茂名市2021年数学中考一模试卷A卷
2021年广东省中考数学一模试卷(含答案解析)
2021年广东省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,是无理数的是()D. √6A. √4B. 3.14C. 3112.5G被认为是物联网、自动驾驶汽车、智慧城市的“结缔组织”,是工业互联网的中坚力量.近年来,我国5G发展取得明显成就,根据中国工信部的数据,截至2020年10月底,全国累计建设开通5G基站达69.5万个,将数据69.5万用科学记数法表示为()A. 695×103B. 69.5×104C. 6.95×105D. 0.695×1063.某种品牌的产品共5件,其中有2件次品,小王从中任取两件,则小王取到都是次品的概率是()A. 0.5B. 0.1C. 0.4D. 0.64.下列运算中,正确的是()A. x2⋅x3=x6B. (a−1)2=a2−1C. (a+b)(−a−b)=a2−b2D. (−2a2)2=4a45.若|a−1|+(b+2)2=0,则(a+b)2014+a2015的值为()A. −1B. 0C. 1D. 26.一个正三棱柱和一个正四棱柱的底面边长和高都相等,当一只小猫只看到它的一个侧面时,它看到()A. 正三棱柱的区域大B. 正四棱柱的区域大C. 两者的区域一样大D. 无法确定7.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC//BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A. ②④⑤⑥B. ①③⑤⑥C. ②③④⑥D.①③④⑤8.√15介于两个相邻整数之间,这两个整数是()A. 2~3B. 3~4C. 4~5D. 5~69. 如图所示,有三种卡片,其中边长为a 的正方形1张,边长为a 、b 的矩形卡片4张,边长为b 的正方形4张用这9张卡片刚好能拼成一个正方形,则这个正方形的面积为( )A. a 2+4ab +4b 2B. 4a 2+8ab +4b 2C. 4a 2+4ab +b 2D. a 2+2ab +b 210. 如图,函数y =ax 2+bx +c 的图象过点(−1,0)和(m,0),请思考下列判断,正确的个数是( )①abc <0;②4a +c <b ;③bc =1−1m;④am 2+(2a +b)m +a +b +c <0;⑤|am +a|=√b 2−4acA. 2个B. 3个C. 4个D. 5个二、填空题(本大题共7小题,共28.0分)11. 已知关于x 、y 二元一次方程组{mx −3y =163x −ny =0的解为{x =5y =3,则关于x 、y 二元一次方程组{m(x +1)−3(y −2)=163(x +1)−n(y −n)=0的解是______. 12. 将二次函数y =x 2−4x +a 的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y =3有两个交点,则a 的取值范围是______.13. 一个扇形的弧长为5π3cm ,面积256πcm 2,则此扇形的圆心角度数为______.14. 若关于x 的一元二次方程(m +4)x 2+5x +m 2+3m −4=0的常数项为0,则m 的值等于______.15. 已知:a +b +c =0,abc ≠0,则代数式1a 2+b 2−c 2+1b 2+c 2−a 2+1c 2+a 2−b 2=______. 16. 如图,在平行四边形ABCD 中,AB =10,AD =16,∠A =60°,P 为AD 的中点,F 是边AB 上不与点A ,B 重合的一个动点,将△APF 沿PF 折叠,得到△A′PF ,连接BA′,则△BA′F 周长的最小值为______.17.如图,AB=1,以AB为斜边作直角△ABC,以△ABC的各边为边分别向外作正方形,EM⊥KH于M,GN⊥KH于N,则图中阴影面积和的最大值为______ .三、解答题(本大题共8小题,共62.0分)18.计算:(1)2−1−(−0.5)0−sin30°;(2)(x−2)2−x(x−3);(3)解方程:3−xx−4+14−x=1;(4)解不等式组:{12x+1<321−5(x+1)≤6.19.为了解某中学300名男生的身高情况,现随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图),估计该校男生的身高在169.5cm~174.5cm之间的人数有______ 人.20.如图.点C、D是以AB为直径的半圆O上的两点,已知AB=10,tan∠ABC=34.∠ABD=45°.(1)求AC的长:(2)求∠DCB的度数;(3)求DC的长.21.如图所示,在直角坐标系中,点A是反比例函数y1=k的图象上一点,xAB⊥x轴的正半轴于B点,C是OB的中点;一次函数y2=ax+b的图象经过A、C两点,并交y轴于点D(0,−2),若S△AOD=4.(1)写出点C的坐标;(2)求反比例函数和一次函数的解析式;(3)当y1<y2时,求x的取值范围.22.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如表:售价(元/件)100110120130……月销量(件)200180160140……已知月销量是售价的一次函数,该运动服的进价为每件50元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是______元;②月销量是______件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?23. 