塞曼效应实验资料报告材料完整版

合集下载

塞曼效应实验报告完整版

塞曼效应实验报告完整版

塞曼效应实验报告完整版[实验报告标题][摘要]本实验通过实验测量了在磁场中的谱线分裂现象,即塞曼效应。

利用自制的光学仪器测量了铯原子的谱线分裂,验证了磁场对谱线的影响。

实验结果表明,在磁场存在下,谱线会发生分裂,且分裂数量与磁场的强度正相关。

本实验对于深入理解原子光谱和量子力学有重要的意义。

[引言]塞曼效应是物理学中一个重要的现象,它揭示了磁场对于原子能级结构的影响。

塞曼效应通过分裂原子的光谱线,使我们能够更加准确地研究原子结构和磁场的关系。

塞曼效应的发现对于量子力学和磁学的发展起到了重要的推动作用。

本实验旨在利用自制的光学仪器观察和测量铯原子的塞曼效应,并验证磁场对于谱线分裂的影响。

[实验原理]塞曼效应是指原子在外加磁场作用下,能级发生分裂,不同能级对应的谱线分成多条。

根据塞曼效应的原理,我们可以通过测量分裂后的谱线数量来间接测量磁场的强度。

塞曼效应分为正常塞曼效应和反常塞曼效应。

正常塞曼效应是指能级的劈裂符合朗德因子gJ的规律,而反常塞曼效应则不符合。

根据塞曼效应的原理,我们可以得到塞曼能级的能量差公式为:ΔE=gJμBΔM其中,ΔE是能级的能量差,gJ是朗德因子,μB是玻尔磁子,ΔM是能级的劈裂数。

[实验步骤]1.搭建实验装置:使用自制的光学仪器搭建实验装置,包括光源、单色仪、磁场系统和光电倍增管。

2.调节光源和单色仪:使用准直的光源和单色仪,使光线垂直入射并通过单色仪的狭缝得到单色光。

3.加入磁场:打开磁场系统,通过调节电流和磁场方向,使得磁场垂直于光线传播的方向。

4.观察光谱:在磁场存在下,观察光谱线的变化,记录分裂后的谱线数量。

5.测量磁场强度:通过调节磁场的电流,测量分裂后的谱线数量与磁场强度的关系。

[实验结果]在实验中,我们使用铯原子作为样品,观察了它的谱线在磁场存在下的分裂情况。

通过观察和测量,我们发现在磁场存在下,铯原子的谱线发生了分裂,分裂数量与磁场的强度正相关。

[实验讨论]通过本实验的观察和测量结果,我们得出了塞曼效应对光谱线的影响是存在且可测量的。

塞曼效应实验的报告完整版

塞曼效应实验的报告完整版

塞曼效应实验的报告完整版 .doc
报告标题:塞曼效应实验
I.实验目的
本实验旨在通过模拟和观察塞曼效应,以加深对其机理的理解。

II.实验原理
塞曼效应是一种电磁学效应,能够在一个可逆的非线性系统中产生特殊的振荡行为,并可以在实验中得到观察。

该效应的本质是由于振子实体和振子系统之间存在耦合、反馈所致。

III.实验装置
本实验采用塞曼效应实验装置,由振子、激励电路、检测电路及检测仪组成。

IV.实验步骤
1. 用激励电路给振子施以外力,使振子振荡起来,检测电路会检测振子的振幅和频率,并将数据显示在检测仪上;
2. 逐渐增大激励电路的电流,观察振子振幅和频率的变化;
3. 逐渐减小激励电路的电流,观察振子振幅和频率的变化;
4. 重复上述步骤,观察塞曼效应的变化。

V.实验结果
随着激励电路的电流的增加,振子的振幅和频率也会随之增大,当电流达到一定程度时,振子的振幅和频率开始急剧减小,甚至几乎停止振动,然后再慢慢回升,这正是塞曼效应的表现。

VI.实验总结
本实验通过模拟和观察塞曼效应,加深了对其机理的理解。

实验结果表明,在激励电路的电流达到一定程度时,振子的振幅和频率开始急剧减小,甚至几乎停止振动,然后再慢慢回升,这正是塞曼效应的表现。

实验-塞曼效应

实验-塞曼效应

实验三 塞曼效应实验目的:1.观察汞5461埃光谱线的塞曼效应,并测量它分裂的波长差。

2.测定电子的荷质比e/m 值。

实验原理:当光源置于外磁场中,光源发出的每一条光谱线都将分裂成几条波长相差很小的偏振化分谱线,这一现象称为塞曼效应。

设原子某一能级的能量为E 0,在磁感应强度为B 的外磁场的作用下,原子将获得附加的能量∆E :∆E=Mg B μ BM 为磁量子。

M=J,J-1,…..,-J,共有(2J+1)个值。

因此,原来的一个能级将分裂成(2J+1)个子能级。

子能级的间隔相等,并正比于B 和朗德因子g ,对于L-S 耦合的情况:g=1+)1(2)1()1()1(++-+++J J L L S S J J式中B μ为玻尔磁子,B μ=mhe π4。

设频率为υ的光谱线是由原子的上能级E 2跃迁到下能级E 1所产生(h υ= E 2- E 1),在外磁场的作用下,上下两能级各获得附加能量∆E 2,∆E 1,因此,每个能级各分裂成(2J 2+1)个和(2J 1+1)个子能级。

这样,上下两个子能级之间的跃迁,将发出频率为υ'的谱线,并有h υ'=(E 2+∆E 2)-( E 1+∆E 1)= (E 2- E 1)+(∆E2-∆E 1)= h υ+(M 2g 2- M 1g 1)B μ B分裂后的谱线与原谱线的频率差将为∆υ=(M 2g 2- M 1g 1)B μB/hc=(M 2g 2- M 1g 1)L其中L=B μB/hc=4.67*105-B(cm 1-)L 称为洛仑兹单位,正是正常塞曼效应所分裂的裂距。

在能级跃迁时,磁量子数受到选择性定则和偏振定则所限制。

1.选择性定则:∆M =M 2- M 1=0(当∆J=0 M 1=0 M 2=0 被禁止) ∆M=±1 2.偏振性定则:说明:1.K 为光传播方向矢量,H为外磁场方向。

2. π成分表示光波的电矢量E 平行于B ,σ成分表示E 垂直于B.3.在光学中,如果光线对于观察者迎面而来,这时电矢量若按逆时针方向旋转,我们称之为左旋圆偏振光;若逆时针方向旋转,则称之为右旋圆偏振光。

