单相有功电能表的正确接线

合集下载

电能表接线ppt课件

电能表接线ppt课件

七、电能表接线图
10
负 载 零线
图3 单相电能表经电流互感器接入共用电压线和电流线的接
线图
11
12
负 载 零线 图4单相电能表经电流互感器接入,分用电压线和电流线的接线图
图4接线方式功率表达式
13
零线或火线 图5 单相电能表经电压电流互感器接入共用电压和电流线路的接线图 图5接线方式功率表达式
w K1 K2
L1 L2
负 荷 侧
46
当 cos 0.8 ,时 36o50, tg 0.75
则更正系数为:
kp
2 3 1.396 3 0.75
则更正率为:
p k P 1
所以,应追补电量为:
A 39.6 Wh
P
47
例题:
有一只三相三线有功电能表,在A相电压回路断 线的情况下运行了四个月,电量累计为5万kW·h(千 瓦时),功率因数要约为0.8,求追补电量。
• g)互感器二次回路的连接导线应采用铜质单芯绝缘线。对电流二次回 路。连接导线截面积应按电流互感器的额定二次负荷计算确定,至少 应不小于4mm2。对电压二次回路。连接导线截面积应按允许的电压 降计算确定,至少应不小于2.5mm2。
• h)互感器实际二次负荷应在25%-100%额定二次负荷范围内;电流 互感器额定二次负荷的功率因数应为0.8-1.0;电压互感器额定二次功 率因数应与实际二次负荷的功率因数接近。
• b)接入中性点绝缘系统的3台电压互感器,35kV及以上的 宜采用Y/y方式接线; 35kV及以下的宜采用V/v方式接线。 接入非中性点绝缘系统的3台电压互感器,宜采用Y0/y0方式 接线,其一次侧接地方式和系统接地方式一致。
• c)低压供电、负荷电流为50A及以下时,宜采用直接接入 式电能表;负荷电流为50A以上时,宜采用经电流互感器接 入式的接线方式。

电能计量装置的错接线检查分析及退补电量计算

电能计量装置的错接线检查分析及退补电量计算
4
2014-9-3
接线
故障
电路
相量图 较 反相
表现
极 V, 原边 UV 性 v0 (或 VW ) 接 反 相反接
相量图、表现都与 uv (或 vw )
相反接时相同
2. TA错误接线分析
接线 故障 电路 相量图 表现
两台 TA简 u (或 w) 化的三 相接反 线连接
Iuw =
Iu
2014-9-3
5
正系数,计算退补电量,解除计量纠纷和基本达到合理的弥
补因电能计量装置错误接线造成的计量误差。
退补电量为: Δ W = W0 - W ′ WΒιβλιοθήκη = ?2014-9-3 15
退补电量的计算方法
更正系数: W0 :负载实际使用的电量
W′:电能表误接线时所计量的电量
P0:电能表正确接线时所测量的功率= U I cosφ
2014-9-3 13
(4)v 相电压法与电压交叉法的局限性:
① 只能判错不能判对,因为有些错误接线也有 相同的表现
② 对于错误接线,不能得知是那种错误接线形 式
2014-9-3
14
五、 退补电量的计算方法
电能表错误接线给电能计量带来了很大的误差,其误差
值可由百分之几十到百分之几百。 电能计量出现差错时,供电企业应按有关规定退补相应 电量的电费。 电能表错误接线分析的目的,就在于求出错误接线的更
表现 u与n等电位 Uuv=Uwu =Up(相电压) =57.7V Uvw=100V u不与v、w 构成回路, Uuv
,Uwu
Uvw=100V
接DS表、 DSX表 各一只
2014-9-3
u为v、w中点 Uuv=Uwu=50V Uvw=100V,

