiDꎬXiaY.NanoLetters[J]ꎬ2003ꎬ3(4):555-560.[90]LiuZꎬTangYꎬZhaoKꎬetal.MaterialsScienceForum[J]ꎬ2016ꎬ847:218-223.[91]KatochAꎬKimSS.JournaloftheAmericanCeramicSociety[J]ꎬ2012ꎬ95(2):553-556.[92]MadhugiriSꎬSunBꎬSmirniotisPGꎬetal.MicroporousandMesoporousMaterials[J]ꎬ2004ꎬ69(1-2):77-83.[93]ChenJYꎬChenHCꎬLinJNꎬetal.MaterialsChemistryandPhysics[J]ꎬ2008ꎬ107(2-3):480-487.[94]LimJꎬYiGꎬMoonJHꎬetal.Langmuir[J]ꎬ2007ꎬ23(15):7981-7989.[95]KokuboHꎬDingBꎬNakaTꎬetal.Nanotechnology[J]ꎬ2007ꎬ18(16):165604.[96]LiuTꎬGuSꎬZhangYꎬetal.JournalofPolymerResearch[J]ꎬ2012ꎬ19(6):1-6.[97]KanehataMꎬDingBꎬShiratoriS.Nanotechnology[J]ꎬ2007ꎬ18(31):315602.[98]KimCꎬNgocB.AdvancedMaterials[J]ꎬ2007ꎬ19(17):2341-2346. [99]PengMꎬSunQJꎬMaQLꎬetal.MicroporousandMesoporousMateri ̄als[J]ꎬ2008ꎬ115(3):562-567.[100]ZhanSHꎬChenDRꎬJiaoXLꎬetal.ChemicalCommunications[J]ꎬ2007ꎬ20(20):2043-2045.[101]QiuYꎬYuJꎬZhouXꎬetal.NanoscaleResearchLetters[J]ꎬ2009ꎬ4(2):173-177.[102]YunJꎬKimHIꎬLeeYS.JournalofMaterialsScience[J]ꎬ2013ꎬ48(23):8320-8328.[103]GaoDꎬWangLꎬYuJꎬetal.FibersandPolymers[J]ꎬ2014ꎬ15(6):1236-1241.[104]ZhangHꎬZhangLꎬJiaQꎬetal.PolymerEngineeringandScience[J]ꎬ2015ꎬ55(5):1133-1141.[105]YanJꎬGaoSꎬWangCꎬetal.MaterialsLetters[J]ꎬ2016ꎬ184:43-46.[106]ZhangRꎬXieR.Materials&Design[J]ꎬ2017ꎬ130:231-238. [107]DuanHꎬWangYꎬLiSꎬetal.JournalofMaterialsScience[J]ꎬ2018ꎬ53(5):3267-3279.[108]ChenFꎬTangYꎬLiuCꎬetal.CeramicsInternational[J]ꎬ2017ꎬ43(16):14525-14528.(编辑㊀吴㊀锐)814。

静电纺丝纳米纤维的制备与应用研究

静电纺丝纳米纤维的制备与应用研究

静电纺丝纳米纤维的制备与应用研究随着科学技术的发展,纳米材料逐渐成为生物医学、能源储存、信息技术等各个领域的重要组成部分。

其中,纳米纤维作为一种具有高比表面积、可调控性、生物相容性等优点的纳米材料,被广泛应用于组织工程、传感器、污染物去除等领域。

其中,静电纺丝技术是一种常用的制备纳米纤维的方法。

本文将介绍静电纺丝技术的原理、优缺点,并探讨其在生物医学和环境领域的应用。

一、静电纺丝技术原理静电纺丝技术是通过高压静电场作用下,将聚合物溶液中的聚合物拉伸成纳米尺度的纤维,形成纳米纤维膜。

其制备步骤如下:(1)准备聚合物溶液:将聚合物加入有机溶剂中,达到一定浓度。

(2)注入高压静电场:将聚合物溶液注入高压静电场,在静电场作用下,聚合物分子受力,流体形成了稳定的射流。

(3)干燥:在纳米纤维形成后,采用自然干燥、紫外辐射干燥等方法,去除有机溶剂。

(4)获取纳米纤维膜:经过干燥后,聚合物纳米纤维形成了一层自支撑的薄膜。

二、静电纺丝技术的优缺点静电纺丝技术具有以下几个优点:(1)简单易学:静电纺丝技术不需要复杂的设备和条件,只需要高压静电设备、聚合物溶液、收集器等较简单的设备和条件,操作简单易学。