问题情境在综合实践课上,老师让同学们在正方形中进行图形变换探究活动,已知四边形ABCD是正方形,点P是对角线BD上的一个动点.操作发现:(1)如图(1),将射线PA绕点P逆时针旋转90°,交BC于点E,则线段AP和PE之间的数量关系是______(2)如图(2),在(1)的基础上,兴趣小组的同学们将△ABE沿射线BC平移到△DCF的位置,连接PF,发现PF⊥BP,请你证明这个结论.24. 已知如图,AB是⊙O的直径,点P在⊙O上,且PA=PB,点M是⊙O外一点,MB与⊙O相切于点B,连接OM,过点A作AC//OM交⊙O于点C,连接BC交OM于点D.AC;(1)求证:OD=12(2)求证:MC是⊙O的切线;(3)若OD=9,DM=16,连接PC,求PC的长.25. 如图1,抛物线y=−x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=−x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=−x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的1时,求t的值.3【答案与解析】1.答案:D解析:A.√4=2,是整数,属于有理数;B.3.14是有限小数,属于有理数;C.3是分数,属于有理数;11D.√6是无理数.故选:D.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.答案:C解析:解:69.5万=695000=6.95×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.本题考查了科学记数法.解题的关键是明确用科学记数法表示一个数的方法:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上零).3.答案:B解析:本题主要考查了树状图法或列表法求概率,根据概率的求法,首先列出表格,表示出全部情况的总数,然后找出符合条件的情况数目,二者的比值就是其发生的概率.解:3件正品用A,B,C表示,2件次品用a,b表示,列表如下:由表格知,共有20种等可能的情况,其中小王取到都是次品的情况只有2种,=0.1.所以小王取到都是次品的概率是220故选B.4.答案:D解析:解:A、x2⋅x3=x5,故此选项错误;B、(a−1)2=a2−2a+1,故此选项错误;C、(a+b)(−a−b)=−a2−2ab−b2,故此选项错误;D、(−2a2)2=4a4,故此选项正确;故选:D.分别利用积的乘方运算法则以及完全平方公式、同底数幂的乘法运算法则化简求出答案.此题主要考查了积的乘方运算以及完全平方公式、同底数幂的乘法运算等知识,正确化简各式是解题关键.5.答案:D解析:解:∵|a−1|+(b+2)2=0,∴a−1=0,b+2=0.∴a=1,b=−2.∴原式=[1+(−2)]2014+12015=1+1=2.故选:D.首先由非负数的性质可求得a、b的值,然后将a、b的值代入所求代数式进行计算即可.本题主要考查的是非负数的性质,由非负数的性质求得a、b的值是解题的关键.6.答案:D解析:本题主要考察的是视点、视角和盲区,结合实际问题考查的过程中考察了学生的理解能力和空间想象能力.正三棱柱和一个正四棱柱的底面边长和高都相等,但是视距不能确定、棱长不能确定,所以看到的区域大小不能确定.故选:D7.答案:D解析:此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角,③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.解:①∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,①成立;②∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角,∴∠AOC≠∠AEC,②不成立;③∵OC//BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴BC平分∠ABD,③成立;④∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC//BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,④成立;⑤由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,⑤成立;⑥∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,⑥不成立.故选D.8.答案:B解析:此题主要考查了估算无理数的大小,正确得出√15的取值范围是解题关键.直接利用估算无理数的方法得出√15的取值范围即可.解:∵3<√15<4,∴这两个整数是:3~4.故选B.9.答案:A解析:解:由题意,得a2+4ab+4b2故选:A.由边长为a的正方形1张,边长为a、b的矩形卡片4张,边长为b的正方形4张,可得拼成的正方形面积为a2+4ab+4b2,根据完全平方式可求正方形边长.本题考查了完全平方公式的几何背景,完全平方式,关键是熟练运用完全平方公式解决问题.10.