铁磁材料动态磁滞回线的观测和研究的实验报告
动态磁滞回线实验报告
一、实验目的1. 理解铁磁材料的磁滞现象及其在工程中的应用。
2. 学习使用示波器观察和测量动态磁滞回线。
3. 掌握磁滞回线中关键参数(如饱和磁感应强度、矫顽力、剩磁等)的测量方法。
4. 分析磁滞回线形状与材料特性之间的关系。
二、实验原理铁磁材料在外加磁场的作用下,其磁化强度B与磁场强度H之间的关系并非线性,而是呈现非线性关系。
当磁场强度H增加到一定值时,B几乎不再随H的增加而增加,此时的B值称为饱和磁感应强度(Bs)。
当外磁场去除后,铁磁材料仍保留一定的磁性,此时的B值称为剩磁(Br)。
矫顽力(Hc)是指使剩磁为零所需的反向磁场强度。
动态磁滞回线是指铁磁材料在交变磁场作用下,磁化强度B与磁场强度H之间的关系曲线。
通过测量动态磁滞回线,可以获得铁磁材料的磁性能参数,如饱和磁感应强度、矫顽力、剩磁等。
三、实验仪器1. 示波器2. 交流电源3. 铁磁材料样品4. 磁场发生器5. 测量装置四、实验步骤1. 将铁磁材料样品固定在磁场发生器上。
2. 接通电源,调节磁场发生器输出交变磁场。
3. 将示波器的X轴输入端连接到磁场发生器的输出端,Y轴输入端连接到测量装置的输出端。
4. 观察示波器屏幕上的动态磁滞回线,记录关键参数(如饱和磁感应强度、矫顽力、剩磁等)。
5. 改变磁场发生器的输出频率,重复上述步骤,观察磁滞回线形状的变化。
五、实验结果与分析1. 通过实验,我们观察到铁磁材料的动态磁滞回线呈现非线性关系,且存在饱和磁感应强度、矫顽力、剩磁等关键参数。
2. 随着磁场发生器输出频率的增加,磁滞回线形状发生变化,饱和磁感应强度和矫顽力降低,剩磁增加。
3. 分析磁滞回线形状与材料特性之间的关系,发现磁滞回线形状与材料的磁导率、矫顽力、剩磁等参数有关。
六、实验结论1. 动态磁滞回线实验可以有效地测量铁磁材料的磁性能参数,为工程应用提供重要依据。
2. 磁滞回线形状与材料特性密切相关,通过分析磁滞回线可以了解材料的磁性能。
铁磁材料的磁滞回线和基本磁化曲线实验报告
铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,加深对铁磁材料磁滞回线和基本磁化曲线概念的理解。
2、学会使用示波器观察并测绘铁磁材料的磁滞回线和基本磁化曲线。
3、测定样品的一些基本磁化参数,如饱和磁感应强度 Bs、剩磁感应强度 Br、矫顽力 Hc 等。
二、实验原理1、铁磁材料的磁化特性铁磁物质具有很强的磁化能力,其磁导率远大于非铁磁物质。
铁磁材料的磁化过程是不可逆的,存在磁滞现象。
2、磁滞回线当磁场强度 H 从零开始逐渐增加时,磁感应强度 B 随之增加。
当H 增大到一定值时,B 不再增加,达到饱和值 Bs。
随后逐渐减小 H,B 并不沿原曲线减小,而是滞后于 H 的变化。
当 H 减小到零时,B 不为零,而是保留一定的值 Br,称为剩磁感应强度。
要使 B 减为零,必须加反向磁场,当反向磁场达到一定值 Hc 时,B 才为零,Hc 称为矫顽力。
继续增大反向磁场,B 达到反向饱和值Bs,再逐渐增大正向磁场,B 又沿原来的曲线变化,形成一个闭合的曲线,称为磁滞回线。
3、基本磁化曲线将一系列不同幅值的正弦交变磁场依次作用于铁磁材料样品,可得到一系列大小不同的磁滞回线。
连接各磁滞回线顶点的曲线称为基本磁化曲线。
三、实验仪器示波器、实验变压器、电阻箱、标准互感器、待测铁磁材料环形样品等。
四、实验步骤1、按实验电路图连接好线路,检查无误后接通电源。
2、调节示波器,使其能清晰显示磁滞回线。
3、逐渐增大交流电压,使磁场强度 H 逐渐增加,观察示波器上磁滞回线的变化,直至达到饱和。
4、逐点记录磁滞回线顶点的坐标(H,B)。
5、减小交流电压,重复上述步骤,测量多组数据。
6、根据测量数据绘制磁滞回线和基本磁化曲线。
五、实验数据记录与处理1、实验数据记录表|交流电压(V)|磁场强度 H(A/m)|磁感应强度 B(T)|||||||||2、根据实验数据,在坐标纸上绘制磁滞回线。
3、连接磁滞回线的顶点,得到基本磁化曲线。
铁磁材料的磁滞回线实验报告
铁磁材料的磁滞回线实验报告磁滞回线是描述铁磁材料磁化特性的重要参数之一,它反映了材料在外加磁场作用下磁化状态的变化规律。
本实验旨在通过测量铁磁材料在不同外加磁场下的磁感应强度,绘制出相应的磁滞回线曲线,从而研究铁磁材料的磁化特性。
实验仪器与材料:1. 信号发生器。
2. 交流电桥。
3. 励磁线圈。
4. 磁滞回线测试线圈。
5. 铁磁材料样品。
6. 示波器。
7. 直流电源。
8. 万用表。
实验步骤:1. 将交流电桥接通,调节信号发生器输出频率和幅度,使得电桥平衡。
2. 通过励磁线圈对铁磁材料进行励磁,同时接通示波器,观察磁感应强度随时间的变化曲线。
3. 逐渐增大励磁电流,记录不同外加磁场下的磁感应强度值。
4. 根据实验数据,绘制铁磁材料的磁滞回线曲线。
实验结果与分析:通过实验测得的数据,我们成功绘制出了铁磁材料的磁滞回线曲线。
从曲线图中可以看出,在外加磁场逐渐增大时,铁磁材料的磁感应强度也随之增大,但在去除外加磁场后,并不完全回到初始磁化状态,出现了磁感应强度残留的现象,这就是磁滞回线的特征之一。
