精密运算放大器技术特点及设计要点

合集下载

用运放推动的晶体管功放电路

用运放推动的晶体管功放电路

用运放推动的晶体管功放电路1.引言1.1 概述概述在现代电子技术领域中,晶体管功放电路是非常常见且重要的一种电路。

它能够将小信号放大为大信号,从而实现信号的放大和传输。

晶体管功放电路的设计和优化一直是电子工程师关注的焦点。

然而,传统的晶体管功放电路存在一些问题。

例如,它们对输入电阻和输出电阻的要求较高,且对输入信号有一定的失真。

为了解决这些问题,研究人员开始使用运算放大器(运放)来推动晶体管功放电路。

运放是一种高增益、宽带宽的放大器,它具有低输入电阻和高输出电阻的特点。

通过将运放与晶体管功放电路相结合,可以克服传统电路的一些局限性。

使用运放推动的晶体管功放电路不仅能够提高输入电阻和输出电阻的匹配性,还能够减少对输入信号的失真。

本文将详细介绍运放推动的晶体管功放电路的工作原理、设计要点和优势。

我们将深入探讨不同类型的运放和晶体管功放电路,并分析它们在各种应用中的性能和适用性。

此外,我们还将讨论一些相关的实际应用案例,以帮助读者更好地理解该电路的实用性和潜在价值。

通过对运放推动的晶体管功放电路的研究和应用,我们可以更好地了解这种电路的优点和局限性,并掌握其在实际工程中的设计和应用技巧。

有关该电路的深入了解将有助于我们在电子技术领域中更好地解决问题,提高系统的性能和可靠性。

在下一节中,我们将详细介绍运放推动的晶体管功放电路的相关要点,包括电路设计的注意事项、性能指标和测试方法等。

请继续阅读第2节,以更全面地了解这一电路的详细内容。

1.2文章结构1.2 文章结构本文将按照以下结构对用运放推动的晶体管功放电路进行介绍和论述。

2. 正文部分将主要涵盖以下内容:2.1 运放推动的晶体管功放电路本节将介绍运放推动的晶体管功放电路的基本原理和工作原理。

首先,将介绍运放(运算放大器)的特性和主要功能,以及其在电路设计中的重要作用。

然后,将详细讨论晶体管功放电路的构成和工作原理,包括信号放大过程和功率输出特性。

此外,还会介绍一些常用的运放推动的晶体管功放电路的设计方法和技巧。

电路中的运算放大器有哪些特点和应用

电路中的运算放大器有哪些特点和应用

电路中的运算放大器有哪些特点和应用运算放大器是电路中应用广泛的一种电子器件,它具有许多特点和应用。

本文将介绍运算放大器的特点,并探讨其在电路中的各种应用。

一、特点1. 高增益:运算放大器的主要特点之一是具有较高的电压增益。

它能够将输入信号增加到一个较高的水平,以便于后续的处理和分析。

2. 宽频带宽:运算放大器的频带宽度较宽,能够处理较高频率的信号。

这使得它在许多应用中都能够提供精确和有效的放大功能。

3. 低噪声:运算放大器通常具有较低的噪声水平,这使得它在信号处理中非常有用。

低噪声的特性使得运算放大器能够提供更清晰和准确的信号放大。

4. 高输入阻抗和低输出阻抗:运算放大器的输入阻抗很高,可以减小对输入信号源的负载,保持传输信号的完整性。

同时,输出阻抗较低,能够驱动负载电路。

5. 可调节增益和偏置:运算放大器通常具有可调节的增益和偏置特性,这使得它在不同应用场景下能够灵活应对和满足需求。

二、应用1. 信号放大和滤波:运算放大器广泛应用于信号放大和滤波电路中。

通过调节放大器的增益和频率响应,可以实现对信号的放大和滤波功能,使得信号的频率范围和振幅得到控制和优化。

2. 模拟计算:运算放大器也常用于模拟计算电路中。

其高增益和精确性能使其成为模拟电路中一种重要的元器件,例如用于模拟加法、乘法、积分和微分等运算。

3. 电压比较和开关:运算放大器的高增益和灵敏度使其非常适合于电压比较和开关电路的应用。

通过将运算放大器配置为比较器或开关,可以实现对电压信号的比较和控制。

4. 反馈控制系统:运算放大器在反馈控制系统中起着至关重要的作用。

通过引入适当的反馈电路,可以实现对电路稳定性、增益和响应速度的控制。

5. 传感器信号处理:运算放大器还广泛应用于传感器信号处理中。

传感器常常输出微弱的信号,而运算放大器能够对这些信号进行放大和处理,以提高信号的灵敏度和稳定性。

6. 精密测量仪器:运算放大器也被广泛应用于精密测量仪器中。

运放构成运算电路的精度

运放构成运算电路的精度

运放的应用领域
模拟电路
运放是模拟电路中的核心元件,广泛应用于信号 放大、滤波、比较器和振荡器等电路中。
数字电路
在数字电路中,运放常用于信号转换和电平位移 等电路中。
传感器接口
运放也用于传感器接口电路中,用于将传感器的 微弱信号放大并转换为可用的电平。
02
运放的精度指标
开环增益
总结词
开环增益是运放的一个重要参数,它决定了运放放大信号的 能力。
总结词
比较器是运算电路中用于比较两个输入信号的单元,其精度受到运放精度的影响 。
详细描述
比较器的作用是比较两个输入信号的大小关系,输出相应的逻辑值。如果运放的 精度不高,会导致比较结果存在误差,从而影响整个运算电路的性能。因此,在 比较器设计中,也需要选择高精度的运放,以确保比较结果的准确性。
06
温度补偿技术是提高运放精度的重要措施之一,通过补 偿由于温度变化引起的参数漂移,可以减小运放输出误 差。
详细描述
温度补偿技术通常采用热敏电阻等温度敏感元件,实时 监测运放的工作温度,并根据温度变化调整运放的增益 、偏置等参数,以保持电路性能的稳定。
失调电压调整技术
总结词
失调电压调整技术是提高运放精度的关键措施之一, 通过调整运放的失调电压,可以减小运放的输入误差 。
放大器设计
总结词
放大器是运算电路中用于信号放大的单元, 其精度受到运放精度的直接影响。
详细描述
放大器的作用是将输入信号进行放大,以便 后续处理。如果运放的精度不高,会导致放 大后的信号存在误差,从而影响整个运算电 路的性能。因此,在放大器设计中,需要选 择高精度的运放,以确保放大后的信号精度。
比较器设计
未来发展趋势和展望

