发动机稀燃技术

合集下载

汽车发动机直喷稀燃技术应用分析

汽车发动机直喷稀燃技术应用分析

汽车发动机直喷稀燃技术应用分析摘要:随着车辆运输量的不断上升,每年都有着大批的新车辆投入应用,这样车辆的汽车发动机直喷稀燃技术就不断地需要更新,为了使得车辆的发动机直喷稀燃技术能够满足运输任务的需求,在对车辆进行安装和建造时,需要进一步的提高车辆的使用效率和质量。

本文通过对汽车发动机直喷稀燃技术的应用进行分析,以期为我国的车辆研究工艺带来一些参考帮助,为我国车辆汽车发动机直喷稀燃技术发展贡献出一份力量。

关键词:缸内直喷;稀薄燃烧;分层燃烧;高能点火;FSI前言汽车发动机直喷稀燃技术是一门综合性很强的技术,随着汽车发动机直喷稀燃技术在汽车机械生产的广泛应用,进一步使汽车生产企业的生产汽车的质量和使用效果得到了提高,大幅度的增加了企业综合竞争能力,但是由于中国在汽车生产制造方面的汽车发动机直喷稀燃技术研究措施起步与发达国家相比还比较晚,与国际水平还具有着相当的差距。

汽车发动机直喷稀燃技术的研究探讨与应用,是阻挡现今国内汽车制造业发展的主要问题。

1.汽车发动机直喷稀燃技术概念和在汽车制造中的应用价值分析1.1对汽车发动机直喷稀燃技术概念的分析及几种稀薄燃烧发动机装车实验结果FSI是FuelStratifiedInjection的英文缩写,其主要指的使燃油分层喷射,是直喷式汽油发动机领域的一项创新型的汽车发动机系统的革命性技术,FSI技术是指改变老式的汽油机通过从进气管中将空气与燃油混合的燃油供给系统的供油方式,而采用类似于柴油机供油原理一样的,通过喷油器直接往气缸内喷射汽油的供油方式,分层燃烧的主要目的是能够实现较稀混合气的点火燃烧,而缸内直喷设计的根本目的就是为了使得稀薄燃烧能够顺利进行,缸内直喷技术与稀燃技术存在着密不可分、相辅相成的关系[1]。

不仅如此,汽车发动机直喷稀燃技术指的是机械设备、点火设备以及软件进行合理的有机结合,通过车内软件和科学技术有效的实现汽车发动机的数控化的点火方式以及运行方式,进一步的提高汽车设备的智能性以及功能性水平。

汽油机稀薄燃烧控制技术

汽油机稀薄燃烧控制技术

汽油机稀薄燃烧控制技术李庆海【摘要】The vehicle gasoline engine rareness burning technology,can greatly improve the fuel economy of engine emission and improve performance,and has great potential of development,it is an inevitable trend in the development of internal combustion engine technology. The rareness burning technology based on the mixture stratified combustion, and on the basis of how to form in cylinders for mixture of concentration gradient distribution is the key to the rareness burning technology. This paper introduces the gasoline en- gine combustion mode,PFI thin combustion technology,GDI combustion technology and rareness burning gasoline engine control method.%车用汽油机采用稀薄燃烧技术,能大幅度地提高燃油的经济性并改善发动机排放性能,具有巨大的发展潜力,是内燃机技术发展的必然趋势。

稀薄燃烧技术建立在混合气分层燃烧的基础上,在气缸内如何形成适合的混合气浓度梯度分布是稀薄燃烧的关键技术。

介绍汽油机稀薄燃烧方式、PFI稀薄燃烧技术、GDI稀薄燃烧技术和汽油机稀薄燃烧控制方法。

稀薄燃烧技术

稀薄燃烧技术

首先,稀薄燃烧技术需要很强的点火能量。这一点很好理解,混合 气里面汽油的比例小了,混合气被点燃就需要更大的能量,而i-DSI 发动机采用双火花塞设计,就能很好的满足这一需求。 其次,稀薄燃烧技术需要空气能跟汽油充分混合。汽油在混合气中 的比例减小了,对于空气与燃油的混合要求就更高了。如果燃油不 能与空气充分混合,当火花塞点火的时候,遇到混合不均匀的混合 气中汽油更少的部分,点火将更加困难。本田给这款发动机采用了 传统的2气阀设计强的涡流,让汽油跟空气有更多混合的机会。 i-DSI发动机就是通过这些手段解决了稀薄燃烧的基本需求,实现 稀薄燃烧的。由于i-DSI是在普通缸外喷油发动机的基础上开发的, 所以它更注重的是燃油经济性,而对于功率输出,则没有太大帮助。 i-DSI发动机通过燃烧“更稀的混合气”达到同等功率输出的情况 下,燃烧更少的汽油。换句话说,就是让汽油能够更充分的燃烧, 尽可能的让所有的汽油都变成动力释放出来,从而降低燃油消耗。
这对于缸内直喷的发动机来说,问题尤为突出。由于缸内直喷发动机 的压缩比通常会设计得比较高,缸内压力比普通发动机更大,从而更 容易产生氮氧化物。我们都知道柴油发动机排放的氮氧化物通常会比 汽油发动机高出许多,主要也就是因为柴油发动机的压缩比高的缘故。 在无法降低压力的情况下(因为高压缩比是提高发动机效率的必要手 段),要减小氮氧化物的排放只能是通过降低气缸内的燃烧温度。 IDE发动机的EGR废气再循环系统,就是通过把一部分排出气缸的废 气再次引入到进气管内跟新鲜的空气和燃油混合燃烧,来降低燃烧室 的温度的。我们知道,燃烧完的废气是不能再燃烧的,这些废气被引 入到气缸内以后,会占据一部分气缸内的有效体积,这个效果相当于 降低了发动机的排量,这样自然能有效降低燃烧温度,同时排放的废 气自然就降低了。