通过对磁滞回线曲线的分析,我们可以得出铁磁材料的磁滞回线是一个闭合的环形曲线,表征了铁磁材料在周期性外加磁场作用下的磁化-去磁化过程。
磁滞回线的面积大小反映了铁磁材料的磁滞损耗,面积越大表示磁滞损耗越大,材料的磁化特性越差。
结论:本实验通过测量铁磁材料的磁滞回线,成功揭示了铁磁材料在外加磁场作用下的磁化特性。
磁滞回线曲线的绘制和分析为我们深入了解铁磁材料的磁化特性提供了重要的实验数据,对于材料的磁性能评价具有一定的参考价值。
综上所述,本实验取得了预期的实验结果,成功实现了铁磁材料的磁滞回线实验,并对实验结果进行了详细的分析和总结,为进一步研究铁磁材料的磁化特性奠定了基础。
磁滞回线实验报告精选全文完整版
〖实验三十〗用示波器观测动态磁滞回线〖目的要求〗1、学习使用示波器对动态磁滞回线进行观察和测量,了解磁感应强度和磁场强度的测量方法;2、学习应用RC 积分电路;3、了解铁磁性材料的动态磁化特性。
〖仪器用具〗动态磁滞回线测量仪(包括正弦波信号源、待测铁磁样品及绕组、积分电路所用的电阻和电容),双踪读出示波器,直流电源,数字多用表,滑线变阻器。
〖实验原理〗1、铁磁材料的磁化特性把物体放在外磁场H 中,物体就会被磁化,其内部产生磁场。
设其内部磁化强度为M ,磁感应强度为B ,可以定义磁化率m χ和相对磁导率r μ表征物质被磁化的难易程度:0m r M H B Hχμμ==物质的磁性按磁化率m χ可以分为抗磁性、顺磁性和铁磁性三种。
抗磁性物质的磁化率为负值,通常在5610~10--的量级,且几乎不随温度变化;顺磁性物质的磁化率通常为2410~10--之间,且随温度线性增大;而铁磁性物质的磁化率通常远大于1,且随温度增高而变小。
除了磁导率高以外,铁磁材料还具有特殊的磁化规律。
对一个处于磁中性状态(H=0且B=0)的铁磁材料加上由小变大的磁场H 进行磁化时,磁感应强度B 随H 的变化曲线称为起始磁化曲线,它大致分为三个阶段:①可逆磁化阶段,当H 很小的时候,B 随H 变化可逆,见图中OA 段,若减小H ,B 会沿AO返回至原点;②不可逆磁化阶段,见图中AS 段,若减小H ,B 不会沿SA 返回(比如当磁场从D 点的D H 减小到D H H -∆,再从D H H -∆增大到D H ,B-H 轨迹会是图中点线所示的回线样式);③饱和磁化阶段,见图中SC 段,在S 点材料已经被磁化至饱和状态,继续增大H ,磁化强度M 不再增大,由于0(M H)βμ=+,B 会随H 线性增大,但增量极小。
图中S H 和S B 表示M 刚刚达到饱和值时的H 和B 的值,分别称为饱和磁场强度和饱和磁感应强度。
如果将铁磁材料磁化到饱和状态(图中S 点)后再减小磁场H ,那么磁感应强度B 会随H 减小而减小,但并不沿起始磁化曲线SAO 减小,而会沿着SP 这条更缓慢的曲线减小。
磁滞回线实验报告
一、实验目的1. 理解磁滞回线的概念和特性;2. 掌握磁滞回线的测量方法;3. 分析磁滞回线与材料性能之间的关系。
二、实验原理磁滞回线是铁磁材料在外加磁场作用下,磁化强度(磁感应强度B)随磁场强度(磁场强度H)变化的关系曲线。
在磁滞回线中,磁化强度和磁场强度之间存在滞后现象,即当磁场强度减小到零时,磁化强度并不立即为零,而是保持一定的数值,这种现象称为磁滞。
磁滞回线的形状反映了铁磁材料的磁滞特性,主要包括以下参数:1. 矫顽力(Hc):磁化强度为零时,所需的反向磁场强度;2. 饱和磁感应强度(Bs):磁场强度达到饱和时,磁化强度达到的最大值;3. 剩磁(Br):磁场强度为零时,磁化强度所保持的值。
三、实验仪器与材料1. 磁滞回线测量仪;2. 待测铁磁材料;3. 示波器;4. 磁场发生器;5. 信号发生器;6. 测量磁感应强度和磁场强度的传感器。
四、实验步骤1. 将待测铁磁材料放置在磁滞回线测量仪中,调整磁场发生器,使磁场强度逐渐增加;2. 使用信号发生器产生一定频率的交流信号,输入到磁滞回线测量仪中;3. 示波器显示磁滞回线图形,记录不同磁场强度下的磁化强度值;4. 根据实验数据,绘制磁滞回线曲线;5. 分析磁滞回线与材料性能之间的关系。
五、实验结果与分析1. 磁滞回线图形:根据实验数据,绘制磁滞回线曲线,如图1所示。
图1 磁滞回线曲线2. 磁滞回线参数:根据磁滞回线曲线,测量矫顽力(Hc)、饱和磁感应强度(Bs)和剩磁(Br)等参数。
3. 分析:(1)矫顽力(Hc):矫顽力是磁滞回线中的最大磁场强度,反映了材料抵抗磁化退磁的能力。
矫顽力越大,材料越难退磁,即磁滞特性越好。
(2)饱和磁感应强度(Bs):饱和磁感应强度是磁化强度达到的最大值,反映了材料的磁导率。
饱和磁感应强度越大,材料的磁导率越高。
(3)剩磁(Br):剩磁是磁场强度为零时,磁化强度所保持的值,反映了材料的剩磁特性。
剩磁越大,材料的剩磁特性越好。
铁磁材料的磁滞回线实验报告
铁磁材料的磁滞回线实验报告铁磁材料是一类在外加磁场下具有明显磁性的材料,其磁性能对于电磁设备和磁性传感器等领域具有重要的应用价值。
本实验旨在通过对铁磁材料的磁滞回线进行测量和分析,探究其在外磁场作用下磁化特性的变化规律。
1. 实验目的。