运算放大器参数详解

运算放大器参数详解

运算放⼤器参数详解运算放⼤器参数详解技术2010-12-19 22:05:36 阅读80 评论0 字号:⼤中⼩订阅运算放⼤器(常简称为“运放”)是具有很⾼放⼤倍数的电路单元。

在实际电路中,通常结合反馈⽹络共同组成某种功能模块。

由于早期应⽤于模拟计算机中,⽤以实现数学运算,故得名“运算放⼤器”,此名称⼀直延续⾄今。

运放是⼀个从功能的⾓度命名的电路单元,可以由分⽴的器件实现,也可以实现在半导体芯⽚当中。

随着半导体技术的发展,如今绝⼤部分的运放是以单⽚的形式存在。

现今运放的种类繁多,⼴泛应⽤于⼏乎所有的⾏业当中。

历史直流放⼤电路在⼯业技术领域中,特别是在⼀些测量仪器和⾃动化控制系统中应⽤⾮常⼴泛。

如在⼀些⾃动控制系统中,⾸先要把被控制的⾮电量(如温度、转速、压⼒、流量、照度等)⽤传感器转换为电信号,再与给定量⽐较,得到⼀个微弱的偏差信号。

因为这个微弱的偏差信号的幅度和功率均不⾜以推动显⽰或者执⾏机构,所以需要把这个偏差信号放⼤到需要的程度,再去推动执⾏机构或送到仪表中去显⽰,从⽽达到⾃动控制和测量的⽬的。

因为被放⼤的信号多数变化⽐较缓慢的直流信号,分析交流信号放⼤的放⼤器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放⼤。

能够有效地放⼤缓慢变化的直流信号的最常⽤的器件是运算放⼤器。

运算放⼤器最早被发明作为模拟信号的运算(实现加减乘除⽐例微分积分等)单元,是模拟电⼦计算机的基本组成部件,由真空电⼦管组成。

⽬前所⽤的运算放⼤器,是把多个晶体管组成的直接耦合的具有⾼放⼤倍数的电路,集成在⼀块微⼩的硅⽚上。

第⼀块集成运放电路是美国仙童(fairchild)公司发明的µA741,在60年代后期⼴泛流⾏。

直到今天µA741仍然是各⼤学电⼦⼯程系中讲解运放原理的典型教材。

原理运放如上图有两个输⼊端a,b和⼀个输出端o.也称为倒向输⼊端(反相输⼊端),⾮倒向输⼊端(同相输⼊端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际⽅向从a 端指向公共端时,输出电压U实际⽅向则⾃公共端指向o端,即两者的⽅向正好相反.当输⼊电压U+加在b端和公共端之间,U与U+两者的实际⽅向相对公共端恰好相同.为了区别起见,a端和b 端分别⽤"-"和"+"号标出,但不要将它们误认为电压参考⽅向的正负极性.电压的正负极性应另外标出或⽤箭头表⽰.反转放⼤器和⾮反转放⼤器如下图:⼀般可将运放简单地视为:具有⼀个信号输出端⼝(Out)和同相、反相两个⾼阻抗输⼊端的⾼增益直接耦合电压放⼤单元,因此可采⽤运放制作同相、反相及差分放⼤器。

各种放大器及它们的特点

各种放大器及它们的特点

各种放大器及它们的特点1.通用型集成运算放大器通用型集成运算放大器是指它的技术参数比较适中,可满足大多数情况下的使用要求。

通用型集成运算放大器又分为Ⅰ型、Ⅱ型和Ⅲ型,其中Ⅰ型属低增益运算放大器,Ⅱ型属中增益运算放大器,Ⅲ型为高增益运算放大器。

Ⅰ型和Ⅱ型基本上是早期的产品,其输入失调电压在2mV左右,开环增益一般大于80dB。

2.高精度集成运算放大器高精度集成运算放大器是指那些失调电压小,温度漂移非常小,以及增益、共模抑制比非常高的运算放大器。

这类运算放大器的噪声也比较小。

其中单片高精度集成运算放大器的失调电压可小到几微伏,温度漂移小到几十微伏每摄氏度。

3.高速型集成运算放大器高速型集成运算放大器的输出电压转换速率很大,有的可达2~3kV/μS。

4.高输入阻抗集成运算放大器高输入阻抗集成运算放大器的输入阻抗十分大,输入电流非常小。

这类运算放大器的输入级往往采用MOS管。

5.低功耗集成运算放大器低功耗集成运算放大器工作时的电流非常小,电源电压也很低,整个运算放大器的功耗仅为几十微瓦。

这类集成运算放大器多用于便携式电子产品中。

6.宽频带集成运算放大器宽频带集成运算放大器的频带很宽,其单位增益带宽可达千兆赫以上,往往用于宽频带放大电路中。

7.高压型集成运算放大器一般集成运算放大器的供电电压在15V以下,而高压型集成运算放大器的供电电压可达数十伏。

8.功率型集成运算放大器功率型集成运算放大器的输出级,可向负载提供比较大的功率输出。

9.光纤放大器光纤放大器不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了衰减对光网络传输速率与距离的限制,更重要的是它开创了1550nm频段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。

