《一元一次方程》全章复习与巩固

合集下载

《一元一次方程》的优秀教案(9篇)精选全文完整版

《一元一次方程》的优秀教案(9篇)精选全文完整版

可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。

进一步发展符号意识。

2.通过一元一次方程的学习,体会方程模型思想和化归思想。

解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。

经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。

教学难点分析实际问题中的相等关系,列出方程。

教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。

出示问题(幻灯片)。

学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。

本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。

(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。

浙教版七年级数学上册第5章一元一次方程应用专题复习学案(附答案)

浙教版七年级数学上册第5章一元一次方程应用专题复习学案(附答案)

浙教版七年级数学上册第5章⼀元⼀次⽅程应⽤专题复习学案(附答案)七年级数学上册第5章⼀元⼀次⽅程应⽤复习学案◆考点六:⼀元⼀次⽅程的应⽤:典例精讲:例7.⼀个三位数,百位上的数字⽐⼗位上的数字⼤4,个位上的数字⽐⼗位上的数字⼤2,这个三位数恰好是去掉百位上的数字后的两位数的21倍,求这个三位数.变式训练:已知⼀个三位数,个位上的数字是⼗位上数字的2倍还多1,百位上的数字是个位和⼗位数字的和,把这个三位数的个位数字与百位数字交换位置,得到⼀个新三位数,原三位数与新三位数的差为99,求原三位数.典例精讲:例8.某酒店客房部有三⼈间、双⼈间客房,收费标准如表:为吸引游客,实⾏团体⼊住五折优惠措施.现有⼀个100⼈的旅游团优惠期间到该酒店⼊住,住了⼀些三⼈普通间和双⼈普通间客房.若每间客房正好住满,且⼀天共花去住宿费6040元,则旅游团住了三⼈普通间和双⼈普通间客房各多少间?变式训练:某学校准备印刷⼀批证书,现有两个印刷⼚可供选择:甲⼚收费⽅式:收制版费1000元,每本印刷费0.5元;⼄⼚收费⽅式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x不超过2000时,甲⼚的收费为元,⼄⼚的收费为元;(2)若x超过2000时,甲⼚的收费为元,⼄⼚的收费为元;(3)当印制证书8000本时应该选择哪个印刷⼚更节省费⽤?节省了多少?(4)请问印刷多少本证书时,甲⼄两⼚收费相同?典例精讲:例9.为发展校园⾜球运动,学校决定购买⼀批⾜球运动装备,市场调查发现:甲、⼄两商场以同样的价格出售同种品牌的⾜球队服和⾜球,已知每套队服⽐每个⾜球多50 元,两套队服与三个⾜球的费⽤相等,经洽谈,甲商场优惠⽅案是:每购买⼗套队服,送⼀个⾜球;⼄商场优惠⽅案是:若购买队服超过80套,则购买⾜球打⼋折.(1)求每套队服和每个⾜球的价格是多少?(2)若城区四校联合购买100 套队服和a 个⾜球,请⽤含a 的式⼦分别表⽰出到甲商场和⼄商场购买装备所花的费⽤;(3)假如你是本次购买任务的负责⼈,你认为到哪家商场购买⽐较合算?变式训练:⽬前节能灯在各地区基本普及使⽤,某商场计划⽤3800元购进甲、⼄两种节能灯共120只,这两种节能灯的进价、售价如下表:(1)(2)全部售完这120只节能灯后,该商场共获利多少元?典例精讲:例10.已知甲、⼄两⼈均从400⽶的环形跑道的A处出发,各⾃以每秒6⽶和每秒8⽶的速度在跑道上跑步.(1)若两⼈同时出发,背向⽽⾏,则经过秒钟两⼈第⼀次相遇;若两⼈同时出发,同向⽽⾏,则经过秒钟⼄第⼀次追上甲.(2)若两⼈同向⽽⾏,⼄在甲出发10秒钟后去追甲,经过多少时间⼄第⼆次追上甲.(3)若让甲先跑10秒钟后⼄开始跑,在⼄⽤时不超过100秒的情况下,⼄跑多少秒钟时,两⼈相距40⽶.变式训练:甲、⼄两站相距240千⽶,从甲站开出⼀列慢车,速度为每⼩时80千⽶,从⼄站开出⼀列快车,速度为每⼩时120千⽶.(1)若两车同时开出,背向⽽⾏,则经过多长时间两车相距540千⽶?(2)若两车同时开出,同向⽽⾏(快车在后),则经过多长时间快车可追上慢车?(3)若两车同时开出,同向⽽⾏(慢车在后),则经过多长时间两车相距300千⽶?典例精讲:例11.某⼩组⼏名同学准备到图书馆整理⼀批图书,若⼀名同学单独做要40h完成.现在该⼩组全体同学⼀起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项⼯作.假设每名同学的⼯作效率相同,问该⼩组共有多少名同学?变式训练:1.信息技术课上,⽼师让七年级学⽣练习打字,要求限时40分钟打完﹣篇⽂章.已知⼩宝独⽴打完这篇⽂章需要50分钟,⽽⼩贝只需要30分钟.为了完成任务,⼩宝打了30分钟后,请求⼩贝帮助合作,他能在要求的时间打完吗?2.⼩敏和⼩强到某⼚参加社会实践,该⼚⽤⽩板纸做包装盒.设计每张⽩板纸裁成盒⾝3个或者盒盖5个,且⼀个盒⾝....恰好能做成⼀个包装盒.设裁成盒⾝的⽩板纸有x张,回答下列问题.....和两个盒盖(1)若有11张⽩板纸.①请完成下表.②求最多可做⼏个包装盒.(2)若仓库中已有4个盒⾝,3个盒盖和23张⽩板纸,现把⽩板纸分成两部分,⼀部分裁成盒⾝,⼀部分裁成盒盖.当盒⾝与盒盖全部配套⽤完时,可做多少个包装盒?(3)若有n张⽩板纸(70≤n≤80),先把⼀张⽩板纸适当套裁出3个盒⾝和1个盒盖,余下⽩板纸分成两部分,⼀部分裁成盒⾝,⼀部分裁成盒盖.当盒⾝与盒盖全部配套⽤完时,n的值可以是__________.巩固提升:1.某超市店庆促销,某种书包原价为每个x元,第⼀次降价打“⼋折”,第⼆次降价每个⼜减10元,经两次降价后售价为90元,则得到⽅程( )A. 0.8x-10=90B. 0.08x-10=90C. 90-0.8x=10D. x-0.8x-10=902. 如图,⽔平桌⾯上有⼀个内部装有⽔的长⽅体箱⼦,箱内有⼀个与底⾯垂直的隔板,且隔板左右两侧的⽔⾯⾼度分别为40 cm,50 cm,现将隔板抽出,若过程中箱内的⽔量未改变,且不计箱⼦及隔板的厚度,则根据图中的数据,可知隔板抽出后⽔⾯静⽌时,箱内的⽔⾯⾼度为( )A. 43 cmB. 44 cmC. 45 cmD. 46 cm3.某书店为配合该市开展的“我读书,我快乐”读书活动推出⼀种优惠卡,每张卡售价为20元,凭卡购书可享受8折优惠﹒⼩芳同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元﹒若此次⼩芳同学不买卡直接购书,则她需付款多少元?()A﹒140元 B﹒150元 C﹒160元 D﹒200元4.⼀商店在某⼀时间以每件120元的价格卖出两件⾐服,其中⼀件盈利20%,另⼀件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元5.甲、⼄两运动员在长为100m的直道AB(A,B为直道两端点)上进⾏匀速往返跑训练,两⼈同时从A点起跑,到达B点后,⽴即转⾝跑向A点,到达A点后,⼜⽴即转⾝跑向B点…若甲跑步的速度为5m/s,⼄跑步的速度为4m/s,则起跑后100s内,两⼈相遇的次数为()A.5 B.4 C.3 D.26.将正整数1⾄2018按⼀定规律排列如下表:平移表中带阴影的⽅框,⽅框中三个数的和可能是()A.2019 B.2018 C.2016 D.20137.《孙⼦算经》中有这样⼀道题,原⽂如下:今有百⿅⼊城,家取⼀⿅,不尽,⼜三家共⼀⿅,适尽,问:城中家⼏何?⼤意为:今有100头⿅进城,每家取⼀头⿅,没有取完,剩下的⿅每3家共取⼀头,恰好取完,问:城中有多少户⼈家?8.某车间每天能制作甲种零件200只,或者制作⼄种零件150只,2只甲种零件与3只⼄种零件配成⼀套产品,现要在30天内制作最多的成套产品,则甲、⼄两种零件各应制作多少天?9.某市⽔果批发部门欲将A市的⼀批⽔果运往本市销售,有⽕车和汽车两种运输⽅式,运输过程中的损耗均为200元/时,其他主要参考数据如下:(1)如果选择汽车的总费⽤⽐选择⽕车的总费⽤多1100元,那么你知道本市与A市之间的路程是多少千⽶吗?请你列⽅程解答;(2)若A市与某市之间的路程为s千⽶,且知道⽕车与汽车在路上耽误的时间分别为2⼩时和3.1⼩时,要想将这批⽔果运往该市进⾏销售,则当s为多少时,选择⽕车和汽车运输所需费⽤相同?10.为了保障我国海外维和部队和官兵的⽣活,现需通过A港⼝、B港⼝分别调运100吨和50吨⽣活物资,已知该物资在甲仓库存有80吨,⼄仓库存有70吨,从甲、⼄两仓库运送物资到每个港⼝的费⽤(元/吨)如下表所⽰:(1)如果从甲、⼄两仓库运送物资到两个港⼝的总费⽤为1920元,则需要从甲仓库运送多少吨物资到A港⼝?(2)根据(1)求出的结果,请你说出此时的调运⽅案﹒11.某班计划买⼀些乒乓球和乒乓球拍,现了解情况如下:甲、⼄两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买⼀副球拍赠⼀盒乒乓球,⼄店全部按定价的9折优惠.该班需球拍5副,乒乓球若⼲盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款⼀样?(2)当购买20盒,40盒乒乓球时,去哪家商店购买更合算?答案◆考点六:⼀元⼀次⽅程的应⽤:典例精讲:例7.解析:设⼗位上的数为x ,则百位数字为x+4,个位数字为x+2,由题意得:100(x+4)+10x+x+2=21(10x+x+2),解得:x=3,x+4=7,x+2=5,∴这个三位数为735变式训练:解析:设这个三位数的⼗位数字为x ,则个位为()12+x ,百位为()13+x 由题意得:()()[]99131012100121013100=++++-++++x x x x x x 解得:1=x答:这个三位数为:413典例精讲:例8.解析:设三⼈普通间住了x 间,则双⼈普通间住了23100x-间,由题意得:604014023100150=?-+xx 解得:16=x答:旅游团住了三⼈普通间16间,双⼈普通间客房26间变式训练:解析:(1)若x 不超过2000时,甲⼚的收费为元,⼄⼚的收费为(1.5x )元,故答案为:0.5x +1000,1.5x ;(2)若x 超过2000时,甲⼚的收费为元,⼄⼚的收费为2000×1.5+0.25(x ﹣2000)=0.25x +2500元,故答案为:1000+0.5x ,0.25x +2500;(3)当x =8000时,甲⼚费⽤为1000+0.5×8000=5000元,⼄⼚费⽤为:0.25×8000+2500=4500元,∴当印制证书8000本时应该选择⼄印刷⼚更节省费⽤,节省了500元;(4)当x ≤2000时,1000+0.5x =1.5x ,解得:x=1000;当x >2000时,1000+0.5x =0.25x +2500,解得:x =6000;答:印刷1000或6000本证书时,甲⼄两⼚收费相同典例精讲:例9.解析:(1)设每个⾜球的定价是x 元,则每套队服是()50+x 元,由题意得:()x x 3502=+,解得:100=x ,答每套队服是150元,每个⾜球是100元(2)到甲商场购买所化的费⽤为:1400010010100100100150+=??-+?a a (元)到⼄商场购买所化的费⽤为:150********.0100150+=??+?a a (元)(3)当在两家商场购买⼀样合算时,150008014000100+=+a a ,解得:50=a所以购买的⾜球数等于50个时,则在两家商场购买⼀样合算,当购买的⾜球数多于50个时,则到⼄商场购买合算,当购买的⾜球数少于50个时,则到甲商场购买合算变式训练:解析:(1)设购进甲种节能灯x 只,则购进⼄种节能灯(120-x )只.由题意得25x +45(120-x )=3800,解得x =80,120-x =40.答:购进甲种节能灯80只,⼄种节能灯40只. (2)80×(30-25)+40×(60-45)=1000(元).答:全部售完这120只节能灯后,该商场共获利1000元.典例精讲:例10.解析:(1)400÷(6+8)=7200(秒); 400÷(8﹣6)=200(秒).故答案为:7200;200.(2)设经过x 秒时⼄第⼆次追上甲,根据题意得:8x ﹣6x=400+6×10,解得:x=230.答:经过230秒钟⼄第⼆次追上甲.(3)设经过y 秒时甲⼄两⼈相距40⽶,甲、⼄同向⽽⾏时,|6(10+y )﹣8y|=40,解得:y=10或y=50;甲、⼄背向⽽⾏时,6(10+y )+8y=400n ﹣40或6(10+y )+8y=400n+40;解得:750200-=n y 或710200-=n y ,∵y ≤100,∴7150=y 、7190、50、7390、7550、7590.答:当甲、⼄同向⽽⾏时,⼄跑10秒或50秒时,两⼈相距40⽶;当甲、⼄背向⽽⾏时,⼄跑7150、7190、50、7390、7550或7590秒时,两⼈相距40⽶.变式训练:解析:(1)设经过x ⼩时两车相距540千⽶,由题意得80x +120x =540-240,解得23=x . 答:经过23⼩时两车相距540千⽶.(2)设经过y ⼩时快车可追上慢车.由题意得120y -80y =240,解得y =6. 答:经过6⼩时快车可追上慢车. (3)设经过z ⼩时两车相距300千⽶.由题意得120z -80z =300-240.解得z =23. 答:经过23⼩时两车相距300千⽶.典例精讲:例11.解析:设该⼩组共有x 名同学,由题意得,()14024408=-+x x .解得:4=x答:该⼩组共有4名同学变式训练:1.解析:设⼩贝加⼊后打x 分钟完成任务,根据题意得:(30+x )×501+301x=1,解得:x=7.5.∵7.5+30=37.5<40,所以他能在要求的时间打完.2.解析:(1)①填表如下:②解:由题意得2×3x =5(11-x ),解得x =5.∴3x =15.答:最多可做成15个包装盒.(2)解:设⽤y 张⽩板纸裁成盒⾝,由题意得2×(3y +4)=3+5(23-y ),解得y =10.∴3y +4=34.答:可做成34个包装盒. (3)79.巩固提升:1.解析:设某种书包原价每个x 元,根据题意列出⽅程解答即可.设某种书包原价每个x 元,可得:0.8x ﹣10=90,故选择A2.解析:设长⽅形的宽为x 公分,抽出隔板后之⽔⾯⾼度为h 公分,长⽅形的长为130+70=200(公分),由题意得:()()hx x x ??=?++?+2005029070402110130解得:h =44, 故选择B3.解析:设⼩芳同学不买卡直接购书需付书款x 元,由题意,得x -(20+0.8x )=10,解得x =150,即⼩芳同学不买卡直接购书需付书款150元,故选:B ﹒4.解析:设两件⾐服的进价分别为x 、y 元,根据题意得:120﹣x=20%x ,y ﹣120=20%y ,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C .5.解析:设两⼈相遇的次数为x ,依题意有:100452100=+?x 解得x=4.5,∵x 为整数,∴x 取4.故选:B .6.解析:设中间数为x ,则另外两个数分别为x ﹣1、x+1,∴三个数之和为(x ﹣1)+x+(x+1)=3x .根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=67232(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D .7.解析:设城中有x 户⼈家,依题意得:x+3x=100 解得x=75.答:城中有75户⼈家.8.解析:设甲种零件制作x 天,⼄种零件制作(30-x )天由题意得:200x × 3=2×150(30-x )解得:x=10所以30-x=30-10=20 答:甲种零件制作10天,⼄种零件制作20天9.解析:(1)设本市与A 市之间的路程是x 千⽶,由题意得200·80x +20·x +900-(200·100x +15·x +2000)=1100,解得x =400.答:本市与A 市之间的路程是400千⽶.(2)选择汽车的总费⽤=200??+1.380s +20s +900=(22.5s +1520)元,选择⽕车的总费⽤=200??+2100s +15s +2000=(17s +2400)元,令22.5s +1520=17s +2400,解得s =160.故当s =160时,选择⽕车和汽车运输所需总费⽤相同.10.解析:设从甲仓库运送x 吨物资到A 港⼝,则从⼄仓库运送(100-x )吨到A 港⼝,从甲仓库运送(80-x )吨物资到B 港⼝,从⼄仓库运送50-(80-x )=(x -30)吨到B 港⼝,由题意,得14x +20(100-x )+10(80-x )+8(x -30)=1920,化简并整理,得-8x +640=0,解得x =80,答:需要从甲仓库运送80吨物资到A 港⼝;(2)当x =80时, 100-x =20,x -30=50,故此时调配⽅案为:将甲仓库的80吨全部运送到A 港⼝,从⼄仓库运送20吨到A 港⼝,⼄仓库余下的50吨全部运送到B 港⼝﹒11.解析:(1)设该班购买乒乓球x 盒.根据题意,得甲:100×5+(x -5)×25=(25x +375)元,⼄:0.9×100×5+0.9x ×25=(22.5x +450)元,当甲=⼄时,25x +375=22.5x +450,解得x =30.答:当买30盒乒乓球时,两种⽅法付款⼀样.(2)买20盒时:甲25×20+375=875(元),⼄22.5×20+450=900(元),选甲;买40盒时:甲25×40+375=1 375(元),⼄22.5×40+450=1 350(元),选⼄.答:买20盒乒乓球时,甲店更合算;买40盒乒乓球时,⼄店更合算.。

