高级中学数学所有定律大合集
高中数学公式定理定律概念大全
1.1 集合的概念与运算(1)元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;(2)常用数集: 自然数集:N 正整数集:*N 或N +整数集:Z 有理数集:Q 实数集:R 1.2 子集(1)定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B ,注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ (2)性质:①A A A ⊆⊆φ,;②若C B B A ⊆⊆,,则C A ⊆; ③若A B B A ⊆⊆,则A =B ;1.3 真子集 (1)定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂; (2)性质:①,A A φφ≠⊂;②若,A B B C ⊂⊂,则A C ⊂; 1.4 补集:(1)定义:记作:},|{A x U x x A C U ∉∈=且;(2)性质:A A C C U A C A A C A U U U U ===)(,, φ; 1.5 交集与并集 (1)交集:{|,且}AB x x A x B =∈∈性质:①φφ== A A A A , ②若B B A = ,则A B ⊆ (2)并集:{|,或}AB x x A x B =∈∈性质:①A A A A A ==φ , ②若B B A = ,则B A ⊆ 1.6 集合运算中常用结论 (1)U U AB A A B B A BC B C A =⇔=⇔⊆⇔⊆(2)含n 个元素的集合的所有子集有n2个2.1 二次函数、一元二次方程、一元二次不等式三者之间的关系:3.1 简易逻辑真值表:p 或q ,同假为假,否则为真; p 且q ,同真为真, 否则为假; 非p ,真假相反。
3.2 四种命题(1)命题的四种形式: 原命题:若p 则q ; 逆命题:若q 则p ; 否命题:若⌝p 则⌝q ;逆否命题:若⌝q 则⌝p ; 注意:①互为逆否的两个命题是等价的;②“命题的否定”与“否命题”不同;(2)利用集合之间的包含关系判断命题之间的充要关系 设满足条件p 的元素构成集合A , 满足条件q 的元素构成集合B①若A B ⊆,则p 是q 成立的充分条件; ②若A B =,则p 是q 的充要条件;③若A B ⊂,则p 是q 的充分不必要条件;④若,且A B B A ⊄⊄,则p 是q 的既不充分也不必要条件。
高中数理化生:公式定理定律概念大全
高中数理化生:公式定理定律概念大全
一、定律:
1、对称定律:任何的形状如果关于某一特定的线条对称,那么该形状就是对称的。
2、位置定律:两个平行或非平行的直线,任何一点以某一点为中心,做同样方向和角度的旋转都不会改变相对位置。
3、轴对称定律:物体如果沿着某一垂线(轴线)进行翻转,对称的部分的形状不会改变,则称为轴对称。
4、动作定律:如果人正确使用物体,那么物体状态改变的中心点都以使用人手来位置为中心,而且变化角度也恒定。
二、定理:
1、三角形外角和定理:任何一个三角形的三个外角之和等于π(即180度)。
2、勾股定理:在一个直角三角形中,两条直角边长的平方之和等于斜边长的平方,也就是a²+b²=c².
3、梯形面积定理:梯形的面积等于两条小边之和乘以高除以2,也就是s=(a+b)*h/2.
4、勾股纳矩形定理:若在等腰直角三角形中选定两个对角线,则这两个对角线的乘积正好等于对角线对应的直角边乘积,也就是a×b=c×d.
三、公式:
1、直角三角形面积公式:Sh = 1/2*a*h.
2、梯形面积公式:S = 1/2(a + b) * h
3、圆面积公式:S = πr².
4、椭圆面积公式:S = π ab,其中a、b分别是椭圆的长短轴的长度。
5、球的表面积公式:S=4πr²。
高中数学定理归纳总结大全
高中数学定理归纳总结大全数学是一门抽象而又具有严密性的学科,其中包含了许多重要的定理和公式。
在高中数学学习的过程中,这些定理对于我们的理解和运用起着至关重要的作用。
为了能够更好地总结和归纳这些数学定理,本文将对高中数学中一些重要的定理进行了分类整理。
一、代数定理:1. 一元二次方程的解法定理一元二次方程 ax^2 + bx + c = 0 的解法定理可以根据韦达定理和求根公式来进行求解。
韦达定理给出了解的性质,而求根公式则给出了解的具体表达式。
2. 二项式定理二项式定理是代数学中一个重要的定理,它用于展开一个任意幂的二项式。
根据二项式定理,我们可以方便地计算 (a + b)^n 的展开式。
3. 复数的根定理复数的根定理给出了一个 n 次多项式方程在复数域上的根的存在性和个数。
该定理说明了一个 n 次多项式方程在复数域上一定存在 n 个复数根。
二、几何定理:1. 相似三角形的定理相似三角形的定理是几何学中一个重要的定理,它描述了两个三角形之间的一种特殊的关系。
根据相似三角形的定理,我们可以推导出三角形之间的各种性质和关系。
2. 勾股定理勾股定理是数学中一个经典的几何定理,它描述了直角三角形三边之间的关系。
勾股定理可以用于求解各种与直角三角形有关的问题。
3. 平行线定理平行线定理是几何学中一个重要的定理,它描述了平行直线与割线的关系。
根据平行线定理,我们可以推导出平行线之间的各种性质和关系。
三、微积分定理:1. 中值定理中值定理是微积分学中一个重要的定理,它用于描述函数在某个区间内的平均变化率与瞬时变化率之间的关系。
根据中值定理,我们可以推导出函数的各种性质和关系。
2. 泰勒展开泰勒展开是微积分学中一个重要的定理,它可以将一个函数在某个点附近展开成一个无限级数。
通过泰勒展开,我们可以近似计算函数的各种性质和关系。
3. 不定积分与定积分的基本定理不定积分与定积分的基本定理是微积分学中两个重要的定理,它们描述了函数的积分与导数之间的关系。
高中平面几何定理
(高中)平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD-AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ; (2)设G 为△ABC 的重心,则ABC AC G BC G ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G为△ABC 的重心). 24.垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25.内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然; (2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=. 26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a=++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立) 31.梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CY YA=1. 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点M .35. 塞瓦定理的逆定理:(略)36. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37. 塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于一点.38. 西摩松(Simson )定理:从△ABC 的外接圆上任意一点P 向三边BC 、CA 、AB 或其延长线作垂线,设其垂足分别是D 、E 、R ,则D 、E 、R 共线,(这条直线叫西摩松线Simson line ).39. 西摩松定理的逆定理:(略)40. 关于西摩松线的定理1:△ABC 的外接圆的两个端点P 、Q 关于该三角形的西摩松线互相垂直,其交点在九点圆上.41. 