本实验旨在通过测量铁磁材料在外磁场作用下的磁化特性,绘制磁滞回线图,并分析其磁滞损耗和矫顽力等参数,从而深入了解铁磁材料的磁性能。
2. 实验原理。
铁磁材料在外磁场作用下会发生磁化过程,当外磁场强度逐渐增大时,材料内部的磁化强度也会随之增大,直至达到饱和状态;而当外磁场强度逐渐减小时,材料的磁化强度也会随之减小,直至回到初始状态。
这一过程形成的磁化特性曲线即为磁滞回线。
3. 实验步骤。
(1)准备铁磁材料样品和磁化装置;(2)将样品置于磁化装置中,并接通电源,施加不同大小的外磁场;(3)通过磁感应计或霍尔元件等磁场测量设备,测量不同外磁场下的磁感应强度,并记录数据;(4)根据记录的数据,绘制铁磁材料的磁滞回线图。
4. 实验结果与分析。
通过实验测量和数据处理,我们得到了铁磁材料的磁滞回线图。
从图中可以明显看出,在外磁场逐渐增大时,磁感应强度也随之增大,直至达到饱和状态;而在外磁场逐渐减小时,磁感应强度也随之减小,直至回到初始状态。
这一过程呈现出明显的磁滞特性,磁滞损耗和矫顽力等参数也可以通过磁滞回线图进行计算和分析。
5. 实验结论。
通过本次实验,我们深入了解了铁磁材料的磁滞特性,掌握了磁滞回线图的绘制和分析方法,对铁磁材料的磁性能有了更深入的认识。
这对于进一步研究和应用铁磁材料具有重要的意义。
6. 实验总结。
本次实验通过对铁磁材料的磁滞回线进行测量和分析,深入了解了其在外磁场作用下的磁化特性。
同时,我们也发现了一些实验中存在的问题和不足之处,为今后的实验和研究工作提供了一定的参考和借鉴。
通过本次实验,我们对铁磁材料的磁滞回线有了更深入的了解,这对于相关领域的研究和应用具有一定的指导意义。
动态磁滞回线的测量实验报告
动态磁滞回线的测量实验报告实验目的:测量动态磁滞回线实验器材:1. 变压器2. 电流表3. 电压表4. 磁场计5. 电源6. 载流线圈7. 铁芯实验原理:当铁芯中通过交变电流时,会在铁芯中形成一个交变磁场。
磁场的大小和方向会随着电流的变化而发生变化,从而导致铁芯中的磁化程度发生变化。
磁化程度的变化也会在铁芯上产生一个磁场。
实验步骤:1. 将变压器连接到电源上,并保证电源的稳定。
2. 将电流表和电压表分别连接到变压器的输出端,测量电流和电压的数值。
3. 将磁场计连接到铁芯上的一个侧面,并将另一侧面放置在载流线圈中。
4. 开始测量,通过调整电流的大小和方向来改变铁芯中的电流磁场。
5. 同时通过磁场计来测量铁芯中的磁场的变化情况。
实验结果:根据测量所得的数据,绘制出动态磁滞回线的曲线。
根据曲线可以分析出铁芯的磁滞性能。
实验讨论及结论:根据实验结果,我们可以分析铁芯的磁滞性能。
磁滞回线的形状和大小可以反映出铁芯中的磁化程度和磁化的稳定性。
通过分析磁滞回线,可以得出铁芯的磁导率、矫顽力等参数。
实验的不确定性:由于实验中存在测量误差,可能导致实验结果与实际情况存在一定的差异。
为了减小测量误差,可以多次进行实验并取平均值,或者采用更精确的测量设备。
改进措施:在实验中,可以尝试使用更精确的设备,如数字电流表、数字电压表和高精度磁场计,以提高测量的精确度。
实验的应用:动态磁滞回线的测量可以应用于磁性材料的性能评估、电力设备的设计以及电磁场的模拟等领域。
实验的总结:通过本次实验,我们成功地测量了动态磁滞回线,并对铁芯的磁滞性能进行了分析。
实验结果对于磁性材料的研究和应用具有重要的意义。
同时,在实验过程中我们也发现了一些可以改进的地方,以提高测量结果的精确度。
整个实验过程进行顺利,实验目标得到了实现。
动态法测量磁滞回线和磁化曲线实验报告
动态法测量磁滞回线和磁化曲线实验报告动态法测量磁滞回线和磁化曲线实验报告一、引言磁滞回线和磁化曲线是研究磁性材料磁化性质的重要工具。
磁滞回线描述了材料在外加磁场作用下磁化程度的变化规律,而磁化曲线则反映了材料的磁化特性。
本实验通过动态法测量磁滞回线和磁化曲线,旨在深入了解磁性材料的磁化行为,并通过分析实验数据得出相关结论。
二、实验原理1. 磁滞回线磁滞回线是描述材料在外加磁场逐渐增加和减小过程中磁化程度的变化情况。
在实验中,我们需要使用霍尔效应磁强计来测量磁场强度,从而可以得到材料的磁滞回线。
2. 磁化曲线磁化曲线是描述材料在外加磁场作用下磁化程度随磁场变化的曲线。
在实验中,我们需要使用霍尔效应磁强计和恒流源来测量材料在不同磁场强度下的磁场强度和磁化强度,并绘制出磁化曲线。
三、实验步骤1. 实验准备:a. 准备一块磁性材料样品,并将其放置在实验装置上。
b. 连接霍尔效应磁强计和恒流源到实验装置上,确保测量的准确性和稳定性。
2. 磁滞回线的测量:a. 调整恒流源的电流使得霍尔效应磁强计输出为零。
b. 逐渐增加恒流源的电流,记录同时测量到的磁场强度和霍尔效应磁强计输出的数值。
c. 逐渐减小恒流源的电流,重复步骤b的测量过程。
d. 根据实验数据绘制磁滞回线图。
3. 磁化曲线的测量:a. 调整恒流源的电流使得霍尔效应磁强计输出为零。
b. 逐渐增加恒流源的电流,记录同时测量到的磁场强度和霍尔效应磁强计输出的数值。
c. 根据实验数据绘制磁化曲线图。
四、实验结果与讨论1. 磁滞回线的分析根据所测得的磁滞回线数据,我们可以观察到磁性材料在磁场逐渐增大过程中逐渐磁化,达到饱和磁化强度后,进一步增大磁场也不会有明显增加的效果。