一元一次方程单元复习与巩固

一元一次方程单元复习与巩固

一元一次方程单元复习与巩固知识点一:一元一次方程及其解的概念只含有个未知数,并且未知数的次数都是的方程叫做一元一次方程。

一元一次方程的标准形式是:。

使方程左右两边的值相等的未知数的值叫做方程的。

请你注意:(一)一元一次方程必须满足的3个条件:(1);(2);(3);三者缺一不可。

(二)判断一个数是否是某方程的解:将其代入方程两边,看两边是否。

知识点二:方程变形——解方程的重要依据(一)等式的基本性质(也叫做方程的同解原理)等式的性质1:。

即:。

等式的性质2:。

即:。

(二)分数的基本的性质:分数的分子、分母同时的数,分数的值不变。

即:(其中m≠0)注:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为,如方程:5.03-x-2.04+x=1.6,将其化为:- =1.6。

方程的右边没有变化,这要与“去分母”区别开。

知识点三:解一元一次方程的一般步骤:(一)解一元一次方程的基本思路:通过对方程变形,把含有的项归到方程的一边,把归到方程的另一边,最终把方程“转化”成的形式。

(二)解一元一次方程的一般步骤是:(三)理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:(1)a≠0时,方程有唯一解;(2)a=0,b=0时,方程有;(3)a=0,b≠0时,方程。

知识点四:列一元一次方程解应用题的一般步骤:(一)列一元一次方程解应用题的一般步骤:(1),分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2),一般求什么就设什么为x,但有时也可以间接设未知数.(3),把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4).(5),看方程的解是否符合题意.(6)写出答案.(二)解应用题的书写格式:设→根据题意→解这个方程→答。

注意:(1)在一道应用题中,往往含有几个未知数量,应恰当地选择其中的一个,用字母示出来,即所设的未知数,然后根据数量之间的关系,将其它几个未知数量用含的代数式表示。

人教版七年级上册第三章一元一次方程全章小结复习教学设计

人教版七年级上册第三章一元一次方程全章小结复习教学设计
3.教师在批改作业时,要及时给予反馈,指导学生改进解题方法,提高作业质量。
2.培养学生面对问题时,能够勇于尝试、积极思考的良好品质,增强其克服困难的信心。
3.通过解决实际问题,让学生认识到数学在生活中的重要作用,增强其应用数学知识解决实际问题的意识。
本教学设计旨在帮助学生在复习一元一次方程的基础上,进一步提高知识与技能、过程与方法、情感态度与价值观等方面的能力。在教学过程中,注重理论与实践相结合,鼓励学生积极参与,培养其数学素养。
-结合实际案例,进行情境教学,让学生在实际问题中发现数学的价值和应用。
2.教学策略:
-对于教学重点,通过精讲精练的方式,帮助学生巩固基础知识,提高解题技能。
-对于教学难点,采用分步指导、逐步推进的策略,让学生在教师的引导下逐步攻克难题。
-针对学生的个体差异,提供差异化教学,确保每个学生都能在原有基础上得到提高。
教学过程:
-布置基础练习题,让学生独立完成,巩固方程的解法。
-设置提高练习题,鼓励学生尝试解决,培养其解题技巧。
-对学生的练习进行及时反馈,指导其改进解题方法。
2.设计意图:通过有针对性的练习,帮助学生查漏补缺,提高解题能力。
(五)总结归纳
1.教学内容:对本章节的一元一次方程全章小结进行归纳总结。
教学过程:
(二)过程与方法
1.通过对一元一次方程全章的复习,引导学生自主总结方程的相关概念、性质和解法,培养其自主学习能力。
2.设计具有层次性的练习题,让学生在解决问题的过程中,逐步提高分析问题和解决问题的能力。
3.利用小组合作、讨论交流等形式,培养学生合作学习的意识,提高课堂互动性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发其学习热情,使其在解决方程问题的过程中感受到数学的魅力。

人教版七年级上册第三章一元一次方程全章小结复习说课稿

人教版七年级上册第三章一元一次方程全章小结复习说课稿
3.引发思考:通过提问和引导学生思考,激发他们对一元一次方程的兴趣,为新课的学习做好铺垫。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.理论讲解:以简明扼要的语言讲解一元一次方程的定义、一般形式,让学生明确学习目标。
2.案例分析:通过具体实例,演示一元一次方程的解法,让学生在实际操作中理解并掌握解法步骤。
2.生生互动:通过小组合作学习,学生之间将进行讨论、交流和分工合作,共同解决实际问题。在小组活动中,我会设置明确的任务和评价标准,确保每个学生都能参与到互动中来。
3.课堂讨论:组织全班范围的讨论,让学生分享各自小组的解题过程和答案,鼓励他们相互提问、质疑和补充,以提高课堂氛围和学生思维的深度。
四、教学过程设计
2.情境教学法:将一元一次方程的知识点融入到生活情境中,让学生在具体情境中感受数学的应用价值。这种方法的理论依据是情境学习理论,认为知识需要在真实情境中通过活动和实践来获得。
3.分组合作学习法:将学生分成小组,鼓励他们在小组内进行讨论、交流和合作解决问题。这种教学方法基于社会建构主义理论,强调学习是一个社会互动的过程。
3.教师评价:针对学生的表现,给予积极的评价和鼓励,同时指出需要改进的地方,并提供具体的建议。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一些基础的一元一次方程题目,目的是巩固课堂所学知识,提高解题技能。
2.提高作业:设计一些综合性的题目,让学生运用所学知识解决实际问题,培养他们的应用能力和创新思维。
4.游戏化学习:设计一些与一元一次方程相关的数学游戏,让学生在轻松愉快的氛围中学习,提高他们的学习积极性。
三、教学方法与手段
(一)教学策略
在本节课中,我将采用问题驱动法、情境教学法和分组合作学习法为主要教学方法。

《第五章2一元一次方程的解法》作业设计方案-初中数学北师大版24七年级上册

《第五章2一元一次方程的解法》作业设计方案-初中数学北师大版24七年级上册

《一元一次方程的解法》作业设计方案(第一课时)一、作业目标本作业设计旨在通过一元一次方程的解法学习,使学生能够熟练掌握一元一次方程的基本概念和解题方法,提高学生的数学思维能力和解决问题的能力。