(2)纳米纤维形成速度快:静电纺丝技术采用了高压静电场,使得聚合物分子能够快速被拉伸成纳米尺度的纤维,形成纳米纤维膜的速度快。

(3)纳米纤维精度高:静电纺丝技术基于高压静电场,能够形成纤维直径较小、长度较长的纳米纤维,其精度高、可调控性好、空隙率小。

(4)适用性广:静电纺丝技术可用于多种聚合物溶液,根据不同的需要制备出具有不同性质的纳米纤维。

但是,静电纺丝技术也存在以下几个缺点:(1)制备的纳米纤维薄膜强度较低:静电纺丝技术制备出的纳米纤维薄膜强度较低,易断裂。

(2)仅适用于溶解于有机溶剂中聚合物:静电纺丝技术只适用于聚合物在有机溶剂中的聚合物。

(3)处理有机溶剂产生环境污染:静电纺丝技术的制备需要有机溶剂,容易造成环境污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静电纺丝制备纳米纤维膜的研究
纳米材料是当前材料科学领域的热门研究课题之一。

纳米材料具有大比表面积、高比强度、优异的力学、光学和电学性能等特点,是制备先进功能材料的重要基础。

而纳米纤维作为一类纤细的纳米材料,其低维结构和高比表面积也使其在材料科学中具有潜在的重要应用前景。

因此,纳米纤维的制备方法备受关注。

目前,制备纳米纤维主要有机械法、电化学法、热喷涂法、化学气相沉积法等
多种方法。

而静电纺丝法由于其制备过程简单、实验设备较为容易获得、可制备的材料种类广泛等优点,成为了目前制备纳米纤维膜的先进技术之一。

静电纺丝,即利用高电场作用下带电纤维形成纤维膜的技术。

其基本原理是,
在电场作用下,射流中极微小的液滴与地电极之间落差跨度最大的部位会受到很强的电吸引力,集中向电极聚集而成为纤维膜,同时浓缩了液滴中的聚集物,聚集的物质可以是聚合物、无机物质等。

静电纺丝法具有许多优点。

一方面,其能够在室温下制备纳米材料,同时具有
较高的制备效率、较低的制备成本和适用于多种物质。

另一方面,静电纺丝可快速制备出具有优异纳米结构的纤维膜,同时其纤维直径与纤维排布可调控性高,形成的材料表面光滑,大小均匀,可用于纳米技术中制备模板、载体、过滤器、生物材料等方面的应用。

近年来,静电纺丝制备纳米纤维材料的研究也得到了持续关注和深入探讨。


方面,不断有新的纳米纤维材料被开发和研究。

例如,聚合物、金属氧化物、碳纳米管、金属及金属合金等都可以利用静电纺丝方法进行制备;另外,研究人员也对静电纺丝的工艺和性能进行了不断探讨。

例如,通过改变静电纺丝的操作参数(如电压、电场强度、喷嘴直径、液体沉积浓度等)可以调整制备出的纳米纤维的结构、形态和尺寸,从而对其性能进行优化。

同时,纳米纤维材料的实际应用也越来越广泛。

例如,在生物医学中,利用纳米纤维材料制备的载体、膜、支架等用于组织工程、组织修复和组织再生等领域;在环境保护中,利用纳米纤维材料制备的过滤器、分离膜等用于水处理、空气过滤等领域;在电子显示和光学中,利用纳米纤维材料制备的电极、防伪材料等用于制作光电器件、液晶显示器等领域。

这些都为静电纺丝制备纳米纤维膜的研究提供了更广的应用空间和实践基础。

总之,静电纺丝是一种有效制备纳米材料的方法,具有着制备时间短、技术简单、可制备种类多样等优点。

随着技术的不断推进和应用领域的不断拓展,相信静电纺丝法将在未来的纳米纤维材料制备中扮演更加重要的角色,为纳米材料的研究和应用提供更多支持。

相关文档
最新文档