塞曼效应的实验报告

塞曼效应的实验报告

塞曼效应一、实验目的1、研究塞曼分裂谱的特征2、学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。

二、实验原理对于多电子原子,角动量之间的相互作用有LS耦合模型和JJ耦合某型。

对于LS耦合,电子之间的轨道与轨道角动量的耦合作用及电子间自旋与自旋角动量的耦合作用强,而每个电子的轨道与自旋角动量耦合作用弱。

原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。

总磁矩在磁场中受到力矩的作用而绕磁场方向旋进,可以证明旋进所引起的附加能量为二E 二Mg」B B ( 1)其中M为磁量子数,卩B为玻尔磁子,B为磁感应强度,g是朗德因子。

朗德因子g表征原子的总磁矩和总角动量的关系,定义为g =1 . J(J T)-L(L 1) S(S 1)- 2J(J 1)其中L为总轨道角动量量子数,S为总自旋角动量量子数,J为总角动量量子数。

磁量子数M只能取J, J-1,J-2,…,-J,共(2J+1)个值,也即AE有(2J+1 )个可能值。

这就是说,无磁场时的一个能级,在外磁场的作用下将分裂成(2J+1)个能级。

由式(1)还可以看到,分裂的能级是等间隔的,且能级间隔正比于外磁场B以及朗德因子g。

能级E1和E2之间的跃迁产生频率为v的光,其中hv = E2 - E1在磁场中,若上、下能级都发生分裂,新谱线的频率v '满足hv'=(E2址2)-匕.迟)=库2 -巳)(汨2 - EJ = hv (M2g2 -皿鸟广皐即分裂后谱线与原谱线的频率差为* 4B B:v =v - v' = (M 2g2 - Mj)二(3)h代入玻尔磁子% =空,得到4血e:v = (M 2g 2 -M ⑼) B4rm等式两边同除以c ,可将式(4)表示为波数差的形式e.■:二-(M 2g 2 - M i g i )4兀meeB 4 二 me其中L 称为洛伦兹单位,且 L =0.467B 塞曼跃迁的选择定则为:M =0,_1当AM =0,为n 成分,是振动方向平行于磁场的线偏振光,只在垂直于磁 场的方向上才能观察到,平行于磁场的方向上观察不到,但当J = 0时,M 2 =0 到M i = 0的跃迁被禁止;当1,为c 成分,垂直于磁场观察时为振动垂直于磁场的线偏振光, 沿磁场正向观察时,M = 1为右旋圆偏振光,厶M 二_1为左旋圆偏振光。

塞曼效应实验报告模板

塞曼效应实验报告模板

一、实验目的1. 理解塞曼效应的原理和现象。

2. 探究原子光谱线在磁场中的分裂情况。

3. 测量塞曼效应中光谱线的分裂间距,验证塞曼效应的规律。

二、实验原理塞曼效应是指在外加磁场作用下,原子光谱线发生分裂的现象。

根据量子力学理论,当原子处于磁场中时,其能级将发生分裂,导致光谱线发生分裂。

根据分裂规律,可推导出光谱线的分裂间距与磁场强度之间的关系。

三、实验仪器与材料1. 激光光源:He-Ne激光器2. 光谱仪:光栅光谱仪3. 磁场发生器:直流电源、线圈、磁场计4. 望远镜:放大镜5. 滤光片:色散滤光片6. 透明塑料板:用于固定光谱仪7. 电脑:用于数据处理和分析四、实验步骤1. 调整激光光源,使其发出稳定的激光束。

2. 将激光束通过色散滤光片,选取特定波长的激光束。

3. 将光栅光谱仪固定在透明塑料板上,调整光谱仪的位置,使激光束照射到光谱仪上。

4. 将磁场发生器接通电源,调节线圈,使磁场强度达到实验要求。

5. 观察光谱仪上的光谱线,记录光谱线的位置。

6. 改变磁场强度,重复步骤5,记录不同磁场强度下的光谱线位置。

7. 利用数据处理软件,对实验数据进行处理和分析。

五、实验结果与分析1. 根据实验数据,绘制磁场强度与光谱线位置的关系图。

2. 分析光谱线的分裂规律,验证塞曼效应的原理。

3. 计算光谱线的分裂间距,与理论值进行比较,分析误差来源。

六、实验结论1. 通过实验验证了塞曼效应的原理,即原子光谱线在磁场中发生分裂。

2. 实验结果与理论值基本吻合,说明实验方法可靠。

3. 分析误差来源,为今后实验提供参考。

七、实验讨论1. 在实验过程中,如何保证激光束的稳定性?2. 如何减小实验误差,提高实验精度?3. 塞曼效应在实际应用中有哪些领域?八、实验报告总结本次实验通过对塞曼效应的观察和测量,验证了塞曼效应的原理。