二、作业内容1. 复习与预习:学生需复习之前学过的等式、代数式等基础知识,并预习一元一次方程的定义和形式。

通过理解方程的基本组成要素,如未知数、系数等,为解方程做好充分准备。

2. 理论知识学习:让学生明确一元一次方程的概念、一般形式及其基本解法步骤。

强调方程中各个项的含义及运算法则,如去括号、合并同类项等。

3. 练习与探究:通过多个例题,引导学生进行一元一次方程的解题实践。

要求学生熟练掌握移项、化系数为1等基本解法技巧,并能独立解答较为复杂的题目。

4. 举一反三:要求学生将所学的一元一次方程解法应用到实际问题中,通过具体实例让学生感受数学与生活的紧密联系,培养其运用数学知识解决实际问题的能力。

三、作业要求1. 准时完成:学生需在规定时间内完成作业,培养良好的学习习惯和时间管理能力。

2. 独立完成:作业应由学生独立完成,不得抄袭他人答案或利用其他非法手段。

3. 详细解答:对于每道题目,学生应写出详细的解题步骤和答案解释,便于老师了解学生对知识的掌握情况。

4. 总结反思:学生应在完成作业后进行总结和反思,明确自己在解题过程中的不足之处和需要改进的地方。

四、作业评价1. 评价标准:根据学生的作业完成情况、解题步骤的准确性、答案的正确性等方面进行评价。

同时,注重对学生解题思路和方法的评价,鼓励创新和独立思考。

2. 评价方式:采用教师评价、同学互评和自评相结合的方式,全面了解学生对一元一次方程解法的掌握情况。

五、作业反馈1. 教师反馈:教师应对学生的作业进行认真批改,指出学生在解题过程中的错误和不足,并给出改进意见和建议。

同时,对表现优秀的学生给予表扬和鼓励。

2. 学生反馈:学生应将作业中的疑问和困惑及时向老师请教,以便及时解决问题。

人教版数学九年级上学期课时练习-《一元二次方程》全章复习与巩固(知识讲解)(人教版)

人教版数学九年级上学期课时练习-《一元二次方程》全章复习与巩固(知识讲解)(人教版)