运算放大器工作原理、分类及特点介绍

运算放大器工作原理、分类及特点介绍

运算放大器工作原理、分类及特点介绍1.模拟运放的分类及特点模拟运算放大器从诞生至今,已有40多年的历史了。

最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。

在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。

当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。

经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。

这使得初学者选用时不知如何是好。

为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。

1.1.根据制造工艺分类根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。

按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。

标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。

这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。

为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。

标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。

通过变更标准硅工艺,可以设计出通用运放和高速运放。

典型代表是LM324。

在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。

零漂移精密运算放大器参数分析和基本构成

零漂移精密运算放大器参数分析和基本构成

零漂移精密运算放大器参数分析和基本构成零漂移精密运算放大器是专为由于差分电压小而要求高输出精度的应用设计的专用运算放大器。

它们不仅具有低输入失调电压,还具有高共模抑制比(CMRR)、高电源抑制比(PSRR)、高开环增益和在宽温度及时间范围的低漂移(见表1)。

这些特征使其非常适用于诸如低边电流检测和传感器接口、特别是具有非常小的差分信号的应用。

表1. 影响运算放大器准确度和精密度的关键参数。

虽然零漂移运算放大器制造商有时声称这些器件没有混叠效应,但实际上它们可能容易出现混叠,因为这些器件使用采样来最小化输入失调电压。

因此,设计人员应测试其运算放大器电路的混叠效应。

经证实使用频谱或网络分析器的传统方法检测混叠是不够的,因此建议设计人员使用一种测量技术,将输入扫过一个频率范围,并在示波器上观察运算放大器的输出。

本文将这种测试方法应用于不同的运算放大器,以观察不同的零漂移运算放大器在混叠方面的差异。

测试的器件包括安森美半导体和竞争对手的自动调零和斩波稳定类型。

本文首先阐述了输入失调电压对运算放大器性能的影响,以及零漂移、斩波稳定运算放大器与通用运算放大器在性能上的差异。

接下来描述斩波稳定运算放大器的运行,以及当输入信号接近或超过运放偏移校正频率时,这些放大器中发生的采样如何导致混叠。

斩波稳定结构并不是实施零漂移运算放大器的唯一方法,并且将斩波稳定结构与另一种称为自动调零的零漂移结构进行了比较。

在给出了各种运算放大器的混叠测量后,本文解释了奈奎斯特采样(Nyquist sampling)理论如何确定无混叠的允许输入频率范围,以及如何应用简单的低通滤波器来防止混叠。

本文后面的章节阐释了零漂移运算放大器中运放输入失调电压与其他参数如瞬态响应、启动时间、轨对轨运行、低频噪声和输入电流之间的关系。

最后,阐释了SPICE 模型不能解释像混叠这样的零漂移效应。

为何输入失调电压很重要?失调电压是限制能可靠捕获的最小信号的参数之一。

运算放大器的基础知识

运算放大器的基础知识
运算放大器是一种重要的电子器件,具有多种功能和应用。其基本原理是利用反馈网络进行配置,以便对输入信号进行各种“运算”。这些运算包括正/负增益、滤波、非线性传递函数、比较、求和、减法、基准电压缓冲、差分放大、积分、差分等,是模拟设计的基本构建模块。运算放大器具有一些理想特性,如无限差分增益、零共模增益、零偏移电压和零偏置电流等,这使得它在电路设计中具有广泛的应用。在实际应用中,运算放大器通常使用负反馈来调整输出信号,直至输入差值变为0。这种负反馈机制确保了运算放大器的稳定性和精确性。此外,运算放大器还具有高输入阻抗、低偏置电流等特性,能够响应差分模式电压并忽略共模电压。运算放大器的输出具有低源阻抗,这使得它能够有效地驱动后续电路。总的多种“运算”,以及在实际电路设计中使用负反馈来调整输出信号,确保稳定性和精确性。

