色谱分析 第二章 色谱基本理论
色谱分析(中国药科大学)第2章色谱法的基本参数及理论
第二章 色谱法的基本参数及理论一、色谱分离与保留作用色谱的保留作用:在色谱系统中,当样品混合物被流动相带入柱内后,便在固定相与流动相之间不断地进行分配平衡。
不同的化合物由于他们之间理化性质的差异,在两相中存在量的比值也各不相同。
固定相中存在量多的化合物,冲出柱子所需消耗流动相的量就多,较慢地被从色谱柱中被洗脱出来。
流动相中存在的比例大的化合物,冲洗出柱子所需消耗流动相的量就少,较快地被从色谱柱中被洗脱出来。
这种现象就称为色谱的保留作用。
图 2-1 色谱分离示意图样品组分在两相间分配平衡时,其在两相中存在量的比值称为容量因子(capacity factor) k ’,又称分配比(partion ratio )或分配容量。
k ’ = MS M M 式中,Ms :组分在固定相中的量,M M :组分在流动相中的量。
在固定相中的量为零的化合物,其k ’=0,这些组分被称为在该色谱条件下的非保留物质。
容量因子(分配比)可通过实验计算:k ’ =MR t t ' 。
即k ’为组分在固定相中消耗的时间与其在流动相中消耗的时间之比。
样品组分在两相中分配平衡时,其在固定相和流动相中的浓度比称为分配系数(partion factor ),分配系数以K 表示。
其公式如下:Ms c c K ==组分在流动相中的浓度组分在固定相中的浓度 K =m m S S V M V M // = k ’· S m V V 式中,Ms/Vs 为样品组分在固定相中的浓度,M m /V m 为样品组分在流动相中的浓度。
分配系数大的组分保留时间长(色谱的保留作用强),分配系数小的组分保留时间短(色谱的保留作用弱)。
K = k ’· Sm V V = k ’· β 式中β = Sm V V 称为相比率,即色谱柱中流动相体积与固定相体积之比。
例在毛细管GC 中壁涂空心柱的相比为:β = 固定相体积(柱中)流动相体积(柱中) = dfrl l r ⋅ππ22 = df r 2式中r为毛细管柱横截面的半径,d f为柱内壁固定液的膜厚。
第2章 气相色谱分析法
将两者混合起来进行色谱实验,如果发现有 新峰或在未知峰上有不规则的形状(例如峰略 有分叉等)出现,则表示两者并非同一物质; 如果混合后峰增高而半峰宽并不相应增加, 则表示两者很可能是同一物质. 3.多柱法:在一根色谱柱上用保留值鉴定组分有 时不一定可靠,因为不同物质有可能在同一色 谱柱上具有相同的保留值.所以应采用双柱或多 柱法进行定性分析.即采用两根或多根性质(极 性)不同的色谱柱进行分离,观察未知物和标 准试样的保留值是否始终重合.
§2.5 GC检测器 一、概述 1.作用:将经色谱柱分离后的各组分按其特性及含 量转换为相应的电讯号。 2.分类: 浓度型:测量的是载气中某组分浓度瞬间的变化, 即检测器的响应值和组分的浓度成正比。 热导TCD ; 电子捕获ECD; 质量型:测量的是载气中某组分进入检测器的速 度变化。即检测器响应值和组分的质量成正比。 氢焰FID; 火焰光度FPD;
二、根据色谱保留值进行定性 定性方法的可靠性与色谱柱的分离效率有密切的 关系,为了提高可靠性,应该采用重现性较好 和较少受到操作条件影响的保留值. 由于保留时间(或保留体积)受柱长、固定液 含量、载气流速等操作条件的影响比较大,因 此一般适宜采用仅与柱温有关,而不受操作条 件影响的相对保留值r21作为定性指标. 1.对于比较简单的多组分混合物,如果其中所有 待测组分均为已知,它们的色谱峰也能一一分 离,那么为了确定各个色谱峰所代表的物质, 可将各个保留值与各相应的标准试样在同一条 件下所测得的保留值进行对照比较,确定各个 组分.