专题21.29 《一元二次方程》全章复习与巩固(知识讲解)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识要点】1. 一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2. 一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.特别说明:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法1.基本思想 一元二次方程一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.特别说明:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 −−−→降次法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,. 注意它的使用条件为a ≠0, Δ≥0.特别说明:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题; )0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax ∆ac b 42-=∆)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =21二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.特别说明:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.类型一、一元二次方程的有关概念1、已知关于x 的一元二次方程()2320x m x m -+++=.若方程有一个根的平方等于9,求m 的值.【答案】1或-5【分析】根据题意,该方程的根可能是3或3-,分类讨论,把x 的值代入原方程求出m 的值.解:∵方程有一个根的平方等于9,∵这个根可能是3或3-,当3x =,则()93320m m -+++=,解得1m =,当3x =-,则()93320m m ++++=,解得5m =-,综上:m 的值是1或-5.【点拨】本题考查一元二次方程的根,解题的关键是掌握一元二次方程的根的定义. 举一反三:【变式1】如果方程2ax 10x ++=与方程2x a 0x --=有且只有一个公共根,求a 的值.【答案】-2【分析】有且只有一个公共根,建立方程便可求解了.解:∵有且只有一个公共根∴22ax 1x a x x ++=--∴ax 10x a +++=∵当a=-1时两个方程完全相同,故a≠-1,∵()11a x a -+=+∴1x =-当1x =-时,代入第一个方程可得1-a+1=0解得:2a =【点拨】本题考查根与系数的关系,关键在于有一个公共根的理解,从而建立方程,求得根.【变式2】 已知x =1是一元二次方程ax 2+bx -40=0的一个根,且a ≠b ,求2222a b a b --的值.【答案】20【分析】先根据一元二次方程的解得到a+b=40,然后把原式进行化简得到=12(a+b ),再利用整体代入的方法计算;解:把x=1代入方程得a+b -40=0,即a+b=40,所以原式=()()()10222a b a b a b a b +-=+=-() 类型二、一元二次方程的解法2、用适当的方法解下列方程:(1)x 2-x -1=0;(2)3x (x -2)=x -2;(3)x 2-+1=0;(4)(x +8)(x +1)=-12.【答案】(1)112x +=,212x -= (2)x 1=13,x 2=2 (3)x11,x 21 (4)x 1=-4,x 2=-5【分析】(1)利用公式法解答,即可求解;(2)利用因式分解法解答,即可求解;(3)利用配方法解答,即可求解;(4)利用因式分解法解答,即可求解.(1)解:a=1,b=-1,c=-1∵b2-4ac=(-1)2-4×1×(-1)=5∵x即原方程的根为x1,x2(2)解:移项,得3x(x-2)-(x-2)=0,即(3x-1)(x-2)=0,∵x1=13,x2=2.(3)解:配方,得(x)2=1,∵x=±1.∵x11,x2-1.(4)解:原方程可化为x2+9x+20=0,即(x+4)(x+5)=0,∵x1=-4,x2=-5.【点拨】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.举一反三:【变式1】用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).【答案】(1)x1,x2(2)x1=x2=4【分析】(1)根据公式法,可得方程的解;(2)根据配方法,可得方程的解.(1)解:∵a=2,b=-5,c=1,∵Δ=b2﹣4ac=(-5)2-4×2×1=17,∵x =∵x 1,x 2 (2)解:移项得281x x -=-,并配方,得2816116x x -+=-+,即(x -4)2=15,两边开平方,得x =∵x 1=x 2=4【点拨】本题考查了解一元二次方程,配方法解一元二次方程的关键是配方,利用公式法解方程要利用根的判别式.【变式2】用适当的方法解方程:∵2(23)250x +-= ∵2670x x ++=(用配方法解)∵2314x x +=. ∵222(3)9x x -=-.【答案】∵ 14x =-,21x =; ∵13x =-23x =- ∵113x =,21x =; ∵13x =,29x =. 【分析】∵利用因式分解法解方程;∵利用配方法得到2(3)2x +=,然后利用直接开平方法解方程;∵先把方程化为一般式,然后利用因式分解法解方程;∵先移项得到()()22(3)330x x x --+-=,然后利用因式分解法解方程.解:∵()()2352350x x +++-=,2350x ++=或2350x +-=,所以14x =-,21x =;∵2692x x ++=,2(3)2x +=,3x +=所以13=-x 23x =-∵23410x x -+=,()()3110x x --=,310x -=或10x -=, 所以113x =,21x =; ∵()()22(3)330x x x --+-=,()()32630x x x ----=,30x -=或2630x x ---=,所以13x =,29x =.【点拨】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.类型三、一元二次方程根的判别式的应用3、已知:关于x 的方程x 2﹣(k +2)x +2k =0(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a =1,另两边长b ,c 恰好是这个方程的两个根,求∵ABC 的周长.【答案】(1)见分析;(2)5【分析】(1)把一元二次方程根的判别式转化成完全平方式的形式,得出∵≥0,可得方程总有实数根;(2)根据等腰三角形的性质分情况讨论求出b 、c 的长,并根据三角形三边关系检验,综合后求出∵ABC 的周长.(1)解:由题意知:Δ=(k +2)2﹣4•2k =(k ﹣2)2,∵(k ﹣2)2≥0,即∵≥0,∵无论取任何实数值,方程总有实数根;(2)解:当b=c时,Δ=(k﹣2)2=0,则k=2,方程化为x2﹣4x+4=0,解得x1=x2=2,∵∵ABC的周长=2+2+1=5;当b=a=1或c=a=1时,把x=1代入方程得1﹣(k+2)+2k=0,解得k=1,方程化为x2﹣3x+2=0,解得x1=1,x2=2,不符合三角形三边的关系,此情况舍去,∵∵ABC的周长为5.【点拨】本题考查了根的判别式∵=b2-4ac:∵当∵>0时,方程有两个不相等的实数根;∵当∵=0时,方程有两个相等的实数根;∵当∵<0时,方程没有实数根.也考查了等腰三角形的性质以及三角形三边的关系.举一反三:【变式1】已知关于x的一元二次方程x2+x=k.(1)若方程有两个不相等的实数根,求实数k的取值范围;(2)当k=6时,求方程的实数根.【答案】(1)k>﹣14;(2)x1=﹣3,x2=2.【分析】(1)根据判别式的意义得△=12-4×1(-k)=1+4k>0,然后解不等式即可;(2)利用因式分解法解一元二次方程即可.解:(1)∵方程有两个不相等的实数根,∵∵=12﹣4×1(﹣k)=1+4k>0,解得:k>﹣14;(2)把k=6代入原方程得:x2+x=6,整理得:x2+x﹣6=0,分解因式得:(x+3)(x﹣2)=0,解得:x1=﹣3,x2=2.【点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根;也考查了解一元二次方程.【变式2】已知关于x的方程x2-(3k+1)x+2k2+2k=0,(1)求证:无论k取何实数值,方程总有实数根.(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.【答案】(1)见分析;(2)16或22【分析】(1)先计算判别式,将结果写成完全平方形式,再根据判别式的意义得出结论.(2)运用求根公式得到方程的两个根,根据等腰三角形性质,将两个根代入计算,分情况讨论求出等腰三角形的周长.解:(1)证明:∆=[-(3k+1)]2-4×1×(2k2+2k)=k2-2k+1=( k-1)2,∵无论k取什么实数值,(k-1)2≥0,∵∆≥0,所以无论k取什么实数值,方程总有实数根;(2)x2-(3k+1)x+2k2+2k=0,因式分解得:(x-2k)( x-k-1)=0,解得:x1=2k,x2=k+1,b,c恰好是这个方程的两个实数根,设b=2k,c=k+1,分三种情况讨论:第一种情况:∵若c为等腰三角形的底边,a、b为腰,则a=b=2k=6,∵k=3,c=k+1,∵c=4,检验:a+b>c,,a+c>b,b+c>a,a-b<c,a-c<b,b-c<a,∵a=b=6,c=4,可以构成等腰三角形,此时等腰三角形的周长为:6+6+4=16;第二种情况:∵若b为等腰三角形的底边,a、c为腰,则a=c=k+1=6,∵k=5,b=2k,∵b=10,检验:a+b >c ,,a+c >b ,b+c >a ,b -a <c ,a -c <b ,b -c <a ,∵a=c=6,b=10,可以构成等腰三角形,此时等腰三角形的周长为:6+6+10=22;第三种情况:∵若a 为等腰三角形的底边,b 、c 为腰,则b=c ,∵即:2k=k+1,解得k=1,∵a=6,b=2,c=2,检验:b+c <a ,∵a=6,b=2,c=2,不能构成等腰三角形;综上,等腰三角形的周长为16或22.【点拨】本题主要考查一元二次方程根的判别式,本题第二问,根据一元二次方程根的情况求参数,分类讨论是解题关键.类型四、一元二次方程的根与系数的关系4、关于x 的一元二次方程()222110x m x m +-+-=有两个不相等的实数根1x ,2x . (1)求实数m 的取值范围;(2)是否存在实数m ,使得22121216x x x x +=+成立?如果存在,求出m 的值:如果不存在,请说明理由.【答案】(1)m <1;(2)m =-1【分析】(1)由方程有两个不相等的实数根,那么∵>0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围;(2)根据根与系数的关系即可得出x 1+x 2=-2(m -1),x 1•x 2=m 2-1,由条件可得出关于m 的方程,解之即可得出m 的值.解:(1)∵方程x2+2(m -1)x +m 2-1=0有两个不相等的实数根x 1,x 2.∵∵=4(m -1)2-4(m 2-1)=-8m +8>0,∵m<1;(2)∵原方程的两个实数根为x 1、x 2,∵x 1+x 2=-2(m -1),x 1•x 2=m 2-1.∵x 12+x 22=16+x 1x 2∵(x1+x2)2=16+3x1x2,∵4(m-1)2=16+3(m2-1),解得:m1=-1,m2=9,∵m<1,∵m2=9舍去,即m=-1.【点拨】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程有两个不相等的实数根找出根与系数的关系;(2)根据根与系数的关系得出m的值,注意不能忽视判别式应满足的条件.举一反三:【变式1】关于x的一元二次方程x2-(k-3)x-2k+2=0(1)求证:方程总有两个实数根;(2)若方程的两根分别为x1,x2,且x1+x2+x1x2=2,求k的值.【答案】(1)见分析(2)-3【分析】(1)根据方程的系数结合根的判别式可得出Δ=(k+1)2≥0,由此可证出方程总有两个实数根;(2)根据一元二次方程的根与系数的关系可以得到x1+x2=k-3,x1x2=-2k+2,再将它们代入x1+x2+x1x2=2,即可求出k的值.(1)证明:∵Δ=b2-4ac=[-(k-3)]2-4×1×(-2k+2)=k2+2k+1=(k+1)2≥0,∵方程总有两个实数根;(2)解:由根与系数关系得x1+x2=k-3,x1x2=-2k+2,∵x1+x2+x1x2=2,∵k-3+(-2k+2)=2,解得k=-3.【点拨】本题考查了一元二次方程ax2+bx+c=0根的判别式和根与系数的关系的应用,用到的知识点:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根;(4)x1+x2=-ba,x1•x2=ca.【变式2】已知x1,x2是关于x的一元二次方程x2-4mx+4m2-9=0的两实数根.(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知Rt∵ABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值.【答案】(1)m的值为1或-2(2)-2<m<1(3)m m=49 24【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角∵ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的两实数根,这个方程有一个根为-1,∵将x=-1代入方程x2-4mx+4m2-9=0,得1+4m+4m2-9=0.解得m=1或m=-2.∵m的值为1或-2.(2)解:∵x2-4mx+4m2=9,∵(x-2m)2=9,即x-2m=±3.∵x1=2m+3,x2=2m-3.∵2m+3>2m-3,∵231 231 mm+-⎧⎨--⎩><解得-2<m<1.∵m的取值范围是-2<m<1.(3)解:由(2)可知方程x2-4mx+4m2-9=0的两根分别为2m+3,2m-3.若Rt∵ABC的斜边长为7,则有49=(2m+3)2+(2m-3)2.解得m=∵边长必须是正数,∵m若斜边为2m+3,则(2m+3)2=(2m-3)2+72.解得m=49 24.综上所述,m m=49 24.【点拨】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.类型五、一元二次方程的实际应用5、水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg.(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元.若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元.【答案】(1)每天的总毛利润为7820元;(2)每千克应涨价5元;(3)每千克应涨价15元或203元【分析】(1)设每千克盈利x元,可售y千克,由此求得关于y与x的函数解析式,进一步代入求得答案即可;(2)利用每千克的盈利×销售的千克数=总利润,列出方程解答即可;(3)利用每天总毛利润﹣税费﹣人工费﹣水电房租费=每天总纯利润,列出方程解答即可.(1)解:设每千克盈利x元,可售y千克,设y=kx+b,则当x=10时,y=600,当x=11时,y=600﹣20=580,由题意得,10600 11580k bk b+=⎧⎨+=⎩,解得20800kb=-⎧⎨=⎩.所以销量y与盈利x元之间的关系为y=﹣20x+800,当x=17时,y=460,则每天的毛利润为17×460=7820元;(2)解:设每千克盈利x元,由(1)可得销量为(﹣20x+800)千克,由题意得x(﹣20x+800)=7500,解得:x1=25,x2=15,∵要使得顾客得到实惠,应选x=15,∵每千克应涨价15﹣10=5元;(3)解:设每千克盈利x元,由题意得x(﹣20x+800)﹣10%x(﹣20x+800)﹣1.5(﹣20x+800)﹣300=6000,解得:x1=25,x2503 =,则每千克应涨价25﹣10=15元或503-10203=元.【点拨】此题主要一元二次方程的实际运用,找出题目蕴含的数量关系,理解销售问题中的基本关系是解决问题的关键.举一反三:【变式1】如图所示,有一面积为150m2的的长方形养鸡场,鸡场边靠墙(墙长18米),另三边用竹篱笆围成.如果竹篱笆的长为35m,求鸡场长和宽各是多少?【答案】鸡场的长与宽各为15m,10m.【分析】设养鸡场的宽为xm,则长为(35﹣2x)m,列出一元二次方程计算即可;解:设养鸡场的宽为xm,则长为(35﹣2x)m,由题意得,x(35﹣2x)=150,解这个方程:x1=7.5,x2=10,当养鸡场的宽为x1=7.5 时,养鸡场的长为20m不符合题意,应舍去,当养鸡场的宽为x 2=10m 时,养鸡场的长为15m ,答:鸡场的长与宽各为15m ,10m .【点拨】本题主要考查了一元二次方程的应用,准确计算是解题的关键.【变式2】2020年春节期间,新型冠状病毒肆虐,突如其来的疫情让大多数人不能外出,网络销售成为这个时期最重要的一种销售方式.某乡镇贸易公司因此开设了一家网店,销售当地某种农产品.已知该农产品成本为每千克10元.调查发现,每天销售量()kg y 与销售单价x (元)满足如图所示的函数关系(其中1040x <≤).()1写出y 与x 之间的函数关系式.()2当销售单价x 为多少元时,每天的销售利润可达到6000元?【答案】(1)15750=-+y x ;(2)当销售单价为30元时,每天的销售利润可达到6000元.【分析】(1)设函数解析式为y kx b =+,根据题意:销售单价为10元时,销售量为600kg ,销售单价为40元时,销售量为150kg ,代入熟知求得k 、b 的值即可求得解析式;(2)每天的销售利润等于每千克的销售利润乘以销售量列式求解.解:(1)根据题意:销售单价为10元时,销售量为600kg ,销售单价为40元时,销售量为150kg ,设y 与x 之间的函数关系式为:y kx b =+,则可得:6001015040k b k b =+⎧⎨=+⎩, 解得:15750k b =-⎧⎨=⎩,∵y 与x 之间的函数关系式为:15750=-+y x ;(2)根据题意可知每天的销售利润为:0()1015750600)(x x --+=2609000,x x ∴-+=解得:1230x x ==;答:当销售单价为30元时,每天的销售利润可达到6000元.【点拨】本题主要考查一次函数的实际应用,以及二次函数的实际应用,结合属性结合的思想求出一次函数解析式,以及明确每天的销售利润等于每千克的销售利润乘以销售量是解题的关键.类型六、一元二次方程的几何应用6、已知:如图所示,在ABC 中,90B ∠=︒,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动.当P 、Q 两点中有一点到达终点,则同时停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PBQ △的面积等于24cm(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于? (3)PQB △的面积能否等于27cm 请说明理由.【答案】(1)1秒;(2)3秒;(3)不能,理由见分析【分析】(1)设P 、Q 分别从A 、B 两点出发,x 秒后,AP=xcm ,PB=(5-x )cm ,BQ=2xcm ,则∵PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)利用勾股定理列出方程求解即可;(3)看∵PBQ 的面积能否等于7cm 2,只需令12×2t (5-t )=7,化简该方程后,判断该方程的24b ac -与0的关系,大于或等于0则可以,否则不可以.解:(1)设经过x 秒以后,PBQ △面积为24(0 3.5)cm x <≤,此时=AP xcm ,()5BP x cm =-,2=BQ xcm , 由142BP BQ ⋅=,得()15242x x -⨯=, 整理得:2540x x -+=,解得:1x =或4(x =舍),答:1秒后PBQ △的面积等于24cm ;(2)设经过t 秒后,PQ 的长度等于由222PQ BP BQ =+,即2240(5)(2)t t =-+,解得:t=3或-1(舍),∵3秒后,PQ 的长度为;(3)假设经过t 秒后,PBQ △的面积等于27cm , 即72BQ BP ⨯=,()2572t t -⨯=, 整理得:2570t t -+=,由于24252830b ac -=-=-<,则原方程没有实数根,∵PQB △的面积不能等于27cm .【点拨】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.举一反三:【变式1】 已知:如图A ,B ,C ,D 为矩形的四个顶点,AB=16cm ,AD=6cm ,动点P ,Q 分别从A ,C 同时出发,点P 以3cm/S 的速度向点B 移动,一直到达点B 为止,点Q 以2cm/S 的速度向点D 移动(1)P ,Q 两点从出发点出发几秒时,四边形PBCQ 面积为33cm²(2)P ,Q 两点从出发点出发几秒时,P ,Q 间的距离是为10cm .【答案】(1)5秒;(2)P,Q两点出发85秒或245秒时,点P和点Q的距离是10cm.【分析】当运动时间为t秒时,PB=(16-3t)cm,CQ=2tcm.(1)利用梯形的面积公式结合四边形PBCQ的面积为33cm2,即可得出关于t的一元一次方程,解之即可得出结论;(2)过点Q作QM∵AB于点M,则PM=|16-5t|cm,QM=6cm,利用勾股定理结合PQ=10cm,即可得出关于t的一元二次方程,解之取其较小值即可得出结论.解:当运动时间为t秒时,PB=(16-3t)cm,CQ=2tcm.(1)依题意,得:12×(16-3t+2t)×6=33,解得:t=5.答:P,Q两点从出发开始到5秒时,四边形PBCQ的面积为33cm2.(2)过点Q作QM∵AB于点M,如图所示.∵PM=PB-CQ=|16-5t|cm,QM=6cm,∵PQ2=PM2+QM2,即102=(16-5t)2+62,解得:t1=85,t2=245.答:P,Q两点出发85秒或245秒时,点P和点Q的距离是10cm.【点拨】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)根据梯形的面积公式,找出关于t的一元一次方程;(2)利用勾股定理,找出关于t的一元二次方程.【变式2】在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A沿边AB向点B以1 cm/s 的速度移动;同时点Q从点B沿边BC向点C以2 cm/s的速度移动,设运动时间为t s.问:(1)几秒后∵PBQ的面积等于8 cm2?(2)是否存在t,使∵PDQ的面积等于26 cm2?【答案】(1)2秒或4秒后△PBQ的面积等于8 cm2;(2)不存在t,使∵PDQ的面积等于26 cm2.【分析】(1)设x秒后∵PBQ的面积等于8cm2,用含x的代数式分别表示出PB,QB的长,再利用∵PBQ的面积等于8列式求值即可;(2)假设存在t使得∵PDQ面积为26cm2,根据∵PDQ的面积等于26cm2列式计算即可.解:(1)设x秒后∵PBQ的面积等于8 cm2.∵AP=x,QB=2x.∵PB=6-x.∵(6-x)·2x=8,解得x1=2,x2=4,故2秒或4秒后∵PBQ的面积等于8 cm2.(2)假设存在t使得∵PDQ的面积为26 cm2,则72-6t-t(6-t)-3(12-2t)=26,整理得,t2-6t+10=0,∵Δ=36-4×1×10=-4<0,∵原方程无解,∵不存在t,使∵PDQ的面积等于26 cm2.【点拨】本题考查了一元二次方程的应用,表示出△PBQ的的两条直角边长是解决本题的突破点;用到的知识点为:直角三角形的面积=两直角边积的一半.本题也考查了矩形的性质和割补法求图形的面积.类型七、一元二次方程的拓展应用6、关于x 的一元二次方程260x x k -+=的一个根是2,另一个根2x .(1)若直线AB 经过点()2,0A ,()20,B x ,求直线AB 的解析式;(2)在平面直角坐标系中画出直线AB 的图象,P 是x 轴上一动点,是否存在点P ,使ABP ∆是直角三角形,若存在,直接写出点P 坐标,若不存在,说明理由.【答案】(1)24y x =-+;(2)存在,点P 的坐标为()8,0-或()0,0.【分析】(1)将x=2代入方程求出k=8,根据根与系数的关系求出2x =4,设直线AB 的解析式为y=kx+b (0k ≠),利用待定系数法求出解析式;(2)分情况求解:第一种:AB 是斜边,∵APB =90°,得到点P 与原点O 重合;第二种:设AB 是直角边,点B 为直角顶点,即∵ABP =90°,设P 的坐标为(x ,0),根据222AP BP AB =+, 22222424(2)x x +++=-, 解得x=-8,求出点P 的坐标;第三种:设AB 是直角边,点A 为直角顶点,即∵BAP =90°,由点P 是x 轴上的动点,得到∵BAP >90°,情况不存在.解:(1)当x=2时,方程为22120k -+=,解得k=8,∵2+2x =6,∵一元二次方程为2680x x -+=的另一个根2x =4.设直线AB 的解析式为y=kx+b (0k ≠),∵直线AB 经过点A (2,0),B (0,4),∵204k b b +=⎧⎨=⎩, 解得k=-2,b=4,直线AB 的解析式:y=-2x+4;(2)第一种:AB 是斜边,∵APB =90°,∵∵AOB =90°,∵当点P 与原点O 重合时,∵APB =90°,∵当点P 的坐标为(0,0),∵ABP 是直角三角形.第二种:设AB 是直角边,点B 为直角顶点,即∵ABP =90°,∵线段AB在第一象限,∵这时点P在x轴负半轴.设P的坐标为(x,0),∵A(2,0),B(0,4),∵OA=2,OB=4,OP=-x,∵222224=+=+,BP OP OB x22222=+=+,AB OA OB24222=+=-.AP OA OP x()(2)∵222=+,AP BP AB∵22222x x+++=-,424(2)解得x=-8,∵当点P的坐标为(―8,0),∵ABP是直角三角形.第三种:设AB是直角边,点A为直角顶点,即∵BAP=90°.∵点A在x轴上,点P是x轴上的动点,∵∵BAP>90°,∵∵BAP=90°的情况不存在.∵当点P的坐标为(―8,0)或(0,0)时,∵ABP是直角三角形.【点拨】此题考查待定系数法求函数解析式,一元二次方程的解,一元二次方程根与系数的关系式,直角三角形的性质,勾股定理,分类讨论问题的解题方法是解题的关键.举一反三:【变式1】阅读下面材料:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,它通常用字母d表示,我们可以用公式(1)2n nS na d-=+⨯来计算等差数列的和.(公式中的n表示数的个数,a表示第一个数的值,)例如:3+5+7+9+11+13+15+17+19+21=10×3+10(101)2-×2=120.用上面的知识解决下列问题.(1)计算:2+8+14+20+26+32+38+44+50+56+62+68+74+80+86+92+98+104+110+116(2)某县决定对坡荒地进行退耕还林.从2009年起在坡荒地上植树造林,以后每年植树后坡荒地的实际面积按一定规律减少,下表为2009、2010、2011、2012四年的坡荒地面积的统计数据.问到哪一年,可以将全县所有坡荒地全部种上树木.【答案】(1)1180;(2)到2017年,可以将全县所有的坡荒地全部种上树木.【分析】(1)根据题意,由公式(1)2n nS na d-=+⨯来计算等差数列的和,即可得到答案;(2)根据题意,设再过x年可以将全县所有的坡荒地全部种上树木.列出方程,解方程即可得到答案.解:(1)由题意,得6d=,20n=,2a=,∵(1)2n nS na d-=+⨯,∵20(201)22062S-=⨯+⨯401140=1180=+;(2)解:设再过x年可以将全县所有的坡荒地全部种上树木.根据题意,得1200x+(1)2x x-×400=25200,整理得:(x﹣9)(x+14)=0,∵x=9或x=﹣14(负值舍去).∵2009+9-1=2017;答:到2017年,可以将全县所有的坡荒地全部种上树木.【点拨】本题考查了一元二次方程的应用,解一元二次方程,以及计算等差数列的和公式,解题的关键是熟练掌握题意,正确找出等量关系,列出方程进行解题.【变式2】阅读下列材料,回答问题.关于x 的方程121x x +=的解是1x =;222x x +=的解是2x =;323x x +=的解是3x =;222x x --=(即222x x -+=-)的解是2x =-. (1)请观察上述方程与其解的特征,x 的方程2(0)m x m x m+=≠与上述方程有什么关系?猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可得到以下结论:如果方程的左边是一个未知数倒数的a 倍与这个未知数的1a 的和等于2,那么这个方程的解是x=a.请用这个结论解关于x 的方程:2212(1)x a a x a+=+--. 【答案】(1)普遍形式,x m =.(2)x =【分析】 ∵观察一系列方程的解得出一般性规律,即可得到所求方程的解;∵方程变形后,利用得出的规律即可求出解.解:(1)由已知中,121x x +=的解是1x =, 222x x +=的解是2x =, 33x x +的解是3x =, 222x x --=的解是2x =-. ⋯ 归纳可得方程2m x x m+=的解是x m =, 将x m =代入得: 左边112m m m m=+=+=, 故m 是方程2m x x m +=的解, (2)2212x a x a +=+-可化为:2212x a x a-+=-, 由(1)中结论可得21x a -=,即21x a =+,∴=x【点拨】此题考查了分式方程的解,属于规律型试题,弄清题中的规律是解本题的关键.归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).。