关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42. 史坦纳定理:设△ABC 的垂心为H ,其外接圆的任意点P ,这时关于△ABC 的点P 的西摩松线通过线段PH 的中心.43. 史坦纳定理的应用定理:△ABC 的外接圆上的一点P 的关于边BC 、CA 、AB 的对称点和△ABC的垂心H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC 的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C 和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC 的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.54.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB 或其延长线的交点分别是D、E、F,则D、E、F三点共线.55.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB 的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.61.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||Rd R S S EF -=∆∆.。
高中数学必备定理
高中数学必备定理
1.中线定理:连接一个三角形两边中点的线段为这个三角形的中线,三条中线交于一点,且这个交点到每条中线的距离相等。
2. 弧度制:圆心角所对的弧长等于半径的长度,该圆心角的大小就是1弧度。
3. 三角函数的基本关系式:sin^2(x) + cos^2(x) = 1,1 + tan^2(x) = sec^2(x),1 + cot^2(x) = csc^2(x)。
4. 对数运算的基本性质:log_a(MN) = log_a(M) + log_a(N),log_a(M/N) = log_a(M) - log_a(N),log_a(M^p) = plog_a(M)。
5. 向量运算的基本性质:向量的加法、减法、数乘、数量积、向量积。
6. 三角函数的周期性质:sin(x + 2π) = sin(x),cos(x + 2π) = cos(x),tan(x + π) = tan(x)。
7. 三角函数的奇偶性质:sin(-x) = -sin(x),cos(-x) = cos(x),tan(-x) = -tan(x)。
8. 导数的定义和性质:导数的定义,加减法、乘法、除法、反函数、复合函数的求导法则。
9. 积分的定义和性质:定积分的定义,积分的线性性、区间可加性、换元积分法、分部积分法。
10. 平面向量的坐标表示:向量的坐标表示,向量的模长、方向角、方向余弦。
- 1 -。
高中数学公式定理定律大全
高中数学公式大全(最全面,最详细)高中数学公式大全抛物线: y = ax *+ bx + c就是 y 等于 ax 的平方加上 bx 再加上 ca > 0 时开口向上a < 0 时开口向下c = 0 时抛物线经过原点b = 0 时抛物线对称轴为 y 轴还有顶点式 y = a ( x+h) * + k就是 y 等于 a 乘以( x+h)的平方 +k-h 是顶点坐标的 xk 是顶点坐标的 y 一般用于求最大值与最小值抛物线标准方程 :y^2=2px 它表示抛物线的焦点在 x 的正半轴上 , 焦点坐标为 (p/2,0) 方程为 x=-p/2由于抛物线的焦点可在任意半轴 , 故共有标准方程准线y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积 =4/3(pi )(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0 (一)椭圆周长计算公式椭圆周长公式: L=2πb+4(a -b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长( a)与短半轴长( b)的差。
(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长( a)与短半轴长( b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率 T,但这两个公式都是通过椭圆周率 T 推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI* 高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asin α+sin( α+2π /n)+sin( α+2π*2/n)+sin( α+2π*3/n)+ in[ α+2π*(n -1)/n]=0 cos α+cos( α+2π/n)+cos( α+2π*2/n)+cos( α+2π*3/n)+ os[ α+2π*(n -1)/n]=0 以及sin^2( α)+sin^2( α - 2π/3)+sin^2( α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-+s+c16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1 )*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48 *cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) ·万能公式:sin α=2tan( α/2)/[1+tan^2( α/2)]cosα=[ 1 - tan^2( α/2)]/[1+tan^2(α/2)]tan α=2tan( α/2)/[1 - tan^2( α/2)]半角公式sin(A/2 )= √((1 -cosA)/2)sin(A/2)=-√((1 -cosA)/2)cos(A/2 )= √((1+cosA)/2)cos(A/2)=- √((1+cosA)/2)tan(A/2 )= √((1 -cosA)/((1+cosA))tan(A/2)=- √((1 -cosA)/((1+cosA))cot(A/2)= √((1+cosA)/((1 -cosA))cot(A/2)=- √((1+cosA)/((1 -cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB 某些数列前 n 项和1+2+3+4+5+6+7+8+9⋯+ +n=n(n+1)/21+3+5+7+9+11+13+15⋯+ +(2n -1)=n22+4+6+8+10+12+14+⋯+(2n )=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+⋯+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+⋯n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+ ⋯+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角 B是边 a和边 c 的夹角乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式 |a+b| ≤|a|+|b| |a - b| ≤|a|+|b||a| ≤ b<=>- b≤ a≤b|a- b| ≥|a| -|b| - |a| ≤a≤ |a|一元二次方程的解 - b+√(b2 -4ac)/2a -b- √(b2 -4ac)/2a 根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a 