答案:D解析:解:∵抛物线开口向下,∴a<0,∵抛物线交y轴于正半轴,∴c>0,>0,∵−b2a∴b>0,∴abc<0,故①正确,∵a<0,∴2a+c<a+c,x=−1时,y=a−b+c=0,则b=a+c,∴2a+c<b,∴4a+c<b,故②正确,∵y=ax2+bx+c的图象过点(−1,0)和(m,0),∴−1×m=ca,am2+bm+c=0,∴amc +bc+1m=0,∴bc =1−1m,故③正确,∵−1+m=−ba,∴−a+am=−b,∴am=a−b,∵am2+(2a+b)m+a+b+c=am2+bm+c+2am+a+b=2a−2b+a+b=3a−b<0,故④正确,∵m+1=|−b+√b2−4ac2a −−b−√b2−4ac2a|,∴m+1=|√b2−4aca|,∴|am+a|=√b2−4ac,故⑤正确,故选:D.①利用图象信息即可判断;②根据x=−1时,y=0得到b=a+c,由a<0得到2a+c<a+c,即2a+c<b,即可判断;③根据m是方程ax2+bx+c=0的根,结合两根之积−m=ca,即可判断;④根据两根之和−1+m=−ba,可得ma=a−b,可得am2+(2a+b)m+a+b+c=am2+ bm+c+2am+a+b=2a−2b+a+b=3a−b<0,⑤根据抛物线与x轴的两个交点之间的距离,列出关系式即可判断;本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c);△决定抛物线与x 轴交点个数:△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点.11.答案:{x =4y =5解析:解:当X =x +1,Y =y −2时,方程组可转化为{mX −3Y =163X −nY =0, 由于关于x 、y 二元一次方程组{mx −3y =163x −ny =0的解为{x =5y =3, ∴关于X 、Y 的方程组{mX −3Y =163X −nY =0的解{X =5Y =3. ∴x +1=5,y −2=3.∴x =4,y =5.∴关于x 、y 二元一次方程组{m(x +1)−3(y −2)=163(x +1)−n(y −n)=0的解是{x =4y =5. 故答案为:{x =4y =5. 观察两个方程组的系数等特点,发现当当X =x +1,Y =y −2时,两个方程组完全一样,所以它们的解也相同,从而求出x 、y 的值.本题考查了二元一次方程组的解,观察两个方程组,找到规律运用换元法是解决本题的关键. 12.答案:a <6解析:解:∵y =(x −2)2+a −4,∴抛物线y =x 2−4x +a 的顶点坐标为(2,a −4),把点(2,a −4)向左平移1个单位,再向上平移1个单位,所得对应点的坐标为(1,a −3), ∴平移后的抛物线解析式为y =(x −1)2+a −3,即y =x 2−2x +a −2,∵抛物线y =x 2−2x +a −2与直线y =3有两个交点,∴方程x 2−2x +a −2=3有两个实数解,整理得x 2−2x +a −5=0,∵△=(−2)2−4(a −5)>0,∴a <6.故答案为a <6.先利用配方法得到抛物线y=x2−4x+a的顶点坐标为(2,a−4),再利用点平移的坐标变换规律得到点(2,a−4)平移后所得对应点的坐标为(1,a−3),利用顶点式得到平移后的抛物线解析式为y= (x−1)2+a−3,即y=x2−2x+a−2,然后利用方程x2−2x+a−2=3有两个实数解,则△= (−2)2−4(a−5)>0,从而解不等式即可.本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.13.答案:60°解析:此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.利用扇形面积公式S=12Rl求出R的值,再利用扇形面积公式S=nπ×R2360计算即可得到圆心角度数.解:∵一个扇形的弧长是5π3cm,面积256cm2,∴S=12Rl,即256π=12×R×5π3,解得:R=5,∴S=256π=nπ×52360,解得:n=60°,故答案是:60°.14.答案:1解析:解:∵关于x的一元二次方程(m+4)x2+5x+m2+3m−4=0的常数项为0,∴m+4≠0且m2+3m−4=0,解得m=1或m=−4(舍),故答案为:1.根据一元二次方程的常数项为0得出m的值,再由二次项系数不能为0得出答案.此题主要考查了一元二次方程的一般形式以及一元二次方程的解法,根据常数项为0进而求出m的值是解题关键.15.答案:0解析:解:∵a+b+c=0,即c=−(a+b),a=−(b+c),c=−(a+b)∴原式=1a2+b2−(a+b)2+1b2+c2−(b+c)2+1c2+a2−(c+a)2=−12ab−12bc−12ac=−c+a+b2abc=0由已知a+b+c=0,得到c=−(a+b),a=−(b+c),c=−(a+b),代入所求式子中,利用完全平方公式化简,通分并利用同分母分式的加法法则计算,将a+b+c=0代入即可求出值.此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.16.答案:2√21+2解析:解:如图,作BH⊥AD于H,连接BP.∵PA=8,AH=5,∴PH=8−5=3,∵BH=5√3,∴PB=√PH2+BH2=√32+(5√3)2=2√21,由翻折可知:PA=PA′=8,FA=FA′,∴△BFA′的周长=FA′+BF+BA′=AF+BF+BA′=AB+BA′=10+BA′,∴当BA′的周长最小时,△BFA′的周长最小,∵BA′≥PB−PA′,∴BA′≥2√21−8,∴BA′的最小值为2√21−8,∴△BFA′的周长的最小值为10+2√21−8=2√21+2.故答案为:2√21+2.△BFA′的周长=FA′+BF+BA′=AF+BF+BA′=AB+BA′=10+BA′,推出当BA′的周长最小时,△BFA′的周长最小,由此即可解决问题.