装表接电工培训

装表接电工培训

少于100毫米,操作时应注意所使 用工具,不要和另一线接触,以免 发生短路危险,并应按下列程序操 作: I.拆表时,先拆相线(火线),后拆中 性线(零线); II.接线时,先接中性线(零线),后 接相线(火线)。
三相四线电能表的联合接线
1、三相电能计量装置一般都在专用 的计量柜(盘)上。互感器与电能表之 间都通过专用导线或二次电缆连接, 并且有专门标志的接线试验端子和 相应的接线展开图,以便于带电装 拆电能表和现场检验电能表以及检 查接线正确性时使用。
电路中,电压线圈分别接入相应 的相电压,且其同名端应与相应 电流线圈的同名端一起接在电源 侧。此种接线方式最适合于中性 点直接接地的三相四线制系统, 且不论三相电压、电流量是否对
称,都能正确计量。
二. 三相四线有 功电能表的正确接 线
接线说明
接线方式(二)
接线方式(二)
三相四线有功电能表的接线中,应注 意以下几点:
错误说明
接线方式(二)
3、三相四线有功表B相电流互感器二次反极 性
错误说明
错误说明
如图所示,当B相电流互感器二次反 极性时,电能表所计量的电能为实 耗用电三分之一,乘以3为真实有功 电能值
接线方式(二)
3、三相四线有功表B相电流互感器二次 反极性
错误说明
安装工艺、规范及常见故障 (三)
①单相电能表的零线接法是将零线剪断,再接入 电能表的3、4端子。
② 三相四线有功电能表零线接法是零线不剪断, 只在零线上用不小于6mm2/1的双塑铜芯绝缘 线T接到三相四线电能表零线端子上,以供电 能表电压元件回路使用。零线在中间没有断口 的情况下直接接到用户设备上。
③两种电能表零线采用不同接法。是因为三相四 线电能表若零线剪断接入或在电能表里接触不 良,容易造成零线断开事实,结果会使负载中

电能表计安装

电能表计安装

25
7、几种典型的低压断路器
RDSW6系列智能型万能式断路器: 适用于交流50/60HZ,额定工作电压400V、 690V,额定工作电流为200A至6300A配电网 络中,主要用来分配电能和保护线路及电 源设备免受过载、欠电压、短路、单相接 地等故障的危害;断路器具有多种智能化 保护功能,选择性保护精确,能提高供电 可靠性,避免不必要停电。同时带有开放 式通讯接口,带有四遥功能,以满足控制 中心和自动化系统的要求。
U VW 、U I
U WU 、V I
U UV 、W I





第二元件接入
第三元件接入
中性点有效接地系统——跨相90° 型无功电能表
三个元件反映的功率分别为:
Q1 UVW IU cos(900 U ) UVW IU sin U
Q2 UWU IV cos(900 V ) UWU IV sin V
30
6、熔断器的选择pdf
⑴类型的选择:根据线路要求、使用场合、安装条件选择; ⑵ 熔断器额定电压的选择:应大于或等于熔断器工作点的额定电压; ⑶ 熔体额定电流的选择: 照明负载:IFU≥I 电动机类负载: IFU ≥(1.5~2.5)IN 多台电动机由一个熔断器保护时: IFU≥(1.5~2.5)INMAX﹢∑IN
三组功率元件的电压线圈接入电路的线电压
kwh
适用场合:计量三相对称平衡负荷: 广泛运用在10kV、35kV 配网 局限: 此类表型V相没有功率元件, 当在V相接入单相负荷,会漏 记电量,故运用在低压400V 配网中的三相二元件电能表 TA 基本被三相四线三元件有功 电能表替代。 当三相系统完全对 称时,功率表达式:
* *
负载

谈谈电能计量装置常见错误接线和检查方法

谈谈电能计量装置常见错误接线和检查方法

谈谈电能计量装置常见错误接线和检查方法引言电能计量装置的准确性不仅取决于电能表、互感器的等级,还与它们的接线有关。

即使电能表和互感器本身准确性很高,接线错误也会导致整套计量装置少计、不计或反记,致使电力企业遭受损失。

因此,在电力运行过程中,需要对电能计量装置进行定期的检查,做到预防工作,以确保电能计量装置的准确性。

本文结合笔者的工作总结,主要就电能计量错误接线的形式及检查方法进行了论述。

1 电能计量装置中常见错误接线在整个电能计量装置中,主要包括电能表、互感器和附件、失压计时仪以及二次回路部分。

在出现接线错误的过程中,都能通过不同的部件反映出来。

而在电能计量装置中常见错误接线形式主要包括以下几方面:1.1 计量单相电路有功电能的错误接线计量单相电路有功电能的错误接线是整个电能计量装置错误接线中最为常见的错误类型,在这种错误类型中,主要分为以下5个方面:第一,工作人员在连接相线与零线的过程中,由于工作失误将其接反。