是圆心角的弧度数 r >0 扇形面积公式s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中 ,S' 是直截面面积, L 是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长 =(长 +宽)×2 正方形的周长 =边长×4 长方形的面积 =长×宽正方形的面积 =边长×边长三角形的面积已知三角形底 a,高 h,则 S= ah/2 已知三角形三边 a,b,c, 半周长 p, 则 S=√[p(p - a)(p - b)(p- c)] (海伦公式)( p=(a+b+c)/2 ) 和:(a+b+c)*(a+b-c)*1/4已知三角形两边 a,b, 这两边夹角 C,则 S=absinC/2 设三角形三边分别为 a、 b、c,内切圆半径为 r 则三角形面积 =(a+b+c)r/2设三角形三边分别为 a、 b、c,外接圆半径为 r 则三角形面积 =abc/4r已知三角形三边 a、 b、c, 则 S=√{1/4[c^2a^2 -((c^2+a^2- b^2)/2)^2]} ( “三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |为三阶行列式 , 此三角形 ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f), 这里 ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式 : S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中 Ma,Mb,Mc为三角形的中线长 .平行四边形的面积 =底×高梯形的面积 =(上底 +下底)×高÷2直径=半径× 2 半径 =直径÷2圆的周长 =圆周率×直径 =圆周率×半径×2圆的面积 =圆周率×半径×半径长方体的表面积 =(长×宽 +长×高+宽×高)×2长方体的体积 = 长×宽×高正方体的表面积 =棱长×棱长×6正方体的体积 =棱长×棱长×棱长圆柱的侧面积 =底面圆的周长×高圆柱的表面积 =上下底面面积 +侧面积圆柱的体积 =底面积×高圆锥的体积 =底面积×高÷3 长方体(正方体、圆柱体) 的体积 =底面积×高平面图形名称符号周长 C和面积 S正方形 a —边长 C =4aS =a2长方形 a 和 b-边长 C =2(a+b)S =ab三角形 a,b,c -三边长h - a边上的高s -周长的一半A,B,C -内角其中 s=(a+b+c)/2 S =ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于 180°18推论 1 直角三角形的两个锐角互余19推论 2 三角形的一个外角等于和它不相邻的两个内角的和20推论 3 三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理 (sas) 有两边和它们的夹角对应相等的两个三角形全等23角边角公理 ( asa) 有两角和它们的夹边对应相等的两个三角形全等24推论 (aas) 有两角和其中一角的对边对应相等的两个三角形全等25边边边公理 (sss) 有三边对应相等的两个三角形全等26斜边、直角边公理 (hl) 有斜边和一条直角边对应相等的两个直角三角形全等27定理 1 在角的平分线上的点到这个角的两边的距离相等28定理 2 到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等( 即等边对等角)31推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论 3 等边三角形的各角都相等,并且每一个角都等于 60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论 1 三个角都相等的三角形是等边三角形36推论 2 有一个角等于 60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理 1 关于某条直线对称的两个图形是全等形43定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边 a、 b 的平方和、等于斜边 c 的平方,即 a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长 a、b、 c 有关系 a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于 360°49四边形的外角和等于 360°50多边形内角和定理 n 边形的内角的和等于( n-2 )×180°51推论任意多边的外角和等于 360°52平行四边形性质定理 1 平行四边形的对角相等53平行四边形性质定理 2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理 3 平行四边形的对角线互相平分56平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60矩形性质定理 1 矩形的四个角都是直角61矩形性质定理 2 矩形的对角线相等62矩形判定定理 1 有三个角是直角的四边形是矩形63矩形判定定理 2 对角线相等的平行四边形是矩形64菱形性质定理 1 菱形的四条边都相等65菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积 =对角线乘积的一半,即 s=( a× b)÷267菱形判定定理 1 四边都相等的四边形是菱形68菱形判定定理 2 对角线互相垂直的平行四边形是菱形69正方形性质定理 1 正方形的四个角都是直角,四条边都相等70正方形性质定理 2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理 1 关于中心对称的两个图形是全等的72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰80推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l= (a+b)÷ 2 s=l ×h83(1) 比例的基本性质如果 a:b=c:d, 那么 ad=bc 如果ad=bc, 那么 a:b=c:d84(2) 合比性质如果 a/ b=c/d,那么(a ±b) /b=(c±d) / d85(3) 等比性质如果 a/ b=c/d=⋯=m/n(b+d+⋯+n≠0), 那么 (a+c+ ⋯+m)/(b+d+⋯+n)=a/ b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边 (或两边的延长线) 所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理 1 两角对应相等,两三角形相似( asa )92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理 2 两边对应成比例且夹角相等,两三角形相似( sas)94判定定理 3 三边对应成比例,两三角形相似( sss )95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理 2 相似三角形周长的比等于相似比98性质定理 3 相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高中的数学公式定理大集中