汽油机稀薄燃烧技术

汽油机稀薄燃烧技术

稀薄燃烧的优势:

热效率随空燃比增加而增加 降低CO、HC和NOx的排放 改善发动机部分负荷性能

当今汽车工业面临的两大问题:环境污染加剧和能源使用过 度。这促使人们开发新的发动机技术。


进气道喷射的汽油机稀燃技术
GDI :Gasoline Direct Injection即缸内直喷汽油机。 优点:具有优良的燃油经济性和降低排放的潜力 国外情况:目前日本的三菱、丰田、本田,美国的福特、通 用,欧洲的AVL、Bosch等世界著名研究机构与生产企业都开 发了比较成熟的GDI机型和产品。 我国:技术还不太成熟,主要依靠国外技术支持来开发自己的 产品,如奇瑞与AVL公司共同开发的2.0升发动机同时具备以下 技术:TCI(废气涡轮增压中冷)、GDI(汽油直喷)、VVT(可变气 门正时)
• • •
一个螺旋进气道和一个直进气道控制涡流比 一个切向进气道和一个中性进气道控制涡流比 大幅降低进气门升程控制涡流比
绕气缸中心线的进气涡流
绕气缸中心线的进气涡流
进气道喷射的汽油机稀燃技术


进气涡流比电子控制
喷油正时电子控制

点火正时电子控制 稀薄燃烧λ闭环控制 稀燃极限电子控制 NOx排放的控制策略
扭矩调节 变质调节 变量调节
充量 分层 均质
喷油正时 压缩冲程的晚期 吸气冲程的早期
喷油压力 喷油雾化 油束穿透 高 的 好 差 浅 深
GDI电子控制策略
GDI技术的优点及其存在问题
4.1 GDI的优点 4.2 GDI技术存在的问题
4.2.1 排放问题 4.2.2 积炭 4.2.3 催化器问题 4.2.4 功能问题



GDI还减少了燃烧室壁的传热损失。

LNT技术

LNT技术

柴油机稀燃NOx捕集技术技术背景:全球石油短缺问题是内燃机行业无法避免的,柴油机相比于汽油机具有较高的热效率,因而燃油经济性较好,增加汽车中柴油机的比例对于降低石油的消耗有很大的作用。

但柴油机在排放方面有一些无法避免的缺点,其NOx和微粒的排放,造成酸雨和雾霾问题日趋严重。

柴油机稀燃捕集技术对于减少NOx的排放有较好的效果,相比于SCR系统,系统简单且占用的空间小,适合轻型柴油车的安装和使用。

工作原理:柴油机稀燃NOx捕集技术(lean NOx trap,LNT)是利用发动机混合气浓度变化而进行周期性的吸附-催化还原的一种后处理技术。

LNT可以用燃料和未燃THC做还原剂,省却复杂的还原剂喷射装置。

其反应原理为在稀燃状态时(氧气多),尾气处于氧化气氛中,在铂的催化作用下,发动机中的NO 与O2反应生成NO2,并以硝酸盐的形式吸附在催化器表面,当发动机在浓燃条件下工作时,发动机排气中的HC 和CO 的含量增加,把硝酸盐分解释放出的NOx,在催化剂铑的作用下与CO,HC 和H2 反应生成N2,CO2和H2O,并使碱金属再生。