第二,在整个装置中,工作人员没有准确的区分装置的进出线。

第三,在接线的过程中,电流线圈与电源之间出现短路。

第四,在接线时,工作人员忘记连接电压钩连片。

第五,在计量380V单相负载电能时,工作人员习惯用一只220V的单相电能表读数乘以2的方法来计量,然而这种方法缺乏一定的规范性与稳定性。

1.2 計量三相四线电路有功电能的错误接线计量三相四线电路有功电能的错误接线形式中,主要包括以下3种:(1)在三相四线有功电能表电压线圈连接的过程中,电压线圈中线出现断线状况。

(2)三相四线有功电能表在运转的过程中,本应经过一台电流互感器接入电路,然而在某些状况下经过两台电流互感器连入电路,由此造成错误接线。

(3)在计量三相四线电路有功电能时,工作人员习惯使用三相三线两元件来对其进行计量,这样的计量结果与实际结果存在很大的偏差。

1.3 计量三相三线电路有功电能的错误接线计量三相三线电路有功电能的错误接线形式有:(1)电流端子进出线接反;(2)电压端子接线顺序不对;(3)电压与电流相位不对应等。

浅谈电能计量装置的安装和接线

浅谈电能计量装置的安装和接线

浅谈电能计量装置的安装和接线摘要:本文结合自己从事电能计量安装及接线实际工作过程中,主要从电能计量方式确定,电能计量装置的安装与接线等方面,提出了个人在工作中积累的一些看法和意见,以及现场处理电能计量装置安装与接线的经验交流。

关键词:电能计量装置、计量设备安装、正确接线一、正确确定用户的计量方式计量方式是根据用户用电容量和类别而确定的,确定计量方式时要考虑到采用的计量装置类别、安装位置和接线方式,还要考虑各用电单元的供电方式、经济隶属关系和管理方式等因素。

1.1用户计量方式的选择:①供电企业应在用户每一个受电点内,按照不同电价类别,分别安装电能计量装置,一个受电点即是一个电能计量点或计量计费单位。

②电能计量点的确定:贸易结算用电能计量装置,原则上应安装在供电设施与受电设施的产权分界处,如果产权分界处不适合装设电能计量装置,或为了管理方便将电能计量装置设置在其他合适位置,对专线供电的高压用户,可在供电变压器出口装表计量,对公用线路供电的高压用户可在用户受电装置的低压侧计量。

③城乡居民用电一般实行一户一表,因特殊原因不能实行一户一表供电时,可根据其容量安装公用的电能表。

④任何一个供电点或受电点,都应装设电能计量装置。

⑤有两路及以上线路分别来自两个及以上的供电点或有两个及以上的受电点的用户,应分别装设电能计量装置。

⑥临时用电的用户也应安装用电计量装置。

1.2用户计量方式及计量装置的技术要求:①居民用户,根据用电负荷大小和实际情况装设专用或公用单相220V电能表或380/220V三相电能表。

②低压供电,负荷电流为60A以下时,宜采用直接接入式电能表;负荷电流为60A及以上时,宜采用经电流互感器接入式的接线方式。

③对于高压供电的用户,应采用高压侧计量方式,即采用高供高计方式。

对于35KV公用配电网供电、配电变压器容量在500千伏安及以下的或者10千伏供电,容量在315千伏安及以下的,若高压计量条件不具备也可采用低压侧计量方式,即采用高供低计加变损的方式。

第六章电能计量装置接线方式

第六章电能计量装置接线方式

火线如此零线不。
接线压实不可虚, 否则过热外壳糊。 一号端旁小连片, 保持原状莫拆除。
电能计量
电能计量
电能计量
现象分析1:单相电能表按下图接线,当用户
用电时电能表将如何计量?此时负载相量图如 何?请对图加以修正。 很明显:电流线圈 正确接线原则: 极性接反
1)电流元件串接于火线中 2)电压元件并接于电源侧
3)电流元件和电压元件从 结论:单相电 同名端引入
能表反转。
电能计量
正确的原理接线图
错误 的相 量图
MQ = -K ΦI ΦU sinψ
正确 的相 量图
MQ = +K ΦI ΦU cosφ
电能计量
现象分析2:单相电能表按下图接线,当用户
用电时电能表将如何计量?请对图加以修正。 电压线圈接在了负载侧
电能计量
两套电能表经TA、TV联合接线
电能计量
补充:店面房用户防窃电
小容量的非居民用电,特别是一些店面房用户, 容量一般在2~20kW,用电量少的每月百千瓦时以 内,大的每月上万千瓦时以上。由于历史原因,这类 用户原先计量装置均设在户内,窃电者在屋内对计量 装置动手脚易如反掌,有的甚至在装修房子时就放置 暗线窃电。 对此类用户,由于装置比较简单,所以遏制窃电 可采用户外成套计费电能表箱;进户线采用绝缘导线 穿钢导管、绝缘导线或塑料护套线沿墙敷设。新装用 户计量装置一律采用户外装置;对有条件的老用户, 经监察现场查勘,统一把计量表计移到户外,并满足 户外装置要求。外移表计的接线如下图所示。
电能计量
四、三相二元件有功电能表与TA、TV的联合接线
电能计量
五、内相角为60°型三相无功电能表与电压、电流互 感器的联合原理接线图
电能计量