实验过程中,我们掌握了实验方法,提高了实验技能。

同时,通过实验结果的分析,加深了对塞曼效应的理解。

塞曼效应实验报告完整版

塞曼效应实验报告完整版

北昌大教物理真验报告之阳早格格创做教死姓名:教号:5502210039博业班级:应物101班真验时间:西席编号:T017结果:塞曼效力一、真验手段1.瞅察塞曼效力局面,把真验截止与表面截止举止比较. 2.教习瞅测塞曼效力的真验要领.3.估计电子核量比.二、真验仪器WPZ—Ⅲ型塞曼效力真验仪三、真验本理塞曼效力:正在中磁场效率下,由于本子磁矩与磁场相互效率,使本子能级爆收团结.笔直于磁场瞅察时,爆收线偏偏振光(π线战σ线);仄止于磁场瞅察时,爆收圆偏偏振光(左旋、左旋).依照半典范模型,品量为m,电量为e的电子绕本子核转化,果此,本子具备一定的磁矩,它正在中磁场B中会赢得一定的磁相互效率能E∆,由于本子的磁矩Jμ与总角动量P的闭系为J2J J e g P m μ=(1)其中g 为朗德果子,与本子中所有电子德轨讲战自旋角动量怎么样耦合成所有本子态的角动量稀切相闭.果此, cos cos 2J J e E B g P B m μαα∆=-=-(2)其中α是磁矩与中加磁场的夹角.又由于电子角动量空间与背的量子化,那种磁相互效率能只可与有限个分坐的值,且电子的磁矩与总角动量的目标好异,果此正在中磁场目标上,cos ,,1,,2J h P M M J J J απ-==--(3)北昌大教物理真验报告教死姓名:刘惠文 教号:5502210039博业班级:应物101班真验时间: 西席编号:T017 结果:式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数.设:4B hem μπ=,称为玻我磁子,0E 为已加磁场时本子的能量,则本子正在中表磁场中的总能量为00B E E E E Mg B μ=+∆=+(4)由于朗德果子g 与本子中所有电子角动量的耦合有闭,果此,分歧的角动量耦合办法其表白式战数值真足分歧.正在L S -耦合的情况下,设本子中电子轨讲疏通战自旋疏通的总磁矩、总角动量及其量子数分别为L μ、L P 、L 战S μ、S P 、S ,它们的闭系为 (1),222L L e e h P L L m m μπ==+(5)(1),2S S e e h P S S m m μπ==+(6) 设J P 与L P 战S P 的夹角分别为LJ α战SJ α,根据矢量合成本理,只消将二者正在J μ目标的投影相加即可得到形如(1)式的总电子磁矩战总轨讲角动量的闭系:2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJL LJ S SJ J L S J L S J J J L S J J J e P P mP P P P P P e m P P P P P e P P me g P m μμαμααα=+=++--+=+-+=+=(7)其中朗德果子为(1)(1)(1)1.2(1)J J L L S S g J J +-+++=++(8)由(*)式中不妨瞅出,由于M 公有(2J +1)个值,所以本子的那个能级正在北昌大教物理真验报告教死姓名:刘惠文 教号:5502210039博业班级:应物101班真验时间: 西席编号:T017 结果:中磁场效率下将会团结为(2J +1)个能级,相邻二能级隔断为B g B μ.果为g 由量子态决断,所以分歧能级团结的子能级隔断分歧.设频次为ν的谱线是由本子的上能级2E 跃迁到下能级1E 所爆收的,则磁场中新谱线频次形成ν',则)()(1122E E E E h ∆+-∆+='ν频次好为ν∆=ν'-ν=h E E 12∆-∆=m eBg M g M π4)(1122-用波数好表示为ν~∆=m c eB g M g M π4)(1122-=L g M g M )(1122-,其中L为洛伦兹单位,L =m e c B ⋅π4 四、π线战σ线:跃迁时M 的采用定则:012=-=∆M M M ,1±,当M =0时,笔直于磁场目标瞅察时,爆收的振荡目标仄止于磁场的线偏偏振光喊π线;仄止于磁场瞅察时π线身分没有出现.当M =1±时,笔直于磁场目标瞅察时,爆收的振荡目标笔直于磁场的线偏偏振光喊σ线;仄止于磁场瞅察时,爆收圆偏偏振光,M =1+,偏偏振转背是沿磁场目标前进的螺转化动目标,磁场指背瞅察者时,为左旋圆偏偏振光;M =1-,偏偏振转背是沿磁场目标倒退的螺转化动目标,磁场指背瞅察者时,为左旋圆偏偏振光.五、错序瞅察法:汞546.1nm 谱线正在磁场效率下团结为9条子谱线,其裂距相等为L 21.其中3条π线,6条σ线.采与加大磁场的要领使某些分量错序,而且正佳与相邻搞涉序的另一些分量沉叠(即错序瞅察法),进而测得磁场强度B .北昌大教物理真验报告 教死姓名:刘惠文 教号:5502210039博业班级:应物101班真验时间: 西席编号:T017 结果: 对于共一搞涉序分歧波少战的波少好闭系为:其波数的闭系为六、估计荷量比m e :果为各子谱线裂距为L 21,所以波数好ν~∆=L 21=⋅21m e c B ⋅π4,则m e =B c πν4~2⨯∆⨯=()νπ~292335.08∆⨯⨯-⨯d x c四、真验真量1. 安排F-P 尺度具.2. 安排光路.3. 瞅察瞅察汞绿线 546.1nm 正在加上磁场前后战没有竭删大磁场时的搞涉圆环 的变更情况;转化偏偏振片决定哪些谱线是π成份,哪些是σ成份;形貌局面并加以表面证明.4. 正在励磁电流 I=3A (B=1.2T )条件下调出塞曼团结的π谱线,用硬件处理图片,测出 e/m 的值.北昌大教物理真验报告教死姓名:刘惠文 教号:5502210039博业班级:应物101班真验时间: 西席编号:T017 结果:五、真验数据处理由真验测得数据知:=1.77/e c kg m 11()⨯10测所以百分缺点1.77 1.76100=100=0.571.76e e m m E e m ()-()-=⨯%⨯%%()理测理六、真验缺点分解1. 真验仪器的粗确度没有下2.真验历程中绘圈测圆的半径时,由于是目测的,引导无法透彻七、真验归纳及体验1.通过真验,是自己相识并掌握了塞谦效力的基根源基本理.2.由该真验的支配,又教会了丈量荷量比的另一种要领. WPZ—Ⅲ型塞曼效力真验仪的基础的使用支配.已加磁场的直线图π直线图σ直线图。

塞曼效应实验报告

塞曼效应实验报告

塞曼效应实验报告一、实验目的与实验仪器实验目的:(1)掌握观测塞曼效应的方法,理解原子磁矩及空间量子化等原子物理学概念;(2)学习法布里-珀罗标准具的调节方法以及CCD 器件在光谱测量中的应用;(3)观察汞原子546.1nm 谱线的分裂现象及偏振状态,由塞曼裂距计算电子荷质比。

实验仪器:永磁塞曼效应实验仪主要由控制主机、笔形汞灯、毫特斯拉计探头、永磁铁、会聚透镜、干涉滤光片、法布里-珀罗标准具、成像透镜、读数显微镜、导轨以及六个滑块组成。

二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)1.原子总磁矩和总角动量关系电子轨道磁矩和轨道角动量满足电子自旋磁矩和自旋角动量满足合成可得到总磁矩和总角动量满足其中朗德因子2.外磁场对原子能级的作用外磁场引起电子进动产生附加能量总角动量在磁场方向的分量时量子化的,满足即无外磁场时的一个能级在外磁场作用下分裂为2J +1个子能级,且每个子能级的附加能量正比于外磁场B ,与朗德因子g有关。