运算放大器的原理及特性

运算放大器的原理及特性

运算放大器的原理及特性
运算放大器(Operational Amplifier,简称Op Amp)是一种电子器件,通常用于放大电压信号或处理模拟电路中的信号。

它具有高增益、高输入阻抗、低输出阻抗、大共模抑制比和无穷大的带宽等特性,被广泛应用于模拟电路中。

运算放大器的基本原理是利用内部的共尺极放大器和外部的反馈电路,将输入信号放大到所需的幅度,并输出给后续电路。

运算放大器一般由差分输入级、差分放大器、输出级和电源供电电路组成。

运算放大器的主要特性如下:
1. 高增益:运算放大器具有非常高的电压增益,一般在几千到几百万之间。

这样可以放大微弱的信号到可用的幅度。

2. 高输入阻抗:运算放大器的输入端具有非常高的阻抗,使得输入信号源不会受到损耗。

3. 低输出阻抗:运算放大器的输出端具有非常低的输出阻抗,可以给后续电路提供较大的输出电流。

4. 大共模抑制比:共模抑制比是指运算放大器对共模信号的抑制能力。

运算放大器具有较高的共模抑制比,可以有效抑制共模信号的干扰。

5. 无穷大的带宽:运算放大器的带宽足够大,可以处理宽频带的信号。

6. 可调节增益:通过调整反馈电阻,可以调节运算放大器的增益。

运算放大器常常用于放大电压信号、求和运算、积分运算、微分运算等,广泛应用于滤波器、放大器、比较器、多路选择器等电路中。

运算放大器设计总结.概要

运算放大器设计总结.概要

一.运算放大器的基本参数1.开环电压增益A OL不带负反馈的状态下,运算放大器对直流信号的放大倍数。

电压反馈运算放大器采用电压输入/电压输出方式工作,其开环增益为无量纲比,所以不需要单位。

但是,数值较小时,为方便起见,数据手册会以V/mV或V/μV代替V/V表示增益,电压增益也可以dB形式表示,换算关系为dB = 20×logAVOL。

因此,1V/μV的开环增益相当于120 dB,以此类推。

该参数与频率密切相关,随着频率的增加而减小,相位也会发生偏移。

对于反向比例放大电路,只有当AOL>>R+Rf时,Vo=-Rf/RVi才能够成立。

2.单位增益带宽B1(Gain-Bandwidth Product)开环电压增益大于等于1(0dB)时的那个频率范围,以Hz为单位。

它将告诉你将小信号(~±100mV)送入运放并且不失真的最高频率。

在滤波器设计电路中,假定运放滤波器增益为1V/V,则单位增益带宽大于等于滤波器截止频率f cut-off×100。

3.共模抑制比CMRR差分电压放大倍数与共模电压放大倍数之比,CMRR=|Ad/Ac|。

共模输入电压会影响到输入差分对的偏置点。

由于输入电路内部固有的不匹配,偏置点的改变会引起失调电压改变,进而引起输出电压改变。

其实际的计算方法是失调电压变化量比共模电压变化量,一般来说CMRR=ΔVos/ΔVcom,TI及越来越多的公司将其定义为CMRR=ΔVcom/ΔVos。

在datasheet中该参数一般为直流参数,随着频率的增加而降低。

4.输入偏置电流Ibias输入偏置电流被定义为:运放的输入为规定电位时,流入两个输入端的电流平均值。

记为IB。

为了运放能正常的工作,运放都需要一定的偏置电流。

IB=(IN+IP)/2。

当信号源阻抗很高时,就必须关注输入偏流,因为如果运放有很大的输入偏流,就会对信号源构成负载,因而会看到一个比预想要低的信号源输出电压,如果信号源阻抗很高,那么最好使用一个以CMOS或者JFET作为输入级的运放,也可以采用降低信号源输出阻抗的方法,就是使用一个缓冲器,然后用缓冲器来驱动具有很大输入偏流的运放。

运算放大器的主要特性参数

运算放大器的主要特性参数
为使用方便,有些运放预留了外接补偿 电位器的引脚,并规定了电位器的阻值。 例如,运算放大器CF741的“1”、“5” 脚为调零端,使用时外接10kΩ补偿电 位器,电位器两个固定端分别接“1” 和“5”脚,活动端接负电源,如图所 示。在零差模信号输入的情况下调节电 位器的活动端,使运放的输出端电压为 零,即可实现对于失调电压和电流的补 偿。
输入失调电流定义: Ii0 IB IB
运算放大器的主要特性参数 1.1 静态特性参数-2、输入失调电流Ii0 输入失调电流Ii0如何影响输出? 失调电流会对输出电压产生怎么样的影响?为什么已经调好 补偿的电路中加入500kΩ的电阻后失调电流的作用就变得很 明显,电路输出又不等于零?
加入500kΩ的电阻后输出又明显 偏离零点,运放进入非线性区。
运算放大器的主要特性参数
1.1 静态特性参数-4、输入失调电压温漂dUi0/dT及输入失 调电流dIi0/dT
第四个影响运放静态输出电压的特性指标是失调电压温漂和 失调电流温漂。 单位温度变化引起的失调电压、失调电流变化即称为失调电 压温漂和失调电流温漂。前面讨论失调电压、失调电流补偿 时都曾提到过在温度基本不变或温度变化所引起的失调电压、 失调电流变化不大的情况下对运放进行补偿才有意义。 如果温度变化引起的失调电压、失调电流的变化较大,原来 在某个温度下已经实现了补偿,已使运放工作于线性区域, 温度变化引起的失调电压、失调电流的变化可能又使运放进 入非线性区,原来的补偿就无效了。 不同的运放,输入失调电压温漂dUi0/dT、输入失调电流温漂 dIi0/dT可以有较大的差异。
Ui Ui VBE1 VBE2 制造工艺的不对称是主要原因!
运算放大器的主要特性参数
1.1 静态特性参数-1、输入失调电压Ui0 失调电压的补偿