LNT通过交替循环进行捕集和还原两个工作阶段来降低排放。

捕集阶段是LNT在稀燃条件下吸附尾气中的NOx,还原阶段是LNT在富燃条件下将所吸附的NOx还原成无毒的N2。

优缺点:由于LNT的这些特点尤其是系统简单占用空间小,因此主要用于欧IV以上排放水平的轻型柴油车,以及尿素供应不便地区的重型柴油车。

但LNT有一些缺点,由于使用贵金属,因而成本高于SCR催化剂,而且要求柴油含硫量小于10ug/g。

需要多喷燃料进行还原反应,导致发动机油耗增加。

从图1可以看出SCR 在占用空间、硬件设施和成本上处于劣势,图2显示SCR 这一技术只在重量较大的车型上处于优势,比如货车。

LNT 系统的组成和化学反应机理LNT 的组成结构和三元催化器相似,由氧化铝(Al 2O 3)作载体,Pt 或Rh 作催化剂。

发动机稀燃技术

发动机稀燃技术

发动机稀燃技术稀燃是稀薄燃烧的简称,指发动机在实际空燃比大于理论空燃比的情况下的燃烧,空燃比可达25:1,甚至更高。

稀薄燃烧不仅使燃料的燃烧更加完全,而且也减少了换气损失,同时辅以相应的排放控制措施,大大降低了汽油机的有害排放物,因此具有良好的经济性和排放性能。

稀薄燃烧可以提高发动机燃料经济性的主要原因是,由于稀混合气中的汽油分子有更多的机会与空气中氧分子接触,燃烧完全。

采用稀混合气,由于气缸内压力低、温度低,不易发生爆燃,则可以提高热效率。

燃用稀混合气,由于其燃烧后最高温度降低,一方面使通过汽缸壁的传热损失较小,另一方面燃烧产物的离解损失减少,使热效率得以提高。

且当采用稀薄混合气燃烧时,由于进入缸内空气的量增加,减小了泵吸损失,这对汽油机部分负荷经济性的改善非常有利。

另外,稀薄燃烧时燃烧室内的主要成分O2和N2的比热容较小,多变指数K 较高,因为发动机的热效率高,燃油经济性好。

从理论上讲,混合气越稀,热效率越高。

但就普通发动机来说,当过量空气系数α>1.05~1.15后,油耗反而增加。

这是由于混合气过稀时,发动机混合气分配的均匀性变得更加敏感,循环变动率增加,个别缸失火的概率增加;等等,如果不解决这些问题,盲目地调稀混合气,不但不能发挥稀混合气理论上的优势,反而会费油。

燃用混合气的技术途径1)使汽油充分雾化,对均质燃烧要保证混合气均匀及各缸混合气分配均匀。

消除局部区域混合气偏稀的现象,避免电喷发动机调整时的有意加浓;同时,使缸内混合气的实际含量有所增加,失火及不稳定现象就会大大减少,发动机便可以在较稀混合气含量的条件下工作。

要是汽油充分雾化,可以在预热、增加进气流的速度、增强进气流的扰动、增加汽油的乳化度以及使汽油分子磁化等方面采取措施。

2)采用结构紧凑的燃烧室。

使压缩时形成挤流,以提高燃烧速度,从而提高燃烧效率,减少热损失。

一般采用火花塞放在正中的半球形或蓬顶形燃烧室,或其他紧凑型的燃烧室。

发动机稀燃技术与分层燃烧技术

发动机稀燃技术与分层燃烧技术

• 应当指出,稀薄燃烧不一定分层。 这种两级分层燃烧发动机的优点是: ① 等熵指数高 ② 可以采用高压缩比,当采用高辛烷值的汽油时,
压缩比可以提高到11~12,因而大大提高了发动 机的动力性和经济性。 ③ 燃烧温度低,传热损失和高温分解的热损失小 ④ 排污少 • 分层燃烧发动机的缺点:
混合气,可提高热效率。如采用空燃比20和27,将比空燃比14.8 时热效率分别提高8%和12%。 – 排气污染严重。一般汽油机所需的空燃比正是废气排放高的范围
稀薄燃烧汽油机与传统汽油机的性能对比
• 但事实上,当过量空气系数>1.05~1.15之后,油耗 反而增加。这是由于混合气过稀,燃烧速度过于缓 慢,等容燃烧速度下降,补燃增加,热工转化的有 效性下降;燃烧速度下降,混合气发热量和分子改 变系数减小,指示功减小,机械效率下降;混合气 过稀,发动机对于混合气分配的均匀性和汽油、空 气及废气三者的混合均匀性变得更加敏感,循环变 动率增加。如果不解决这些问题,盲目地调稀混合 气,不但不能发挥稀混合气理论上的优势,反而会 更费油。
2. 加快燃烧速度。这是稀燃技术的必要条件和实施的 基础。提高燃烧速度的主要措施是组织缸内的气体 运动和提高压缩比
3. 提高点火能量,延长点火持续时间。高能点火和宽 间隙火花塞有利于火核的形成,火焰传播距离缩短, 燃烧速度提高,稀燃极限大。有些稀燃发动机采用 双火花塞或者多极火花塞装置来达到上述目的
分层燃烧技术
• 含义:如果在火花塞附近的局部区域内,供给适 宜点火的浓混合气(α=0.8~0.9),而在其他区域 供给给稀混合气,这样可以实现稀薄燃烧。在这 种情况下,即使采用普通点火系,也能很快地点 燃很稀的混合气。由于混合气有浓、稀层次之分, 燃烧的进展也从浓到稀,故把按上述方式工作的 汽油机成为分层燃烧汽油机。

谈发动机稀薄燃烧技术

谈发动机稀薄燃烧技术

谈发动机稀薄燃烧技术作者:普忠正来源:《读写算·素质教育论坛》2016年第04期中图分类号:G718.1 文献标识码:A 文章编号:1002-7661(2016)04-0114-02稀薄燃烧是提高燃油经济性的重要手段,发动机稀薄燃烧技术是为了让混合气得到更加充分的燃烧,达到减低油耗和排放的目的。