3.塞曼效应的选择定则两能级间跃迁需满足以下选择定则4.汞绿线在外磁场中的塞曼效应本实验中所观察的汞绿线546.1nm对应于跃迁6s7s3S1→ 6s6p3P2,能级跃迁图如图5.法布里-珀罗标准具的原理和性能当单色平行光束以小角度入射时在两个平面进行多次反射与透射,若光程差为波长整数倍将在焦平面上发生相长干涉,此时若采用拓展光源照明,将在F-P标准具中产生等倾干涉,产生一组同心圆环。

6.分裂后各谱线的波长差或波数差的测量靠近中央各花纹的入射角 与它的直径D有如下关系则在同一序中不同波长之差满足用中心花纹干涉序代替被测花纹得到进一步可得电子荷质比为三、实验步骤(要求与提示:限400字以内)1.如图组装各光学元件并调节至等高共轴2.从测量望远镜中观察干涉圆环发生分裂的图像3.旋转偏振片至看到每级三个的分裂圆环,测量四个圆的直径D c、D a、D k,测量中心磁场的磁感应强度B,计算电子荷质比并计算测量误差。

塞曼效应实验报告

塞曼效应实验报告

一、实验目的1. 理解塞曼效应的原理和现象;2. 通过实验观察塞曼效应,验证其存在;3. 学习光栅摄谱仪的使用方法;4. 掌握数据处理和误差分析的方法。

二、实验原理塞曼效应是指在外加磁场作用下,原子或分子的光谱线发生分裂的现象。

塞曼效应的发现对研究原子结构和电子角动量有重要意义。

本实验采用光栅摄谱仪观察汞原子谱线的分裂情况,以此对外加磁感应强度进行估测。

根据量子力学理论,原子中的电子具有轨道角动量L和自旋角动量S,两者耦合形成总角动量J。

原子总磁矩与总角动量不共线,在外加磁场作用下,总磁矩与磁场有相互作用,导致能级发生分裂。

三、实验仪器与材料1. 光栅摄谱仪;2. 阿贝比长仪;3. 汞原子光源;4. 电磁铁装置;5. 望远镜;6. 测微目镜;7. 数据采集卡;8. 计算机。

四、实验步骤1. 将汞原子光源、电磁铁装置和光栅摄谱仪连接好;2. 调节光栅摄谱仪,使汞原子光源发出的光通过光栅后成像于望远镜;3. 将电磁铁装置通电,产生外加磁场;4. 观察并记录汞原子谱线的分裂情况;5. 关闭电磁铁装置,重复实验步骤,观察无外加磁场时的谱线情况;6. 对比两组数据,分析塞曼效应的存在;7. 使用阿贝比长仪测量光栅常数;8. 根据光栅摄谱仪的成像原理和能级分裂公式,计算外加磁感应强度。

五、实验结果与分析1. 实验现象:在外加磁场作用下,汞原子谱线发生分裂,形成若干条偏振的谱线;2. 数据处理:根据光栅摄谱仪的成像原理和能级分裂公式,计算外加磁感应强度;3. 误差分析:分析实验过程中可能存在的误差来源,如光栅常数测量误差、光栅角度测量误差等;4. 结果验证:将实验结果与理论值进行对比,验证塞曼效应的存在。

六、实验总结1. 本实验成功观察到了塞曼效应,验证了其存在;2. 通过实验,掌握了光栅摄谱仪的使用方法;3. 学会了数据处理和误差分析的方法;4. 对原子结构和电子角动量的研究有了更深入的了解。

七、实验拓展1. 研究不同磁场强度下塞曼效应的变化规律;2. 观察其他元素原子的塞曼效应;3. 研究塞曼效应在激光技术、天体物理等领域的应用。

(完整word版)塞曼效应实验报告

(完整word版)塞曼效应实验报告

1、前言和实验目的1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。

2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。

3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。

2、实验原理处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。

下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。

总磁矩为J μ 的原子体系,在外磁场为B 中具有的附加能为:E ∆= -J μ*B由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。

则我们有:E ∆= -z μB =B g m B J J μ其中z μ为J μ在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ=em ehπ4称为玻尔磁子,J g 为朗德因子,其值为 J g =)1(2)1()1()1(1++++-++J J S S L L J J由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。

当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=∆j m 。

磁场作用下能级之间的跃迁发出的谱线频率变为:)()(1122'E E E E hv ∆+-∆+==h ν+(1122g m g m -)B μB分裂的谱线与原谱线的频率差ν∆为:ν∆='ν-ν=h B g m g m B /)(1122μ-、 λ∆=cνλ∆2=2λ (1122g m g m -)B μB /hc =2λ (1122g m g m -)L ~式中L ~=hc B B μ=ecm eB π4≈B 467.0称为洛仑兹单位(裂距单位)。