§2.6 气相色谱定性方法
一、概述:各种物质在一定色谱条件下都有确定不 变的保留值,因此保留值可作为一种定性指标 . 现状:GC定性分析还存在一定问题.其应用仅限 于当未知物通过其它方面的考虑(如来源,其它 定性方法的结果等)后,已被确定可能为某几个 化合物或属于某种类型时作最后的确证;其可靠 性不足以鉴定完全未知的物质。 近年,GC/MS、GC/光谱联用技术的开发,计算机 的应用,打开了广阔的应用前景。
第二章色谱基础理论(本)
基础理论
46
基础理论
47
范氏方程说明:
▪ u一定时,A,B,C越小,H越小,柱效越
高,色谱峰越窄;颗粒越小,H越小,柱 效越高。
▪ U很小时,B/U项占主导,CU项可忽略 ▪ U很大时,CU项占主导,B/U项可忽略
基础理论
48
综合考虑: U实际稍高于Uopt 因为: 1.右侧曲线斜率小,U稍变化不会引起
拖尾因子(fs) x = h/20
fs =(B+A)/2A
fs = 0.95-1.05 正常峰
fs <0.95
前延峰
fs >1.05
拖尾峰
即使不进样也会出现的峰
20% - 100% MeOH
60
没有进样
15
30
问题:流动相脏
15
0
3
7
15
17
基础理论
13
二、定 性 参 数
W
(t tR )2
e 2 2
V 2
---呈正态分布 t=tR时,C=Cmax
基础理论
31
Cmax的影响因素:
进样量W愈大,则Cmax愈大,W与Cmax 成正比。 色谱柱内径愈小,填充愈紧密,Cmax/W比值愈
大。即柱愈细填充愈紧密,柱效N越高。 色谱柱愈短,Cmax值愈大。 先出柱的组分k’小,所以Cmax/W大。提高柱温 (GC),增加强洗脱剂的浓度(HPLC),可使
总结
●热力学:保留值的差 别要足够大 Sig
●动力学:色谱峰要
足够窄
Sig
基础理论
time time time 51
第四节 分子间作用力
基础理论
52
一、定向力
色谱分析法_02色谱基本理论
, R , R
理论塔板数n
neff
有效理论塔板数neff 理论塔板高度H H=L/n
第二节
一气体 H2 N2 Air 也可用CO2 Ne Ar
气路系统
纯度要求大于99.99 %
气体控制系统
气体的纯化
检测器 TCD ;FID TCD ;FID FID ;ECD FID ;ECD 常用净化剂 变色硅胶: 分子筛 : 活性碳: 脱氧剂 : 作用 除H2O 除H2O 除有机物 除O2
1.从塔板理论方程式的形式看它描述的色谱 信号轨迹应该是正态分布函数,与实际记录 的色谱流出曲线相符合,说明此方程是准确 的,且对色谱分配系统有理论指导意义。 2.由塔板理论据导出来计算往效率的理论塔 板数(N)公式,是行之有效的。长期以来用N 值的大小评价色谱柱柱效是成功的,是色谱 工作者不可缺少的计算公式。
纵向分子扩散是由浓度梯度造成的。组分 从柱入口加入,其浓度分布的构型呈“塞子” 状。它随着流动相向前推进,由于存在浓度 梯度,“塞子”必然自发的向前和向后扩散, 造成谱带展宽。分子扩散项系数为 K0为阻滞常数即弯曲因子,它反映了固定 相颗粒的几何形状对自由分子扩散的阻碍情 况。 Dg为组分在流动相中扩散系数(cm2.s-1)
van Deemter方程的数学式为 H=A+B/U+CU 或H=A+B/U+CsU+CmU
A、B、C、为常数,分别代表涡流 扩散系数、分子扩散项系数、传 质阻力项系数。
速率理论讨论
1、涡流扩散项A=2λ dγ λ 为反应柱填充状态的常数 dp为填料垃径
2、 分子扩散项 B / u (纵向扩散项) B = 2K0 Dg
第二章 色谱基本理论
例题
例1 X、Y、Z三组分混合物,经色谱柱分离后,其保留时间分别为: 5min;7min;12min,不滞留组分的洗脱时间为1.5min ,试求:
(1) X对Y的相对保留值是多少?
(2) Z对y的相对保留值是多少?
(3) Y组分在色谱柱中的容量因子是多少?
(1) 柱长增加一倍;
(2) 固定相颗粒变粗;
(3) 载气流速增加;
(4) 柱温降低;
(5) 相比率减少;
(6) 分子量较小的载气在低流速区工作
(7) 采用粘度较小的固定液。
27.按制作H-U曲线的方法,分别以N2和H2作载气绘出两条Van Deemter方程曲线:AB线为I线(N2);A'B'线为Ⅱ线(H2)。试回答下列问题:
(4) B组分柱中两相间的分配系数是A组分的几倍?
(5) B组分停留在固定相中时所流过的流动相体积,是A组分在固定相中停留时所流过流动相体积的几倍?
[答;(1)1.13 (2)6.2 (3)1.16 (4)1.16 (5)1.16]
34在3 m长的PEG-400柱上测得甲烷的保留时间为1.83min,戊酮-2的保留时间为6.83min,半高峰宽为3.5mm,记录纸速度为10mm/min,求该柱理论塔板数和有效塔板高度。
(4) X对Z的容量因子之比是多少?
解 (1) 1.57
(2) 1.90
(3) 3.67
(4) 0.63
例2 采用3m色谱柱对A、B二组分进行分离,此时测得非滞留组分的tM值为0.9min,A组分的保留时间为15.1 min,B组分的保留时间为18.0 min,要使二组分达到基线分离(R=1.5),问最短柱长应选择多少米(设B组分的峰宽为1.1 min)?
第2章-色谱基本理论a-塔板理论
选择因子
在定性分析中, 在定性分析中,通常固定一个色谱峰作为标 ),然后再求其它峰 然后再求其它峰( 准(s),然后再求其它峰(i)对这个峰的相对 保留值.在多元混合物分析中, 保留值.在多元混合物分析中,通常选择一对最 难分离的物质对, 难分离的物质对,将它们的相对保留值作为重要 参数.在这种特殊情况下,可用符号α表示: 参数.在这种特殊情况下,可用符号α表示:
4.死体积 VM
指色谱柱在填充后, 指色谱柱在填充后 , 柱管内固定相颗 粒间所剩留的空间、 粒间所剩留的空间 、 色谱仪中管路和连接 头间的空间以及检测器的空间的总和. 头间的空间以及检测器的空间的总和 . 当 后两项很小而可忽略不计时, 后两项很小而可忽略不计时 , 死体积可由 死时间与流动相体积流速F min) 死时间与流动相体积流速 F0 ( L / min ) 计 算:
一、分配系数K和分配比k 一、分配系数K和分配比k
1.分配系数K .分配系数K
色谱的分离是基于样品组分在固定相和流动相之间 反复多次地分配或吸附--脱附过程。 --脱附过程 反复多次地分配或吸附--脱附过程。 分配系数是描述分离过程中样品分子在两相间分配 的参数,它是指在一定温度和压力下, 的参数,它是指在一定温度和压力下,组分在固 定相和流动相之间分配达平衡时的浓度之比值
L u = tm
保留时间t 2.保留时间tR 试样从进样开始到柱后出现峰极大 点时所经历的时间,称为保留时间, 点时所经历的时间,称为保留时间,如 O′B. 图2-1 O′B.它相应于样品到达柱末端 的检测器所需的时间. 的检测器所需的时间.