一元一次方程复习教案设计

一元一次方程复习教案设计

一元一次方程复习教案设计一、教学目标1. 知识与技能:(1)理解一元一次方程的概念及其一般形式;(2)掌握一元一次方程的解法,包括加减法、乘除法、换元法等;(3)能够应用一元一次方程解决实际问题。

2. 过程与方法:(1)通过复习,巩固一元一次方程的基本概念和解法;(2)培养学生运用一元一次方程解决实际问题的能力;(3)提高学生自主学习、合作交流、归纳总结的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探究、积极思考的精神;(3)培养学生合作交流、归纳总结的良好习惯。

二、教学内容1. 一元一次方程的概念及其一般形式;2. 一元一次方程的解法,包括加减法、乘除法、换元法等;3. 应用一元一次方程解决实际问题。

三、教学重点与难点1. 重点:一元一次方程的概念及其一般形式,一元一次方程的解法;2. 难点:一元一次方程的解法在实际问题中的应用。

四、教学过程1. 复习导入:(1)回顾一元一次方程的概念及其一般形式;(2)引导学生回忆一元一次方程的解法。

2. 课堂讲解:(1)讲解一元一次方程的解法,包括加减法、乘除法、换元法等;(2)通过例题演示和解题思路分析,让学生熟练掌握一元一次方程的解法;(3)引导学生运用一元一次方程解决实际问题,如购物问题、行程问题等。

3. 课堂练习:(1)设计具有代表性的练习题,让学生独立完成;(2)引导学生相互讨论、交流解题思路,培养合作精神;(3)对学生的练习结果进行点评,及时纠正错误,巩固知识点。

4. 归纳总结:(1)引导学生总结一元一次方程的概念、解法及实际应用;(2)强调一元一次方程在实际生活中的重要性;(3)鼓励学生在日常生活中发现和提出一元一次方程问题。

五、课后作业1. 请列出五个一元一次方程,并求解;2. 选择一个实际问题,运用一元一次方程进行解答;3. 总结一元一次方程的解法,并谈谈自己在解决实际问题中的心得体会。

教学评价:通过课后作业的完成情况,了解学生对一元一次方程的掌握程度及实际应用能力。

人教版七年级数学上册 第五章 一元一次方程知识归纳与题型突破(单元复习 8类题型清单)

人教版七年级数学上册  第五章 一元一次方程知识归纳与题型突破(单元复习 8类题型清单)

1第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④3120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个3.(23-24七年级上·全国·单元测试)①12x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x--+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.3.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.巩固训练1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =巩固训练1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c +=-B .如果23x x =,则3x =C .如果a b =,则22a bc c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b =B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=题型六解一元一次方程巩固训练题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+题型八用一元一次方程解决实际问题例题:(2024上·辽宁大连·七年级统考期末)某车间生产一批螺钉和螺母,由一个人操作机器做需要200h完成.现计划由一部分人先做4h,然后增加5人与他们一起做6h,完成这项工作.假设这些人的工作效率相同.(1)求具体应先安排多少人工作?(2)在增加5人一起工作后,若每人每天使用机器可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母成为一个完整的产品,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?(3)若该车间有10台A型和11台B型机器可以生产这种产品,每台A型机器比B型机器一天多生产1个产品.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,且每箱装的产品数相同.某天有6台A型机器和m台B型机器同时开工,请问一天生产的产品能否恰好装满29箱.若能,请计算出m的值;若不能,请说明理由.巩固训练1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)请用含x的代数式分别表示学校在甲、乙两家店购物所付的费用;(2)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)小亮家—年缴纳水费1180元,则小亮家这一年用水多少立方米?(3)小红家去年和今年共用水520立方米,共缴纳水费2950元,并且今年的用水量超过去年的用水量,则小红家今年和去年各用水多少立方米?第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义【分析】本题考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键.根据一元一次方程的定义进行判定.【详解】解:①是二元一次方程,不符合题意;②是一元二次方程,不符合题意;③是一元一次方程,符合题意;④是分式方程,不符合题意;⑤是代数式,不是方程,不符合题意.故选:A .巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义3.(23-24七年级上·全国·单元测试)①2x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.【答案】2【知识点】一元一次方程的定义【分析】本题考查了一元一次方程的概念,根据一元一次方程的定义得到11m -=,求出m 即可.【详解】解:根据题意得:11m -=,解得:2m =,故答案为:2.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x --+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.故答案为:13.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.【答案】1或0【知识点】一元一次方程的定义【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.根据一元一次方程的一般形式即可判定有3种情况,分别讨论①当0m ≠且10m -≠时,②当0m =且10m -≠时,③当10m -=时是否满足该方程为一元一次方程即可.【详解】解: 关于x 的方程()21120m mxm x -+--=是一元一次方程,可考虑三种情况,①当0m ≠且10m -≠时,即0m ≠且1m ≠,则211m -=,解得:1m =,此时1m ≠,故排除;②当0m =且10m -≠时,即0m =且1m ≠,∴0m =,符合条件;③当10m -=即1m =时,211m -=,符合条件;综上:m 的值为1或0,故答案为:1或0.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.【答案】2【知识点】方程的解【分析】本题考查了方程解的定义,使方程的左右两边相等的未知数的值,叫做方程的解.将3x =代入原方程,可得出关于a 的一元一次方程,解之即可得出a 的值.【详解】解:将3x =代入原方程得326a a -=-+,解得:2a =,∴a 的值为2.故答案为:2.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.【答案】3x =【知识点】方程的解【分析】此题考查了方程的解,根据表格中的数据求解即可.【详解】根据题意可得,当3x =时,8ax b +=∴关于x 的方程8ax b +=的解是3x =.故答案为:3x =.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.【答案】21x x =-+【知识点】列方程【分析】本题主要考查了一元一次方程的应用,数x 的2倍为2x ,相反数为x -,据此根据题意列出方程即可.【详解】解:由题意得,21x x =-+,故答案为:21x x =-+.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.【答案】()3229x x -=+【知识点】古代问题(一元一次方程的应用)【分析】本题考查了由实际问题抽象出一元一次方程.根据人数不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:依题意,得:()3229x x -=+.故答案为:()3229x x -=+.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.【答案】()7791x x +=-【知识点】古代问题(一元一次方程的应用)【分析】本题考查一元一次方程的应用,理清题中的等量关系是解题的关键.由等量关系“一房七客多七客,一房九客一房空”,即可列出一元一次方程即可.【详解】解: 每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,∴客人可表示为()77x +个,也可表示为()91x -个,()7791x x ∴+=-,故答案为:()7791x x +=-.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =【答案】B1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c+=-B .如果23x x =,则3x =C .如果a b =,则22a b c c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b=B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=【答案】A【知识点】等式的性质【分析】本题考查等式的性质,根据天平两端相等即可求得答案.【详解】解:由图形可得如果a c b c +=+,那么a b =,故选:A .题型六解一元一次方程例题1:解方程:(1)25433x x -=-;(2)576132x x -=-+.【答案】(1)35x =(2)415x =【分析】()1方程移项合并,把x 系数化为1,即可求解;()2方程移项合并,把x 系数化为1,即可求解.【详解】(1)移项,得24353x x -+=-,合并同类项,得1023x -=-,系数化为1,得35x =.(2)移项,得756123x x -+=-,合并同类项,得5223x -=-,系数化为1,得415x =.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.例题2:解方程:(1)5(1)2(31)41---=-x x x ;(2)23(1)12(10.5)-+=-+x x .题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+【答案】(1)③④①②(2)3x=-题型八用一元一次方程解决实际问题1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.答:小红家去年和今年用水分别为245立方米、275立方米.。

第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)

第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)

巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,


现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号

不大于, 小于或 不超过 等于
大于或等于 号

不小于, 大于或
至少
等于
不等号

不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象

一元一次方程基础知识详解

一元一次方程基础知识详解

一元一次方程目录一、方程的意义二、一元一次方程的解法三、实际问题与一元一次方程(一)四、实际问题与一元一次方程(二)五、《一元一次方程》全章复习与巩固一、方程的意义基础知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2.正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3.理解并掌握等式的两个基本性质.【要点梳理】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么(c为一个数或一个式子).等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2)等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3)等式的性质2中等式两边都除以同一个数时,这个除数不能为零.二、一元一次方程的解法基础知识讲解【要点梳理】要点一、解一元一次方程的一般步骤变形名称具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项(2)不要弄错符号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项(1)移项要变号(2)不要丢项要变号)合并同类项把方程化成ax=b(a≠0)的形式字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解b x a=.不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2)去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-.2.含字母的一元一次方程此类方程一般先化为最简形式ax=b,再分三种情况分类讨论:(1)当a≠0时,b x a=;(2)当a=0,b=0时,x 为任意有理数;(3)当a=0,b≠0时,方程无解.三、实际问题与一元一次方程(一)基础知识讲解【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系:路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.要点三、常见列方程解应用题的几种类型5.利润问题(1)=100% 利润利润率进价(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.6.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1217.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b,则这个两位数可以表示为10b+a .8.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.《初中数学典型题思路分析》价格及说明四、实际问题与一元一次方程(二)基础知识讲解【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点三、常见列方程解应用题的几种类型1.利润问题(1)=100% 利润利润率进价(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.2.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1213.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b,则这个两位数可以表示为10b+a .4.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.五、《一元一次方程》全章复习与巩固【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bx a=(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.。