《浅谈减少错误接线方法》

《浅谈减少错误接线方法》

浅谈减少错误接线方法公平、公正、合理计量电能,及时、快捷、正确诊断错误接线及采取有效的防范措施,是提高供电企业形象和减少电量丢失的有效途径。

笔者结合装表接电和电能计量装置的运行检查实践,浅谈电能表比较典型的错误接线及防止措施,请各位专家老师指导。

电能表错误接线的主要表现为: 电能表反转、不转、转速变慢,变快等情况。

由于电能计量装置是由电能表、互感器、二次回路等多种元件构成,因此,电能表的错误接线方式也呈多样性变化。

下面简单分析一下电能计量装置常见的一些错误接线方式:1、单相有功电能表常见的错误接线方式正确的接线方式:火线(相线)进线接1端子,出线接2端子,零线进线接3端子,出线接4端子,负载电流由1端子进,通过电流线圈,由2端子出,电压线圈跨接于火线和零线之间,此时电能表正常工作。

负载跨接于火线和零线之间,用电也正常。

接线方式见图1。

图1单相有功电能表正确接线图常见的错误接线方式:(1)误将火线(相线)进出线端子接错,火线(相线)进线接2端子,出线接1端子,零线进线接3端子,出线接4端子,负载电流由2端子进,通过电流线圈,由1端子出,电压线圈跨接于相线和零线之间,因电流线圈通过反向电流,如表计不带止逆功能,则电能表反转。

负载跨接于火线和零线之间,用电仍正常。

接线方式见图2。

图2 单相有功电能表错误接线方式一(2)误将火线(相线)与零线接错,零线进线接1端子,出线接2端子,火线(相线)进线接3端子,出线接4端子,此时需看负载如何接:a、全部负载跨接于火线和零线之间,电能表正常走字,用电正常。

接线方式见图3(a)。

b、部分负载跨接于火线和零线之间,但部分负载不通过零线,直接接地(如自来水管),电能表走慢,用户偷电。

接线方式见图3(b)。

c、全部负载不通过零线,直接接地(如自来水管),电能表不转,用户偷电。

接线方式见图3(c)。

(a)(b)(c)图3 单相有功电能表错误接线方式二以上a,b,c三种情况中,如零线进线接2端子,出线接1端子,电表进线处情形类似单相有功电能表错误接线方式一,其余同上分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单相有功电能表的正确接线
一单相有功电能计量装置的接线方式
(一)单相有功电能的测量原理
用于单相电路的电能计量装置一般仅有一只单相电能表,,电能表端子盒的端子直接接入被测电路,即直接接入式,当电能表的电流或电压量限不能满足被测电路要求时,则需经互感器接入。

测量有功电能的原理如图
测得的有功功率为 P=UIcos ϕ 而驱动力矩M Q 可由相量图得到M Q =K ψsin U I ΦΦ
驱动力矩为正值,电能表正转
若有一个线圈极性接反,例如电流线圈极性接反时,流入电能表电流线圈中的电流方向与图中相反,残生电流磁通的方向也相反,测试驱动力矩为M Q = K θsin U I ΦΦ=K =+︒ΦΦ)180sin(ϕU I -K ϕsin U I ΦΦ
(二)直接接入式
直接接入式接线根据电能表端子盒内电压,电流接线端子排列方式不同可分为一进一出(单进单出)和二进二出(双进双出)两种接线方式。

相同点:两种接线方式的接线原理都是一样,因为它们所反映的功率都是P=UIcos 它们的电压电流端子同名端的连接片在表内都是连好的。

不同点:只是端子盒内电压、电流的出入端子的排列位置不同,电能表端子盒的接线端子应以“一孔一线”、“孔线对应”为原则,禁止在电能表端子盒端子孔内同时连接两根导线。

1、一进一出接线的正确接线
将电源的相线(俗称火线)接入接线盒第1孔接线端子上,其出线接在接线盒第2孔接线端子上;电源的中性线(俗称零线)接入接线盒第3个孔接线端子上,其出线接在接线盒第4孔接线端子上。