图2-1 色谱流出曲线
3.调整保留时间tR′ 调整保留时间t
2—3 色谱法分析的基本原理 3
目的:将样品中各组分彼此分离, 目的:将样品中各组分彼此分离,组分要达到完 全分离,两峰间的距离必须足够远. 全分离,两峰间的距离必须足够远. 两峰间的距离是由组分在两相间的分配系数决定 即与色谱过程的热力学性质有关。 热力学性质有关 的,即与色谱过程的热力学性质有关。但是两峰 间虽有一定距离,如果每个峰都很宽, 间虽有一定距离,如果每个峰都很宽,以致彼此 重叠,还是不能分开。 重叠,还是不能分开。这些峰的宽或窄是由组分 在色谱柱中传质和扩散行为决定的, 在色谱柱中传质和扩散行为决定的,即与色谱过 程的动力学性质有关。因此, 动力学性质有关 程的动力学性质有关。因此,要从热力学和动力 学两方面来研究色谱行为。 学两方面来研究色谱行为。
第二章 色谱法的原理
按上述分配过程,对于n=5,k=1,m=1的体系,随 着脉动进入柱中板体积载气的增加,组分分布在柱内任一 板上的总量(气液两相中的总质量),由塔板理论可建流 出曲线方程:
C
m n V 2 exp[ (1 ) ] 2 Vr 2 Vr
n
m为组分质量,Vr为保留体积,n为理论塔板数。 当流动相体积V=Vr 时,C值最大,即
分离度和柱效率
理论需要解决的问题:
塔板理论和速率理论都难 以描述难分离物质对的实 际分离程度。即柱效为多 大时,相邻两组份能够被 完全分离。
难分离物质对分离度的大 小受色谱过程中两种因素 的综合影响:
保留值之差──色谱 过程的热力学因素; 区域宽度──色谱过 程的动力学因素。
色谱分离中的四种情况:
① 柱效较高,△K(分配系数)较 大,完全分离; ② △K不是很大,柱效较高,峰 较窄,基本上完全分离; ③ △K较大,柱效较低,但分离的 不好; ④ △K小,柱效低,分离效果更 差。
分离度:相邻两组分色谱峰保留值之差与两组分色谱峰底宽 总和之半的比值,(设W1=W2) 当R<1时,两峰有部分重叠; 当R=1时,分离程度可达98%;
分配系数K与分配比k的关系
cs ms / Vs Vm K k k cm mm / Vm Vs
相比率β:反映各种色谱柱型特点的参数 例如:填充柱,其β值一般为6~35; 毛细管柱,其β值为60~600。
二、 塔板理论(plate
theory)
最早由Martin等人提出塔板理论,把色 谱柱比作一个精馏塔,沿用精馏塔中塔板 的概念来描述组分在两相间的分配行为, 同时引入理论塔板数作为衡量柱效率的指 标。
3--第二章色谱分析理论基础
当待分离组分随着载气进入色谱柱,组分就开始在两相间进行 分配,平衡后,再随着载气进入下一个塔板进行分配,平衡后 再进入下一个塔板。以此类推,从而不断达到分配平衡。
1.塔板理论基本假设
(1)在色谱柱中的每一小段长度H内,组分迅速达到分 配平衡,这一小段色谱柱称为理论塔板,其长度称为理论 塔板高度,简称板高,记为H; (2)载气不是连续通过色谱柱,而是脉冲式,每次进气 量为一个板体积; (3)试样开始时都加在0号塔板上,且试样沿柱纵向扩 散忽略不计; (4)分配系数在各塔板上是常数; (5)塔板与塔板之间不连续。
结论: 分配系数K是色谱分离中的一个重要参数。 两组分分配系数K相差越大,两峰分离的就越好。 不同物质的分配系数K相同时,组分不能分离。因此是色 谱分离依据。
3.分配比k
又叫容量比、容量因子。
在一定温度、压力下,在两相间达到分配平衡时,组分在 两相之间的质量比值,以k表示。
组分在固定相中的质量
k=
分子扩散大。
3.传质阻力项C
组分在气相和液相两相间进行反复分配时,遇到阻力。传质阻 力C包括气相传质阻力Cg和液相传质阻力CL 。液相传质阻力 大于气相传质阻力。
C =(Cg + CL)
气相传质过程是指试样组分从气相移动到固定相表面的过程。
这一过程中试样组分将在两相间进 行质量交换,即进行浓度分配。有 的分子还来不及进入两相界面,就 被气相带走;有的则在进入两相界 面后又来不及返回气相。这样,使 得试样在两相界面上不能瞬间达到 分配平衡,引起滞后现象,从而使 色谱峰变宽。
(3)对于某确定的色谱分配体系,组分的分离最终决定于 组分在每相中的相对量,而不是决定于组分在每相中的相对 浓度,因此分配比是衡量色谱柱对组分保留能力的重要参数。 k越大,组分保留时间越长,k=0,组分的保留时间为死时间。
色谱分析方法基本理论