高中的数学公式定理大集中高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-t anα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2sin———·cos———2 2α+β α-βsinα-sinβ=2cos———·sin———2 2α+β α-βcosα+cosβ=2cos———·cos———2 2α+β α-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合简单逻辑任一x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}card(A B)=card(A)+card(B)-card(A B)(1)命题原命题若p则q逆命题若q则p否命题若 p则 q逆否命题若 q,则 p(2)四种命题的关系(3)A B,A是B成立的充分条件B A,A是B成立的必要条件A B,A是B成立的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数(3)奇偶性对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f (x)是偶函数若f(-x)=-f(x),称f(x)是奇函数(4)周期性对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga(MN)=logaM+logaNlogaMn=nlogaM(n∈R)指数函数对数函数(1)y=ax(a>0,a≠1)叫指数函数(2)x∈R,y>0图象经过(0,1)a>1时,x>0,y>1;x<0,0<y<10<a<1时,x>0,0<y<1;x<0,y>1a> 1时,y=ax是增函数0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数(2)x>0,y∈R图象经过(1,0)a>1时,x>1,y>0;0<x<1,y<00<a<1时,x>1,y<0;0<x<1,y>0a>1时,y=logax是增函数0<a<1时,y=logax是减函数指数方程和对数方程基本型logaf(x)=b f(x)=ab(a>0,a≠1)同底型logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)换元型 f(ax)=0或f (logax)=0 数列数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1-an=dan=a1+(n-1)da,A,b成等差 2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比 G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b b<aa>b,b>c a>ca>b a+c>b+ca+b>c a>c-ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 ac<bca>b>0,c>d>0 ac<bda>b>0 dn>bn(n∈Z,n>1)a>b>0 >(n∈Z,n>1)(a-b)2≥0a,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或a<b),只需证明a-b>0(或a-b<0=即可(2)若b>0,要证a>b,只需证明,要证a<b,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
高中理科数学公式大全完整版
高中理科数学公式大全完整版高中理科数学公式大全完整版一、数学公式1、圆的面积 S=πR²2、圆周长 C=2πR3、圆柱体 V=πR²h4、圆锥体 V=πR²h/35、圆周角 a=∠C×π6、勾股定理 c²=a²+b²7、正弦定理 a/sinA=b/sinB=c/sinC=2R8、余弦定理 b²=a²+c²-2accosB9、弧长公式 l=n/180×π×r²10、扇形面积 s=n/360×π×r²11、弓形面积 s=[(b-a)×h]/212、三角形面积 s=√[p(p-a)(p-b)(p-c)] 其中 p=(a+b+c)/213、重心定理三条中线的交点叫重心,重心分中线为2:1(顶点到重心)14、平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分;平行四边形内角和外角和都为360度。
15、平行四边形判定:一组对边平行且相等的四边形为平行四边形;两组对边分别相等的四边形为平行四边形;对角线互相平分的四边形为平行四边形;两组对角分别相等的四边形为平行四边形。
16、菱形性质:菱形四边都相等;菱形对角线互相垂直;菱形内角和都为360度;菱形是轴对称图形,有四条对称轴。
17、菱形判定:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形;两条对角线分别平分各自对角的四边形为菱形。
18、正方形性质:正方形的四边都相等;正方形的四个角都是直角;正方形的对角线相等并互相垂直平分;正方形的邻边互相垂直;正方形的内角和外角和都为360度。
19、正方形判定:邻边相等的矩形是正方形;有一个角是直角的菱形是正方形;对角线互相垂直的矩形是正方形。
20、等腰梯形性质:等腰梯形两腰相等;等腰梯形两底角相等;等腰梯形的两条对角线相等。
高中数学定理公式大全
高中数学定理公式大全高中数学是数学学科的一部分,主要包括数学分析和数学推理两个方面。
数学分析是研究数学对象和数学对象之间的关系、性质和变化规律的学科,而数学推理是运用数学知识进行问题求解和推理的学科。
高中数学的学习过程中有许多重要的定理和公式,下面是一些高中数学常见的定理和公式的介绍。
1.二项式定理:对于任意实数a,b和正整数n,成立(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n,其中C(n,k)表示组合数,即从n个不同元素中取出k个元素的方法的数量。
2. 一次函数的斜率公式:对于一次函数y = mx + c,其中m表示斜率,c表示截距,斜率m可以通过任意两个点(x1, y1)和(x2, y2)来求得,m = (y2 - y1) / (x2 - x1)。
3. 三角函数的基本关系式:sin^2θ + cos^2θ = 1,1 + tan^2θ= sec^2θ,1 + cot^2θ = csc^2θ。
4.三角函数的和差公式:sin(A ± B) = sin(A) * cos(B) ± cos(A) * sin(B)cos(A ± B) = cos(A) * cos(B) ∓ sin(A) * sin(B)tan(A ± B) = (tan(A) ± tan(B)) / (1 ∓ tan(A) * tan(B))5. 余弦定理:对于任意三角形ABC,设a、b、c分别表示边BC、AC、AB的长度,A、B、C分别表示∠BAC、∠ABC、∠BCA的大小,则有c^2 =a^2 + b^2 - 2ab * cos(C)。
6. 正弦定理:对于任意三角形ABC,设a、b、c分别表示边BC、AC、AB的长度,A、B、C分别表示∠BAC、∠ABC、∠BCA的大小,则有a /sin(A) = b / sin(B) = c / sin(C)。
数学定律大全
数学定律大全在数学领域,有许多重要的定律被广泛应用于各种数学问题的解决和推导中。
这些定律涵盖了各个数学分支,包括代数、几何、概率论等。
本文将介绍一些数学定律的基本概念和应用。
希望通过阅读本文,读者能更好地理解和应用这些数学定律。
一、代数定律1. 加法交换律:对于任意两个实数a和b,a + b = b + a。
2. 加法结合律:对于任意三个实数a、b和c,(a + b) + c = a + (b +c)。
3. 乘法交换律:对于任意两个实数a和b,a × b = b × a。
4. 乘法结合律:对于任意三个实数a、b和c,(a × b) × c = a × (b ×c)。
5. 分配律:对于任意三个实数a、b和c,a × (b + c) = a × b + a × c。
二、几何定律1. 皮亚诺公理:几何推理的基础,包括点、线、平行线、共线等基本概念。