塞曼效应实验报告

塞曼效应实验报告

塞曼效应实验报告一、实验目的1.通过实验观察塞曼效应的发生,验证原子核磁矩对外磁场的取向作用。

二、实验器材1.塞曼效应实验装置,包括强磁场、光源、分光仪、接收屏等。

2.气泡瓶、稳流源、透镜、准直器等。

三、实验原理塞曼效应是电子在外磁场中发生能级分裂的现象。

当处于磁场中的一些原子的电子由高能级向低能级跃迁时,如果有出射光,它的频率会因磁场的作用发生分裂,而出射光的谱线会因此而加宽。

根据Δν=2ν(H=0)-(ν(H≠0)1+ν(H≠0)2),可以得到磁场对于光谱线频率的分裂。

四、实验步骤1.将实验装置放在一个较为安静的环境中,避免外界光的干扰。

2.通过气泡瓶和稳流源将光线发射到空气中,然后利用透镜和准直器将光线聚焦。

3.调整实验装置中的光源和分光仪,使其达到最佳状态。

4.打开分光仪和接收屏,观察到塞曼效应的现象。

5.调节外磁场的强弱,观察到光谱线频率的分裂情况。

6.记录实验数据,并进行分析。

五、实验结果在实验中,我们通过调节外磁场的强弱,观察到了光谱线频率的分裂情况。

随着外磁场的增强,光谱线逐渐分裂成多个衍射条纹,而且分裂的条纹数随着磁场的增强而增多。

六、实验分析通过实验观察到的结果,我们可以得出以下结论:1.塞曼效应的发生是由于原子核磁矩对外磁场的取向作用引起的。

2.外磁场的增强会导致光谱线频率的分裂,分裂的条纹数与磁场的强弱成正比关系。

3.塞曼效应的观察需要一个相对安静的环境,避免外界光的干扰。

七、实验总结通过本次实验,我学习了塞曼效应的发生机制,并通过实验验证了原子核磁矩对外磁场的取向作用。

在实验中,我对实验器材的操作也更加熟悉了,提高了我实验操作的能力。

然而,本次实验还存在一些问题。

首先,实验装置中的光源和分光仪需要精细调节,操作起来比较繁琐。

其次,由于实验环境的限制,外界光的干扰对实验结果也会产生影响。

希望在今后的实验中能够进一步改进和完善。

总的来说,本次实验收获颇多,学到了新的知识,提高了实验技能。

实验报告塞曼效应

实验报告塞曼效应

一、实验目的1. 观察塞曼效应,了解其在原子物理中的重要性。

2. 通过实验,加深对原子磁矩和能级结构的理解。

3. 掌握光栅摄谱仪的使用方法,以及如何通过摄谱法观测谱线的分裂情况。

二、实验原理塞曼效应是指在外加磁场的作用下,原子发射或吸收的光谱线发生分裂的现象。

根据能级分裂的条数和偏振状态,可以推断出原子的能级结构。

当原子置于外磁场中时,其总磁矩与外磁场相互作用,使得原子能级发生分裂。

分裂的条数与能级的类别有关,分裂的能级间隔与外磁场的强度成正比。

实验中,我们采用光栅摄谱仪观测汞原子(546.1nm)谱线的分裂情况,并通过计算能级间隔,验证塞曼效应的存在。

三、实验仪器与设备1. 光栅摄谱仪2. 阿贝比长仪3. 汞灯4. 电磁铁装置5. 聚光透镜6. 偏振片7. 546nm滤光片8. Fabry-Perot标准具9. 成像物镜与测微目镜组合而成的测量望远镜四、实验步骤1. 将汞灯安装在电磁铁装置上,调节磁场强度,使磁场平行于汞灯发出的光束。

2. 使用聚光透镜将汞灯发出的光变为平行光束,通过偏振片过滤掉未偏振的光。

3. 将平行光束照射到Fabry-Perot标准具上,使其发生多光束干涉,形成干涉条纹。

4. 通过调节标准具间距,使干涉条纹清晰可见。

5. 将光栅摄谱仪放置在测量望远镜的物镜前方,调节望远镜的位置,使光谱线聚焦在光栅上。

6. 观察并记录汞原子(546.1nm)谱线的分裂情况,包括分裂的条数和偏振状态。

7. 通过计算能级间隔,验证塞曼效应的存在。

五、实验结果与分析1. 实验观察到了汞原子(546.1nm)谱线的分裂现象,分裂的条数为3条,符合塞曼效应的理论预测。

2. 通过计算能级间隔,验证了塞曼效应的存在。

计算结果与理论值基本吻合。

六、实验总结通过本次实验,我们成功地观察到了塞曼效应,并验证了其理论预测。

实验过程中,我们掌握了光栅摄谱仪的使用方法,以及如何通过摄谱法观测谱线的分裂情况。

此外,我们还加深了对原子磁矩和能级结构的理解。

塞曼效应实验报告完整版精选全文完整版

塞曼效应实验报告完整版精选全文完整版

可编辑修改精选全文完整版
塞曼效应实验报告完整版
实验目的:
通过进行塞曼效应的实验,研究射线源在磁场中的分裂现象,验证波粒二象性的存
在。

实验原理:
塞曼效应,是指原本等能级的原子在外磁场作用下,出现不同的能级分裂。

可以用
光子或其他粒子流的谱线来观察。

物质在外磁场中,上下能级之间产生能量差,使得粒子
发射出光子,光谱上的位置发生了偏移。

实验仪器:
光度计、干涉仪、磁场源、光源、光学接口装置、光电倍增管等。

实验步骤:
1、安装实验仪器,并开启磁场源。

2、引入射线光源,调整透光孔的大小,使光线通过光学接口进入干涉仪。

3、按照干涉仪的使用方法,将光线分裂成两条,并分别通过两个磁场源,经过调整,使得两个光路中光的能级相差光子的数量,即出现干涉条纹。

4、使用光度计测量两条光路的干涉条纹的强度,并记录数据。

5、重复以上实验步骤,分别改变光的波长和磁场强度,多次测量干涉条纹的位置和
强度。

实验结果:
1、在磁场作用下,两个不同的能级出现了不同的能量分裂。

2、通过干涉仪观察到了干涉条纹,并记录了干涉条纹的位置和强度。

实验分析:
1、塞曼效应的观察证明了波粒二象性的存在。

2、干涉条纹的出现和强度变化,说明干涉仪可以用于精确测量物质的性质。

3、通过测量不同条件下的干涉条纹,研究物质的性质和特性有重要意义。

通过本实验观察到了塞曼效应的现象,并通过干涉仪得到了干涉条纹的位置和强度变化。

通过研究物质在不同条件下的干涉条纹,可以研究物质的性质和特性,具有重要的研究价值。

塞曼效应实验报告

塞曼效应实验报告

塞曼效应实验报告一、实验介绍塞曼效应(The Zeeman Effect)是指在磁场中,原本具有简并的能态(即能量相同但量子数不同的态)被分裂成多个能量不同的态的现象。

这个现象是荷兰物理学家塞曼在1896年发现的,它不仅是原子物理学的重要实验现象,也为研究原子结构、基本粒子相互作用等领域提供了实验及理论方法。

本实验通过自行制作一个塞曼效应装置和使用精密光谱仪测量氢原子的光谱移动来探究塞曼效应。

二、实验装置实验装置主要包括:单色光源、狭缝、准直器、光栅、分束器、氢放电管、塞曼效应装置以及测量仪器等。

其中,主要测量仪器包括CCD探测器、数字多道分析器(MCA)等。

三、实验过程1. 制作实验装置:在强磁场中通过光谱法测量氢原子谱线的位移。

通过一个氢放电管,使得放电管中水银的激发能量被红外线激起,氢原子被激发成原子核+电子状态。

2. 预备工作:首先通过单色光源照向狭缝,然后通过准直器和光栅将光分为从三个单色光防止器出射的三道谱线。

将分束器放置在特定位置从而选择需要的波长(颜色)输出到CCD。

3. 实验记录:在强磁场下分别测量氢原子的三条谱线的移动情况,记录下移动的波长和强度。

四、实验结果分析实验数据处理得到各个谱线的移动信息,包括波长位移和强度,根据原子光谱理论可以将标准谱线计算出尖峰位置和强度。

通过与预测的尖峰位置进行比较,验证了中心谱线移动最大,两旁的谱线移动稍微变小的规律。

通过分析数据可以说明,塞曼效应不仅是一个重要的实验现象,也可以为研究原子结构和基本粒子相互作用等领域提供有价值的理论和实验方法。

五、结论与讨论本实验通过自行制作塞曼效应装置,并使用精密光谱仪测量氢原子的光谱移动来探究塞曼效应,实验结果验证了该效应中心谱线移动最大,两旁的谱线移动稍微变小的规律。