稀薄燃烧应用于汽油机缸内直接喷射技术,因此,要实现分层燃烧必须基于缸内直喷。

近些年来,对以分层稀薄燃烧缸内直喷汽油机为代表的新型稀薄燃烧模式的研究和应用极大地提高了汽油机的燃油经济性。

一、稀薄燃烧的概述稀薄燃烧FSI是Fuel Stratified Injection的英文缩写,意指燃油分层喷射。

什么叫稀燃?顾名思义就是发动机混合气中的汽油含量低,空燃比可达30~40∶1。

理论上,一份汽油完全燃烧需14.7份空气。

即理论空燃比为14.7。

一般发动机只有在中等负荷时以稍稀的经济混合气,空燃比在16~18∶1范围内运转,完全混合时,40∶1的混合气是无法点燃的。

稀薄燃烧技术的最大特点就是燃烧效率高,经济、环保,同时还可以提升发动机的功率输出。

因为在稀薄燃烧的条件下,由于混合气点火比理论空燃条件下困难,爆燃也就更不容易发生。

因此,可以采用较高的压缩比设计提高热能转换效率,再加上汽油能在过量的空气里充分燃烧,所以在这些条件的支持下能榨取每滴汽油的所有能量。

二、稀薄燃烧发动机的特点1.缸内直喷实现分层燃烧的前提是缸内直喷(又叫GDI),喷油器安装在汽缸盖上,将汽油直接喷入气缸。

且喷油压力可达5Mpa(缸外喷射方式汽油的喷油压力0.1~ 0.5Mpa),这归功于一个高压油泵的作用。

与传统汽油机不同,缸内直喷发动机类似柴油机高压共轨系统,汽油泵从油箱吸出燃油,经过高压泵加压,存在高压分配管(共轨),再送至各缸喷油器。

喷油器接收ECU信号将高压汽油喷入气缸,如图1所示。

(图1)2.涡流的形成和分层燃烧涡流的形成的实现分层燃烧的关键。

汽油机稀薄燃烧

汽油机稀薄燃烧

涡流的分层效果仍可大体一直保持 到压缩上止点,有利于点火燃烧。 不难看出,在这种燃烧系统中影响 稀燃效果的主要因素是缸内涡流的 强度和喷油定时。一般说来,涡流 越强,缸内混合气上下混合的趋势 就越弱,分层效果保持得就越好。 喷油定时和喷油速率决定了缸内混 合气在流场中的空间分布以及浓度 梯度。稀燃极限与喷油定时关系很 大,只有在进气行程的某一区间内 结束喷油,才能得到理想的混合气 分层。 当前的稀燃汽油机普遍采用多 进气门结构,在空气运动方面,即 使以涡流为主的稀燃发动机也不采 用单纯的涡流运动,而是在中高负 荷时采用涡流,在低负荷时采用涡 流控制阀等可变进气技术在缸内形 成斜轴涡流。这种稀燃发动机的代 表是丰田公司的进气道喷射第三代 稀燃系统、本田公司的 VTCE-E 以 及马自达公司的稀燃系统。丰田第 三代稀燃系统和马自达稀燃系统的 共同特点是都采用涡流控制阀 (SCV)来调节涡流的强度, 采用1 个 直气道和 1 个螺旋气道组织空气运 动。在低负荷时,SCV 关闭获得强 的涡流;在高负荷时,SCV 打开获 得斜轴涡流,促进燃油与空气的混
46
2 00 7- 6
技术与研究
分别在进气和压缩行程中喷入气缸, 形成界于两者之间的混合气,可以 实现负荷从中小区域向大负荷区的 平稳过渡,并可以降低缸内的气体 温度,从而抑制了爆燃的发生,增 加了功率的输出。
2 稀薄燃烧的优缺点
2.1 稀薄燃烧的优点 稀薄燃烧系统能使有效的燃油 发挥出最大的效率,使汽油机燃烧 室内的燃烧更加完全,不但大大地 降低了汽油机的燃油消耗率,也大 大地改善了汽油机的尾气排放。缸 内直喷式汽油机(GDI)超稀薄空燃 比的利用和工作方式的改变有不少 优点,如取消节流降低了泵气损 失,燃油蒸发引起了缸内温度的降 低,提高了汽油机可工作的压缩 比;燃油在进气行程中对进气的冷 却,提高了充气效率等。这些优点 可以使发动机的燃油经济性提高 25% 左右,动力输出也比进气道喷 射的汽油机增加了将近 10% 。GDI 发动机除了温室气体 CO 2 排放较少 外,由于其冷却启动迅速快捷,很 少需要冷启动加浓,因而可以大幅 度降低冷启动时未燃碳氢( U B H C ) 的排放。 2.2 稀薄燃烧的缺点 2.2.1 成本高 由于稀薄燃烧系统的结构较为 复杂,对喷油系统的要求也相当严 格, 使喷油系统的结构也较为复杂, 由此使制造成本明显增加。 2.2.2 NO x 排放量增加 NOx 虽然采用了较稀的空燃比, 因气缸内的反应温度较低而降低, 但由于分层混合气由浓到稀将不可 避免地出现过量空气系数为1 附近 的偏浓区域,会导致这些地方的 NOx 生成增加。另外,较高的压缩比 和较快的反应放热率也会引起 NO x 的升高。一般来说,缸内直喷式汽

汽车稀燃技术

汽车稀燃技术

汽车稀燃技术稀燃技术释义:发动机“ 稀燃” 技术指通过一定的技术手段, 降低发动机混合气中的汽油含量, 以达到降低能耗和排气污染目的的技术。

采用稀燃技术的汽油发动机,空气与汽油之比(通常是质量比)可达25:1以上(正常情况下,理论空燃比为14.7)。

实现稀燃的关键技术汽车汽油发动机实现稀燃的关键技术归纳起来有以下三个主要方面:一、提高压缩比采用紧凑型燃烧室,通过进气口位置改进使缸内形成较强的空气运动旋流,提高气流速度;将火花塞置于燃烧室中央,缩短点火距离;提高压缩比至13:1左右,促使燃烧速度加快。