而在磁场逐渐减小过程中,磁性材料的磁化程度也会随之减小,直到完全消除磁化。
磁滞回线的形状对应着材料的磁滞损耗和剩磁等特性。
2. 磁化曲线的分析根据所测得的磁化曲线数据,我们可以观察到磁性材料在不同磁场强度下的磁化程度存在一定的非线性关系。
铁磁材料的磁滞回线实验报告
铁磁材料的磁滞回线实验报告一、实验目的。
本实验旨在通过实验方法测量铁磁材料的磁滞回线,了解铁磁材料的磁滞特性。
二、实验原理。
磁滞回线是指在磁场的作用下,材料磁化强度随着磁场的变化而发生变化,并且在去除磁场后,材料的磁化强度不完全回到零点,形成一个闭合的回线。
铁磁材料的磁滞回线特性是其重要的磁性能指标之一。
三、实验仪器与设备。
1. 电磁铁。
2. 电源。
3. 示波器。
4. 铁磁材料样品。
四、实验步骤。
1. 将铁磁材料样品放置在电磁铁中间位置。
2. 调节电源输出电压,使电磁铁通电,产生磁场。
3. 用示波器测量铁磁材料的磁感应强度随磁场变化的曲线。
4. 逐渐减小电磁铁的电流,观察示波器上的磁滞回线变化。
五、实验数据记录与分析。
根据实验测得的数据,我们绘制了铁磁材料的磁滞回线曲线图。
从曲线图中可以清晰地看出铁磁材料的磁化特性。
在磁场强度增加时,磁感应强度随之增加,但当磁场强度减小时,磁感应强度并不完全回到零点,而是形成一个闭合的回线。
六、实验结论。
通过本次实验,我们深入了解了铁磁材料的磁滞回线特性。
磁滞回线是铁磁材料在磁化过程中产生的一种特殊现象,对于材料的磁性能有着重要的影响。
通过测量和分析磁滞回线,可以更好地了解铁磁材料的磁化特性,为材料的应用提供重要参考。
七、实验注意事项。
1. 在实验中要注意安全,避免触电和磁场对身体造成的影响。
2. 实验过程中要注意仪器的正确使用和操作方法,保证实验数据的准确性和可靠性。
八、参考文献。
1. 《材料物理学实验指导》。
2. 《磁性材料与器件》。
以上为铁磁材料的磁滞回线实验报告。
铁磁材料动态磁滞回线实验
动态磁滞回线实验预习题1、磁性材料的分类?什么是动态磁滞回线?2、硬磁材料的交流磁滞回线与软磁材料的交流磁滞回线有何区别?磁性材料在通讯、计算机和信息存储、电力、电子仪器、交通工具等领域有着十分广泛的应用。
磁化曲线和磁滞回线反映磁性材料在外磁场作用下的磁化特性,根据材料的不同磁特性,可以用于电动机、变压器、电感、电磁铁、永久磁铁、磁记忆元件等。
铁磁材料分为硬磁和软磁两类。
硬磁材料(如模具钢)的磁滞回线宽,剩磁和矫顽磁力较大(120-20000安/米,甚至更高),因而磁化后,它的磁感应强度能保持,适宜制作永久磁铁。
软磁材料(如铁氧体)的磁滞回线窄,矫顽磁力小(一般小于120安/米),但它的磁导率和饱和磁感应强度大,容易磁化和去磁,故常用于制造电机、变压器和电磁铁。
可见,铁磁材料的磁化曲线和磁滞回线是该材料的重要特性,也是设计电磁机构或仪表的依据之一。
动态磁滞回线是磁性材料的交流磁特性,其在工业中有重要应用,因为交流电动机、变压器的铁芯都是在交流状态下使用的。
通过实验研究这些性质不仅能掌握用示波器观察磁滞回线以及基本磁化曲线的测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。
一.实验目的1. 了解磁性材料的磁滞回线和磁化曲线的概念,加深对铁磁材料的重要物理量矫顽力、剩磁和磁导率的理解。
2. 用示波器测量软磁材料(软磁铁氧体)的磁滞回线和基本磁化曲线,求该材料的饱和磁感应强度Bm、剩磁Br和矫顽力Hc。
3. 学习示波器的X轴和Y轴用于测量交流电压时,各自分度值的校准。
4. 用示波器显示硬铁磁材料(模具钢)的交流磁滞回线,并与软磁材料进行比较。
5. 学习精确测量电阻和电容的实验方法,测量不同阻值电阻和未知电容。
6. 学习用计算机测量磁性材料动态磁滞回线和磁化曲线的方法。
(选配计算机接口后完成)二. 实验原理1、铁磁物质的磁滞现象铁磁性物质的磁化过程很复杂,这主要是由于它具有磁性的原因。
一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间关系来研究其磁化规律的。
铁磁材料的磁滞回线实验报告
铁磁材料的磁滞回线实验报告铁磁材料的磁滞回线实验报告引言铁磁材料是一类具有磁性的材料,其在外加磁场下会表现出磁化的特性。
磁滞回线实验是研究铁磁材料磁化行为的重要实验方法之一。
本实验旨在通过测量铁磁材料在不同外加磁场下的磁化强度,绘制磁滞回线曲线,并分析其中的物理规律。
实验步骤1. 实验仪器准备:准备好铁磁材料样品、电磁铁、磁场强度计等实验仪器。
2. 样品准备:将铁磁材料样品切割成适当大小,并清洗干净,以确保测量结果准确。
3. 实验装置搭建:将电磁铁与磁场强度计固定在实验台上,保证电磁铁与磁场强度计之间的距离合适。
4. 实验参数设置:设置电磁铁的电流大小,即外加磁场的强度,记录下每次改变电流的数值。
5. 实验数据测量:在每个电流值下,使用磁场强度计测量样品的磁场强度,并记录下来。
6. 数据处理与分析:根据实验数据,绘制磁滞回线曲线,并进行进一步的分析。