2. 直角三角形定理:直角三角形的斜边平方等于两直角边平方之和。
3. 同位角定理:同位角互补或同位角相等。
4. 锐角三角函数定理:正弦函数、余弦函数和正切函数等定义和性质。
5. 平行线定理:包括同位角定理、内错角定理、同旁内角定理等。
三、概率论定律1. 概率的加法定律:对于两个事件A和B,其和事件的概率为P(A∪B) = P(A) + P(B) - P(A∩B)。
2. 独立事件定律:对于两个独立事件A和B,其交事件的概率为P(A∩B) = P(A) × P(B)。
3. 贝叶斯定理:用于计算条件概率的定理,根据已知信息计算未知的概率。
四、微积分定律1. 导数定义:函数在某点的导数表示函数曲线在该点的切线斜率。
2. 导数的四则运算:包括导数的加减乘除法则,用于计算复杂函数的导数。
3. 牛顿-莱布尼茨公式:函数的不定积分与定积分之间的关系,用于计算函数的积分。
4. 泰勒展开式:将一个函数表示为无限次求导的多项式形式,用于近似函数。
高三数学有什么定律知识点
高三数学有什么定律知识点高三是学生们备战高考的关键一年,而数学作为高考科目之一,对于高三学生来说占据着重要的地位。
数学中有许多定律是学生们必须熟练掌握的知识点,下面将介绍一些高三数学中的重要定律知识点。
一、等差数列的定理等差数列是高三数学中常见的一种数列,它的每一项与前一项的差值都相等。
求等差数列的前n项和可以使用以下定理:1. 等差数列的前n项和公式:Sn = (a1 + an)× n / 2。
其中,Sn是前n项和,a1是首项,an是末项,n是项数。
2. 等差数列的通项公式:an = a1 + (n - 1) × d。
其中,d是公差。
二、等比数列的定理等比数列是高三数学中另一种常见的数列,它的每一项与前一项的比值都相等。
求等比数列的前n项和可以使用以下定理:1. 等比数列的前n项和公式(当公比r不等于1时):Sn = a1× (1 - r^n) / (1 - r)。
其中,Sn是前n项和,a1是首项,r是公比。
2. 等比数列的前n项和公式(当公比r等于1时):Sn = a1 × n。
三、概率与统计概率与统计是高三数学中重要的一部分,包括概率和统计两个方面。
1. 概率:概率是指某事件发生的可能性。
求解概率可以使用以下定理:- 事件的概率:P(A) = m / n。
其中,m是事件A发生的次数,n是实验的总次数。
- 互斥事件的概率:P(A或B) = P(A) + P(B)。
其中,A、B是两个互斥事件。
2. 统计:统计是指根据一定规则和方法,对一组数据进行收集、分析和解释的过程。
常用的统计知识点包括:- 平均数:平均数是指一组数据的总和除以数据的个数。
- 中位数:中位数是指一组数据按照大小排列后,处于中间位置的数值。
- 众数:众数是指一组数据中出现次数最多的数值。
- 方差:方差是指一组数据与其平均数之间差值的平方和的平均数。
四、三角函数的定理三角函数是高三数学中常见的一种函数,包括正弦、余弦、正切等。
高中数学重要公式定律
高中数学重要公式定律1.指数(1)分数指数幂①nm nm a a =()1,,,0*>∈>n Nn m a 且②n m n m nm aa a 11-==()1,,,0*>∈>n Nn m a 且③0的正分数指数幂等于0;0的负分数指数幂没有意义。
(2)运算的性质:设Qs ,r ,b<a>∈,00①s r s r a a a +=sr s r aa a +=②r-s s r a aa =③()rssr a a =④()r r r b a ab =⑤rb r a rb a =⎪⎭⎫⎝⎛2.对数(1)性质:①()101log ≠>=,a a a a ②()1001log ≠>=,a a a (2)常用对数:N N lg log 10=;自然对数:N N e In log =(3)运算性质:设1000≠>>>,a ,a ,N M 那么:①()N M MN a a a log log log +=②N M Ma a alog log log -=③()R n M n M a a ∈=log log n (4)常用公式设0011000≠≠≠≠>>>,n ,m ,b ,a ,b ,a N①对数恒等式:N a N a =log ②换底公式:bN N a a b log log log =③ab b a log 1log =3.空间几何体公式(1)侧面积公式:①πrl S 2圆柱侧=②πrl S =圆锥侧③()l r r πS '+=圆台侧(2)表面积公式:①()l r πr S +=2圆柱②2圆锥πr πrl S +=③()rl l r r r πS ''+++=22圆台④2R 4πS =球(3)体积公式:①Sh V =棱柱②hπr V 2圆柱=③ShV 1棱柱=()''S SS S h V ++=1棱台④h πr V 2圆锥31=()22圆台31r'rr r πh V '++=⑤3球34πR V =4.直线与平面之间的平行与垂直(1)空间两直线平行的判定:①c a c b b a //////⇒⎭⎬⎫②b a b a //⇒⎭⎬⎫⊥⊥αα③ba b a //⇒⎭⎬⎫=⊂βαβ ④a//bb βγa αγ⇒⎭⎬⎫== (2)空间两直线垂直的判定:①b a b a a ⊥⇒⎪⎭⎪⎬⎫⊂⊥ααα//②b l a l b a ⊥⇒⎪⎭⎪⎬⎫⊥////βα(3)直线与平面平行的判定:①ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄②βαβα////a a ⎭⎬⎫⊂(4)直线与平面平行的性质:b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βααβ(5)直线与平面垂直的判定:①ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⊂⊂l n l m l B n m n m ,, ②αα⊥⇒⎭⎬⎫⊥b a b a //(6)直线与平面垂直的性质:b a b a //⇒⎭⎬⎫⊥⊥αα(7)平面与平面平行的判定:①βαααββ////,//,⇒⎪⎭⎪⎬⎫=⊂⊂A b a b a b a ②βαβα//⇒⎭⎬⎫⊥⊥a a ③βαγβγα//////⇒⎭⎬⎫(8)平面与平面平行的性质:b a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα (9)平面与平面垂直的判定:①βαβα⊥⇒⎭⎬⎫⊥⊂a a ②二面角的平面角90=θ(10)平面与平面垂直的性质:①βαβαβα⊥⇒⎭⎬⎫⊥⊂=⊥a b a a b ,, ②αββαα⊂⇒⎭⎬⎫⊥⊥∈∈a a A a A ,,5.直线、圆与方程(1)直线的斜率公式:()211212x x x x y y k ≠--=(2)直线方程:①点斜式:()00x x k y y -=-②斜截式:b kx y +=③两点式:121121x x x x y y y y --=--④截距式:()01≠=+ab bya x ⑤一般式:()0022≠+=++B A C By Ax (3)两条直线的位置关系:①()()2121222111且平行b b k k b x k y l b x k y l ≠=+=+=:与②()()1垂直21222111-=+=+=k :k b x k y 与l b x k y l ③2121212222111100C CB B A A :)C y B x (A l )C y B x (A l ≠==++=++平行与④000212122221111=+=++=++B B A :A )C y B x (A l )C y B x (A l 垂直与(4)距离公式:①两点间距离:()()21221221y y x x P P -+-=②点到直线的距离:2200B A CBy Ax d +++=③两平行线间的距离:2212B A C C d +-=(5)圆的方程:①圆的标准方程:()()222r b y a x =-+-,其中圆心为()b a ,,半径为r②圆的一般方程:FE D r E DF E D F Ey Dx y x 421,2,2,04,0222222-+=⎪⎭⎫⎝⎛-->-+=++++半径为圆心为其中(6)空间直角坐标系:①空间中的点与原点的距离公式:222z y x OP ++=②空间中任意两点的距离公式:()()()22122122121z z y y x x P P -+-+-=③空间的中点坐标公式:⎪⎭⎫⎝⎛+++2,2,2212121z z y y x x 6.