二、分层燃烧如果稀燃技术的混合比达到25:1以上,按照常规是无法点燃的,因此必须采用由浓至稀的分层燃烧方式。

通过缸内空气的运动在火花塞周围形成易于点火的浓混合气,混合比达到12:1左右,外层逐渐稀薄。

浓混合气点燃后,燃烧迅速波及外层。

为了提高燃烧的稳定性,降低氮氧化物(NOx),现在采用燃油喷射定时与分段喷射技术,即将喷油分成两个阶段,进气初期喷油,燃油首先进入缸内下部随后在缸内均匀分布,进气后期喷油,浓混合气在缸内上部聚集在火花塞四周被点燃,实现分层燃烧。

三、高能点火高能点火和宽间隙火花塞有利于火核形成,火焰传播距离缩短,燃烧速度增快,稀燃极限大。

有些稀燃发动机采用双火花塞或者多极火花塞装置来达到上述目的。

以上三点只是对整体汽油发动机稀燃技术而言,具体到某种机型会有所偏重。

因为各种汽油发动机稀燃方式的技术措施不完全一样,甚至同一部发动机在不同的工况下稀燃方式也会不完全一样。

有些着重缸内气流运动及燃油分布的配合,重点在分层燃烧。

有些着重加大点火能量、增快火焰传播速度和缩短火焰传播距离,重点在高能点火。

汽油机稀薄燃烧技术..

汽油机稀薄燃烧技术..

日产1.6升缸内直喷涡轮增压发 动机工作演示视频
FSI和GDI两者关系
• 分层燃烧技术和缸内直喷技术一直是相关联的。分层燃烧 的真正目的是可以实现较稀混合气的点燃,要实现分层燃 烧,必须基于缸内直喷,对于缸外喷射的发动机,是无法 实现分层燃烧的。而设计缸内直喷的主要目的则是为了实 现稀薄燃烧,因此二者走到了一起。而发动机的稀薄燃烧 技术是为了让混合气更加充分燃烧,达到减低油耗和排放 的目的。
与传统技术把燃油喷入进 气歧管的发动机相比,FSI发 动机的主要优势有:动态响 应好、功率和扭矩可以同时 提升、燃油消耗降低。 理论上,FSI发动机油三种工 作方式:分层燃烧、均质稀 燃和均质燃烧。
实际应用
奥迪采用的FSI® 燃 油直喷技术在同等 排量下实现了发动 机动力性和燃油经 济性的完美结合, 是当今汽车工业发 动机技术中最为成 熟、最先进的燃油 直喷技术,并引领 了汽油发动机的发 展趋势。
联系课本内容
FSI将燃油直接喷入燃烧室,由于喷雾的气 化冷却作用,它优化了充气效率,从而实现 了汽油机匀质调节,不再需要节气门,大大 降低了进气损失,分层燃烧减少了发动机的 传热损失,进而增大了满负荷。
返回目录
GDI是指缸内直喷技术。缸内喷注式汽油发动机与一 般汽油发动机的主要区别在于汽油喷射的位置,目前 一般汽油发动机上所用的汽油电控喷射系统,是将汽 油喷入进气歧管或进气管道上,与空气混合成混合气 后再通过进气门进入气缸燃烧室内被点燃作功;而缸 内喷注式汽油发动机顾名思义是在气缸内喷注汽油, 它将喷油嘴安装在燃烧室内,将汽油直接喷注在气缸 燃烧室内,空气则通过进气门进入燃烧室与汽油混合 成混合气被点燃作功,这种形式 与直喷式柴油机相似,因此有人 认为缸内喷注式汽油发动机是将 柴油机的形式移植到汽油机上的 一种创举。

车用发动机的稀薄燃烧系统分析

车用发动机的稀薄燃烧系统分析

空燃比不可能提高很多, 降低汽油机的燃油经济 性有限= 近些年来, 对以分层稀薄燃烧缸内直喷汽 油机和均质压燃汽油机为代表的新型稀薄燃烧模 式的研究, 极大地提高了汽油机的燃油经济性; 且 较好地改善汽油机的排放性能=
收稿日期: !""$
"!
@A
作者简介: 陈B 燕 ( @%$C ) , 女, 副教授, 硕士 =
第 !" 卷 第 # 期 !""$ 年 % 月
山东理工大学学报 ( 自 然 科 学 版) &’()*+, ’- ./+*0’*1 2*345)6378 ’- 95:/*’,’18 (.:3 ; 95:/ )
<’,= !" >’= # .5?= !""$
文章编号: @$D! E$@%D ( !""$ ) "# E""FD E "C
[ @] 了一定的进展 , 但由于均质点 燃模式的限制,
稀薄燃烧指的是空燃比为 @DV @ W !"V @ 混合 气的燃烧过程, 它可以使燃料的燃烧更加完全= 由 理论分析可知, 在加热量和压缩比相同的情况下, F 种不同燃烧 (加热) 方式的理论循环, 等容燃烧 循环的放热量最小, 热效率最高= 点燃式发动机的 燃烧循环更接近定容加热循环, 定容加热循环热 效率取决于压缩比和绝热指数 !" 压缩比愈高, 理 论循环的热效率就愈高; 绝热指数 ! 愈大, 热效 率愈高" 在燃烧过程中, 稀混合气可以提高发动机 燃料经济性的主要原因是由于稀混合气中的汽油 分子有更多的机会与空气中氧分子接触, 容易燃
车 用 发 动 机 的 稀 薄 燃 烧 系 统 分 析