实验结果与讨论根据实验所得数据,我们绘制了铁磁材料的磁滞回线曲线。
磁滞回线曲线是描述铁磁材料在外加磁场作用下磁化行为的重要指标。
磁滞回线曲线呈现出一定的特征。
首先,在磁滞回线的起始点,也就是零磁场时,材料的磁化强度为零。
随着外加磁场的增加,材料的磁化强度逐渐增加,直到达到饱和磁化强度。
此时,外加磁场再增加,材料的磁化强度不再增加,保持在饱和磁化强度的数值。
当外加磁场减小时,材料的磁化强度也会相应减小,但并不会降为零,而是保持一个残余磁化强度。
当外加磁场减小到一定程度时,材料的磁化强度会迅速减小到零,形成一个闭合的磁滞回线。
磁滞回线的形状与铁磁材料的性质密切相关。
不同的铁磁材料具有不同的磁滞回线形状,这与材料的晶体结构、磁畴结构等有关。
通过对磁滞回线的分析,可以了解铁磁材料的磁化特性以及其在实际应用中的潜在问题。
实验中还可以通过改变外加磁场的强度来观察磁滞回线的变化。
当外加磁场强度增加时,磁滞回线的面积也会增大,这表明材料的磁化能力增强。
而当外加磁场强度减小时,磁滞回线的面积也会减小,这表明材料的磁化能力减弱。
动态磁滞回线的测量实验报告(一)
动态磁滞回线的测量实验报告(一)动态磁滞回线的测量实验报告实验概述•实验目的:测量物质的动态磁滞回线,并分析其磁滞特性。
•实验设备:磁滞计,电磁铁,示波器等。
•实验步骤:–步骤一:连接电磁铁和示波器,并设置示波器的测量范围和采样率。
–步骤二:调节电磁铁的电流,使其从零开始逐渐增加,记录示波器上的磁场变化曲线。
–步骤三:减小电磁铁的电流至零,并逆向增加电流,记录示波器上的磁场变化曲线。
–步骤四:分析记录到的数据,绘制物质的动态磁滞回线图。
实验结果•在示波器上观察到了物质的动态磁滞回线图形。
•磁滞回线图显示了物质在不同磁场强度下的磁化过程,具有磁滞特性。
•通过测量磁滞回线的形状和宽度,可以了解物质的磁化能力和磁滞损耗情况。
实验分析•根据磁滞回线图形的不同,可以判断物质的磁滞性质。
•如果磁滞回线呈现出狭窄而对称的椭圆形,说明物质具有良好的磁滞特性。
•如果磁滞回线呈现出扁平或不对称的形状,则说明物质的磁滞效应较小。
实验总结•动态磁滞回线测量实验是研究物质磁滞特性的重要手段。
•通过测量磁滞回线,可以了解物质的磁化能力和磁滞损耗情况。
•研究物质的磁滞特性对于电磁材料的应用具有重要意义。
参考资料•XXXX,XXXXXXXXX。
•XXXX,XXXXXXXXX。
以上是关于动态磁滞回线测量实验的报告,采用Markdown格式编写,符合相关规则。
对不起,我已经提供了关于动态磁滞回线测量实验的全部报告内容。
在Markdown格式中,使用标题和副标题的形式可以更好地组织文章的结构和内容。
如果您有其他需求或者有其他问题需要解答,请告诉我。
铁磁材料的磁滞回线实验报告
铁磁材料的磁滞回线实验报告1. 引言嘿,大家好!今天我们来聊聊一个听起来挺高大上的话题——铁磁材料的磁滞回线。
别被这名字吓着,其实就是讲讲磁性材料在磁场里是怎么“跳舞”的。
你知道的,就像我们在舞池里随着音乐的节拍摇摆一样,铁磁材料在外加磁场的作用下也有自己的节奏。
那么,什么是磁滞回线呢?简单来说,就是当你给材料施加磁场,然后慢慢撤去,材料的磁性却不立即消失,反而会有点“恋恋不舍”,留下了个回忆。
这种现象就像你和朋友在一起玩耍,最后告别的时候总是舍不得,难免多聊几句。
2. 实验原理2.1 磁滞现象磁滞现象就像是铁磁材料的个性签名,显示了它们与外部磁场之间的关系。
比如说,咱们给它施加一个逐渐增强的磁场,材料的磁性就会跟着提升,直到它达到了“满格”。
但是,当我们慢慢把磁场撤去时,它却不愿意完全放弃那份磁性。
哎呀,这就像是当你终于放下那部电视剧时,脑海中却依然会浮现出剧情和角色一样。
这样一来,就形成了一个闭合的回路,我们叫它“磁滞回线”。
2.2 磁滞回线的意义这个磁滞回线其实是有大智慧的。
它能告诉我们材料的磁性有多强、回到原点需要多长时间,还有它的损耗情况。
就好比在生活中,某些事情的影响总是持续很久,哪怕你努力想要忘记,也难免时不时会被唤醒。
所以,了解这些磁滞回线,对于我们选择合适的铁磁材料来做一些实用的东西,比如变压器、磁铁等,都是相当重要的。
3. 实验步骤3.1 准备工作好啦,话说回来,咱们进入正题——实验步骤。
首先,我们得准备一些设备。
通常需要一个电源、一个电流表、一个磁场发生器,还有一个叫霍尔探头的东西。
嘿,听起来是不是有点复杂?但其实操作起来简单得很,就像做一杯拿铁,准备好材料,按照步骤来就行。
3.2 实验过程实验开始了,我们先将铁磁材料固定在工作台上,接着用线圈围住它,这样就能在材料周围产生磁场。
然后,慢慢调节电源的电流,观察材料的反应。
每当电流增加时,我们用霍尔探头测量材料的磁通量,记录下数据。
用示波器观测铁磁材料的动态磁滞回线(实验报告)
1、如果示波器上显示的磁滞回线是饱和磁滞回线,当调节X、Y电压灵敏度时,磁滞回线形状是否改变?饱和磁感应强度BS、饱和磁场强度HS、矫顽力、磁化曲线数值是否改变?
如图4,设L为环形样品的平均磁路长度,若在线圈N1中通过励磁电流I1时,此电流在样品内产生磁场,磁场强度H的大小根据安培环路定律:
,
即: I1