概率与统计(1)概率:①古典概型的概念公式:()nmA A P ==基本事件总数包含的基本事件数事件②几何概型的概率公式:()()()体积积或面的区域长区试验的全部结果所构成体积积或面的区域长区构成事件A A P =(2)统计①离散型随机变量的数学期望:()nn i i p x p x p x p x X E ++++=2211性质:()()()是常数b a b X aE b aX E ,+=+若X 服从两点分布,则()p X E =;若X 服从二项分布,即()p n B X ,~,则()npX E =②离散型随机变量的方差:()()()ini i p X E x X D ∑=-=12性质:()()()是常数b a X D a b aX D ,2=+若X 服从两点分布,则()()p p X D -=1若X 服从二项分布,即()p n B X ,~,则()()p np X D -=17.三角函数(1)弧度与角度的换算关系:①rad rad 017453.01==π②'18573.571801=≈⎪⎭⎫ ⎝⎛=πrad (2)弧长公式:rl α=扇形的面积公式:2211r lr S α==(3)同角三角函数的基本关系:①1cos sin 22=+αα②⎪⎭⎫⎝⎛∈+≠=z ,k πkπαααα2cos sin tan (4)三角函数的诱导公式:公式一:()απαsin 2sin =⋅+k ()απαcos 2cos =⋅+k ()()z k απk α∈=⋅+其中tan 2tan 公式二:()ααπsin sin -=+()ααπcos cos -=+()ααπtan tan =+公式三:()ααsin sin -=-()ααcos cos =-()ααtan tan -=-公式四:()ααπsin sin =-()ααπcos cos -=-()ααπtan tan -=-公式五:ααπcos 2sin =⎪⎭⎫⎝⎛-ααπsin 2cos =⎪⎭⎫⎝⎛-公式六:ααπcos 2sin =⎪⎭⎫⎝⎛+ααπsin 2cos -=⎪⎭⎫⎝⎛+8.平面向量(1)向量的坐标运算:设()()则,,,,,2211R y x b y x a ∈==λ①()2121,y y x x b a ±±=±②()()1111,,y x y x a λλλλ== ③2121cos y y x x b a b a +=⋅=⋅θ (2)平面向量的重要定理、公式:①平面向量基本定理:2211e e aλλ+=②两个向量平行的充要条件:()0//1221=-⇔=⇔≠y x y x b a b b aλ③两个非零向量垂直的充要条件:002121=+⇔=⋅⇔⊥y y x x b a b a④长度公式:()()⎧-+-=+=22122122y y x x y x a ⑤角度公式:()之间的夹角与为非零向量b a y x y x y y x x b a b aθcos 222221212121+⋅++=⋅⋅=θ9.三角恒等变换(1)两角和与差的三角函数:()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±()()πϕϕϕϕααα20cos ,sin ;sin cos sin 222222≤≤+=+=++=+ba a ba b b a b a 其中(2)二倍角公式:αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=(3)积化和差与和差化积公式:()()βαβαβα-++=sin sin cos sin 2()()βαβαβα--+=sin sin sin cos 2()()βαβαβα-++=cos cos cos cos 2()()βαβαβα--+=-cos cos sin sin 22cos 2sin 2sin sin βαβαβα-+=+sincos 2sin sin βαβαβα-+=-2cos2cos 2cos cos βαβαβα-+=+2sin2sin 2cos cos βαβαβα-+-=-(4)半角公式:2cos 1sinαα-±=2cos 1cosαα+±=αααααααcos 1sin sin cos 1cos 1cos 12tan+=-=+-±=10.解三角形(1)正弦定理:()的外接圆外接为2sin sin sin ΔABC R R CcB b A a ===(2)余弦定理:Abc c b a cos 2222-+=Bac c a b cos 2222-+=Cab b a c cos 2222-+=推理:bca cb A 2cos 222-+=acb c a B 2cos 222-+=abc b a C 2cos 222-+=(3)三角形的面积公式Cab B ac A bc S sin 21sin 21sin 21===∆11.数列(1)等差数列:通项公式:()dn a a n 11-+=中项公式:()成等差列,,2b A a b a A +=前n 项和公式:()()dn n na a a n S n n 21211-+=+=(2)等比数列:通项公式:11-=n n q a a 中项公式:abG =2()成等比数列,,b G a 前n 项和公式:()()()⎪⎩⎪⎨⎧=≠--=--=11111S 111n q na q q q a a q q a n n (3)n a 与n S 的关系:()()⎩⎨⎧=≥-=-1211n S n S S a n nn (4)常用求和公式:①()211+=∑=n n k nk ②()()612112++=∑=n n n k nk ③()2131⎥⎦⎤⎢⎣⎡+=∑=n n k nk 12.基本不等式(1)()时等号成立当且仅当b a ab b a =≥+222(2))时等号成立当且仅当b a ab ba =≥+(3)()()时等号成立当且仅当b a b a b a ba ab ba =>+≤+≤≤+0,,221122213.圆锥曲线与方程(1)椭圆:标准方程:()012222>>=+b a b y a x 离心率:()222,10b a c e ace -=<<=(2)双曲线:标准方程:()0,012222>>=-b a b y a x 离心率:()222,1b a c e ace +=>=(3)抛物线:标准方程:()022>=p px y 准线:2p x -=离心率:1=e 14.空间向量与立体几何(1)空间向量运算的坐标表示:设()()为实数,则,,,,,,222111λz y x b z y x a ==()212121,,z z y y x x b a +++=+()212121,,z z y y x x b a ---=-()111,,z y x a λλλλ=212121z z y y x x b a ++=⋅222222212121212121,cos z y x z y x z z y y x x ba b a b a ++⋅++++=⋅⋅=(2)空间向量的平行和垂直:()λλ===⇔=⇔≠2121210//z z y y x x b a b b a2121210z z y y x x b a b a ++⇔=⋅⇔⊥(3)空间两点的距离:()()()212212212z z y y x x -+-+-=15.