色谱分析方法基本理论一、保留时光理论保留时光是样品从进入色谱柱到流精彩谱柱所需要的时光,不同的物质在不同的色谱柱上以不同的流淌相洗脱会有不同的保留时光,因此保留时光是色谱分析法比较重要的参数之一。
保留时光由物质在色谱中的分配系数打算: tR=t0(1+KVs/Vm)式中:tR —某物质的保留时光; t0—色谱系统的死时光,即流淌相进入色谱柱到流精彩谱柱的时光,这个时光由色谱柱的孔隙、流淌相的流速等因素打算; K-分配系数; Vs,Vm—固定相和流淌相的体积。
这个公式又叫做色谱过程方程,是色谱学最基本的公式之一。
在薄层色谱中没有样品进入和流出固定相的过程,因此人们用比移值标示物质的色谱行为。
比移值是一个与保留时光相对应的概念,它是样品点在色谱过程中移动的距离与流淌相前沿移动距离的比值。
与保留时光一样,比移值也由物质在色谱中的分配系数打算: Rf=Vm/(Vm+KVs) 式中:Rf—比移值;K一色谱分配系数; Vs,Vm—固定相和流淌相的体积。
二、塔板理论塔板理论是色谱学的基础理论。
塔板理论将色谱柱看作一个分馏塔,待分别组分在分馏塔的塔板间移动,在每一个塔板内组分分子在固定相和流淌相之间形成平衡,随着流淌相的流淌,组分分子不断从一个塔板移动到下一个塔板并不断形成新的平衡。
色谱柱的塔板数越多,其分别效果越好。
按照塔板理论,待分别组分流精彩谱柱时的浓度随时光展现二项式分布,当色谱柱的塔板数很高时,二项式分布趋于正态分布。
流出曲线上组分浓度与时光的关系可以表示如下:式中:Ct—t时刻的组分浓度; C0—组分总浓度,即峰面积;σ—半峰宽,即正态分布的标准差; tR—组分的保留时光。
该方程称作流出曲线方程。
按照流出曲线方程,色谱柱的理论塔板高度被定义为单位柱长度的色谱峰方差: H=σ2/T 理论塔板高度越低,在单位长度色谱柱中的塔板数越多,分别效果越好。
打算理论塔板高度的因素有固定相的材质、色谱柱的匀称程度、流淌相的理化性质以及流淌相的流速等。
第二章 色谱分析基础
三聚氰胺
原料乳中添加三聚氰胺的色谱图(浓度 原料乳中添加三聚氰胺的色谱图(浓度4.00 mg/kg) )
仪器分析 生物与化学工程学院
第一节 色谱分析法概述 根据色谱峰的个数, 1. 根据色谱峰的个数,可判断样品所含的最少组 份数. 份数. 根据色谱峰的保留值,可以进行定性分析. 2. 根据色谱峰的保留值,可以进行定性分析. 根据色谱峰的面积或峰高, 可以进行定量分析. 3. 根据色谱峰的面积或峰高 可以进行定量分析.
2 t 理论塔板数与色谱 R = 16 t R n = 5.54 Y1 参数之间的关系为: 参数之间的关系为: W 2
2 t′ t′ R n = 5.54 = 16 R Y1 W 2 2
2
有效理论塔板数: 有效理论塔板数:
有效理论塔板高度: 有效理论塔板高度:
仪器分析
生物与化学区域宽度
A. 标准偏差 σ) 标准偏差( B. 半峰宽 1/2) Y1/2 =2.354 σ 半峰宽(Y C. 峰底宽 (Wb) Wb=4 σ
仪器分析 生物与化学工程学院
第一节 色谱分析法概述 ),色谱流出曲线给出的信息 (二),色谱流出曲线给出的信息
仪器分析 生物与化学工程学院
第一节 色谱分析法概述 ),分配比 容量因子) 分配比( (三),分配比(容量因子) k
ms k= mm
组分在固定相中的质量 组分在流动相中的质量
K与k都是与组分及固定相的热力学性质有关的常数. 与 都是与组分及固定相的热力学性质有关的常数. 都是与组分及固定相的热力学性质有关的常数 K与k都是衡量色谱柱对组分保留能力的参数,数值越 与 都是衡量色谱柱对组分保留能力的参数 都是衡量色谱柱对组分保留能力的参数, 该组分的保留时间越长. 大,该组分的保留时间越长. k可直接从色谱图上获得. 可直接从色谱图上获得. 可直接从色谱图上获得
色谱概论1-3章
气相色谱图
二、色谱流出曲线的意义: 从色谱图上可获得的信息有: 色谱峰的个数,可判断样品中所含组份的最少个数; 色谱峰的保留值,可进行定性分析; 色谱峰的峰高或峰面积,可进行定量分析;
色谱的保留值或区域宽度,是评价色谱柱分离性能的
色谱峰间距是固定相或流动相选择是否合适的依据。
依据;
a.死时间(tM) :不与固定相作用的物质从进样到出现 峰极大值时的时间,它与色谱柱的空隙体积成正比。 由于该物质不与固定相作用,因此,其流速与流动相的 流速相近。如用热导池检测器时,从注射空气样品到空气峰 顶出现时的时间。 b.保留时间(tR):试样从进样到出现峰极大值时的时
间。它包括组份随流动相通过柱子的时间tM和组份在固定相