发动机新技术-稀燃及柴汽混燃发动机技术

发动机新技术-稀燃及柴汽混燃发动机技术

1.12.2 HEMI发动机MDS系统结构和工作原理
• MDS是英文Multi Displacement System的简称, 即多段式排气量调节系统。
MDS系统使发动机工作汽 缸在8缸和4缸之间切换, 它最大的好处就是提高了 发动机的燃油经济性。
1.13 发动机管理系统 1.13.1 发动机管理系统概述
• 汽车发动机管理系统(Engine Management System,简称EMS)
1.国外发动机管理系统制造商。 (1)德国博世有限公司。 (2)西门子威迪欧公司。 (3)德尔福公司。 (4)摩托罗拉公司。 (5)日本电装株式会社。
2. 国内发动机管理系统制造商。
(1)上海联合汽车电子有限公司。 (2)北京德尔福万源发动机管理系统有限公司。 (3)西门子威迪欧汽车电子(长春)有限公司。 (4)长安伟世通汽车发动机控制系统(重庆)有限公司。 (5)马瑞利动力系统(上海)有限公司。 (6)意昂神州科技有限公司。 (7)北京美加汽车科技公司。 (8)北京志阳同光汽车电控软件有限公司。 (9)中顺电子(东莞)有限公司。 (10)康佳汽车电子公司。 (11)上海新代车辆技术有限公司。
大家好
• 1.5 稀燃发动机 • 1.5.1 发动机稀燃系统的特点
喷油正时对稀燃系统的燃烧速度和燃烧稳定性具有一定的 影响。
稀燃系统的点火正时需要合理匹配。
汽油机实现稀燃的关键技术: • 提高压缩比。 • 分层燃烧技术。 • 高能点火。
• 1.5.2 发动机稀燃系统的控制 • 1. 空燃比的闭环控制(反馈控制)。
1.11 W12发动机
• W12型发动机采用Motronic ME7.1.1管理系 统
• W12发动机的特点:
结构紧凑,重量轻。 发动机的高度显著降低。 采用干式润滑系统。

稀燃发动机用催化技术

稀燃发动机用催化技术
责 任 编 辑 : 兆 杰 孙
( 上接 2 0页)体接触面的界面剪应力 , 9 对于加 筋复合体的变形性能起着关键的作用。 结语

31 一

件下显示了较好的催 化活性 ,但 由于气相氧和 N O分解产生 的氧原子在催化剂活 中心上的吸 附阻碍 了 N O的进一步吸附和分解 ,其催化活 性和 选择性 在氧 和水蒸 气存 在条 件下迅 速降 低, 其应用前景并不乐观。因此 , 采用适 当的还 原剂有效地清除催化剂表面的吸附氧 ,从而促 进催化循环 的选择催 化还 原( C 受到了广泛 S R)
的各类汽车一直有很大 比例 (0 2 %) 稀燃 2 %~ 5 。 汽 油机的 C Hc N O、 、 O 三种有 害气体排放物 已 经大 幅度 降低 , 但是 , 要想满足当今越来越严 格 的排放法规要求 ,仍需采用进一步的废气净 化 措施 。 采用传统的电控燃油喷射 E I三效催化 F+ 转化器 的技术方案 ,可 以使得按理论 空燃 比工 作 的 汽 油 机 C H N 三 种 有 害 排 放 物 同 时 O、 C、 O、 大 幅度 降低 。但是 , 对稀燃 汽油机 , 由于其尾气 直处于 富氧状 态 ,虽然 汽油机的 C HC有 O、 害排放物较小 ,但汽油机 的 N O 有害排放物却 较难 在三效催 化器作用下转 化为无 害的氮 气。 这 主要是 由于在稀燃发动机 的尾气中过量的氧 加 剧了还 原剂的完全氧化反应 ,从而降低了还 原N O 的选择性 , 而使得三效催化转化器对 进 N O 的催化转化率 降低 。由于汽油机稀 燃技术 的发展 ,目前 汽油机催化领域探索稀燃条件下 工 作 的脱除 NO 的新 型催化剂 成为 当前 国际 上 具有 挑 战性 课 题 。 目前已有的脱除 NO 的方法可分为非催化 法和催 化法两大类 。非催化法主要包括湿式吸 收法、 固体 吸附法 、 电子束 照射法等 。这些方法 往 往存 在设 备庞大 、费用高 ,有二次污染等问 题。催化法是 目 前研究得较 多的… 种脱除 N O 的方法 , 它包括 N O 的催 化分解 和催化还原 。 2N O 的催化脱除研究 21 O 的催 化分解 . N N l 催 化分解 是在 固体催 化剂存 在下 , o的 利用 NO 直接 分解 反应使之 转化 为无害 的 N