电路中的运算放大器设计与运算放大器技术

电路中的运算放大器设计与运算放大器技术

电路中的运算放大器设计与运算放大器技术电路中的运算放大器是一种应用广泛的电子设备,能够将输入信号放大并输出。

运算放大器的设计和技术在现代电子领域中起到了至关重要的作用。

在本文中,我们将探讨电路中的运算放大器设计及其技术细节。

首先,让我们来了解一下运算放大器的基本原理。

运算放大器是一种差模放大器,具有高增益、高输入阻抗和低输出阻抗的特点。

它由多个晶体管和电阻器组成,能够将微弱的输入信号放大到较高的幅度。

运算放大器通常有一个非反相输入端和一个反相输入端,以及一个输出端。

在运算放大器的设计中,有几个关键的技术要点需要考虑。

首先是电源电压的选取。

电源电压的选择需要根据具体的应用场景和性能要求来确定。

较高的电源电压能够提供更高的增益,但也会增加功耗和散热的困难。

因此,在设计过程中需要综合考虑功耗、散热和性能之间的平衡。

其次,输入和输出电阻的匹配也是一个重要的设计考虑因素。

输入电阻越大,可以在电路中引入更小的干扰,从而提高信号的纯净度。

而输出电阻越小,可以更好地驱动后级负载,减小信号失真。

因此,设计中需要采用合适的电阻器来实现输入和输出电阻的匹配。

还有一个重要的设计技术是运算放大器的频率响应。

在实际应用中,运算放大器需要能够处理不同频率范围内的信号。

频率响应的设计包括选择合适的电容和电感来滤除高频和低频的干扰。

同时,设备还需要具备高增益的特性,以保证信号放大的一致性。

另外,运算放大器的负反馈技术也是电路设计中的重要一环。

通过负反馈技术,可以有效地控制放大器的增益和输出功率,提高电路的稳定性,并且减少非线性失真。

负反馈技术的运用需要合理选择反馈电阻和电容,以及设计合适的反馈网络。

除了以上几个关键技术点,电路中的运算放大器设计还需要考虑功耗、温度特性、尺寸和成本等方面的因素。

功耗的控制可以通过合理布局和选取低功耗元件来实现。

温度特性的设计需要选择合适的元件以保证仪器在不同温度下的可靠性。

对于尺寸和成本的考虑,需要根据实际需求选择合适的封装和材料。

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作(一) 运算放大器 1.原理运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反响电路时,可以灵敏地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

运算放大器一般由4个局部组成,偏置电路,输入级,中间级,输出级。

图1运算放大器的特性曲线 图2运算放大器输入输出端图示图1是运算放大器的特性曲线,一般用到的只是曲线中的线性局部。

如图2所示。

U -对应的端子为“-〞,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。

U +对应的端子为“+〞,当输入U +单独由该端参加时,输出电压与U +同相,故称它为同相输入端。

输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益〔开环电压放大倍数〕。

在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。

2.理想运放在线性应用时的两个重要特性输出电压U O 与输入电压之间满足关系式:U O =A ud 〔U +-U -〕,由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。

即U +≈U -,称为“虚短〞。

由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断〞,这说明运放对其前级汲取电流极小。

上述两个特性是分析理想运放应用电路的根本原那么,可简化运放电路的计算。

3. 运算放大器的应用 (1)比例电路所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。

(a) 反向比例电路反向比例电路如图3所示,输入信号参加反相输入端:图3反向比例电路电路图对于理想运放,该电路的输出电压与输入电压之间的关系为:为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ’=R 1 // R F 。

低噪声、精密运算放大器 CBM27 数据手册说明书

低噪声、精密运算放大器 CBM27 数据手册说明书

CBM27数据手册专芯发展 • 用芯服务 • 创芯未来www. corebai. com● 宽压供电范围: 8V (±4V)~36V (±18V) ● 低噪声:90 nV p-p (0.1 Hz 至10 Hz ) ● 高速:2.8 V/µs 压摆率、8 MHz 增益带宽 ● 共模抑制比(CMRR):130 dB (VCM = ±11 V) ● 高开环增益:1,800,000● CBM27A 和 CBM27G 其他产品特点 ● 最大噪声谱密度CBM27A . . . 3.9 nV/√Hz @ 1 kHz Max CBM27G . . . 5.0 nV/√Hz @ 1 kHz Max ● 低输入失调电压CBM27A . . . 26 μV Max CBM27G . . . 100 μV Max ● 低输入失调电压漂移CBM27A . . . 0.2 μV/°C CBM27G . . . 0.4 μV/°C● 电力采集应用系统● 高精密数据采集系统 ● 自动化测试设备(ATE )● 音频前置放大器 ● 仪器仪表CBM27提供低电平信号出色的低噪声和高精度放大性能。

产品广泛应用于稳定的积分器、精密求和放大器、精密电压阈值检测器、比较器和专业音频电路,如磁头和麦克风前置放大器。

失调电压低至26 μV ,漂移为0.2 μV/°C ,因而该器件是精密仪器仪表应用的理想之选。

极低噪声(10 Hz 时en=3.5nV/√Hz ), 低1/f 噪声转折频率(2.7Hz)以及高增益(1800V/mV),能够使低电平信号得到精确的高增益放大。

8 MHz 增益带宽积和2.8 V/µs 压摆率则可以在高速数据采集系统中实现出色的动态精度。

利用偏置电流消除电路,CBM27可实现±10nA 的低输入偏置电流。

输出级具有良好的负载驱动能力。

运算放大器电路原理和特性

运算放大器电路原理和特性

运算放大器电路原理和特性集成运算放大器简称运算放大器,是由多级直接耦合放大电路组成的高增益模拟集成电路。

与分离元件构成的电路相比,运算放大器具有稳定性好、电路计算容易、成本低等优点,因此得到广泛应用。

其可完成信号放大、信号运算、信号处理、波形变换等功能。

按性能可分为通用型、高阻型、高速型、低温漂型、低功耗、高压大功率型等多种产品。

1、最基本的运算放大器电路典型的运算放大器是反相放大器,如图1所示。

输入信号Vi是由“-”号端加入的,其输出电压V0和输入电压反相,电压增益为:G=V0÷Vi=R2÷R1,故输出电压为:V0=-(R2÷R1)×Vi同相放大器,如图2所示。

输入信号Vi是由“-”号端加入的,其输出电压V0和输入电压同相,电压增益为:G=V0÷Vi=1+(R2÷R1),故其输出电压为:V0=[1-(R2÷R1)]×Vi。

所谓“同相”和“反相”是指输入信号的极性相对于由它引起的输出信号的极性而言的。

图1 反相放大器电路原理图图2 同相放大器电路原理图2、运算放大器的特性充分认识和理解运算放大器的特性,昌晖仪表认为对学习和应用运算放大器以及仪表维修工作将是很有帮助的。