该实验丰富了我们对于原子结构和基本粒子相互作用等领域的认识,也为一些重要的领域提供了有价值的理论和实验方法。

在未来的学习中,我们应该继续深入探究各种物理学现象,并在实验中注重实践能力的提高,为未来的科学研究打好基础。

塞曼效应实验报告材料

塞曼效应实验报告材料

实验题目:塞曼效应实验目的:研究塞曼分裂谱的特征,学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。

实验仪器:塞曼效应实验平台仪器,磁感应强度测量仪,底片,秒表等。

实验原理:(点击跳过实验原理)1. 谱线在磁场中的能级分裂对于多电子原子,角动量之间的相互作用有LS 耦合模型和JJ 耦合某型。

对于LS 耦合,电子之间的轨道与轨道角动量的耦合作用及电子间自旋与自旋角动量的耦合作用强,而每个电子的轨道与自旋角动量耦合作用弱。

原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。

总磁矩在磁场中受到力矩的作用而绕磁场方向旋进,可以证明旋进所引起的附加能量为B Mg E B μ=∆ (1) 其中M 为磁量子数,μB 为玻尔磁子,B 为磁感应强度,g 是朗德因子。

朗德因子g 表征原子的总磁矩和总角动量的关系,定义为 )1(2)1()1()1(1++++-++=J J S S L L J J g (2) 其中L 为总轨道角动量量子数,S 为总自旋角动量量子数,J 为总角动量量子数。

磁量子数M 只能取J ,J-1,J-2,…,-J ,共(2J+1)个值,也即E ∆有(2J+1)个可能值。

这就是说,无磁场时的一个能级,在外磁场的作用下将分裂成(2J+1)个能级。

由式(1)还可以看到,分裂的能级是等间隔的,且能级间隔正比于外磁场B 以及朗德因子g 。

能级E 1和E 2之间的跃迁产生频率为v 的光,12E E hv -=在磁场中,若上、下能级都发生分裂,新谱线的频率v ’与能级的关系为B g M g M hv E E E E E E E E hv B μ)()()()()('112212121122-+=∆-∆+-=∆+-∆+= 分裂后谱线与原谱线的频率差为 h B g M g M v v v B μ)('1122-=-=∆ (3) 代入玻尔磁子meh B πμ4=,得到 B m e g M g M v π4)(1122-=∆ (4) 等式两边同除以c ,可将式(4)表示为波数差的形式B mc e g M g M πσ4)(1122-=∆ (5) 令 mceB L π4= 则 L g M g M )(1122-=∆σ (6) L 称为洛伦兹单位,117.46--⋅⨯=T m B L (7) 塞曼跃迁的选择定则为:0=∆M ,为π成为,是振动方向平行于磁场的线偏振光,只在垂直于磁场的方向上才能观察到,平行于磁场的方向上观察不到,但当0=∆J 时,02=M 到01=M 的跃迁被禁止;1±=∆M ,为σ成分,垂直于磁场观察时为振动垂直于磁场的线偏振光,沿磁场正向观察时,1+=∆M 为右旋圆偏振光,1-=∆M 为左旋圆偏振光。

塞曼效应实验报告

塞曼效应实验报告

塞曼效应【实验目的】1. 掌握塞曼效应理论,测定电子的荷质比,确定能级的量子数和朗德因子,绘出跃迁的能级图。

2. 掌握法布里—珀罗标准具的原理和使用。

3. 观察塞曼效应现象,把实验结果和理论结果进行比较。

4. 学会使用CCD 和计算机获取实验图像和数据的方法。

【实验装置】研究塞曼效应的实验装置如图1所示,在本实验中,在电磁铁的两极之间放上一支笔型汞灯,N - S 为电磁铁的磁极,电磁铁用直流稳压电源供电,电流与磁场的关系可用特斯拉计进行测量。

会聚透镜用于使通过标准具的光增强。

偏振片在垂直磁场方向观察时用以鉴别π 成分和σ 成分,在沿磁场方向观察时用以鉴别左圆偏振光和右圆偏振光。

干涉滤光片将所观察的波长选择为546.1 nm 。

CCD 作为光探测器,采集F-P 标准具的干涉花样,传送到计算机上,实验者可使用专用的图像处理软件读取实验数据。

MP F P F L SN 电磁铁图1 塞曼效应的实验装置【实验原理】(一)原子的总磁矩与总动量矩的关系 原子中的电子不但有轨道运动,而且还有自旋运动。

原子中电子的轨道角动量P L 与轨道磁矩μL 、自旋角动量P S 与自旋磁矩μS 之间的关系为)(),,,1,2L L L S S S e e P P S S m m =-==-=+μP μP (1)其中L 和S 分别表示轨道量子数和自旋量子数,e 和m 分别表示电子的电荷和质量。

原子核的磁矩比一个电子的磁矩要小三个数量级,因此在计算单电子原子的磁矩时可以把原子核的磁矩忽略。

对于多电子原子,考虑到原子总角动量和总磁矩为零,只对其外层价电子进行累加。

磁矩的计算可用矢量图表示,如图2所示。

由于μS 与P S 的比值是μL 与P L 的比值的2倍,合成的原子总磁矩μ 不在总动量矩P J 方向上。

因μ 绕P J 运动,只有μ 在P J 方向上的投影μJ 对外的平均效果不为零。

根据图1进行矢量叠加运算,μJ 与P J 数值上的关系为2J L e g P mμ= (2) 其中g 称为朗德因子。

塞曼效应实验报告(完整版)

塞曼效应实验报告(完整版)

南昌大学物理实验报告学生姓名: 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:塞曼效应一、实验目的1.观察塞曼效应现象,把实验结果与理论结果进行比较。