什么是稀薄燃烧稀薄燃烧的优点

什么是稀薄燃烧稀薄燃烧的优点

什么是稀薄燃烧稀薄燃烧的优点稀薄燃烧就是发动机在空燃比大于理论空燃比时的燃烧。

那么你对稀薄燃烧了解多少呢?以下是由店铺整理关于什么是稀薄燃烧的内容,希望大家喜欢!稀薄燃烧的简介稀薄燃烧,实践证明这种燃烧方式既能降低燃油消耗,又能减少发动机的有害排放物,尤其是在低负荷时,由于进入缸内空气的量增加,同时也由于电控喷射的采用可实现变质调节,不用节气门或是小节流,减小了泵吸损失,特别有利于改进部分负荷性能。

虽然NOx、HC、CO 等排放物随空燃比的增大而变化的规律不尽相同,但是如果能合理地设计紧凑的燃烧室,并组织好空气运动,使燃烧在短时间内完成,那么三种排放都可以大大减少,因此,稀薄燃烧再结合最新的电子控制技术,被公认为是提高车用汽油机效率和降低排放的最有前途的一种方法。

稀薄燃烧的优点稀薄燃烧可以降低发动机的燃油耗最主要的原因是:采用稀薄混合气燃烧时循环热效率提高。

汽油机的实际循环接近于定容加热循环,而定容加热循环的指示热效率与压缩比和绝热指数成正比的关系。

随着空燃比的提高,空气所占的量增加,因此工质的绝热指数逐渐接近于空气的绝热指数,也就是在理论上,当空燃比达到无限大时,热效率达到最大值。

稀薄燃烧对排放的改善主要表现在,随着空燃比的增加,由于采用稀的混合气使燃烧温度降低,NOx 的排放明显减少,同时燃烧产物中的氧成分有利于HC 和CO 的氧化,因此,HC 和CO 的排放也减小。

稀薄燃烧存在的问题尽管稀燃能实现提高经济性并且同时改善排放,然而在实际的应用上存在着一些难以解决的问题,主要是:(1)当混合物变稀时,着火延迟时间加长,再加上火焰传播速度慢,使得完全燃烧更加困难。

(2)当混合气变稀时,如果火花塞周围的燃油混合气浓度降低,所需的最小点火能量迅速增加,火核难以形成,不仅使点火困难,而且使滞燃期增长,使得最佳点火提前角增大,燃烧效率降低。

同时,火焰传播速度的变慢还使发动机的循环变动增加,汽车的驾驶性能下降。

LNT技术

LNT技术

柴油机稀燃NOx捕集技术技术背景:全球石油短缺问题是内燃机行业无法避免的,柴油机相比于汽油机具有较高的热效率,因而燃油经济性较好,增加汽车中柴油机的比例对于降低石油的消耗有很大的作用。

但柴油机在排放方面有一些无法避免的缺点,其NOx和微粒的排放,造成酸雨和雾霾问题日趋严重.柴油机稀燃捕集技术对于减少NOx的排放有较好的效果,相比于SCR 系统,系统简单且占用的空间小,适合轻型柴油车的安装和使用。

工作原理:柴油机稀燃NOx捕集技术(lean NOx trap,LNT)是利用发动机混合气浓度变化而进行周期性的吸附-催化还原的一种后处理技术。

LNT可以用燃料和未燃THC做还原剂,省却复杂的还原剂喷射装置。

其反应原理为在稀燃状态时(氧气多),尾气处于氧化气氛中,在铂的催化作用下,发动机中的NO 与O2反应生成NO2,并以硝酸盐的形式吸附在催化器表面, 当发动机在浓燃条件下工作时,发动机排气中的HC 和CO 的含量增加,把硝酸盐分解释放出的NOx,在催化剂铑的作用下与CO,HC 和H2 反应生成N2,CO2和H2O,并使碱金属再生.LNT通过交替循环进行捕集和还原两个工作阶段来降低排放。

捕集阶段是LNT在稀燃条件下吸附尾气中的NOx,还原阶段是LNT在富燃条件下将所吸附的NOx还原成无毒的N2.优缺点:由于LNT的这些特点尤其是系统简单占用空间小,因此主要用于欧IV以上排放水平的轻型柴油车,以及尿素供应不便地区的重型柴油车。

但LNT有一些缺点,由于使用贵金属,因而成本高于SCR催化剂,而且要求柴油含硫量小于10ug/g。

需要多喷燃料进行还原反应,导致发动机油耗增加。

从图1可以看出SCR 在占用空间、硬件设施和成本上处于劣势,图2显示SCR 这一技术只在重量较大的车型上处于优势,比如货车。

LNT 系统的组成和化学反应机理LNT 的组成结构和三元催化器相似,由氧化铝(Al 2O 3)作载体,Pt 或Rh 作催化剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发动机稀燃技术
稀燃是稀薄燃烧的简称,
指发动机在实际空燃比大于理论空燃比的情况下的燃烧,空燃比可达25:1,甚至更高。