新人教版七年级上册数学教材配题3.3 解一元一次方程(二)、3章-复习题3

新人教版七年级上册数学教材配题3.3  解一元一次方程(二)、3章-复习题3

第三章 一元一次方程3.3 解一元一次方程(二)—去括号与去分母P93——问题 1 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000h kW ∙(千瓦∙时),全年用电15万h kW ∙,这个工厂去年上半年每月平均用电是多少?P93——思考本题还有其他列方程的方法吗?用其他方法列出的方程应该怎么解?P94——例1 解下列方程:(1)2)1(25)10(-+=+-x x x x ;(2)3)3(23)1(7+-=--x x x .例2 一艘船从甲码头到乙码头顺流而行,用了2h ,从乙码头返回甲码头逆流而行,用了2.5h.已知水流的速度是3km/h,求船在静水中的平均速度.P95——练习解下列方程:(1)2(3+x )=5x ; (2)4x +3(2x -3)=12-(x +4);(3)6(421-x )+2x =7-(131-x ); (4)2-3(x +1)=1-2(1+0.5x ).P95——问题2 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.P97——例3 解下列方程:(1)422121x x -+=-+; (2)3x +312321--=-x x .P98——练习解下列方程:(1))2(1002110019-=x x ; (2)4221x x =-+; (3)32213415x x x --+=-; (4)5124121223+--=-+x x x .P98——习题3.3复习巩固1. 解下列方程:(1)50)42(=-+a a ; (2)29)5(25=--b b ;(3)20)33(27=-+x x ; (4)6)23(38=+-y y .2. 解下列方程:(1))1(3)8(2-=+x x ; (2))4(28+-=x x ;(3)3)3(322+-=+-x x x ; (4))25.1()5.010(2+-=-y y . 3. 解下列方程:(1)312253-=+x x ; (2)154353+=--x x ; (3)6751413-=--y y ; (4)1255241345--=-++y y y . 4. 用方程解下列问题:(1)x 与4之和的1.2倍等于x 与14之差的3.6倍,求x ;(2)y 的3倍与1.5之和的二分之一等于y 与1之差的四分之一,求y .综合运用5. 张华和李明登一座山,张华每分登高10m ,并且先出发30min (分),李明每分登高15m ,两人同时登上山顶.设张华登山用了x min ,如何用含x 的式子表示李明登山所用时间?试用方程求x 得值,由x 的值能求出山高吗?如果能,山高多少米?6. 两辆汽车从相距84km 的两地同时出发相向而行,甲车的速度比乙车的速度快20km/h,半小时后两车相遇,两车的速度各是多少?7. 在风速为24km/h 的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8h ,它逆风飞行同样的航线要用3h ,求:(1)无风时这架飞机在这一航线的平均航速;(2)两机场之间的航程.8. 买两种布料共138m,花了540元,其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少米?拓广探索9. 有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有502m 墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的402m 墙面,每名一级技工比二级技工一天多粉刷102m 墙面,求每个房间需要粉刷的墙面面积.10. 王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿着同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36km,到中午12时,两人又相距36km ,求A ,B 两地之间的路程.11. 一列火车匀速行驶,经过一条长300m 的隧道需要20s 的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.(1) 设火车的长度为x m ,用含x 的式子表示:从车头经过灯下到车尾经过灯下火车所走的路程和这段时间内火车的平均速度;(2) 设火车的长度为x m ,用含x 的式子表示:从车头进入隧道到车尾离开隧道火车所走的路程和这段时间内火车的平均速度;(3) 上述问题中火车的平均速度发生了变化吗?(4) 求这列火车的长度.P111——复习题3复习巩固1.列方程表示下列语句所表示的相等关系;(1) 某地2011年9月6日的温差是10C o ,这天最高气温是t C o ,最低气温是32C o ; (2) 七年级学生人数为n,其中男生占45%,女生有110人;(3) 一种商品每件的进价为a 元,售价为进价的1.1倍,现每件又降价10元,现售价为每件210元;(4) 在五天中,小华共植树60棵,小明共植树x (x <60)棵,平均每天小华比小明多种2棵。

苏科版数学七年级上册第四章 《一元一次方程》复习教教学设计

苏科版数学七年级上册第四章 《一元一次方程》复习教教学设计

苏科版数学七年级上册第四章《一元一次方程》复习教教学设计一. 教材分析《苏科版数学七年级上册第四章复习》是学生在掌握了方程概念和一元一次方程的解法基础上进行的一元一次方程的复习。

教材通过回顾和巩固一元一次方程的定义、解法以及应用,使学生能够更好地理解和掌握一元一次方程的知识,为后续学习更高级的方程打下基础。

二. 学情分析学生在之前的学习中已经掌握了一元一次方程的基本概念和解法,但部分学生在解方程时对移项、合并同类项等步骤掌握不够熟练,容易出错。

此外,学生对一元一次方程在实际生活中的应用还不够清晰,需要通过实例进行引导和加深理解。

三. 教学目标1.知识与技能:通过对一元一次方程的复习,使学生能够熟练掌握一元一次方程的定义、解法和应用。

2.过程与方法:通过复习和练习,培养学生解一元一次方程的能力,提高学生的数学思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的意志。

四. 教学重难点1.重点:一元一次方程的定义、解法和应用。

2.难点:解一元一次方程时的移项、合并同类项等步骤的运用。

五. 教学方法采用讲练结合、小组合作和实例分析的方法进行教学。

通过教师的讲解和示范,学生的练习和讨论,以及实际生活中的实例分析,使学生能够更好地理解和掌握一元一次方程的知识。

六. 教学准备1.教师准备:教材、课件、练习题、实际生活中的例子。

2.学生准备:笔记本、笔、已掌握的一元一次方程知识。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一元一次方程的定义和解法,激发学生的学习兴趣。

2.呈现(15分钟)教师通过课件呈现一元一次方程的定义、解法和应用,对一元一次方程的知识进行梳理和巩固。

3.操练(10分钟)学生分组进行练习,解答教师提供的一元一次方程题目。

教师巡回指导,对学生在解题过程中遇到的问题进行解答和指导。

4.巩固(10分钟)教师选取部分学生解答正确的题目进行讲解和分析,引导学生总结解题方法和技巧。

第17讲 一元一次方程全章复习与巩固

第17讲 一元一次方程全章复习与巩固

第17讲一元一次方程全章复习与巩固【知识网络】【要点梳理】要点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.要点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.要点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.要点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y 两边都减去x+y ,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223xx x -+=+,去分母,得3(3-7x)=2(2x+1)+2x ,去括号得:9-21x=4x+2+2x.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【变式】已知|x+1|+(y+2x)2=0,则y x=________.类型二、一元一次方程的解法3.解方程:4621132x x-+-=.举一反三:【变式1】解方程26752254436z z z zz+---++=-【变式2】解方程:0.10.050.20.0550.20.54x x+--+=.4.解方程3{2x-1-[3(2x-1)+3]}=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+2.解含绝对值的方程6. 解方程|x -2|=3.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解, 则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 . 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【典型复习题】一、选择题1.已知方程||(1)34m m x +-=是关于x 的一元一次方程,则m 的值是( ).A .±1B .1C .-1D .0或12.已知1x =是方程122()3x x a -=-的解,那么关于y 的方程(4)24a y ay a +=+的解是( ). A .y =1 B .y =-1 C .y =0 D .方程无解3.已知2(1)3(1)4(1)x y x y y x y x ++--+=---+-,则x y +等于( ).A .65-B .65C .56-D .564.一列火车长100米,以每秒20米的速度通过800米长的隧道,从火车进入隧道起,至火车完全通过所用的时间为( ).A .50秒B .40秒C .45秒D .55秒5.一架飞机在两城间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,求两城距离x 的方程是( )A .24245.56x x -=+B .24245.56x x -+=C . 2245.56 5.5x x =-+D .245.56x x -= 6.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( )二、填空题7.已知方程2235522ax x x x a ++=-+是关于x 的一元一次方程,则这个方程的解为________.8.已知|4|m n -+和2(3)n -互为相反数,则22m n -=________.9.当x =________时,代数式453x -的值为-1. 10.一商店把某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则标价是每件 元.11.某种中草药含甲、乙、丙、丁四种草药成分,这四种草药成分的质量比是0.7∶1∶2∶4.7。

六年级数学一元一次方程

六年级数学一元一次方程

第五章一元一次方程复习指导一复习目标:掌握等式、方程、一元一次方程以及方程的解等基本概念,了解方程的基本变形在解方程时的作用。

1.会解一元一次方程,掌握一元一次方程的解法的一般步骤,并能正确灵活地加以运用。

2.能以一元一次方程为工具解决一些简单的实际问题,包括列方程,求解方程、所根据问题的实际意义检验所得结果是否合理。

3.在经历“问题情境---建立数学模型---解释、应用与拓展”的过程中体会一元一次方程在数学应用中的价值。

培养运用数学知识,去分析解决实际问题的能力,提高创新能力。

二知识结构网络:三、重点难点本章的重点难点是一元一次方程的解法和列一元一次方程解应用题。

准确熟练地解一元一次方程,关键在于正确理解等式的两个基本性质,列方程解应用题,关键在于正确地分析题中的数量关系,找出能够表达题意的相等关系。

四、点击中考纵观历年中考对有关一元一次方程知识的考查,着重在其概念和解法以及列一元一次方程解应用题考查的内容都是一些基础知识,适合全体学生,因此,复习应贴近课本注重基础知识的训练与巩固。

五、基础知识点精要(一)概念1、等式:用等号“=”来表示相等关系的式子叫做等式。

2、方程 : 含有末知数的等式叫做方能,一个式子只有同时具备下面的两个条件时,它才是方程。

即:(1)是等式,(2)含有未知数这两个条件缺一不可。

3、一元一次方程在一个方程中,只含有一个末知数x(元)并且末知数的次数是1(次),系数不等于0,这样的方程叫一元一次方程。

应特别注意:(1)把ax=b(a≠0)叫做一元一次方程的最简形式。

ax十b=0(其中x是末知数,a、b是己知数,且a≠0)叫做一元一次方程的标准形式。

(2)判断一个具体的方程是否是一元一次方程特别要注意两个方面:一要看是否是一元一次方程特别要注意两个方面:一要看是否是整式方程,二是要看这个方程化简后是不是一元一次方程的最简形式。