(目前我国和德国、捷克、匈牙利及原苏联等国生产的单相电能表都采用这种接线方式。


2、二进二出接线的正确接线
将电源的相线接入接线盒第1孔接线端子上,其出线接在接线盒第4孔接线端子上;电源的中性线接入接线盒第2孔接线端子上,其出线接在接线盒第3孔接线端子上。

(英国、美国、法国、日本、瑞士等国生产的单相表都采用这种接线方式)
(三)经互感器接入式
当电能表电流或电压量限不能满足被测电路电流或电压的要求时,便需经互感器接入,有时只需经电流互感器接入,有时需同时经电流互感器和电压互感器接入。

《电能计量技术管理规程》规定,低压供电,负荷电流为50A以上时,宜采用经电流互感器接入式的接线方式。

若电能表内电流,电压同名端子连接片是连着的,可采用电流电压线公用方式接线;若连接片是拆开的,应采用电流、电压线分开方式接线
1、公用方式接线图
2、分开式接线图
由接线图可以看出,当采用公用方式时,可以减少从互感器安装处到电能表安装处的电缆芯数,互感器二次侧可共用一点接地,但发生接线错误的概率大一些。

当采用分开式方式时,需增加电缆芯数,电流,电压互感器的二次侧必须分别接地,但发生接线错误的可能性小一些,且便于接线检查。

下面介绍单相有功电能计量装置一种不常用的正确接线。

当要计量380V单相电焊机的有功电能,而又没有额定电压为380V的有功电能表时,可采用两只220V单相电能表按下图方式接线。

电焊机小号的有功电能为两只单相电能表读书之代数和,其正确性可用相量图加以证明。

电焊机消耗的功率为
P AB= U AB I AB cos (4-1)
两只单相表反映的功率分别为
P 1=U AN I AB cos(AN U •AB I •
)=U AN I AB cos(ϕ-30°)
P 2=U BN I BA cos(BN U •BA I •)=U BN I BA cos(ϕ+30°)
因为U AN =U BN ,I AB =I BA ,U AB =3U AN ,所以两只单相电能表反映的总功率为
P=P 1+P 2
=U AN I AB [cos(ϕ-30°)+ cos(ϕ+30°)]
=U AN I AB [cos ϕcos30°+ sin ϕsin30°+ cos ϕcos30°- sin ϕsin30°] =3U AN I AB cos ϕ
=U AB I AB cos ϕ=P AB
相比可知,两只单相电能表反映的功率之和恰好是单相电焊机消耗的有功功率。

电焊机的功率因数一般为0.1~0.3,因此其阻抗角≈ϕ72°~84°,这样第二只单相电能表反应的有功功率P 2=U BN I BA cos(ϕ+30°)<0,驱动力矩M Q2<0,电能表经常反转。

当求两表读数之和时以负数代入。


表计1(PJ1)正转400kw ·h ,表计2(PJ2)反转200kw ·h ,则电焊机小号的电能应为400+(-200)=200kw ·h ,而采用电焊机消耗的电能为400+200=600kw ·h 的算法是错误的。

不过电能表反转会给计量结果带来附加误差,因此应该采用额定电压为380V 的三相三线有功电能表代替上述两只单相电能表。

由于三相三线电能表的两组电磁元件共同作用是一个转动元件上,作用在转轴上的驱动力矩取决于两
组驱动元件产生的驱动力矩的代数和,因此不会出现电能表经常反转的现象。

在采用上述接线时应注意一下几点:
(1)电能表的电流线圈或电流互感器的一次绕组必须串联在相应的相线上,若串联在中性线上就可能产生漏计电能的现象。

(2)电压互感器必须并联在电流互感器电源侧,若将电压互感器并联在电流互感器的负载侧,则电压互感器一次绕组电流必然通过电流互感器的一次绕组,因而使电能表多计电压互感器所消耗的电能。

(3)通常电压互感器一次侧均装有熔断器,而二次侧由于熔体容易产生接触不良会增大二次侧电压降,产生计量误差,因此有关规定35kv及以下贸易结算用电压互感器应不装设熔断器,而35kv以上电网的短路容量大,二次侧必须有熔断器保护,以免造成主设备事故。

相关文档
最新文档