稀薄燃烧不仅使燃料的燃烧更加完全,而且也减少了换气损失,同时辅以相应的排放控制措施,大大降低了汽油机的有害排放物,因此具有良好的经济性和排放性能。

稀薄燃烧可以提高发动机燃料经济性的主要原因是,由于稀混合气中的汽油分子有更多的机会与空气中氧分子接触,燃烧完全。

采用稀混合气,由于气缸内压力低、温度低,不易发生爆燃,则可以提高热效率。

燃用稀混合气,由于其燃烧后最高温度降低,一方面使通过汽缸壁的传热损失较小,另一方面燃烧产物的离解损失减少,使热效率得以提高。

且当采用稀薄混合气燃烧时,由于进入缸内空气的量增加,减小了泵吸损失,这对汽油机部分负荷经济性的改善非常有利。

另外,稀薄燃烧时燃烧室内的主要成分O2和N2的比热容较小,多变指数K 较高,因为发动机的热效率高,燃油经济性好。

从理论上讲,混合气越稀,热效率越高。

但就普通发动机来说,当过量空气系数α
>1.05~1.15后,油耗反而增加。

这是由于混合气过稀时,发动机混合气分配的均匀性变得更加敏感,循环变动率增加,个别缸失火的概率增加;等等,如果不解决这些问题,盲目地调稀混合气,不但不能发挥稀混合气理论上的优势,反而会费油。

燃用混合气的技术途径
1)
使汽油充分雾化,对均质燃烧要保证混合气均匀及各缸混合气分配均匀。

消除局部区域混合气偏稀的现象,避免电喷发动机调整时的有意加浓;同时,使缸内混合气的实际含量有所增加,失火及不稳定现象就会大大减少,发动机便可以在较稀混合气含量的条件下工作。

要是汽油充分雾化,可以在预热、增加进气流的速度、增强进气流的扰动、增加汽油的乳化度以及使汽油分子磁化等方面采取措施。

2)
采用结构紧凑的燃烧室。

使压缩时形成挤流,以提高燃烧速度,从而提高燃烧效率,减少热损失。

一般采用火花塞放在正中的半球形或蓬顶形燃烧室,或其他紧凑型的燃烧室。

3)
加快燃烧速度。

这是稀燃技术的必要条件和实施的基础。

提高燃烧速度的主要措施是组织缸内的气体运动和调高压缩比。

4)
提高点火能量,延长点火的持续时间。

对于常规含量的混合气而言,普通点火系所提供的点火能量已经足够,但燃用稀混合气就应当设法提高点火能量。

高能点火和宽间隙火花塞有利于火核形成,火焰传播距离缩短,燃烧速度提高,稀燃极限大。

有些稀燃发动机采用双火花塞或者多级火花塞装置来达到上述目的。

采用分层燃烧技术。

如果稀燃技术的混合比达到25:1以上,按照常规是无法点燃的,因此必须采用由浓至稀的分层燃烧方式。

如果在火花塞附近的局部区域内供给适宜点火的浓混合气,而在其他区域供给相当稀的混合气,也可以实现稀混合气燃烧。

在这种情况下,即使采用普通点火器,也能很快地点燃很稀的混合气,于是火焰得以传播并遍及整个燃烧室。

把采用上述方式工作的汽油机成为分层充气汽油机或分层燃烧汽油机。

分层充气是稀混合气燃烧的主要手段,绝大多数稀燃发动机都是采用分层充气方案。

2、
分层燃烧系统分层燃烧系统基本均采用燃油喷射技术。

按照燃油喷射的不同形式,将分层稀燃系统分为气道喷射(PFI)稀燃系统和直接喷射(GDI)稀燃系统;
按照混合气的不同组织方式,将分层稀燃系统分为轴向分层稀燃系统和纵向(滚流)分层稀燃系统。

稀燃汽油机一般可分为进气道燃油喷射式和缸内燃油喷射式两类。

一般情况下, 将进气道燃油喷射式汽油机称为稀燃汽油机将缸内燃油喷射式汽油机称为直喷式汽油机。

3、稀燃技术的发展20世纪70年代初有人开始研究稀燃技术。

日本的丰田及本田公司首先探索了一种带副燃烧室, 由稀混合气, 用催化剂净化排气的发动机。

但这种燃烧方式由于从副燃烧室喷出火焰会
造成热能损失,对改善燃油经济性的效果不明显。

自此以后, 随着进气口的改进, 气缸内旋涡生成技术的进步, 由通用、福特、丰田、本田、日产等汽车公司先后研制成的开口式燃烧室可以形成比带副燃烧室还好的稀薄混合气燃烧, 并且随着进气口燃料喷射技术的发展和稀混合气传感器技术的开发, 精密控制空燃比已成为可能。

80 年代中期, 丰田正式使稀混合气发动机( T- LCS) 产品化
, 三菱、本田也相继将其产品产品化。

进入90 年代, 三菱汽车公司研制出的缸内直喷技术使稀燃技术又进了一步。

目前, 各大公司都拥有自己的稀燃技术, 其共同点都是利用缸内涡流运动, 使聚集在火花塞附近的混合气最浓, 先被点燃后迅速向外层推进燃烧
,并有较高的压缩比。

早期的稀燃系统如丰田TGP燃烧系统、本田分层燃烧系统CVCC 等结构较为复杂影响因素多, 难控制, 不易在所有工况下都获得较好的性能, 所以虽有不错的试验结果却很难应用于产品而现代的稀燃系统, 如三菱的MVV、韩国现代的HMC
发动机等大都采用多气门技术和电控燃油喷射技术, 具有结构简单、易于控制、可靠性高和各工况下都能获得较高性能等优点, 使得许多稀燃技术具有了实用价值。

相关文档
最新文档