即ax=b(a≠0)若该方程是整式方程且化十21是一元4.(1)(2)1、是等式。

第6章《一元一次方程》单元教案

第6章《一元一次方程》单元教案

第6章一元一次方程6.1从实际问题到方程1.掌握如何设未知数.2.掌握如何找等式来列方程.3.了解尝试法、代入法寻找方程的解.重点1.确定所有的已知量和确定“谁”是未知数x.2.列方程.难点找出问题中的相等关系.一、创设情境,问题引入在现实生活中,有很多问题都跟数学有关,例如下面的问题:问题1:某校初一年级有328名师生乘车外出春游,已有2辆校车乘坐了64人,还需租用44座的客车多少辆?这个问题用数学中的什么方法来解决呢?二、探索问题,引入新知1.在小学里,我们学过方程,你还能记得什么样的式子是方程吗?含有未知数的等式叫方程.2.讲解导入中的问题:根据小学所学的列方程,按照问题问“什么”就设这个“什么”为未知数x的方法来解决这个问题.分析:设需租用客车x辆,则客车可以乘坐44x人,加上2辆校车上的64人,就是328人.列方程为44x+64=328.解:设还需租用44座的客车x辆,则共可乘坐44x人.根据题意列方程得:44x+64=328.设问:你们谁会解这个方程?请大家自己试一试.问题2:张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年后你们的年龄是我年龄的三分之一?”方法一:我们可以按年龄的增长依次去试.1年后,老师的年龄是46岁,同学的年龄是14岁,不是老师年龄的三分之一;2年后,老师的年龄是47岁,同学的年龄是15岁,也不是老师年龄的三分之一;3年后,老师的年龄是48岁,同学的年龄是16岁,恰好是老师年龄的三分之一.方法二:也可以用列方程的办法来解.解:设x 年后同学的年龄是老师年龄的三分之一,x 年后同学的年龄是(13+x)岁,老师年龄是(45+x)岁.根据题意,列出方程得13+x =13(45+x). 这个方程不太好解,大家可以用尝试、检验的方法找出它的解,即只要将x =1,2,3,4,…代入方程的左右两边,看哪个数能使左右两边的值相等,这样得到方程的解为 x =3.结论:使方程左右两边的值相等的未知数的值,就是方程的解. 要检验一个数是否为方程的解,只要把这个数代入方程的左右两边,看能否使左右两边的值相等.如果左右两边的值相等,那么这个数就是方程的解.3.由上面的两个问题,你能总结出列方程解决实际问题的步骤吗? 结论:设未知数x ;找出相等关系;根据相等关系列方程.【例】 某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?(列方程不必求解)分析:设这批书共有3x 本,根据每包书的数目相等,即可得出关于x 的方程,解之即可得出结论. 解:设这批书共有3x 本,根据题意列方程得:2x -4016=x +409. 点评:本题考查了方程的应用,根据每包书的数目相等,列出关于x 的一元一次方程是解题的关键.三、巩固练习1.下列各式中,是方程的是( )A .3+5B .x +1=0C .4+7=11D .x +3>02.下列方程中,解为x =-3的是( ) A .13x +1=0 B .2x -1=8-x C .-3x =1 D .x +13=0 3.下列四个数中,方程x +2=0的解为( )A .2B .-2C .4D .-44.已知甲数比乙数的2倍大1,如果设甲数为x ,那么乙数可表示为________;如果设乙数为y ,那么甲数可表示为________. 5.一根细铁丝用去23后还剩2 m ,若设铁丝的原长为x m ,可列方程为________________. 6.检验下列各数是不是方程3x =x -2的解. (1)x =2; (2)x =-1.7.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)四、小结与作业小结这节课主要讲了下面两个问题:1.复习了用列方程的方法来解应用题;2.检验一个数是否为方程的解的方法.作业1.教材第4页“习题6.1”中第1,3题.2.完成练习册中本课时练习.现代数学教学观念要求学生从“学会”向“会学”转变,本课从探究到应用都有意识地营造一个较为自由的空间,让学生能积极地动手、动口、动脑,使学生在学知识的同时形成方法.整个教学过程突出了三个注重: ①注重学生参与知识的形成过程,体验应用数学知识解决简单问题的乐趣. ②注重师生间、同学间的互动协作、共同提高.③注重知能统一,让学生在获取知识的同时,掌握方法,灵活应用.6.2解一元一次方程6.2.1等式的性质与方程的简单变形第1课时等式的性质1.借助天平的操作活动,发现并理解等式的性质.2.应用等式的性质进行等式的变换.3.经历观察、比较、抽象、归纳等思维活动,发展学生的数学思维能力.重点等式的性质和运用.难点引导学生发现并概括出等式的性质.一、创设情境,问题引入同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.小时候的曹冲是多么地聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的重量.最常见的方法是用天平测量一个物体的质量.我们来做这样一个实验,测一个物体的质量(设它的质量为x).首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量.二、探索问题,引入新知请同学来做这样一个实验:如下图,天平处于平衡状态,它表示左右两个盘内物体的质量a,b是相等的.得到:a=b.1.若在平衡天平两边的盘内都添上(或都拿去)质量相等的物体,则天平仍然平衡.得到:a +c =b +c a -c =b -c2.若把平衡天平两边盘内物体的质量都扩大(或缩小)相同的倍数,则天平仍然平衡.得到:ac =bc(c≠0) a c =b c (c≠0) 观察上面的实验操作过程,回答下列问题: (1)从这个变形过程,你发现了什么一般规律?(2)这几个等式两边分别进行了什么变化?等式有何变化?(3)通过上面的操作活动,你能说一说等式有什么性质吗?结论:等式的基本性质:性质1:等式的两边都加上(或减去)同一个数或同一个整式,等式仍然成立.如果a =b ,那么a +c =b +c ,a -c =b -c.性质2:等式两边都乘或除以同一个数(除数不为0),等式仍然成立.如果a =b ,那么ac =bc ,a c =b c (c≠0). 【例1】 用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质,以及怎样变形的:(1)如果2x +7=10,那么2x =10-________________________________________; (2)如果a 4=2,那么a =________________________________________; (3)如果2a = 1.5,那么6a =________________________________________;(4)如果-5x =5y ,那么x =________________________________________.分析:根据等式的基本性质进行填空.解:(1)根据等式的性质1,若2x +7=10,则2x =10-7(等式的两边同时减去7,等式仍成立);故填:7(等式的两边同时减去7,等式仍成立); (2)根据等式性质2,若a 4=2,则a =8(等式的两边同时乘以4,等式仍成立);故填:8(等式的两边同时乘以4,等式仍成立);(3)根据等式性质2,若2a =1.5,则6a =4.5(等式的两边同时乘以3,等式仍成立);故填:4.5(等式的两边同时乘以3,等式仍成立);(4)根据等式性质2,若-5x =5y ,则x =-y(等式的两边同时除以-5,等式仍成立);故填:-y(等式的两边同时除以-5,等式仍成立).点评:等式性质:1.等式的两边同时加上或减去同一个数或同一个整式,等式仍成立;2.等式的两边同时乘以或除以同一个不为0数或整式,等式仍成立.三、巩固练习1.下列说法正确的是( )A .等式两边都加上一个数或一个整式,所得结果仍是等式B .等式两边都乘以一个数,所得结果仍是等式C .等式两边都除以同一个数,所得结果仍是等式D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式2.对于数x ,y ,c ,下列结论正确的是( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y 3c ,则2x =3y3.在方程的两边都加上4,可得方程x +4=5,那么原方程是________. 4.在方程x -6=-2的两边都加上________,可得x =________.5.方程5+x =-2的两边都减5得x =______.6.如果-7x =6,那么x =________.7.只列方程,不求解.某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产32套服装,就可以超过订货任务20套,问原计划几天完成?四、小结与作业小结通过及时的练习对所学新知进行巩固和深化,在练习中,要求学生说出计算的依据,帮助学生巩固等式性质的同时,也提升了说理能力.作业1.教材第5页“练习”.2.完成练习册中本课时练习.本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力.通过两次实践活动,学生亲自参与了等式的性质发现的过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高.第2课时 方程的简单变形1.理解并掌握方程的两个变形规则;2.使学生了解移项法则,即移项后变号,并且能熟练运用移项法则解方程;3.运用方程的两个变形规则解简单的方程.重点运用方程的两个变形规则解简单的方程.难点运用方程的两个变形规则解简单的方程.一、创设情境、复习引入1.等式有哪些性质?2.在4x -2=1+2x 两边都减去________,得2x -2=1,两边再同时加上________,得2x =3,变形依据是________. 3.在14x -1=2中两边乘以________,得x -4=8,两边再同时加上4,得x =12,变形依据分别是________.二、探索问题、引入新知1.方程是不是等式?2.你能根据等式的性质类比出方程的变形依据吗?结论:方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变.方程两边都乘以(或都除以)同一个不为零的数,方程的解不变.3.你能根据这些规则,对方程进行适当的变形吗?【例1】 解下列方程:(1)x -5=7; (2)4x =3x -4.分析:(1)利用方程的变形规律,在方程x -5=7的两边同时加上5,即x -5+5=7+5,可求得方程的解.(2)利用方程的变形规律,在方程4x =3x -4的两边同时减去3x ,即4x -3x =3x -3x -4,可求得方程的解.像上面,将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.点评:(1)上面两小题方程变形中,均把含未知数x 的项,移到方程的左边,而把常数项移到了方程的右边.(2)移项需变号.【例2】 解下列方程:(1)-5x =2; (2)32x =13; 分析:(1)利用方程的变形规律,在方程-5x =2的两边同除以-5,即-5x÷(-5)=2÷(-5)(或-5x -5=2-5,也就是x =2-5) 可求得方程的解. (2)利用方程的变形规律,在方程32x =13的两边同除以32或同乘以23,即32x÷32=13÷32(或32x×23=13×23),可求得方程的解. 解: (1)方程两边都除以-5,得x =-25. (2)①方程两边都除以32,得x =13÷32=13×23,即x =29.②方程两边同乘以23,得x =13×23=29,即x =29. 结论:(1)上面两题的变形通常称作“将未知数的系数化为1”.(2)上面两个解方程的过程,都是对方程进行适当的变形,得到x =a 的形式.根据上面的例题,你能总结出解一元一次方程的一般步骤吗?点评:解方程的一般步骤是:(1)移项;(2)合并同类项;(3)系数化为1.三、巩固练习1.下面是方程x +3=8的三种解法,请指出对与错,并说明为什么?(1)x +3=8=x =8-3=5;(2)x +3=8,移项得x =8+3,所以x =11;(3)x +3=8,移项得x =8-3,所以x =5.2.下列方程的变形是否正确?为什么?(1)由3+x =5,得x =5+3. (2)由7x =-4,得x =-74. (3)由12y =0,得y =2. (4)由3=x -2,得x =-2-3.3.解下列方程.(1)4x -3=2x -2;(2)1.3x +1.2-2x =1.2-2.7x ;(3)3y -2=y +1+6y.4.方程 2x +1=3和方程2x -a =0 的解相同,求a 的值.四、小结与作业小结先小组内交流收获和感想然后以小组为单位派代表进行总结.教师加以补充.作业1.教材第9页“习题6.2.1”中第1 、2 、3题.2.完成练习册中本课时练习.本节课是在等式基本性质的基础上总结出方程的变形规则,再根据方程的变形规则,通过移项、系数化为1来解简单的方程.学生掌握的较好.6.2.2 解一元一次方程第1课时 一元一次方程的解法(1)1.一元一次方程的定义.2.了解如何去括号解方程.3.了解去分母解方程的方法.重点1.一元一次方程的定义;2.解一元一次方程的步骤.难点灵活使用变形解方程.一、创设情境、复习引入上两堂课讨论了一些方程的解法,那么那些方程究竟是什么类型的方程呢?先看下面几个方程:每一行的方程各有什么特征?(主要从方程中所含未知数的个数和次数两方面分析) 4+x =7;3x +5=7-2x ;y -26=y 3+1; x +y =10;x +y +z =6;x 2-2x -3=0;x 3-1=0.二、探索问题、引入新知1.比较一下,第一行的方程(即前3个方程)与其余方程有什么区别?(学生答)可以看出,前一行方程的特点是:(1)只含有一个未知数;(2)未知数的次数都是一次的.“元”是指未知数的个数,“次”是指方程中含有未知数的项的最高次数,根据这一命名方法,上面各方程是什么方程呢?(学生答)结论:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程.2.上两堂课我们探讨的方程都是一元一次方程,并且得出了解一元一次方程的一些步骤.下面我们继续通过解一元一次方程来探究方程中含有括号的一元一次方程的解法.【例1】 解方程:3(x -2)+1=x -(2x -1).分析:方程中有括号,先去括号,转化成上节课所讲方程的特点,然后再解方程.解:去括号3x -6+1=x -2x +1,合并同类项 3x -5=-x +1,移项 3x +x =1+5,合并同类项4x =6,系数化为1,x =1.5. 【例2】 解方程:x -32-2x +13=1. 分析:只要把分母去掉,就可将方程化为上节课的类型.x -32和-2x +13的分母为2和3,最小公倍数是6,方程两边都乘以6,则可去分母.解:去分母3(x -3)-2(2x +1)=6,去括号3x -9-4x -2=6,合并同类项-x -11=6,移项-x =17,系数化为1,x =-17.回顾上面的解题过程,总结一下:解一元一次方程通常有哪些步骤? 结论:解一元一次方程通常的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.三、巩固练习1.下列方程为一元一次方程的是( )A .y +3=0B .x +2y =3C .x 2=2xD .1y +y =2 2.若代数式x +2的值为1,则x 等于________.3.解下列一元一次方程.(1)2-3x =6-5x ;(2)2(x -2)-3(1-2x)=0; (3)43(14a -1)-2-a =2; (4)x -32-4x -15=1. 3.y 取何值时,2(3y +4)的值比5(2y -7)的值大3? 4.当x 为何值时,代数式18+x 3与x -1互为相反数? 四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第11页“练习”.2.完成练习册中本课时练习.从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生模棱两可,自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题(想当然).备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美.第2课时 一元一次方程的解法(2)1.掌握分母中含有小数的一元一次方程的解法,灵活运用解方程的步骤解方程.2.通过练习使学生灵活的解一元一次方程.重点使学生灵活的解一元一次方程.难点使学生灵活的解一元一次方程.一、创设情境、复习引入通过前面的学习,得出了解一元一次方程的一般步骤,任何一个一元一次方程都可以通过去分母、去括号、移项、合并同类项等步骤转化成x =a 的形式.因此当一个方程中的分母含有小数时,应首先考虑化去分母中的小数,然后再求解这个方程.二、探索问题,引入新知【例1】 解方程: 0.09x +0.020.07-3+2x 3-0.3x +1.40.2=1 分析:此方程的分母中含有小数,通常将分母中的小数化为整数,然后再按解方程的一般步骤求解. 解:0.09x +0.020.07-3+2x 3-0.3x +1.40.2=1 利用分数的基本性质,将方程化为: 9x +27-3+2x 3-3x +142=1 去分母,得6(9x +2)-14(3+2x)-21(3x +14)=42,去括号,得54x +12-42-28x -63x -294=42,移项,得54x -28x -63x =42-12+42+294,合并同类项,得-37x =366,系数化为1,得x =-36637. 点评:解此方程时一定要注意区别:将分母中的小数化为整数根据的是分数的基本性质,分数的分子和分母都乘以(或除以)同一个不等于零的数,分数的值不变,所以等号右边的1不变.去分母是方程的两边都乘以各分母的最小公倍数42,所以等号右边的1也要乘以42,才能保证所得结果仍成立.【例2】 解下列方程:(1)3(2x -1)+4=1-(2x -1); (2)4x +36+4x +32+4x +33=1. 分析:我们已经学习了解方程的一般步骤,具体解题时,要观察题目的结构特征,灵活应用步骤.第(1)小题中可以把(2x -1)看成一个整体,先求出(2x -1)的值,再求x 的值; 第(2)小题,应注意到分子都是4x +3,且16+12+13=1,所以如果把4x +3看成一个整体,则无需去分母.解:(1)3(2x -1)+4=1-(2x -1) ,3(2x -1)+(2x -1)=1-4,4(2x -1)=-3, 2x -1=-34, 2x =14, x =18 (2)4x +36+4x +32+4x +33=1, (16+12+13)(4x +3)=1, 4x +3=1,4x =-2, x =-12 点评:解方程时,要注意观察分析题目的结构,根据具体情况合理安排解题的步骤,注意简化运算,这样可以提高解题速度,培养观察能力和决策能力.三、巩固练习1.解方程(1)5x +3=-7x +9;(2)5(x -1)-2(3x -1)=4x -1; (3)3x +12=7+x 6; (4)x 2-5x +116=1+2x -43; (5)3+0.2x 0.2-0.2+0.03x 0.01=0.75. 2.m 为何值时,代数式2m -5m -13的值与代数式7-m 2的值的和等于5? 3.如下是某同学解方程的过程,请你仔细阅读,然后回答问题. 解:x +12-1=2+2-x 4 x +12-1×4=2+2-x 4×4 ① 2x +2-4=8+2-x ②2x +x =8+2+2+4 ③3x =16 ④ x =163 ⑤ (1)该同学有哪几步出现错误?(2)请你解题中的方程. 4.马虎同学在解方程1-3x 2-m =1-m 3时,不小心把等式左边m 前面的“-”当做“+”进行求解,得到的结果为x =1,求代数式m 2-2m +1的值.四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第14页“习题6.2.2”中第1,2 题.2.完成练习册中本课时练习.这几堂课我们都在探讨一元一次方程的解法,具体解题时要仔细审题,根据方程的结构特征,灵活选择解法,以简化解题步骤,提高解题速度.对于利用方程的意义解决的有关数学题,仔细领会题目中的信息,应把它转化为方程来求解.第3课时 一元一次方程的实际应用1.使学生掌握用一元一次方程解决实际问题的一般步骤;初步了解用列方程解实际问题(代数方法)比用算术方法解的优越性.2.通过分析找出实际问题中已知量和未知量之间的等量关系,并根据等量关系列出方程.重点掌握用一元一次方程解决实际问题的一般步骤.难点通过分析找出实际问题中已知量和未知量之间的等量关系,并根据等量关系列出方程.一、创设情境、复习引入在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否用一元一次方程来解决,若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较它有什么优越性?某数的3倍减2等于它与4的和,求某数.(用算术方法解由学生回答)解:(4+2)÷(3-1)=3答:某数为3.如果设某数为x,根据题意,其数学表达式为3x-2=x+4,此式恰是关于x的一元一次方程.解之得x=3.上述两种解法,很明显算术方法不易思考,而应用设未知数,列出方程并通过解一元一次方程求得应用题的解有化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等的关系.对于任何一个应用题中所提供的条件应首先找出一个相等的关系,然后再将这个相等的关系表示成方程.下面我们通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、探索问题,引入新知【例1】如图,天平的两个盘内分别盛有51 g,45 g盐,问应该从盘A内拿出多少盐放到盘B内,才能使两者所盛盐的质量相等?分析:设应从盘A内拿出盐x g,可列出下表.盘A 盘B原有盐(g) 51 45现有盐(g) (51-x) (45+x)等量关系:盘A中现有的盐=盘B中现有的盐.解:设应从盘A内拿出盐x g,放到盘B内,则根据题意,得51-x =45+x,解这个方程,得x=3.经检验,符合题意.答:应从盘A内拿出盐3 g放到盘B内.【例2】学校团委组织65名团员为学校建花坛搬砖.女同学每人搬6块,男同学每人搬8块,每人各搬4次,总共搬了1800块.问有多少名男同学?分析:设男同学有x人,可列出下表.(完成下表)男同学女同学总数参加人数(名) x 65每人搬砖数(块)6×4共搬砖数(块) 1800解:设男同学有x人,根据题意,得32x+24(65-x)=1800,解这个方程得x=30.经检验,符合题意.答:这些团员中有30名男同学.3.根据上面两道例题的解答过程,你能总结出用一元一次方程解实际问题的过程吗?结论:用一元一次方程解答实际问题,关键在于抓住问题中有关数量的相等关系,列出方程.求得方程的解后,经过检验,就可得到实际问题的解答.这一过程也可以简单地表述为:问题――→分析抽象方程――→求解检验解答 其中分析和抽象的过程通常包括:(1)弄清题意和其中的数量关系,用字母表示适当的未知数;(2)找出能表示问题含义的一个主要的等量关系;(3)对这个等量关系中涉及的量,列出所需的表达式,根据等量关系,得到方程.在设未知数和解答时,应注意量的单位要统一.三、巩固练习1.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x =16(27-x)B .16x =22(27-x)C .2×16x =22(27-x)D .2×22x =16(27-x)2.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%x =330B .(1-10%)x =330C .(1-10%)2x =330D .(1+10%)x =3303.一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是________元.4.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为________元.四、小结与作业小结先小组内交流收获和感想,然后以小组为单位派代表进行总结,最后教师作以补充.作业1.教材第14页“习题6.2.2”中第4,5 题.2.完成练习册中本课时练习.本节课我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法.但学生在学习的过程中,却不能很好地掌握这一要领,经常会出现一些意想不到的错误.如,数量之间的相等关系找得不清楚;列方程忽视了解设的步骤等.在教学中我始终把分析题意与寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法.针对学生在学习过程中不重视分析等量关系的现象,在教学过程中我要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的相等关系.在课堂练习的安排上适当让学生通过模仿例题的思想方法,加强学生解应用题的能力,通过一元一次方程应用题的教学,学生能够比较正确的理解和掌握解应用题的方法,初步养成正确思考问题的良好习惯.6.3实践与探索第1课时体积和面积问题1.使学生能够找出简单应用题中的已知量、未知量和相等关系,然后列出一元一次方程来解简单应用题,并会根据应用题的实际意义,检查求得的结果是否合理.2.能够利用一元一次方程解决图形面积、体积等相关问题.重点利用一元一次方程解决图形面积、体积等相关问题.难点找问题中的等量关系.一、创设情境、复习引入我们学过一些图形的相关公式,你能回忆一下,有哪些公式? 回忆一些图形的有关公式,为本节课学习用一元一次方程解决图形相关问题,找等量关系起到帮助作用.二、探索问题,引入新知问题:用一根长60厘米的铁丝围成一个长方形: (1)如果长方形的宽是长的23,求这个长方形的长和宽; (2)如果长方形的宽比长少4厘米,求这个长方形的面积;(3)比较(1),(2)所得两个长方形面积的大小.还能围出面积更大的长方形吗? 解:(1)设长方形的长为x 厘米,则宽为23x 厘米.根据题意,得 2(x +23x)=60,解这个方程, 得x =18,所以长方形的长为18厘米,宽为12厘米.(2)设长方形的长为x 厘米,则宽为(x -4)厘米,根据题意,得2(x +x -4)=60,解这个方程, 得x =17,所以S =13×17=221(平方厘米).(3)在(1)的情况下S =12×18=216(平方厘米);在(2)的情况下S =13×17=221(平方厘米).还能围出面积更大的长方形,当围出的长方形的长宽相等时,即为正方形,其面积最大,此时其边长为15厘米,面积为225平方厘米.讨论:在第(2)小题中,能不能直接设面积为x 平方厘米?如不能,怎么办?如果直接设长方形的面积为x 平方厘米,则如何才能找出相等关系列出方程呢?诱导学生积极探索:不能直接设面积为未知数,则需要设谁为未知数呢?那么设未知数的原则又是什么呢?结论:在周长一定的情况下,长方形的面积在长和宽相等的情况下最大;如果可以围成任何图形,则圆的面积最大.【例】 将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).分析:根据水的体积不变可得长方体铁盒和圆柱水桶的体积相等,根据长方体和圆柱的体积公式即可列出关于水桶高的方程,求解即可.。