本题考查翻折变换,平行四边形的性质,两点之间线段最短等知识,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.答案:54解析:解:作CO⊥AB交AB于点O,延长AB交EM于点P,交GN于点Q,由题意可得,AC=EA,BC=GB,∠EPA=∠AOC=90°,∠COB=∠BQG,∵∠EAP+∠CAO=90°,∠EAP+∠AEP=90°,∴∠CAO=∠AEP,在△EAP和△ACO中,{∠AEP=∠CAO ∠EPA=∠AOC AE=CA,∴△EAP≌△ACO(AAS),∴AP=CO,同理可知,△COB≌△BQG,CO=BQ,∴阴影部分的面积=矩形APMK的面积+矩形BQNH的面积+△ABC的面积,∴阴影部分的面积是:AK⋅AP+BH⋅BQ+AB⋅OC2=1×AP+1×BQ+1×CO2=52CO,∴当CO取得最大值时,图中阴影面积和取得最大值,∵当△ACB是等腰直角三角形时,CO取得最大值,∴CO的最大值是12,∴图中阴影面积和的最大值是52×12=54,故答案为:54.根据题意,作出合适的辅助线,然后即可表示出阴影部分的面积,然后即可计算出图中阴影面积和的最大值.本题考查勾股定理、三角形、正方形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.18.答案:解:(1)原式=12−1−12=−1;(2)原式=x 2−4x +4−x 2+3x=−x +4;(3)方程两边都乘以x −4得:3−x −1=x −4,解得:x =3,检验:当x =3时,x −4≠0,所以x =3是原方程的解,即原方程的解是x =3;(4){12x +1<32①1−5(x +1)≤6②∵解不等式①得:x <1,解不等式②得:x ≥−2,∴不等式组的解集是−2≤x <1.解析:(1)先根据零指数幂,负整数指数幂,特殊角的三角函数值进行计算,再算加减即可;(2)先算乘法,再合并同类项即可;(3)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(4)先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解分式方程,解一元一次不等式组,整式的混合运算,零指数幂,负整数指数幂,特殊角的三角函数值等知识点,能灵活运用知识点进行计算和化简是解此题的关键.19.答案:72解析:解:由频数分布直方图可知,样本容量为:6+10+16+12+6=50,身高在169.5cm ~174.5cm 之间的频数是12,12÷50=0.24,∴身高在169.5cm ~174.5cm 之间的频率为:0.24,300×0.24=72,故答案为:72.根据频数分布直方图去计算出样本容量,找出身高在169.5cm ~174.5cm 之间的频数,得到该组的频率,求出身高在169.5cm ~174.5cm 之间的人数.本题考查读频数分布直方图的能力和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.答案:解:(1)∵AB是直径,∴∠ACB=90°,∵tan∠ABC=ACBC =34,∴可以假设AC=3k,BC=4k,则有25k2=100,∴k=2或−2(舍弃),∴AC=6,BC=8.(2)连接AD.∵AB是直径,∴∠ADB=90°,∵∠ABD=45°,∴∠DAB=45°,∴∠DCB=∠DAB=45°.(3)过点B作BT⊥CD交CD的延长线于T.∵BC=8,∠TCB=∠TBC=45°,∴TC=TB=4√2,∵∠ABD=∠CBT=45°,∴∠ABC=∠DBT,∵∠ACB=∠T=90°,∴△ABC∽△DBT,∴ACDT =BCBT,∴6DT =84√2,∴DT=3√2,∴CD=CT−DT=√2.解析:(1)解直角三角形求出AC即可.(2)连接AD,证明△ABD是等腰直角三角形即可解决问题.(3)过点B作BT⊥CD交CD的延长线于T.解直角三角形求出CT,利用相似三角形的性质求出DT即可解决问题.本题考查圆周角定理,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型. 21.答案:解:(1)设点C 的坐标为(m,0),∵C 是OB 的中点,∴OC =BC .在△COD 和△CBA 中,{∠DCO =∠ACBOC =BC ∠DOC =∠ABC =90°,∴△COD≌△CBA(ASA),∴OD =BA .∵点D(0,−2),∴点A 的坐标为(2m,2).∴S △AOD =S △ABC +S △DOC =2S △DOC =2×12OC ⋅OD =2m =4,∴m =2,∴点C 的坐标为(2,0).(2)∵m =2,∴点A 的坐标为(4,2).∵点A 在反比例函数y 1=k x 的图象上,∴k =4×2=8,∴反比例函数的解析式为y 1=8x ;将C(2,0)、D(0,−2)代入y 2=ax +b 中,{0=2a +b −2=b,解得:{a =1b =−2, ∴一次函数的解析式为y =x −2.(3)联立两函数解析式成方程组,{y =8x y =x −2,解得:{x =−2y =−4或{x =4y =2, ∴两函数图象的另一个交点为(−2,−4).观察函数图象可知:当−2<x <0 或x >4时,一次函数图象在反比例函数图象上方, ∴当y 1<y 2时,x 的取值范围为−2<x <0 或x >4.解析:(1)设点C 的坐标为(m,0),通过证△COD≌△CBA 可得出点A 的坐标为(2m,2),根据三角形的面积公式结合S △AOD =4即可求出m 值,由此即可得出点C 的坐标;(2)由m 的值可得出点A 的坐标,利用反比例函数图象上点的坐标特征即可得出反比例函数解析式,再根据点C 、D 的坐标利用待定系数法即可求出一次函数解析式;(3)联立两函数解析式成方程组,通过解方程组可求出两函数图象的另一交点坐标,根据函数图象的上下位置关系即可得出结论.