现简述如下:①运算放大器两个输入端之间的电压总为零,这是运算放大器最重要的特性。

由于两个输入端之间的“虚短路”以及“输入阻抗非常大”,意味着运算放大器不需要输入电流,也可认为运算放大器的输入电流等于零。

②运算放大器的同相端电位等于反相端电位,即运算放大器工作正常时,两输入端有相同的直流电位。

前提是输出电压在直流电源的正电压和负电压之间,且输出电流小于运算放大器额定输出电流时。

③运算放大器的电压增益等于无限大,即可用很小的输入电压获得非常大的输出电压。

运算放大器通电后,只需在输入端两端加上毫伏级的电位,就可以很容易地使输出进入正的或负的饱和状态。

④运算放大器的输出阻抗Z=O,即在电路设计和电源所允许的范围内,可以从运算放大器输出端拉出电流,且在输出端不会出现明显的电压降。

运算放大器通俗讲解

运算放大器通俗讲解

运算放大器通俗讲解1什么是运算放大器运算放大器(Operational Amplifier,简称Op Amp)是一种集成电路,它的功能是放大电压差异。

在电路中,运算放大器的两个输入端口通常被标记为正号和负号。

正输入端(+)接收输入信号,负输入端(-)接收参考信号。

Op Amp放大输入信号并输出到负载电阻或下一级电路中。

2运算放大器的特点运算放大器有很多特点,比如高增益、低失真、高输入阻抗、低输出阻抗等等。

以下是几个重要的特点:2.1高增益Op Amp的增益很高,达到几万以上,而且增益稳定性很好。

因此,在电路中它通常用来放大微弱的信号。

2.2高输入阻抗Op Amp的输入阻抗很高,因此对输入信号的影响很小。

这对于需要输入高阻抗信号的电路来说非常有用。

2.3低输出阻抗Op Amp的输出阻抗很低,因此它可以驱动负载电阻或下一级电路而不会影响输出信号的质量。

3运算放大器的应用运算放大器有很多常见的应用,例如:3.1比较器将运算放大器的负输入端接地,正输入端接收信号。

当正输入端的电压高于负输入端时,Op Amp的输出电平变成高电平。

反之,输出电平变成低电平。

3.2滤波器将运算放大器连接到RC电路上,可以制作出滤波器。

滤波器可以用来去除电路中的噪声和杂波,使信号更加干净。

3.3放大器将运算放大器的负输入端接地,正输入端接收信号,并在输出端接上一个负载电阻,就形成了一个放大器。

放大器可以将微弱的信号放大到足够的程度。

4总结运算放大器是一种功能强大的电子元器件,具有高增益、低失真、高输入阻抗、低输出阻抗等特点。

它广泛应用于比较器、滤波器、放大器等电路中,并在电子电路设计中扮演着重要的角色。

理想运算放大器

理想运算放大器

理想运算放大器可以构成比较器,用于对 两个输入信号进行比较,输出相应的逻辑 电平。
当前存在问题和挑战
非线性失真
实际运算放大器由于存在非 线性元件,如晶体管和二极 管等,会导致输出信号产生 失真。
噪声干扰
频率响应限制
功耗问题
实际运算放大器内部存在噪 声源,如热噪声和闪烁噪声 等,会对输出信号造成干扰。
电流流入运算放大器的同相输入端。
电压跟随
02
输出电压与同相输入电压成正比,且比例系数为1,实现电压跟
随功能。
相位相同
03
输出电压与同相输入电压的相位相同。
反相输入电路分析
01 02
虚短和虚断
由于运算放大器的开环增益非常高,反相输入电路中的两个输入端可以 近似看作等电位点(虚短),且流入运算放大器的电流几乎为零(虚 断)。
补偿措施及优化方法探讨
频率补偿
通过引入负反馈或采用超前-滞后补 偿网络,改善放大器的频率响应特性, 提高带宽。
输入阻抗提高
采用高输入阻抗的运算放大器或引入 电压跟随器,减小输入阻抗对电路的 影响。
输出阻抗降低
在输出端并联电阻或采用共集电极电 路,降低输出阻抗,提高带负载能力。
失真抑制
选用低失真运算放大器、合理设置静 态工作点、采用负反馈等措施,减小 失真对信号质量的影响。
失真
实际运算放大器存在失真,如 谐波失真、交越失真等。
实际运算放大器与理想差异分析
有限带宽
限制信号放大范围, 可能引发信号失真。
非零输出阻抗
在输出端产生电压 降,影响负载上的 电压幅度。
有限开环增益
导致闭环增益误差, 影响放大精度。
有限输入阻抗
影响电路输入端的 电压分配,降低放 大效果。

vca821放大电路设计

vca821放大电路设计

vca821放大电路设计【原创版】目录1.引言2.VCA821 概述3.放大电路设计流程4.设计要点与参数5.设计验证6.结论正文一、引言随着现代电子技术的飞速发展,放大电路在各个领域中具有广泛的应用,如通信、自动控制、仪器仪表等。

在众多放大器芯片中,VCA821 是一款性能优异、应用广泛的运算放大器。

本文将针对 VCA821 放大电路设计进行探讨,主要内容包括:VCA821 概述、放大电路设计流程、设计要点与参数、设计验证等。

二、VCA821 概述VCA821 是一款由 ADI 公司生产的运算放大器,具有如下特点:1.输入失调电压:±100μV2.输出失调电压:±100μV3.增益带宽积:2MHz4.全功率带宽:1.5MHz5.输入阻抗:1MΩ6.输出阻抗:100Ω7.供电电源:±5V三、放大电路设计流程放大电路设计一般分为以下几个步骤:1.确定放大倍数2.选择运算放大器型号3.确定外部元件参数4.绘制电路原理图5.制作电路板并进行测试四、设计要点与参数1.确定放大倍数:根据实际应用需求,确定所需的放大倍数。