导数及其应用(1)几种常见函数的导数:①()为常数0'c c =②()()0,1'≠∈=-n Q n nx x n n 且③()x x cos sin '=④()x x sin cos '-=⑤()x x e e ='⑥()()1,0'≠>=a a Ina a a x x 且⑦()()01'>=x x Inx ⑧()()1,0,01log '≠>>=a a x x a 且(2)导数的运算①()[]()[]()()x g x f x g x f '''±=±②()()[]()()()()x g x f x g x f x g x f '''+=⋅③()()()()()()()[]()()02'''≠-=⎥⎦⎤⎢⎣⎡x g x g x g x f x g x f x g x f (3)定积分的基本性质:①()()()为常数k dx x f k dx x kf ba b a ⎰⎰=②()()[]()()⎰⎰⎰±=±b a b a b a dx x f dx x f dx x f x f 2121③()()()()b c a dx x f dx x f dx x f bc c a b a <<+=⎰⎰⎰其中16.数系的扩充与复数的引入(1)复数:()R b a bi a z ∈+=,,其共轭复数为bia z -=(2)复数的代数运算12-=i i i -=314=i d b c a di c bi a ==⇔+=+,()()()()i d b c a di c bi a ±+±=+±+()()()()i ad bc bd ac di c bi a ++-=++()02222≠++-+++=++di c i ad bc bd ac bi a 17.记数原理(1)排列数公式:()()()()()n m N m n m n n m n n n n A m n ≤∈-=+---=且、,!!121* (2)组合数公式:()()()()()n m N m n m n m n m m n n n n A A C m m m n m n ≤∈-=+---==且、,!!!!121* (3)组合数与排列数的关系:()n m A C A m m m n m n≤⋅=(4)二项式定理()()*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+-- 通项公式:()n r b a C T r r n r nr ≤≤=-+01二项式系数的性质:①m n n m n C C -=②n n n n nC C C 210=+++ ③131202-=++=++n n n n nC C C C 特例:1!0=10=n C。
高中数学定理
高中数学定理高中数学定理有许多,其中比较重要的定理如下:1、勾股定理:设三角形的两边为a 、b ,对角线为c ,那么有a2 + b2 = c2 。
2、直角三角形定理:若某直角三角形有两个边长分别等于m和n,那么对角线长为$\sqrt{m^2 + n^2}$。
3、正弦定理:设三角形ABC ,AD 为垂足,$\angle BAC = \alpha$,则有$a/sin\alpha = b/sin \beta = c/sin \gamma$ 。
4、余弦定理:设三角形ABC ,有$a^2=b^2+c^2-2bc\cos \alpha$ 。
5、反三角函数定理:若$\theta=\arctan{\frac{a}{b}}$,那么有$\tan \theta = \frac{a}{b}$,$\cos \theta = \frac{b}{\sqrt{a^2+b^2}}$ ,$\sin \theta =\frac{a}{\sqrt{a^2+b^2}}$ 。
6、勾股定律:让a,b两个正整数,如果a,b,有 $a^2 + b^2$ 其中一个是完全平方数,那么 $a^2 + b^2$ 也是完全平方数8、三角不等式定理: $\mid a-b\mid \leq c \leq a+b$ ,其中c是三角形ABC对边长。
9、三角形垂心定理:如果三角形ABC的顶角A的垂足为H,则AH的长等于BC的长的乘积与BC的顶角的正切的乘积的商,即AH=BC*$\frac{BC}{\tan C}$10、余切定理:设极坐标系中的点P的极角为$\alpha$ ,则有$\cot\alpha=\frac{x}{y}$ 。
11、梯形定理:设梯形ABDC有AB=b1,AD=b2,BC=h,则面积$S=\frac{1}{2}(b1+b2)h$ 。
12、泰勒展开定理:若函数f(x)在a处可微分,那么函数在a处有泰勒展开式:f (x)=f(a)+f'(a)(x-a)+$\frac{f''(a)}{2!)(x-a)^2+\frac{f'''(a)}{3!)(x-a)^3+……+\frac{f^(n)(a)}{n!)(x-a)^n+……$ 。
高中数学必备公式定理大全
(高考必备!)高中数学常用公式及结论1 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅2 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.3 二次函数的解析式的三种形式:(1) 一般式2()(0)f x ax bx c a =++≠;(2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。
(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)4 真值表: 同真且真,同假或假 56 )充要条件: (1)、p q ⇒,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ⇒,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ⇒,则P 是q 的必要不充分条件;4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。
7 函数单调性:增函数:(1)、文字描述是:y 随x 的增大而增大。
(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有12()()f x f x <成立,则就叫f (x )在x ∈D 上是增函数。
D 则就是f (x )的递增区间。
减函数:(1)、文字描述是:y 随x 的增大而减小。
(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有12()()f x f x >成立,则就叫f (x )在x ∈D 上是减函数。
高中数学会考必备的39个公式
高中数学会考必备的39个公式1、勾股定理:三条直线上两个点之间的距离关系,即a2 + b2 = c2。
2、余弦定理:两条相交直线所成的两个直角三角形,c2=a2+b2-2ab×cosC 。
3、正弦定理:两条相交的直线所组成的两个直角三角形, sinA / a = sinB / b = sinC / c 。
4、梯形公式:面积之和,即(a+b)h / 2。
5、圆面积公式:πr2 。
6、三角形面积公式:S=1/2×a×b×sinC 。
7、抛物线面积公式:S=1/3×a×h2 。
8、割线法则:1/y=1/a+1/b 。
9、勾股变形定理:ac=a2+b2−2ab cosC 。
10、余切定理:tanA/a=tanB/b=tanC/c 。
11、海伦公式:三角形内角a+b+c=180°,a2=b2+c2−2bc cosA。
12、同余三角形定理:三角形内角A/a=B/b=C/c 。
13、梯形公式:周长之和,即a+b+(c+d) 。
14、圆周长公式:2πr15、平行线定理:平行线成立的条件为同时垂直于两个垂线。
16、外接圆定理:四边形的外接圆的半径等于对角的中点的距离的一半。
17、锐角定理:三角形内角a+b>c18、直角定理:三角形内角a+b=c19、正方形面积公式:a220、平行四边形面积公式:ab21、直角三角形面积公式:1/2ah22、圆心角公式:mθ=2πr23、梯形周长公式:a+b+c+d24、圆周弧长公式:λ=θr25、余子式:对于系数矩阵A=[aij]n×n,各阶行列式的余子式定义为Ai,…,Ak 。
26、拉格朗日和弦定理:如果一个四边形的角都是锐角,那么它的两个对角线的乘积等于它的四条边的乘积。
27、反余弦定理:ac=a2+b2−2ab×cosC 。