本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积以及全等三角形的判定与性质,解题的关键是:(1)根据S △AOD =4找出关于m 的一元一次方程;(2)根据点的坐标利用待定系数法求出函数解析式;(3)联立两函数解析式成方程组,通过解方程组求出两函数图象的另一交点坐标.22.答案:x −50 −2x +400解析:解:(1)请用含x 的式子表示:①销售该运动服每件的利润是(x −50)元;②解:(1)设月销量y 与x 的关系式为y =kx +b ,由题意得,{100k +b =200110k +b =180, 解得{k =−2b =400. 则y =−2x +400;故答案为:x −50,−2x +400;(2)由题意得,y =(x −60)(−2x +400)=−2x 2+520x −24000=−2(x −130)2+9800,故售价为130元时,当月的利润最大,最大利润是9800元.(1)先表示出单件的利润,然后运用待定系数法求出月销量;(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.本题考查的是二次函数的应用,掌握待定系数法求函数解析式和二次函数的性质以及最值的求法是解题的关键.23.答案:(1)PA =PE ,理由:如图1,过点P 作PG ⊥BC 于G ,PH ⊥AB 于H ,则四边形BGPH是正方形,∴PH=PG,∠HPG=90°,∵∠APE=90°,∴∠APH+∠HPB=∠HPB+∠EPG,∴∠APH=∠EPG,在△APH与△EPG中,∴△APH≌△EPG(ASA),∴PA=PE;故答案为:PA=PE;(2)如图2,连接PC,过P作PG⊥BC于G,∵四边形ABCD是正方形,∴AD=CD,在△ADP与△CDP中,∴△ADP≌△CDP,(SAS)∴AP=CP,∵PA=PE,∴PE=PC,又∵PG⊥BC,∴EG=CG,∵BE=CF,∴BG=FG,∴PB=PF,∵∠DBC=45°,∴∠BPF=90°,∴PF⊥PB.解析:本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.(1)过点P作PG⊥BC于G,PH⊥AB于H,根据正方形的性质和全等三角形的性质即可得到结论;(2)连接PC ,过P 作PG ⊥BC 于G ,根据正方形的性质得到AD =CD ,根据全等三角形的性质得到AP =CP ,然后根据等腰三角形的性质即可得到结论.24.答案:解:(1)∵AC//OM ,∴△BOD ~△BAC , ∴OD AC =OB AB =12.∴OD =12AC ;(2)连接OC ,∵AC//OM ,∴∠OAC =∠BOM ,∠ACO =∠COM ,∵OA =OC ,∴∠OAC =∠ACO∴∠BOM =∠COM ,在△OCM 与△OBM 中,{OC =OB∠BOM =∠COM OM =OM,∴△OCM≌△OBM(SAS);又∵MB 是⊙O 的切线,∴∠OCM =∠OBM =90°,∴MC 是⊙O 的切线;(3)∵∠OCD +∠MCD =∠CMD +∠MCD =90°,∴∠OCD =∠CMD ,∵∠OCM =∠CDO =∠CDM =90°,∴△CDO∽△MDC ,∴CD 2=OD ⋅DM =9×16,解得:CD =12,∴BC =2CD =24,∴CO =√CD 2+OD 2=√122+92=15,∴AB=30,∴PA=PB=15√2;过点A作AH⊥PC于点H,AC=9,则AC=18,∵OD=12AC=9√2,PH=√PA2−AH2=12√2,∴AH=CH=√22∴PC=PH+CH=9√2+12√2=21√2.解析:(1)先证明△BOD~△BAC,然后依据相似三角形的性质进行证明即可;(2)连接OC,由切线的性质得到∠OBM=90°,然后依据平行线的性质和等腰三角形的性质,证明∠BOM=∠COM,然后利用SAS证明△OCM≌△OBM,由全等三角形的性质可得到∠OCM=∠OBM= 90°;(3)根据圆周角定理和平行线的性质得到∠ACB=∠APB=90°,根据垂径定理得到∠OCD=∠CMD,过点A作AH⊥PC于点H,根据相似三角形的性质和勾股定理即可得到结论.本题为圆的综合题,主要考查了切线的判定和性质,相似三角形的判定和性质,勾股定理,圆周角定理,全等三角形的判定和性质,正确的作出辅助线是解题的关键.25.答案:解:(1)将点A和点B的坐标代入y=−x2+bx+c得:{−4+2b+c=0c=2,解得:b=1,c=2.∴抛物线的解析式为y=−x2+x+2.令y=0,则0=−x2+x+2,解得:x=2或x=−1.∴点C的坐标为(−1,0).(2)设点P的坐标为(t,−t2+t+2),则PE=t,PD=−t2+t+2,∴四边形ODPE的周长=2(−t2+t+2+t)=−2(t−1)2+6,∴当P点坐标为(1,2)时,∴四边形ODPE周长最大值为6.(3)∵A(2,0),B(0,2),∴AB的解析式为y=−x+2.∵P点的横坐标为t,∴P点纵坐标为−t2+t+2.又∵PN⊥x轴,∴M点的坐标为(t,−t+2),∴PM=−t2+t+2−(−t+2)=−t2+2t.∴S△ABP=S△PMB+S△PMA=12PM⋅ON+12PM⋅AN=12PM⋅OA=−t2+2t.又∵S△ABC=12AC⋅OB=12×3×2=3,∴−t2+2t=3×13,解得:t1=t2=1.∴当t=1时,△ABP的面积等于△ABC的面积的13.