第三节 色谱法的定义与分类
一、色谱法的定义
色谱法或色谱分析也称之为层析法,是一种物理化学的分 析方法,它利用混合物中各组分在两相间分配系数的差别,当 溶质在两相间做相对移动时,各物质在两相间进行多次分配, 从而使各组分得到分离。分离的仪器即色谱仪。
二、色谱法的分类
色谱法可按两相的状态及应用领域的不同分为两大类。 (一)按流动相与固定相的状态分类 1 .气相色谱 气相色谱又可分为气固色谱和气液色谱,前者是以气体为 流动相,以固体为固定相的色谱,后者是以气体为流动相,以 液体为固定相的色谱。 2 .液相色谱 液相色谱又可分为液固色谱和液液色谱,前者是以液体为 流动相,以固体为固定相的色谱;后者是以一种液体为流动相, 以另一种液体为固定向的色谱。
色谱分析
概论
第一章 绪论
第二章 色谱法的原理
第三章 色谱仪
第一章 绪论
1
色谱法的发展简史 色谱法与其他方法的比较和配合
现代色谱分析试题
现代⾊谱分析试题第⼀章⾊谱法概论1. 综述各种⾊谱法的特点及其应⽤。
2. 简要说明⽓相⾊谱法(GLC、GSC)、⾼效液相⾊谱法(HPLC的各类⽅法)特点及其应⽤范围?3. 试⽐较⾊谱法(GC、HPLC)之间的异同?第⼆章⾊谱基本理论例1 采⽤3M⾊谱柱对A、B⼆组分进⾏分离,此时测得⾮滞留组分的t M值为0.9min ,A组分的保留时间(t R(A))为15.1min,B组分的t R为18.0min,要使⼆组分达到基线分离(R=1.5),问最短柱长应选择多少⽶(设B组分的峰宽为1.1 min)?解⽅法(1):由已知条件,得n B=16(18.0/1.1)2=4284r i,B=18.0-0.9/15.1-0.9=1.20K/B=18.0-0.9/0.9=19则因为所以故⽅法(2):同⽅法(1)得n B=4284;r i,B=1.20;K/B=19所以则n B (R=1.5)=16 (1.5)2(1.2/0.2)2[(1+19)/19]2=1425故L=n (R=1.5)H=14250.07=99.8cm1m1.A、B ⼆组分的分配系数之⽐为0.912,要保证⼆者的分离度达到1.20,柱长因应选择多少⽶?设有效塔板⾼度为0.95mm.。
2.有⼀液相⾊谱柱长25cm,流动相速度为0.5ml/min,流动相体积为0.45ml,固定相体积为0.25ml,现测得萘、蒽、菲、芘四组分(以A、B、C、D)的保留值及峰宽如表3-1。
根据已知条件试计算出:(1)各组分容量及分配系数;(2)各组分的n及n eff;(3)各组分的H 值及H eff值;(4)画出四组分的K/值之间的关系曲线表3-1 在HPLC柱上测得的A、B、C、D 的组分t R(min) W h/2(min)⾮滞留组分ABCD 4.06.513.514.620.10.420.971.101.38答:(1)K/(A=0.60;B=2.38;C=2.65;D=4.03);(2)(A=4021;B=3099;C=2818;D=3394)n eff(A=595;B=1535;C=1486;D=2178);(3)H(A=0.06;B=0.08;C=0.09;D=0.07)H eff(A=0.42;B=0.16;C=0.17;D=0.11);(5)根据已有数据,绘出K/--n--n eff曲线,⾃⾏判断正确与否,并分析原因。
色谱分析理论基础
d
2 p
Dg
容量因子
液相传质阻力项CL u
试样组分从固定相表面移动到固定相内部的过程中, 由于质量交换过程需要一定时间(即传质阻力)而使分 子有滞留倾向。在此过程中,部分组分分子先离开固定 相表面,发生分子超前,引起色谱峰扩展。
C L
2 3
k (1 k)2
d
2 f
DL
液膜厚度
液相扩 散系数
气相色谱中的速率方程
1 2
(Y1
Y2
)
R1/ 2
tR(2) tR(1)
1 2
(Y1/ 2(1)
Y1/ 2(2) )
R越大,说明两组分分离得越好。 由于该定义综合了色谱动力学和热力学因素,可作为色 谱柱的总分离效能指标。
(2) 色谱分离基本方程(Purnell方程)
公式推导
tR
L uS
,tM
L u
tM tR
• 分离度R与理论塔板数N的平方根成正比关系, 增加塔板数,有利于提高分离度。
• 增加柱长可增加N,改善分离,但分析时间将 大大延长,峰产生扩展。
• 减小塔板高度H:
– 根据速率方程的启示制备一根性能优良的色谱柱是 十分重要的。
– 根据速率方程选择合适的色谱条件同样有效。
K的影响,如何改变k?