R1两端电压U1为: U1= I1R1= H (1)
由(1)式可知,若将电压U1输入示波器 X偏转板时,示波器上任一时刻电子束在X轴的偏转正比于磁场强度H。
为了追踪测量样品内的磁感应强度B,在截面面积为S的样品中缠绕副线圈N2,B可通过副线圈N2中由于磁通量变化而产生的感应电动势ε来测定。根据电磁感应定律:
2、显示和观察两种样品的交流信号下的磁滞回线图形(先测量样品1)
1)单调增加磁化电流,即缓慢顺时针调节幅度调节旋钮,使示波器显示的磁化曲线上B值增加缓慢,达到饱和。改变示波器上X、Y轴的灵敏度,调节R1、R2的大小,使示波器显示出典型美观的磁滞回线图形。
2)分别观测频率为25.0Hz、50.0Hz、100.0Hz、150.0Hz,不同频率下的磁滞回线形状(注意:由于铁磁材料的磁化状态与磁化历史有关,磁滞回线又与其起始端点的磁化状态有关。观测每一频率下的磁滞回线前,必须使幅度值降为零。否则,观测无意义)。
即:ε=- )
B=-
为了获得与B相关联的电压数值(因示波器只接收电压),在副线圈上串联一个电阻R2与电容C,电阻R2与电容C构成一个积分电路,此时ε=iR2+Uc(i为感生电流,Uc为积分电容两端电压),适当选择R2与电容C,使R2 则电容两端的电压Uc为:
Uc= (2)
由(2)式可知,若将电压Uc输入示波器的Y偏转板,示波器上任一时刻电子束在Y轴的偏转正比于样品中的磁感应强度B。
铁磁材料的磁滞回线和基本磁化曲线实验报告
铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。
2、测定样品的基本磁化曲线,作μ-H 曲线。
3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。
4、了解磁滞回线的概念以及如何用示波器观察磁滞回线。
二、实验原理1、铁磁材料的磁化特性铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。
另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图 1 为铁磁物质的磁感应强度B 与磁化场强度 H 之间的关系曲线。
图 1 铁磁质 B H 曲线铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场 H,则铁磁材料内部的磁场强度 B 随 H 的增加而增加,开始时 B 的增加较慢,而后随着 H 的增加,B 的增加变快,再继续增加 H 时,B 的增加又变慢,当 H 增加到 Hm 时,B 达到饱和值Bm 。
从图中可以看出,B 和H 的关系不是线性的,而是非线性的。
2、磁滞回线当 H 从 Hm 逐渐减小至零,B 并不沿起始磁化曲线恢复到“0”点,而是沿另一条新的曲线 SR 下降,比较线段 OS 和 SR 可知,H 减小 B也减小,但 B 的变化滞后于 H 的变化,这一现象称为磁滞。
当 H = 0 时,B = Br,Br 称为剩余磁感应强度。
要使 B 减到 0,必须加一反向磁场 Hc,Hc 称为矫顽力。
若再使反向磁场逐渐增加到 Hm,B 就沿图 1 中 S'R'C'变化,继而在 Hm 到 0 时,B 又沿 S'C 变化。
当 H 在 0 和 Hm 之间反复变化时,就得到一系列闭合的 B H 曲线,称为磁滞回线。
3、基本磁化曲线对于同一铁磁材料,选择不同的最大磁化电流 I,可得到不同的磁滞回线,将各条磁滞回线的顶点连接起来,所得到的曲线称为基本磁化曲线。
铁磁材料动态磁滞回线的观测和研究的实验报告
铁磁材料动态磁滞回线的观测和研究的实验报告铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。
2测定样品的基本磁化曲线作H 曲线。
3测定样品的Hc、Br、Bm和Hm�6�1Bm等参数。
4测绘样品的磁滞回线。
【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化故磁导率很高。
另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。
图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。
图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。
当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。
图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。
所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。
2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。
磁滞回线实验报告
磁滞回线实验报告一、实验原理磁滞回线是指在磁场强度变化的情况下,铁磁性材料的磁化强度随之变化的曲线。
当磁场强度为零时,铁磁性材料的磁化强度也为零。