解析:(1)将点A和点B的坐标代入抛物线的解析式可求得b、c的值,从而可得到抛物线的解析式,然后令y=0可得到关于x的方程可求得点C的坐标;(2)设点P的坐标为(t,−t2+t+2),用含t的式子表示出PE、PD的长度,然后可得到四边形ODPE 的周长与t的函数关系式,最后利用配方法可求得点P的横坐标,以及四边形ODPE周长的最大值;(3)先求得直线AB的解析式,设P点的坐标为(t,−t2+t+2),则点M的坐标为(t,−t+2),由S△ABP= S△PMB+S△PMA可得到△ABP的面积与t的函数关系式,然后,再根据,△ABP的面积等于△ABC的面积的13列方程求解即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了代入系数法求二次函数的解析式、二次函数的最值、三角形的面积公式、解一元二次方程,得到PM的长度与点M的横坐标之间的关系是解题的关键.。
2021年广东省茂名市中考数学试题(含答案)
用科学记数法可表示为( )
A. 0.5365×103
B. 5.365×102
C. 53.65×10
D. 536.5
3.(3 分)(2021•茂名)如图,AB 是⊙O 的直径,AB⊥CD 于点 E,若 CD=6,则 DE=( )
A. 3
B. 4
4.(3 分)(2021•茂名)方程组
A.
B.
C. 5 的解为( )
与两个图象分别交于 A(a,1),B(1,b)两点,点 C 为线段 AB 的中点,连接 OC、OB. (1)求 a、b、k 的值及点 C 的坐标; (2)若在坐标平面上有一点 D,使得以 O、C、B、D 为顶点的四边形是平行四边形,请求出点 D 的坐标.
5
2021 年广东省中考数学试卷
25.(8 分)(2021•茂名)如图所示,抛物线 y=ax2+ +c 经过原点 O 和 A(4,2),与 x 轴交于点 C,点 M、 N 同时从原点 O 出发,点 M 以 2 个单位/秒的速度沿 y 轴正方向运动,点 N 以 1 个单位/秒的速度沿 x 轴正 方向运动,当其中一个点停止运动时,另一点也随之停止. (1)求 抛物线的解析式和点 C 的坐标; (2)在点 M、N 运动过程中, ①若线段 MN 与 OA 交于点 G,试判断 MN 与 OA 的位置关系,并说明理由; ②若线段 MN 与抛物线相交于点 P,探索:是否存在某一时刻 t,使得以 O、P、A、C 为顶点的四边形是等 腰梯形?若存在,请求出 t 值;若不存在,请说明理由.
A. 3
B. 4
C. 5
D. 6
7
2021 年广东省中考数学试卷
考点: 垂径定理。 119281
专题: 探究型。 分析: 直接根据垂径定理进行解答即可. 解答: 解:∵AB 是⊙O 的直径,AB⊥CD 于点 E,CD=6,
2021年广东省茂名市中考数学模考试卷解析版
2021年广东省茂名市中考数学模考试卷解析版一、选择题:(本大题共10小题,每小题3分,满分30分)1.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6B.6C.0D.无法确定解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选:B.2.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg解:130 000 000kg=1.3×108kg.故选:D.3.如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°解:∵a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=∠1=70°,故选:C.4.抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A.y=3(x﹣3)2﹣3B.y=3x2C.y=3(x+3)2﹣3D.y=3x2﹣6第1 页共14 页第 2 页 共 14 页解:y =3x 2﹣3向右平移3个单位长度,得到新抛物线的表达式为y =3(x ﹣3)2﹣3, 故选:A .5.某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为( )A .12,14B .12,15C .15,14D .15,13解:∵这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次, ∴这组数据的众数为15,∵这组数据分别为:12、13、14、15、15、15∴这组数据的平均数12+13+14+15+15+156=14.故选:C .6.下列给出的函数中,其图象是中心对称图形的是( )①函数y =x ;②函数y =x 2;③函数y =1x .A .①②B .②③C .①③D .都不是 解:根据中心对称图形的定义可知函数①③是中心对称图形.故选:C .7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,以下四个结论:①a >0;②c >0;③b 2﹣4ac >0;④−b 2a<0,正确的是( )A .①②B .②④C .①③D .③④解:①∵抛物线开口向上,∴a >0,结论①正确;②∵抛物线与y 轴的交点在y 轴负半轴,∴c <0,结论②错误;③∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,结论③正确;④∵抛物线的对称轴在y 轴右侧,。
【区级联考】广东省茂名市茂南区2021年中考一模数学试题
16.化简:x(4x+3y)-(2x+y)(2x-y)
17.若关于x的不等式组 恰有三个整数解,求实数a的取值范围.