• 分离度与容量因子有关,容量因子越大,分离越好。
• 优点:应用简便,不需要其他仪器。 • 缺点:定性结果的可信度不高。
➢ 提高可信度的方法:双柱、双体系定性
文献值对照定性分析 (GC)
• 实现方法
➢ 测定相对保留值ri,s ➢ 测定保留指数I
• 优点:无需纯物质;保留指数具有较好的重现 性和精密度;只与固定相和柱温有关。
第2章气相色谱法
对分离较差,峰底宽度难于测量,则用下式表示分离度
R'
tR2 tR1
1 2
(Y12(1)
Y1 2
(
2)
)
20
C
W G
色谱分离基本方程式
体系的热力 学性质
R 1 n ( 1) ( k )
4
k 1
n
(
k
k
1)
2
n有效
R1 4
n有效
( 1)
现现 代代 仪器分析 仪器分析
改变k的方法是:
改变柱温:影响分配系数 改变相比:即改变固定相的量及柱的死体积(采用细颗粒的固定相,
填充紧密且均匀)
分离度与柱选择性的关系
α是色谱柱选择性的量度, α越大,色谱柱选择性越好,分离效 果越好
通过改变固定相,使各组分的分配系数有较大的差别
L
16R
2
(
1)2
17
W CG
现现 代代 仪器分析 仪器分析
B/u分子扩散项:“塞子”前后存在着浓度差
B 2Dg
弯曲因子
气相分子扩散系数
Dg
1
M 载气
摩尔质量大的载气可使B值变小,有利于分离
载气流速愈小,保留时间愈长,分子扩散项的影响也愈 大,从而成为色谱峰扩散的主要因素
18
W CG
现现 代代 仪器分析 仪器分析
调VM整,保或留V体R’=积tRV’·RF’0:指扣除死体积后的保留体积:VR’=VR-
相对保留值r21
指组分2与另一组分1的调整保留值之比。相对保留值只与柱 温及固定相性质有关,与其它色谱操作条件无关,它表示了 色谱柱对这两种组分的选择性: r21相差越大,分离越好。 r21 =1,不能分离
色谱基础理论
离子色谱:液相色谱的一种,以特制的离子交换树脂
为固定相,不同pH值的水溶液为流动相。
(3)其他色谱方法
薄层色谱和纸色谱:
比较简单的色谱方法
凝胶色谱法:测聚合物分子量分布
超临界色谱: CO2流动相。
高效毛细管电泳(0.05mm内径的毛 细管,采用了高达数千伏的电压) 九十年代快速发展、特别适合 生物试样分析分离的高效分析仪器
一、分配系数K和分配比k
1.分配系数K
组分在固定相和流动相间发生的吸附、脱附,或溶解、 挥发的过程叫做分配过程。在一定温度下,组分在两相间 分配达到平衡时的浓度(单位:g / mL)比,称为分配系数, 用K 表示,即:
溶质在固定相中的浓度 Cs K 溶质在流动相中的浓度 Cm
分配系数是色谱分离的依据。
2—3 色谱法分析的基本原理
色谱分析的目的是将样品中各组分彼此分 离,组分要达到完全分离,两峰间的距离必须 足够远,两峰间的距离是由组分在两相间的分 配系数决定的,即与色谱过程的热力学性质有 关。但是两峰间虽有一定距离,如果每个峰都 很宽,以致彼此重叠,还是不能分开。这些峰 的宽或窄是由组分在色谱柱中传质和扩散行为 决定的,即与色谱过程的动力学性质有关。因 此,要从热力学和动力学两方面来研究色谱行 为。
2-2 色谱流出曲线及有关术语
一.流出曲线和色谱峰
二、基线
是柱中仅有流动相通过时,检测器响应 讯号的记录值,即图中O—t线.稳定的基线 应该是一条水平直线.
பைடு நூலகம்
三、峰高
色谱峰顶点与基线之间的垂直距离,以h 表示,如图中B′A
四、保留值
1.死时间tM 不被固定相吸附或溶解的物质进入色谱柱 时,从进样到出现峰极大值所需的时间称 为死时间,如图中 O′A′。因为这种物质不 被固定相吸附或溶解,故其流动速度将与 流动相的流动速度相近.
第二章气相色谱分析
流出曲线方程
• C0为进样浓度;tR为保留时间; σ为标准偏差, C为时间t时在柱出口的浓度。
色谱柱长:L,
虚拟的塔板间距离:H, 色谱柱的理论塔板数:n, 则三者的关系为: n=L/H 理论塔板数与色谱参数之间的关系为:
保留时间包含死时间,在死时间内不参与分配!
