2014高考广东卷文科数学真题与答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )
A. {}2,0
B. {}3,2
C. {}4,3
D. {}5,3 (2)已知复数z 满足25)43(=-z i ,则=z ( )
A.i 43--
B. i 43+-
C. i 43-
D. i 43+
(3)已知向量)1,3(),2,1(==b a
,则=-a b ( )
A. )1,2(-
B. )1,2(-
C. )0,2(
D. )3,4(
(4)若变量y x ,满足约束条件⎪⎩
⎪
⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )
A. 7
B. 8
C. 10
D. 11 5.下列函数为奇函数的是( )
A.x x 2
12-
B.x x sin 3
C.1cos 2+x
D.x
x 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )
A.50
B.40
C.25
D.20
7.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的( ) A.充分必要条件 B.充分非必要条件 C.必要非充分条件 D.非充分非必要条件
8.若实数k 满足05k <<,则曲线
221165x y k -=-与曲线22
1165
x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等
9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )
A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定 10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题:
①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*;
则真命题的个数是( ) A.1 B.2 C.3 D.4
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11—13题)
11.曲线53x
y e =-+在点()0,2-处的切线方程为________.
12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.
13.等比数列{}n a 的各项均为正数,且154a a =,则
2122232425log +log +log +log +log =a a a a a ________.
(二)选做题(14-15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________
15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则
______=∆∆的周长
的周长
AEF CDF
三.解答题:本大题共6小题,满分80分 16.(本小题满分12分) 已知函数()sin(),3
f x A x x R π
=+∈,且532
(
)122
f π=
(1) 求A 的值;
(2) 若()()3,(0,
)2
f f π
θθθ--=∈,求(
)6
f π
θ-
17(本小题满分13分)
某车间20名工人年龄数据如下表: 年龄(岁) 工人数(人)
19 1 28 3 29 3 30 5 31 4 32 3 40 1 合计 20
(1) 求这20名工人年龄的众数与极差;
(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3) 求这20名工人年龄的方差.
18(本小题满分13分)
如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF. (1) 证明:CF ⊥平面MDF
(2) 求三棱锥M-CDE 的体积.
19.(本小题满分14分)
设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足
()()
*∈=+--+-N n n n S n n S n n ,033222. (1)求1a 的值;
(2)求数列{}n a 的通项公式;
(3)证明:对一切正整数n ,有()()().3
1
1111112211<+++++n n a a a a a a
20(本小题满分14分)
已知椭圆()01:22
22>>=+b a b
y a x C 的一个焦点为
(
)
0,5,离心率为
3
5
。 (1)求椭圆C 的标准方程;
(2)若动点()00,y x P 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.
21.(本小题满分14分)
已知函数3
21()1()3
f x x x ax a R =
+++∈ (1) 求函数()f x 的单调区间;
(2) 当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()()2
f x f =
参考答案
选择题
1-5BDBCA 6-10 CADDB 填空题