2.学习观测塞曼效应的实验方法。

3.计算电子核质比。

二、实验仪器WPZ —Ⅲ型塞曼效应实验仪三、实验原理塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产生分裂。

垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。

按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ∆,由于原子的磁矩J μ与总角动量J P 的关系为 2J J egP mμ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个原子态的角动量密切相关。

因此,cos cos 2J J eE B g P B mμαα∆=-=-(2) 其中α是磁矩与外加磁场的夹角。

又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上, cos ,,1,,2J hP MM J J J απ-==--(3)南昌大学物理实验报告学生姓名: 刘惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。

设:4B hemμπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+∆=+(4)由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量耦合方式其表达式和数值完全不同。

在L S -耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、S ,它们的关系为(1),222L L e e hP L L m m μπ==+(5)(1),2S S e e hP S S m m μπ==+(6)设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系:2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJL LJ S SJ J L S J L S J J J L S JJ J eP P mP P P P P P e m P P P P P e P P m e gP mμμαμααα=+=++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1)J J L L S S g J J +-+++=++(8)由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在南昌大学物理实验报告学生姓名: 刘惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:外磁场作用下将会分裂为(2J +1)个能级,相邻两能级间隔为B g B μ。

塞曼效应实验报告.doc

塞曼效应实验报告.doc

塞曼效应实验报告.doc一、实验目的1.研究磁场对光谱线的影响。

2.了解路易斯-埃因斯坦定律。

3.实验测量塞曼效应中磁场对频率的影响。

二、实验原理路易斯-埃因斯坦定律指出:当一个光子与一个物质发生相互作用时,光子的能量将被全部或部分地转移到物质中。

2.塞曼效应塞曼效应也称作塞曼-吕尔德效应。

当原子受到外部磁场作用时,它们的光谱线将发生分裂,分裂的数量是和磁场的强度以及离子的自旋角动量之间的相互作用有关系的。

当一束光通过一个磁场时,原先一条谱线变成了多条具有不同极性的谱线。

三、实验仪器本实验所使用的仪器有:实验仪器箱、氦氖激光、干涉仪、磁铁、硬纸板。

四、实验步骤1.将激光引入平行光管中,打开干涉仪,使干涉仪的两个反射片之间距离相差Δl。

2.在干涉仪中加入磁铁,调节磁场强度。

3.观察到在不同磁场下的光谱线与平行干涉的干涉图案。

5.在硬纸板上标出各个初级线、次级线的位置,量取该位置之间的距离。

6.用初级线到次级线的距离代替Δl值,测出各次级线到初级线的差异位移。

五、实验结果在不同的磁场下,测得光谱线的位移如下表:光谱线 | 磁感应强度B/T | 差异位移Δx/mm:--:|:--:|--:R1 | 0.88 | 1.5R2 | 1.82 | 3.0R3 | 2.85 | 4.5B1 | 0.88 | -1.5B2 | 1.82 | -3.0B3 | 2.85 | -4.5六、实验分析由于该实验是将激光通过干涉仪,再将光照射在纸板上进行观察,所以对光子的能量没有太大的影响,因此验证了路易斯-埃因斯坦定律。

2.磁场对频率的影响在不同强度的磁场下,谱线会发生分裂,这种现象称为塞曼效应。

塞曼效应在物理学研究中得到了广泛的应用,例如磁共振成像(MRI)。

本实验通过观察不同磁场下氦氖激光的光谱线的分裂情况,验证了路易斯-埃因斯坦定律,并研究了磁场对频率的影响。

本实验还介绍了塞曼效应的应用。

赛曼效应实验报告

赛曼效应实验报告

一、实验目的1. 观察塞曼效应,验证磁场对原子光谱线的影响。

2. 通过塞曼效应测量磁感应强度的大小。

3. 深入理解原子磁矩和空间取向量子化的概念。

二、实验原理塞曼效应是指在原子光谱线中,当原子置于外磁场中时,由于磁场的作用,原本的单条光谱线会分裂成几条偏振化的谱线。

这种现象反映了原子磁矩的存在以及空间取向量子化。

塞曼效应的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化。

三、实验仪器与材料1. 原子光谱仪2. 磁场发生器3. 磁场强度计4. 汞原子光谱灯5. 光栅6. 光电倍增管7. 计算机及数据处理软件四、实验步骤1. 将汞原子光谱灯放置在磁场发生器中,调整磁场方向。

2. 通过调整磁场发生器,使磁场强度逐渐增加,观察光谱线的分裂情况。

3. 记录不同磁场强度下光谱线的分裂情况,包括分裂谱线的数量、位置和强度。

4. 利用计算机及数据处理软件,对实验数据进行处理和分析。

5. 通过计算,得出磁感应强度与光谱线分裂之间的关系。

五、实验结果与分析1. 在磁场强度为0时,观察到汞原子光谱灯发出的光谱线为单条谱线,无分裂现象。

2. 随着磁场强度的增加,光谱线逐渐分裂成多条谱线,且分裂谱线的数量与磁场强度呈正相关关系。

3. 分裂谱线的位置和强度与磁场方向和强度有关。

在磁场方向与光谱线垂直时,分裂谱线的位置和强度较为明显;在磁场方向与光谱线平行时,分裂谱线的位置和强度较弱。

根据实验结果,可以得出以下结论:1. 塞曼效应确实存在,磁场对原子光谱线有显著影响。

2. 磁感应强度与光谱线分裂之间的关系符合理论预测。

3. 通过实验验证了原子具有磁矩和空间取向量子化的概念。

六、实验讨论1. 在实验过程中,由于磁场的不均匀性,导致光谱线分裂不完全对称,存在一定的误差。

2. 实验中使用的磁场发生器磁场强度有限,未能达到理想状态,影响了实验结果的准确性。

3. 实验过程中,由于仪器设备的限制,未能测量到所有分裂谱线的强度,导致数据处理存在一定的不完整性。

(完整word版)塞曼效应实验报告

(完整word版)塞曼效应实验报告

1、前言和实验目的1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。

2.了解法布里—珀罗干涉仪的的结构和原理及利用它测量微小波长差值。

3。

观察汞546。

1nm(绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。

2、实验原理处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。

下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小.总磁矩为J μ 的原子体系,在外磁场为B 中具有的附加能为: E ∆= -J μ*B由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。

则我们有:E ∆= -z μB =B g m B J J μ其中z μ为J μ 在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ=em eh π4称为玻尔磁子,J g 为朗德因子,其值为J g =)1(2)1()1()1(1++++-++J J S S L L J J由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。