有效塔板数和有效塔板高度
• 单位柱长的塔板数越多,表明柱效越高。 • 用不同物质计算可得到不同的理论塔板数。 • 组分在 tM 时间内不参与柱内分配。需引入有效塔板数 和有效塔板高度:
Cg 0.01k (1 k )
2
dp
2
Dg
液相传质阻力系数Cl为
由上式看出,固定相的液膜厚度df薄,组分在液相的 扩散系数D1大,则液相传质阻力就小。降低固定液的 含量,可以降低液膜厚度,但k值随之变小,又会使 C1增大。当固定液含量一定时,液膜厚度随载体的比 表面积增加而降低,因此,一般采用比表面积较大的 载体来降低液膜厚度,但比表面太大,由于吸附造成 拖尾峰,也不利分离。虽然提高柱温可增大Dl,但会 使k值减小,为了保持适当的Cl值,应控制适宜的柱 温。
2 色谱流出曲线及有关术语
1).流出曲线和色谱峰
2)、基线
是柱中仅有流动相通过时,检测器响 应讯号的记录值,稳定的基线应该是一条 水平直线。
3)、峰高
色谱峰顶点与基线之间的垂直距离,以h 表示。
4)、保留值
(1)时间表示的保留值
保留时间(tR):组分从进样到柱后出现浓度极 大值时所需的时间; 死时间(tM):不与固定相作用的气体(如空气 )从进样到出现峰极大值所需的时间称为死时 间; 调整保留时间(tR '):tR'= tR-tM
滞留因子(retardation factor):
2第二章 色谱法概论-速率理论
1 2
)
2
=ቤተ መጻሕፍቲ ባይዱ
n n
1 2
=
L L
1 2
虽说用较长的柱可以提高分离度,但延长了分析时间。 因此提高分离度的好方法是制备出一根性能优良的柱子, 通过降低板高,以提高分离度。
2.分离度与选择因子的关系 2.分离度与选择因子的关系
由基本色谱方程式判断,当α=1时,R=0,这时,无论 怎样提高柱效也无法使两组分分离。显然,α大,选择性好。 研究证明,α的微小变化,就能引起分离度的显著变化。一 般通过改变固定相和流动相的性质和组成或降低柱温,可有 效增大α值。
A=2λdp
上式表明,A与填充物的平均直径dp的大小和填充不规 则因子λ有关,与流动相的性质、线速变和组分性质无关。 为了减少涡流扩散,提高柱效,使用细而均匀的颗粒,并且 填充均匀是十分必要的。对于空心毛细管,不存在涡流扩散。 因此A=0。
2.分子扩散项B/u(纵向扩散项)
纵向分子扩散是由浓 度梯度造成的。组分从柱 人口加入,其浓度分布的 构型呈“塞子”状。如图 18S2所示。它随着流动相 向前推进,由于存在浓度 梯度,“塞子”必然自发 地向前和向后扩散,造成 谱带展宽。分子扩散项系 数为
4.分离度与分析时间的关系 分离度与分析时间的关系
下式表示了分析时间与分离度及其他因素的关系
tr
3 16 R 2 H α 2 (1 + k ) = ) ( u α −1 k 2
从上式,设
16 R 2 H α Q′ = ( )2 u α −1
则可得:
t
r
(1 + k ) ′ = Q k 2
3
tr
(1 + k ) 3 = Q′ k 2
环境仪器分析:第2章 色谱分析法
第二节 气相色谱理论基础
色谱分析的目的是将样品中各组分彼此分离,组 分要达到完全分离,两峰间的距离必须足够远。两峰 间的距离是由组分在两相间的分配系数决定的,即与 色谱过程的热力学性质有关。但是两峰间虽有一定距 离,如果每个峰都很宽,以致彼此重叠,还是不能分 开。这些峰的宽或窄是由组分在色谱柱中传质和扩散 行为决定的,即与色谱过程的动力学性质有关。因此, 要从热力学和动力学两方面来研究色谱行为。
对A、B两组分的选择因子,用下式表示:
α= tR(B)/tR(A)= k(A)/k(B)=K(A)/K(B)
通过选
择因子α把实验测量值k与热力学性质的分配系数K直接联系起来,
α对固定相的选择具有实际意义。如果两组分的K或k值相等,则
α=1,两个组分的色谱峰必将重合,说明分不开。两组分的K或k
值相差越大,则分离得越好。因此两组分具有不同的分配系数是
它不仅随柱温、柱压变化而变化,而且还与流动相及固定相的体 积有关。
k = ms/mm =CsVs/CmVm
式中cs,cm分别为组分在固定相和流动相的浓度;Vm为柱中流 动相的体积,近似等于死体积。Vs为柱中固定相的体积,在各种 不同类型的色谱中有不同的含义。
例如:在分配色谱中,Vs表示固定液的Байду номын сангаас积;在尺寸排阻色谱中, 则表示固定相的孔体积。
➢基线漂移(baseline drift):基线随时间定向的缓慢变化。
➢基线噪声(baseline noise):指各种因素所引起的基线起 伏。
3. 峰高 色谱峰顶点与基线之间的垂直距离,以(h)表示。
4. 保留值 (1) 死时间 tM 不被固定相吸附或溶解的物质(如空气、甲烷)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业:P131 41;42(思考);43;
第三节 色谱基本理论——塔板理论
GC是一种分离技术,组分先分离才 可定性定量. 如何选择最佳分离条 件,这需要色谱理论的指导.