18.如图,适当地改变方格图中的平行四边形的部分位置,并保持面积不变,先使其为矩形,再将矩形向下平移3个格后,继续改变其中某些部分的位置并保持面积不变,使其成为菱形.说明在变化过程中所运用的图形变换.
(2)DE是∠FDC的平分线.
22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
3.如图,BC为⊙O直径,交弦AD于点E,若B点为弧AD中点,则说法错误的是( )
A.AD⊥BCB.弧AC=弧CDC.AE=DED.OE=BE
4.由方程组 ,可得出x与y的关系是( )
A.x+y=1B.x+y=-1C.x+y=7D.x+y=-7
5.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为( )
19.为了满足广大手机用户的需求,某移动通信公司推出了三种套餐,资费标准如下表所示:
套餐资费标准
月套餐类型
套餐费用
套餐包含内容
超出套餐后的费用
本地主叫市话
短信
国内移动数据流量
本地主叫市话
短信
国内移动数据流量
套餐一
18元
30分钟
100条
50兆
0.1元/
分钟
0.1元/条
0.5元/兆
套餐二
【校级联考】广东省茂名市电白县2021年中考一模数学试题
【校级联考】广东省茂名市电白县2021年中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.a 的倒数是3,则a 的值是( )A .13B .﹣13C .3D .﹣3 2.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( ) A .4.4×108 B .4.40×108 C .4.4×109 D .4.4×1010 3.如图,AB 是⊙O 的直径,AB ⊥CD 于点E ,若CD =6,则DE =( )A .3B .4C .5D .64.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( ) A .32⨯+⨯①② B .3-2⨯⨯①② C .53⨯+⨯①② D .5-3⨯⨯①② 5.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对的面上的汉字是( )A .数B .活C .学D .的6.从多边形一个顶点出发向其余的顶点引对角线,将多边形分成6个三角形,则此多边形的边数为( )A .6B .7C .8D .97.下列调查中,适合采用全面调查(普查)方式的是( )A .对綦江河水质情况的调查B .对端午节期间市场上粽子质量情况的调查C .对某班50名同学体重情况的调查D .对某类烟花爆竹燃放安全情况的调查8.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.59.在−1,1,−3,3四个数中,最小的数是()A.−1B.1 C.−3D.310.如图,∠BAC内有一点P,过点P作直线l∥AB,交AC于E点.今欲在∠BAC 的两边上各找一点Q、R,使得P为QR的中点,以下是甲、乙两人的作法:甲:①过P作直线l1∥AC,交直线AB于F点,并连接EF;②过P作直线l2∥EF,分别交两直线AB、AC于Q、R两点,则Q、R即为所求.乙:①在直线AC上另取一点R,使得AE=ER;②作直线PR,交直线AB于Q点,则Q、R即为所求.下列判断正确的是()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确二、填空题11.因式分解:m3n﹣9mn=______.12.我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的___.的值为0,则a的值是.13.若分式a2−9a+314.如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O、B、C是格点,则扇形OBC的面积等于___(结果保留π)15.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.三、解答题16.计算:(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x).17.当x取哪些整数值时,不等式21222xx-≤-+与4﹣7x<﹣3都成立?18.如图,将平行四边形ABCD向左平移2个单位长度,得到平行四边形A'B'C'D',画出平移后的图形,并指出其各个顶点的坐标.19.某校计划组织学生到市影剧院观看大型感恩歌舞剧,为了解学生如何去影剧院的问题,学校随机抽取部分学生进行调查,并将调查结果制成了表格、条形统计图和扇形统计图(均不完整).(1)此次共调查了多少位学生?(2)将表格填充完整;(3)将条形统计图补充完整.20.已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.(1)求从袋中随机摸出一个球是红球的概率.(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为27,求袋中有几个红球被换成了黄球. 21.如图,已知矩形ABCD 中,F 是BC 上一点,且AF =BC ,DE ⊥AF ,垂足是E ,连接DF .求证:(1)△ABF ≌△DEA ;(2)DF 是∠EDC 的平分线.22.