28、反正弦定理: sinA / a = sinB / b = sinC / c 。
高中数学必考公式定律与知识梳理
高中数学必考公式定律与知识梳理
以下是高中数学必考公式、定律和知识点的梳理:
1. 三角函数:
正弦定理:a/sin A = b/sin B = c/sin C
余弦定理:a² = b² + c² - 2bc cos A
正切定义:tan A = sin A / cos A
余切定义:cot A = cos A / sin A
常见三角函数值(0°、30°、45°、60°、90°)
2. 数列:
通项公式:an = a1 + (n-1)d
等差数列求和公式:Sn = n(a1+an)/2
通项公式:an = a1 * r^(n-1)
等比数列求和公式:Sn = a1(1-r^n)/(1-r)
3. 圆:
圆的面积公式:S = πr²
圆的周长公式:C = 2πr
圆锥/圆柱侧面积公式:S = πrl
4. 平面几何:
平行四边形面积公式:S = bh
矩形面积公式:S = lw
梯形面积公式:S = (a+b)h/2
直角三角形勾股定理:a² + b² = c²
5. 解析几何:
两点之间的距离公式:AB = √[(x2-x1)² + (y2-y1)²]
直线的一般式:Ax+By+C=0
直线的斜截式:y=kx+b
直线的点斜式:y-y1=k(x-x1)
圆的一般式:(x-a)² + (y-b)² = r²
以上是高中数学必考公式、定律和知识点的梳理,希望对您有所帮助。
高一二高三数学公式定律大全
高一二高三数学公式定律大全1. 二项式定理:$(a+b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$2. 三角函数和平面几何定理:$sin(A\pm B) = sin A cos B \pm cos A sin B$,$cos(A\pm B) = cos A cos B \mp sin A sin B$3. 平方根公式:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ (用于求解一元二次方程)4. 圆锥曲线方程:椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,双曲线方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$5. 求导法则:常数法则、幂法则、指数法则、乘积法则、商规则、链式法则等等6. 积分法则:换元法、分部积分法、分式积分法、一些特殊函数的积分法等等7. 三角函数和反三角函数的导数:$D(sin x) = cos x$,$D(cos x) = -sin x$,$D(tan x) = sec^2 x$,反三角函数的导数请参考表格或公式册8. 数列和级数公式:等差数列的通项公式、等差数列的前n项和公式、等比数列的通项公式、等比数列的前n项和公式,等等9. 三角函数的和差化积公式:$sin(A\pm B) = sin A cos B \pm cos A sin B$,$cos(A\pm B) = cos A cos B \mp sin A sin B$10. 三角恒等式:$1+ tan^2 x = sec^2 x$,$1+cot^2 x = csc^2 x$,$sin^2 x + cos^2 x =1$,等等以上仅是一些高一高二高三数学中常见的公式和定律,不完整且可能有遗漏。
建议您参考教材或高中数学辅导资料以获得更全面的数学公式和定律大全。
高中数学定理名称
高中数学定理名称1. 一次函数的性质定理2. 二次函数的性质定理3. 三角函数的基本关系定理4. 三角函数的和差化积定理5. 三角函数的倍角公式定理6. 三角函数的半角公式定理7. 三角函数的正弦定理8. 三角函数的余弦定理9. 三角函数的正切定理10. 平面向量的基本公式定理11. 平面向量的数量积定理12. 平面向量的叉积定理13. 空间向量的基本公式定理14. 空间向量的数量积定理15. 空间向量的叉积定理16. 数列的等差数列通项公式定理17. 数列的等比数列通项公式定理18. 数列的求和公式定理19. 函数的导数定义定理20. 导数的四则运算定理21. 高阶导数的定义定理22. 勒让德公式定理23. 柯西公式定理24. 泰勒公式定理25. 极限的定义定理26. 极限的四则运算定理27. 极限的夹逼定理28. 一元函数的连续性定理29. 一元函数的中值定理30. 罗尔定理31. 拉格朗日中值定理32. 柯西中值定理33. 泰勒中值定理34. 定积分的定义定理35. 定积分的可加性定理36. 定积分的积分中值定理37. 定积分的换元积分法定理38. 定积分的分部积分法定理39. 定积分的变限积分法定理40. 微分方程的定义定理41. 一阶微分方程的可分离变量定理42. 一阶微分方程的一阶线性齐次定理43. 一阶微分方程的一阶线性非齐次定理44. 二阶微分方程的特征方程定理45. 二阶微分方程的通解定理46. 二阶微分方程的特解定理47. 齐次线性微分方程的解法定理48. 非齐次线性微分方程的解法定理49. 常微分方程的初值问题定理50. 矩阵的秩定理。
高一上数学定律知识点归纳
高一上数学定律知识点归纳在高一上数学课程中,我们学习了许多重要的数学定律,这些定律是数学推理和问题解决的基础。
本文将对高一上数学课程中的一些重要定律进行归纳总结。
一、代数基础定律1. 加法交换律:a + b = b + a2. 加法结合律:(a + b) + c = a + (b + c)3. 加法单位元:a + 0 = a4. 加法逆元:a + (-a) = 05. 乘法交换律:ab = ba6. 乘法结合律:(ab)c = a(bc)7. 乘法单位元:a × 1 = a8. 乘法分配律:a × (b + c) = ab + ac二、函数定律1. 函数定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
2. 奇偶函数:若f(x) = f(-x),则函数f(x)为偶函数;若f(x) = -f(-x),则函数f(x)为奇函数。
3. 反函数:若f(g(x)) = g(f(x)) = x,则函数g(x)为函数f(x)的反函数。
4. 复合函数:设有函数f(x),g(x),其中g(x)的值域为f(x)的定义域,那么复合函数(f∘g)(x) = f(g(x))。
三、三角函数定律1. 正弦定理:在任意三角形ABC中,有a/sinA = b/sinB =c/sinC。
2. 余弦定理:在任意三角形ABC中,有a² = b² + c² - 2bc·cosA。
3. 正切定理:在任意三角形ABC中,有tanA = (2S)/(b + c - a),其中S为三角形ABC的面积。
四、平面几何定律1. 同位角定理:当两条直线被一条直线截断时,同位角相等。
2. 对顶角定理:当两条直线被一条直线截断时,在两条直线之间形成的内错角彼此相等。
3. 平行线定理:若两条直线被一条直线截断时,内错角互补,则这两条直线平行。
4. 垂直定理:当两条直线互相垂直时,它们之间形成的角度为90度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 集合与常用逻辑用语
2. 复数
3. 平面向量
4. 算法、推理与证明
5.不等式、线性规划
6. 计数原理与二项式定理
7. 函数、基本初等函数的图像与性质
8. 函数与方程、函数模型及其应用
9.导数及其应用
10.三角函数的图形与性质
11.三角恒等变化与解三角形
12.等差数列、等比数列
13.数列求和及数列的简单应用
14.空间几何体
15.空间点、直线、平面位置关系
16.空间向量与立体几何
17.直线与圆的方程
18.圆锥曲线的定义、方程与性质
19.圆锥曲线的热点问题
20.概率
21.离散型随机变量及其分布
22.统计与统计案例
23.函数与方程思想,数学结合思想
24.分类与整合思想,化归与转化思想
25.几何证明选讲
26.坐标系与参数方程
27.不等式选讲。