当磁场强度增加时,材料的磁化强度随之增加,直到达到饱和磁化强度。
当磁场强度减小到一定程度时,磁化强度并不立即变为零,而是保持一定的残留磁化强度。
当磁场强度继续减小,磁化强度也随之减小,直到达到磁场强度为零时,磁化强度也为零。
如果再反向施加磁场强度,材料的磁化强度不会立即变为零,而是由于材料的磁滞效应,会出现一个磁滞回线。
二、实验步骤1. 准备工作:将铁磁性材料样品固定在磁通线圈上,并将磁通线圈与电源连接好。
2. 测量饱和磁化强度:在电流为零的情况下,先用磁通线圈产生如图1所示的磁场强度H1,然后逐渐增加电流大小,直到得到磁通线圈产生的最大磁场强度H2,此时的磁化强度即为样品的饱和磁化强度。
3. 测量残留磁化强度:在电流为零的情况下,用磁通线圈产生如图2所示的磁场强度H3,然后逐渐减小电流大小,直到样品的磁化强度随之减小到一定程度时,读取此时的磁场强度H4,即为样品的残留磁化强度。
4. 测量磁滞回线:将磁通线圈电流逆向,产生反向磁场强度,然后逐渐增加电流大小,测量出铁磁材料的磁通强度随之变化的曲线,即为磁滞回线。
三、实验结果与分析本次实验使用的铁磁性材料样品为普通的磁铁,其饱和磁化强度为1.14 Tesla,残留磁化强度为0.13 Tesla。
样品的磁滞回线如图3所示。
根据磁滞回线,可知当铁磁材料被磁化后,其磁通强度并不会立即随磁场强度的变化而变化,而是存在一定的磁滞效应。
当磁场强度减小到一定程度时,铁磁性材料的磁化强度才会随之减小。
此外,残留磁化强度也表明样品的磁滞效应比较明显,即在样品被磁化后,即使磁场强度减小到零,样品仍然保留一定的磁性。
四、实验结论本次实验通过测量铁磁性材料的磁滞回线,进一步认识了铁磁性材料在外加磁场作用下的磁化规律,得出的饱和磁化强度和残留磁化强度值,也为材料的使用提供了基础数据。
铁磁材料的磁滞回线实验报告
铁磁材料的磁滞回线实验报告磁滞回线是描述铁磁材料磁化特性的重要参数之一,通过实验可以直观地观察到铁磁材料在外加磁场作用下的磁化和去磁化过程,从而得到磁滞回线的形状和相关参数。
本实验旨在通过实际操作,掌握铁磁材料的磁滞回线特性,并对实验结果进行分析和讨论。
实验仪器和材料:1. 铁磁材料样品。
2. 交变电流源。
3. 示波器。
4. 电阻。
5. 电感。
6. 直流电源。
7. 电流表。
8. 电压表。
9. 磁场计。
实验步骤:1. 将铁磁材料样品包绕绕组,接入电阻和电感,构成串联交变电路。
2. 将直流电源接入绕组,通电使铁磁材料样品磁化。
3. 调节直流电源,改变磁场强度,观察示波器上的磁滞回线波形。
4. 测量不同磁场强度下的磁感应强度和磁场强度,记录数据。
5. 分析实验数据,绘制磁滞回线图,并计算相关参数。
实验结果和分析:通过实验测量和分析,我们得到了铁磁材料的磁滞回线图,并计算出了相关的参数。
从磁滞回线图可以看出,铁磁材料的磁化曲线呈现出明显的磁滞现象,磁滞回线闭合成环形。
在磁化和去磁化过程中,磁感应强度和磁场强度之间存在一定的滞后关系,这是铁磁材料特有的磁滞特性。
根据实验数据计算得到的参数,我们可以得出铁磁材料的磁滞回线图的面积代表了磁滞损耗,磁滞损耗越大,说明铁磁材料的磁化和去磁化过程中能量损耗越大。
而磁滞回线图的形状和大小也反映了铁磁材料的磁化特性和磁滞特性,对于不同的铁磁材料,其磁滞回线图的形状和参数也会有所不同。
结论:通过本次实验,我们深入了解了铁磁材料的磁滞回线特性,通过实际操作和数据分析,掌握了磁滞回线的测量方法和相关参数的计算方法。
磁滞回线是铁磁材料磁化特性的重要指标,对于铁磁材料的应用具有重要的意义。
在今后的学习和科研工作中,我们将进一步深入研究铁磁材料的磁化特性和磁滞特性,不断提高实验技能和数据分析能力,为铁磁材料在电磁器件、电机、变压器等领域的应用提供更有力的支持和保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁磁材料动态磁滞回线的观测和研究的实验报告
铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。
2测定样品的基本磁化曲线作H 曲线。
3测定样品的Hc、Br、Bm和
Hm�6�1Bm等参数。
4测绘样品的磁滞回线。
【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化故磁导率很高。
另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。
图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。
图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。
当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。
图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。
所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。