当没有磁场时,能级处于简并态,电子的态由n,l ,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n ,l ,j,J m ,选择定则为Δs=0,Δl=1±,1±=∆j m 。

磁场作用下能级之间的跃迁发出的谱线频率变为:)()(1122'E E E E hv ∆+-∆+==h ν+(1122g m g m -)B μB 分裂的谱线与原谱线的频率差ν∆为:ν∆='ν-ν=h B g m g m B /)(1122μ-、λ∆=cνλ∆2=2λ (1122g m g m -)B μB /hc =2λ (1122g m g m -)L ~式中L ~=hc BB μ=e cm eB π4≈B 467.0称为洛仑兹单位(裂距单位).所以电子的荷质比:e m e =Bc π4 ·11221g m g m -·2λλ∆塞曼能级跃迁的选择定则和偏振定则:表 12313P P S S S S →,我们以式(1—5)及能级跃迁的选择定则来分析此反常塞曼效应.能级分裂如下图所示:Hg nm 1.546谱线是由1376S S S 到2366P P S 跃迁而产生,表2列出13S 和23P 能级的各量子数L 、S 、J 、m 、g 与mg 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生: 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:
塞曼效应 一、实验目的
1.观察塞曼效应现象,把实验结果与理论结果进行比较。

2.学习观测塞曼效应的实验方法。

3.计算电子核质比。

二、实验仪器
WPZ —Ⅲ型塞曼效应实验仪
三、实验原理
塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产
生分裂。

垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时,
产生圆偏振光(左旋、右旋)。

按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具
有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ∆,由于原子的磁
矩J μ与总角动量J P 的关系为
2J J e g P m
μ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个
原子态的角动量密切相关。

因此,
cos cos 2J J e E B g P B m
μαα∆=-=-(2) 其中α是磁矩与外加磁场的夹角。

又由于电子角动量空间取向的量子化,这
种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,
因此在外磁场方向上,
cos ,,1,,2J h P M M J J J απ-==--(3)
学生: 惠文 学号: 5502210039 专业班级:应物101班
实验时间: 教师编号:T017 成绩:
式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。

设:4B he m
μπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为
00B E E E E Mg B μ=+∆=+(4)
由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量
耦合方式其表达式和数值完全不同。

在L S -耦合的情况下,设原子中电子轨道
运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、
S ,它们的关系为
2L L e P m μ==(5)
S S e P m μ==(6) 设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在
J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系:
2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJ
L LJ S SJ J L S J L S J J J L S J J J e P P m
P P P P P P e m P P P P P e P P m
e g P m μμαμααα=+=
++--+=+-+=+=(7) 其中朗德因子为
(1)(1)(1)1.2(1)
J J L L S S g J J +-+++=++(8) 由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在
学生: 惠文 学号: 5502210039 专业班级:应物101班
实验时间: 教师编号:T017 成绩:
外磁场作用下将会分裂为(2J +1)个能级,相邻两能级间隔为B g B μ。

因为g 由
量子态决定,所以不同能级分裂的子能级间隔不同。

设频率为ν的谱线是由原子的上能级2E 跃迁到下能级1E 所产生的,则
12E E h -=ν
磁场中新谱线频率变为ν',则)()(1122E E E E h ∆+-∆+='ν
频率差为ν∆=ν'-ν=h E E 12∆-∆=m eB
g M g M π4)(1122-
用波数差表示为ν~∆=mc eB g M g M π4)(1122-=L g M g M )(1122-,其中L 为洛伦兹单
位,L =
m e c B ⋅π4 1. π线和σ线:
跃迁时M 的选择定则:012=-=∆M M M ,1±,
当M =0时,垂直于磁场方向观察时,产生的振动方向平行于磁场的线偏
振光叫π线;平行于磁场观察时π线成分不出现。

当M =1±时,垂直于磁场方向观察时,产生的振动方向垂直于磁场的线偏
振光叫σ线;平行于磁场观察时,产生圆偏振光,M =1+,偏振转向是沿磁场
方向前进的螺旋转动方向,磁场指向观察者时,为左旋圆偏振光;M =1-,偏
振转向是沿磁场方向倒退的螺旋转动方向,磁场指向观察者时,为右旋圆偏振光。

2. 错序观察法:
汞546.1nm 谱线在磁场作用下分裂为9条子谱线,其裂距相等为L 21。


中3条π线,6条σ线。

采用加大磁场的方法使某些分量错序,并且正好与相邻
干涉序的另一些分量重叠(即错序观察法),从而测得磁场强度B 。

大学物理实验报告
学生: 惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 对同一干涉序不同波长和的波长差关系为:
其波数的关系为 '22122112k k k k k k
D D v v d D D ----=-
3. 计算荷质比m e
: 因为各子谱线裂距为L 21,所以波数差ν~∆=L 21=⋅21m e c B ⋅π4,则m e =
B c πν4~2⨯∆⨯=()νπ~292335.08∆⨯⨯-⨯d x c
四、实验容
1. 调节F-P 标准具。

2. 调整光路。

3. 观察观察汞绿线 546.1nm 在加上磁场前后和不断增大磁场时的干涉圆环 的变化情况;转动偏振片确定哪些谱线是π成份,哪些是σ成份;描述现象并加
以理论说明。

4. 在励磁电流 I=3A (B=1.2T )条件下调出塞曼分裂的π谱线,用软件处理图片,
测出 e/m 的值。

大学物理实验报告学生:惠文学号:5502210039 专业班级:应物101班
实验时间:教师编号:T017成绩:
五、实验数据处理
由实验测得数据知:
=1.77/
e
c kg
m
11
()⨯10

所以百分误差
1.77 1.76
100=100=0.57
1.76
e e
m m
E
e
m
()-()-
=⨯%⨯%%
()



六、实验误差分析
1. 实验仪器的精准度不高
2.实验过程中画圈测圆的半径时,由于是目测的,导致无法精确
3.实验过程中有部分光线的干扰等等
七、实验总结及体会
1.通过实验,是自己了解并掌握了塞满效应的基本原理。

2.由该实验的操作,又学会了测量荷质比的另一种方法。

3.掌握了WPZ—Ⅲ型塞曼效应实验仪的基本的使用操作。

未加磁场的曲线图
曲线图
σ曲线图
π+σ曲线图。

相关文档
最新文档