例如,若输入信号幅值为 100mV,输出信号幅值要求为 1V,则放大倍数为 10。

2.选择运算放大器型号:根据放大倍数要求,选择具有足够增益带宽积的运算放大器,如 VCA821。

3.确定外部元件参数:根据运算放大器的输入、输出阻抗以及增益带宽积,确定输入、输出电容、电阻等元件的参数。

五、设计验证1.绘制电路原理图:根据设计要点与参数,绘制出放大电路的原理图。

2.制作电路板:根据电路原理图,制作出放大电路的电路板。

3.测试:将电路板接入±5V 电源,并将输入信号接入电路,观察输出信号是否符合预期。

六、结论本文针对 VCA821 放大电路设计进行了探讨,通过确定放大倍数、选择运算放大器型号、确定外部元件参数等步骤,完成了放大电路的设计。

RS8551RS8552RUNIC润石精密运算放大器

RS8551RS8552RUNIC润石精密运算放大器

RS8551RS8552RUNIC润石精密运算放大器Features Description低失调电压:1uV输入失调漂移:0.005μV/°C高增益带宽乘积:4.5MHz轨到轨输入和输出高增益,CMRR,PSRR:130dB高摆率:2.7V /μs?低噪声:0.75uVp-p(0.01?10Hz)低功耗:640μA/运放过载恢复时间:1us低电源电压:+2.7 V至+5.5 V无需外部电容器扩展温度:-40°C至+ 125°C CMOS运算放大器的RS8551,RS8552,RS8554,RS8553(双重版本和关机)系列使用自动归零技术,以同时提供极低的失调电压(最大值为5μV)和随时间和温度的接近零漂移。

该系列放大器具有超低的噪声,失调和功率。

这种微型,高精度运算放大器可抵消高输入阻抗以及轨至轨输入和轨至轨输出摆幅。

具有4.5MHz的高增益带宽乘积和2.7V /μs的压摆率,可以使用低至+ 2.7V (±1.35V)至高达+ 5.5V(±2.75V)的单电源或双电源。

RS8551 / RS8552 / RS8554 / RS8553(带关闭功能的双版本)指定用于扩展的工业和汽车温度范围(-40°C至125°C)。

RS8551单放大器采用5引脚SOT23、8引脚MSOP8和8引脚SOIC封装;RS8552双放大器则采用8引脚SOIC和8引脚TSSOP窄表面贴装封装;RS8553(双版本关机)随附在Micro-SIZE MSOP-10中。

RS8554 Quad采用14引脚SOIC和14引脚窄型TSSOP封装Applications ?温度传感器医疗/工业仪器?压力传感器电池供电的仪器?主动过滤体重秤传感器应变计放大器电源转换器/逆变器PIN CONFIGURATIONSABSOLUTE MAXIMUM RATINGS (1)Supply Voltage, V+ to V-...............................................7.0VInput Terminals, Voltage (2) …………... – 0.5 to (V+) + 0.5VCurrent (2)…………..……....…..... ±10mAESD SENSITIVITY CAUTIONStorage Temperature ……….……………?65°C to +150°COperating Temperature ……….…………?40°C to +125°CJunction T emperature................................................150°C Package Thermal Resistance @ T A = +25°CSOT23-5, SOT23-6………………….………………200°C/WMSOP-10, SOIC-8 …………………….…………... 150°C/WSOIC-14, TSSOP-14………….……….……………100°C/WLead Temperature (Soldering, 10s) ……………........260°CESD SusceptibilityHBM (5000V)MM (400V)(1) Stresses above these ratings may cause permanent damage. Exposureto absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.(2) Input terminals are diode-clamped to the power-supply rails. Inputsignals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less. ESD损坏的范围可能从轻微的性能下降到完全的设备故障。