一 塔板理论的假设
1 在理论板高H内,组分在气液相内快 速平衡
2 载气以脉冲式进入色谱柱 3 无纵向扩散(柱向扩散) 4 分配系数K是常数
一气体 H2 N2 Air 也可用CO2 Ne Ar 纯度要求大于99.99 %
气体控制系统
气体的纯化
检测器 TCD ;FID TCD ;FID FID ;ECD FID ;ECD
常用净化剂 变色硅胶: 分子筛 : 活性碳:
脱氧剂 :
作用
除H2O 除H2O 除有机物
除O2
气体的压力与流量的测量 常用皂膜流量计,用时先将皂膜流量计管 子内壁润湿
lg n(
lg
t, R(X )
lg
t, R(z)
t, R(Z n)
lg
t
, R(Z
)
)]
t’R(x)---待测物X的调整保留时间
t’R(z)---碳原子数为Z的正构烷烃的调整保留时间
t’R(z+n)---碳原子数为z+n的正构烷烃的调整保留时间
t’R(z) ≤t’R(x)≤ t’R(z+n) (通常 n=1)
规定正构烷烃的I 值是其他原子数的100倍,
如:正庚烷I=700
色谱柱效能的参数
柱效:也叫柱效能 。
n 5.54(
tR
)2 16( tR )2
W1/ 2
W
理论塔板数n
neff
5.54(
t
, R
)2
W1/ 2
16(
t
, R
)2
W
有效理论塔板数neff
理论塔板高度H
H=L/n
第二节 气路系统
第二章 色谱基本理论
第一节 色谱图及基本参数
色谱图: 色谱柱流出物通过检测器时所产生的响
应信号对时间的曲线图,其纵坐标为信号强度, 横坐标为保留时间.
色谱图示意图
色谱图相关术语 . 色谱峰(Peak): . 峰底(Peak Base): . 峰高 h (Peak Height): . 峰(底)宽 W (Peak Width): . 半(高)峰宽 W1/2 (Peak Width at Half Height):
留值的基本参保数 保留时间(tR)(Retention time): 死时间(tM)(Dead time): 调整保留时间(tR’) tR’= tR- tM, 校正保留时间(tR0) tR0=j tR, 净保留时间(tN) tN=j tR’,
保留值的基本参数
校正保留体积(VR0) :VR0=j VR 净保留体积 (VN) : VN=j VR’ 比保留体积(Vg): Vg=(273/Tc)(VN/ML)
的浓度之比。
K CL / CG
2 分配比(容量因子)K’:
平衡状态时组分在固定相(P)与流动相(q)中的质量之比。
K , CLVG / CGVG KVL /VG (tR tM ) / t M tR, / tM
讨论: K’=0 则 tR = tM 组分无保留行为 K’=1 则 tR = 2tM K’→∞ tR很大 组分峰出不来
1 色谱峰的个数,可判断所含组分的最少个数; 2 根据色谱峰的保留值,可以进行定性分析; 3 根据色谱峰的面积或峰高,可以进行定量分析; 4 色谱峰的保留值及其区域宽度,评价柱效依据;
5 色谱峰两峰间的距离
三 分配系数K与分配比(容量因子)K’ : 1 分配系数K
平衡状态时组分在固定相(CL)与流动相(CG)中
假设色谱柱由5块塔板组成: (0号板,1号,2号,…4号板) 令N=5(N表示进入柱中载气的脉冲次数 令组分进样量为:W=1 组分在柱内的分配过程是以气液色谱分
所以K’=1-5 最好 如何控制K’? 主要选择合适的固定液 色谱测K’容易(只测tR tM )所以常用K’
四 分配系数K与分配比K’的关系于
K =K’β β = VG/ VL= K/ K’
五 分配系数K,分配比K’与选择性 因子的关系
K2 K1
k2, k1,
保留指数 I
100[Z
根据对色谱柱模拟蒸馏 塔的假设条件,具体展开讨 论组分在色谱柱中移动分配 过程如下:
动画
二、色谱流出曲线方程 --基本关系式概率推导
设样品分子开始全部位于第0号塔板上, 当色谱柱中通过N体积载气后,计算在第 n块塔板上出现某组分分子的概率。这个 概率应该是考虑在塔板上某组分的一个 分子出现在流动相中的概率(Mp) 等于 在该塔板上流动相中组分分子的个数与 整个塔板上组分分子个数之比。
色谱图相关术语
.峰面积(Peak Area): .标准偏差(σ)(Standard Error): .拖尾峰(Tailing Peak): .前伸峰(Leadingk):
色谱图相关术语
. 基线(Baseline): . 基线飘移(Baseline Drift): . 基线噪声(N) (Baseline Noise): . 谱带扩展(Band Broadening):
有关分离的参数
• 一 相对保留值α • 又叫选择性系数或选择性因子
tR2 tM
tR1 tM
k
, 2
k1,
R 1
α=1时两个组分分不开,改变α的途径是:
改变固定相, 改变流动相, 改变样品本身的性质(如衍生化法)
二 区域宽度
(1)标准偏差σ (2) 半峰宽 W1/2 (3) 峰底宽度W 从色谱图中,可得许多信息:
载气流量的校正
用皂膜流量计测得的流量F皂(mL/min)是在柱后大 气压下测得的,欲将其换算成色谱条件下的流量FC需作 三种校正:湿度校正;压力校正;温度校正
1,湿度校正
F皂
P0
PW P0
2,压力校正
jF皂
P0 PW P0
TC Tr
PW ---室温下的的水饱 和蒸汽压 P0---柱出口处压力 Pi ---柱入口处压力
j
3(Pi 2(Pi
/ /
P0 )2 P0 )3
1 1
3,温度校正
FC
jF皂
P0 PW P0
TC Tr
Vg
273.16VN TC M L
Vg
273.16 TC
tR
t M
ML
P0 PW P0
TC Tr
jF皂
Vg
273.16 Tr
tR
t M
ML
P0 PW P0
jF皂
空心柱的载气流速通常不用皂膜流 量计测量。而是由tM计算得到 载气的平均线速U=L/ tM