人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)

人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)

《一元一次方程》全章复习与巩固(提高)知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】要点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.要点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 要点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.要点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x的一次项系数5-3m≠0,m的值必须同时符合这两个条件.举一反三:【高清课堂:一元一次方程复习393349 等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x=________.【答案】1类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习 393349 解方程例1(2)】 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+ 当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 .【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】 解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?【答案与解析】解:设四座车租x 辆,十一座车租70411x -辆,依题意得: 7047060601110492011x x -⨯++⨯⨯= 解得:x =1,704611x -= 答:公司租用的四座车和十一座车分别是1辆和6辆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元一次方程》全章复习与巩固
用一元一次方程解决实际问题的常见类型
1.行程问题:路程=速度×时间
2.和差倍分问题:增长量=原有量×增长率
3.利润问题:商品利润=商品售价-商品进价
4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量
5.银行存贷款问题:本息和=本金+利息,利息=本金×利率
6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.
【典型例题】
类型一、一元一次方程的相关概念
1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.
举一反三: 【变式】下面方程变形中,错在哪里:
(1)方程2x=2y 两边都减去x+y ,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).
方程 x-y=-(x-y)两边都除以x-y, 得1=-1.
(2)3721
223x x x -+=+,去分母,得3(3-7x)=2(2x+1)+2x ,去括号得:9-21x=4x+2+2x.
2. 如果5(x+2)=2a+3与(31)(53)
35a x
a x +-=的解相同,那么a 的值是________.
举一反三: 【变式】已知|x+1|+(y+2x )2=0,则y x =________.
类型二、一元一次方程的解法
3.解方程:4621
132x
x -+-=. 4.解方程3{2x -1-[3(2x -1)+3]}=5.
举一反三:
【变式1】解方程 【变式2】解方程:
2675225
4436z z z z
z +---++=- 0.10.05
0.20.05
5
00.20.54x x +--+=.
类型三、特殊的一元一次方程的解法
1.解含字母系数的方程 2.解含绝对值的方程
5.解关于x 的方程:11()(2)34m x n x m -=
+ 6. 解方程|x -2|=3.
举一反三:
【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解, 则,,m n k 的大小关系为: ( )
A . m n k >> B.n k m >> C.k m n >> D.m k n >>
【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123
x n -=的解是 . 类型四、一元一次方程的应用
7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?
8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?
【答案与解析】
举一反三:
【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?。

相关文档
最新文档