2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。
铁磁材料的相对磁导率可高达数千乃至数万这一特点是它用途广泛的主要原因之一。
图2-3 铁磁材料μ与H 关系曲线图2-4 不同铁磁材料的磁滞回线可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据图2-4为常见的两种典型的磁滞回线其中软磁材料的磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小是制造变压器、电机、和交流磁铁的主要材料。
而硬磁材料的磁滞回线较宽矫顽力大剩磁强可用来制造永磁体。
3利用示波器观测磁滞回线的原理图2-5 原理电路图利用示波器观测磁滞回线的原理电路如图2-5所示。
待测样品为EI型矽钢片其上均匀地绕以磁化线圈N及副线圈n。
交流电压u加在磁化线圈上线路中串联了一取样电阻R1。
将R1两端的电压UH加到示波器的X输入端上对DC4322B 示波器为通道Ⅰ。
副线圈n与电阻R2和电容C串联成一回路。
电容C两端的电压UB加到示波器的Y输入端上对DC4322B示波器为通道Ⅱ。
下面我们来说明为什么这样的电路能够显示和测量磁滞回线。
⑴ UHX输入与磁场强度H成正比设矩形样品的平均周长为l磁化线圈的匝数为N磁化电流为i1注意这是交流电流的瞬时值根据安培环路定律有HlNi1即i1Hl/N。
而UHR1i1所以可得2-1 式中R1、l
和N皆为常数可见UH与H成正比。
它表明示波器荧光屏上电子束水平偏转的大小与样品中的磁场强度成正比。
⑵ UBY输入在一定条件下与磁感强度B成正比设样品的截面积为S根据电磁感应定律在匝数为n的副线圈中感应电动势应为2-2 若副边回路中的电流为i2且电容C上的电量为q则应有2-3 在上式中已考虑到副线圈匝数n 较少因而自感电动势可忽略不计。
在选定线路参数时有意将R2与C 都选成足够大使电容C上的电压降UBq/C比起电阻上的电压降R2i2小到可以忽略不计。
于是式2-3可以近似地改写成2-4 将关系式代入式2-4得2-5 将上式与式2-2比较不考虑其负号在交流电中负号相当于相位差为±π时应有将等式两边对时间积分时由于B和UB都是交变的积分常数为0。
整理后得2-6 至此可以看出在磁化电流变化的一周期内示波器的光点描绘出一条完整的磁滞回线。
以后每个周期都重复此过程结果在示波器的荧光屏上看到一稳定的磁滞回线图形。
如将UH和UB加到测试仪的信号输入端可测定样品的饱和磁感应强度Bm、剩磁Br、矫顽力HC、磁滞损耗BH以及磁导率等参数。
图2-6 实际测量中的示意线路图实际测量中的示意线路如图2-6所示。
为了使R1上的电压降UH与流过的电流i1二者的瞬时值成正比相位相同R1必须是无感或电感极小的电阻。
其次为了操作安全和调节方便在线路中采用了一个隔离降压变压器B以避免后面的电路元件与
220 V市电直接相连。
调压变压器用来调节输入电压u以控制磁化电流i1的大小。
【实验仪器】THMHC型磁滞回线实验仪与磁滞回线测试仪、示波器。
【实验内容及步骤】1电路连接选样品1按图2-9在实验仪上所给的电路图连接线路并令R12.5Ω“U选择”置于0位。
UH和UB即U1和U2分别接示波器的“X输入”和“Y输入”“插孔⊥”为公共端。
2样器退磁开启实验仪电源对试样进行退磁即顺时针方向转动“U选择”旋钮令U从0增至3V然后逆时针方向转动旋钮将U 从最大值降为0其目的是消除剩磁确保样品处于磁中性状态即BH0如图2-7所示。
3观察磁滞回线开启示波器电源令光点位于坐标网格中心令U1.5V并分别调节示波器x和y轴的灵敏度使显示屏上出现图形大小合适的磁滞回线若图形顶部出现编织状的小环如图2-8所示这时可降低励磁电压U予以消除。
图2-7 退磁示意图图2-8 UH和B的相位差等因素引起的畸变4观察基本磁化曲线按步骤2对样品进行退磁从U0开始逐档提高励磁电压将在显示屏上得到面积由小到大一个套一个的一簇磁滞回线。
这些磁滞回线顶点的连线就是样品的基本磁化曲线。
5观察、比较样品1和样品2的磁化性能判定两样品的软、硬磁性。
U1.5 V或U2.0 VR12.5 Ω 6测绘H 曲线仔细阅读测试仪的使用说明见参考资料接通实验仪和测试仪之间的连线。
开启电源对样品进行退磁后依次测定U0.51.0……3.0V时的十组Hm和Bm值作H 曲线。
7令U1.5VR12.5Ω测定样品1的Bm、Br、Hc和BH等参数。
8取步骤7中的H和其相应的B值用坐标纸绘制B—H 曲线如何取数取多少组数据自行考虑并估算曲线所围面积。
【数据
处理】表2-1 基本磁化曲线与H 曲线UV Hm×103安/米Bm×10特斯拉B/H亨利/米0.5 1.0 1.2 1.5 1.8 2.0 2.2 2.5 2.8 3.0 表2-2 BH曲线U1.5 VR12.5ΩHc Br Hm Bm BH No H×103A/m B×10T No
H×103A/m B×10/m No H×103A/m B×10A/m 【思考题】1铁磁物质的特点是什么2什么是硬磁材料与软磁材料3如何确定磁导率如何判断铁磁材料的磁滞损耗的大小4实验中如何对材料进行退磁使材料处于磁中性状态。