运放特性

运放特性

一、集成运放的符号
两个输入端,一个输出端,外加两个对称电源,另有调零端子,相位补偿等附 加端子,应用分析中,不需给出辅助端子及电源端子。 与“-”相对应的输入称反相输入端,输出信号与输入信号相位相反; 与“+”相对应的输入称同相输入端,输出信号与输入信号相位相同。 输入、输出信号以地为参考的。
E
C
Usr Usc / Kod
2、输入偏置电流 (Ib)及失调电流 (IOS )均为零。
因 Ib1 Ib2 0(理想运放两输入端不取用电流)
四、设计示例
1. 反相比例运放电路 虚地的存在是其重要特征
理想运放
Usrd 0 故 UF UT 0 且流入运放的电流 I 0
Rf
I2
U sr
R1
-
I1
UF
Usrd
Kod
U SC
+
UT
I1 Usr R1
I 2 Usr RF
Zf 为反馈阻抗
Z1
因此 Usc W (S) Z f
Usr
Z1
I1 I2
Usr Usc
R1
RF
为外接输入阻抗则
虚地的存在是其重要特征
Usc RF KF Usr R1
四 设计示例
2、同相放大器
Rf
I2
R1
-
I1
理想运算放大器的特征及应用原则
线性集成放大器实际上是一个集成在一块半导体基片上的高增益直流放大器, 简称集成运放。在线性集成放大器上外加线性负反馈网络,可对信号实现加 法、减法、比例、积分、微分、比例积分和比例微分等运算功能。在线性集 成放大器上外加非线性负反馈网络,则可以对信号进行各种函数特性的追近, 实现对数放大及乘除运算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精密运算放大器技术特点及设计要点
精密运算放大器一般指失调电压低于1mV的运放并同时强调失调电压随温度的变化漂移值要小于100?V。对于直流输入信号,VOS和它的温漂足够小就行了,但对于交流输入信号,我们还必须考虑运放的输入电压噪声和输入电流噪声,在很多应用情况下输入电压噪声和输入电流噪声显得更为重要一些。传统的低噪声精密运放用双极(Bipolar)技术来设计,随着现有的很多产品采用电池供电,低功耗设计越来越重要,传统的精密运放在功耗和轨对轨(rail to rail)输出特性已不能满足市场的需要,而且传统的精密运放还有一个致命的缺点就是需要负电源供电,这在很多产品的系统设计中是不能容忍的。因而市场呼唤低功耗、低噪声、高速大带宽、轨对轨输出特性的精密运放,于是CMOS设计技术成为首选,相关高精密运算放大器应运而生。随着DSP处理能力的提高和高速高精度ADC的发展,模拟信号链处理越来越向下述的系统结构靠近,。依靠强大的DSP处理器运算能力,DSP处理器将在数字域对信号进行处理,比如信号的滤波、调制与解调、算法处理等等,以前用硬件实现的功能大量使用软件去代替,这种结构极大地节省了硬件成本,但是它对前级的运放提出了很高的要求。我们知道一个系统输入级的噪声性能往往决定了一个系统的设计成败,若运放噪声性能不好,DSP处理器功能再强大也不行。输入级运算放大器成为这种信号处理结构中的关键点,只有高速、低功耗、低噪声、大带宽、高输入阻抗、轨对轨输出特性的精密运放才能胜任。
圣邦微电子推出的第二种高精密运算放大器是SGM855×系列产品。SGM855×系列产品着眼于模拟信号的精密调整,它具有以下特性:①在 2.7V~5.5V供电范围内,失调电压低于1?V;②低于0.01?V/℃的温度漂移;③具有低于1mA的静态功耗;④PSSR高达130dB; ⑤5.0MHZ增益宽带积;⑥在0HZ到10HZ 频率范围上,电压噪声低于1.6?Vp-p,电流噪声低于。优异的特性使它成为调整传感器小幅输出信号的理想选择。用SGM855×系列产品,可以完成多种多样的设计,比如可以用它来完成一个高性能的仪表放大器设计,此种分立仪表放大器设计方案可以代替昂贵的集成式仪表放大器,系统性价比得到不少提升。
由于其出色的大驱动能力和轨对轨输出特性,SGM8922还可以作为音频偏解码器的输出级,它既是音频编解码器的DAC输出滤波器,也是耳机驱动器。在5V 供电下,它可以达到接近2Vrms的输出特性,用户只用5V的系统电压就可以了,而不必用传统的4558,4558在使用12V电源电压才能达到设计要求,使用SGM8922,用户在电源上可以节省不少成本,使整机性价比得到提高。设计电路。
图1: 模拟信号链处理过程示意图。
新型传感器层出不穷,对大部分传感器而言,其输出信号主要在低频端,而且信号幅度很小,比如应变压力传感器其输出一般在5mV左右,热电偶输出信号幅度在2mV左右,应用中和它们接口的运算放大器必须是精密运放。CMOS技术设计的运算放大器和双极技术相比,具有更大的失调电压和大的低频噪声,为了达到传感器系统设计需要的性能指标,CMOS设计技术需要在电路上进行特别的处理,比如自动调零(AutoZero)技术、相关双采样(CDS)技术、斩波(Chopping)稳零技术等。圣邦微电子在精密运算放大器产品方面首先推出的是SGM8922。该器件具有以下特性:①的的电压噪声;②轨对轨输出;③3V~5.5V的供电范围;④增益带宽积为12.7MHz;⑤压摆率为6.8V/?s;⑥最大0.9mV的VOS;⑦± 100mA的驱动能力,5V供电在100mA负载下,VOH可达4.73V,VOL为0.24V,超强输出驱动能力的特点使SGM8922在很多应用上表现出色。比如它可以作为应变压力传感器的激励源,电路。在此类传感器的恒流激励中,恒流源电流大小为小为,Vref为一个基准源,用户可以用传统的基准源IC即可产生,例如431等。
图4:基于SGM855×系列的分立仪表放大器设计方案。
很多应用设计中需要使用可编程高精密运算放大器(PVGA),在信号链中对放大倍数进行动态调整,一般集成式PVGA价格非常高,而应用圣邦微电子 (SGMICRO)的SGM855×系列高精密运放和模拟开关,用户可以很容易地完现增益的动态改变,从而达到系统可编程设计的目的。
图5: 基于SGM855×系列高精密运放和模拟开关的可编程高精密运放设计。
SGM8922 着眼于大驱动能力,SGM855×着眼于模拟信号的高性能调整,它们两个组成一个很好的搭配,用户可以发挥自己的想象力,根据自己系统设计需要,完成各种各样富有创意的设计。在电路设计和PCB设计上,为了得到更好的系统性能,我们必须注意系统电源的完整性设计和EMI/EMC完整性设计,在和ADC接口设计上,还需加入一个RC滤波器,关于这方面的内容,在此就不多谈了,读者可以参考相关文献资料。在将来随着各种新型传感器的推出,人们对电子设备性能要求越来越高,大量自动化设备投入使用,低失调、低噪声的高精密放大器将会在医疗电子、测量仪表、汽车电子、工业自动化设备等领域大显身手。高精密运算放大器的性能指标将与时俱进,向着更低电压电流噪声更低的失调电压、更低的失调电压温漂、更大带宽、更小功耗、更高电压方向不断创新,产品不断推陈出新,满足客户不断提高的设计需求。
相关文档
最新文档