某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少? (2)在商品销售正常的情况下,每件商品的涨价为多少元时,商场日盈利最大?最大利润是多少?23.如图,△ABC 为等边三角形,以边BC 为直径的半圆与边AB ,AC 分别交于D ,F 两点,过点D 作DE ⊥AC ,垂足为点E ,(1)判断DE 与⊙O 的位置关系,并证明你的结论;(2)过点F 作FH ⊥BC ,垂足为点H ,若AB=4,求FH 的长(结果保留根号). 24.阅读下面材料,然后解答问题:在平面直角坐标系中,以任意两点P (x 1,y 1),Q (x 2,y 2)为端点的线段的中点坐标为(122x x +,122y y +).如图,在平面直角坐标系xOy 中,双曲线y =3x -(x <0)和y =k x (x >0)的图象关于y 轴对称,直线y =1522x 与两个图象分别交于A (a ,1),B (1,b )两点,点C 为线段AB 的中点,连接OC 、OB .(1)求a 、b 、k 的值及点C 的坐标;(2)若在坐标平面上有一点D ,使得以O 、C 、B 、D 为顶点的四边形是平行四边形,请求出点D 的坐标.参考答案1.A【分析】根据倒数的定义进行解答即可.【详解】∵a的倒数是3,∴3a=1,解得:a=13.故选A.【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.2.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:4 400 000 000=4.4×109,故选C.3.A【分析】直接根据垂径定理进行解答即可.【详解】∵AB是⊙O的直径,AB⊥CD于点E,CD=6,∴116322DE AB==⨯=.故选A.【点睛】本题考查的是垂径定理,即垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.4.C【分析】利用加减消元法53⨯+⨯①②消去y 即可.【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3, 故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.C【分析】根据正方体的展开图的特点即可判断.【详解】由正方体的展开图的特点“生”与“学”是“Z”字形,故为对应面,故选C.【点睛】此题主要考查正方体的展开图的应用,解题的关键是熟知正方体展开图的特点.6.C【解析】【分析】根据从一个n 边形一个顶点出发的对角线可将这个多边形分成()2n -个三角形进行计算即可.【详解】设这个多边形的边数是n ,由题意得,26n -=,解得,8n =.故选:C .【点睛】本题考查的是n 边形的对角线的知识,从n 边形一个顶点出发可引出()3n -条对角线,可将这个多边形分成()2n -个三角形.7.C【详解】对釜溪河水质情况的待查,只能是调查;对端午节期间市场上粽子质量情况的调查,和“对某类烟花爆竹燃放安全情况的调查”,根据调查的破坏性,只能是抽样调查;全面调查是所考察的全体对象进行调查. “对某班50名同学体重情况的调查”的容量较小适合采用全面调查方式;故选C8.A【解析】这20个数的平均数是:81112128814411.62020⨯+⨯+==,故选A.9.C【解析】【分析】将各数按照从小到大顺序排列,找出最小的数即可.【详解】解:根据题意得:-3<-1<1<3,则最小的数是-3,故选:C.【点睛】本题考查了有理数大小比较,将各数正确的排列是解本题的关键.10.A【解析】分析:根据甲的作法可知,四边形EFQP、EFPR都是平行四边形.根据平行四边形性质可得P是QR的中点;在乙的作法中,根据平行线等分线段定理知QP=PR.详解:(甲)由题意可知:四边形EFQP、EFPR均为平行四边形⇒EF=QP=PR.∴P点为QR的中点,即为所求,故甲正确;(乙)由题意可知:在△AQR中,∵AE=ER(即E为AR中点),且PE∥AQ,∴P点为QR的中点,即为所求,故乙正确.∴甲、乙两人皆正确,故选A.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.11.mn(m+3)(m﹣3)【解析】分析:原式提取mn后,利用平方差公式分解即可.详解:原式=mn(m2-9)=mn(m+3)(m-3).故答案为mn(m+3)(m-3).点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.稳定性.【分析】当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,根据三角形具有稳定性回答即可.【详解】用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的稳定性,故答案为稳定性.【点睛】本题考查了三角形的稳定性,解题的关键是了解三角形具有稳定性,四边形不具有稳定性. 13.3.【解析】试题分析:根据分式的值为0的条件列出关于a 的不等式组,求出a 的值即可. 试题解析:∵分式a 2−9a+3的值为0,∴{a 2−9=0a +3≠0 , 解得a=3.考点:分式的值为零的条件.14.54π 【解析】【分析】根据勾股定理求得OB 长,再根据S 扇形2π360n r =进行计算即可. 【详解】2BO ==S 扇形290π5π.3604⨯== 故答案为:54π. 【点睛】 此题主要扇形的面积计算,关键是掌握扇形的面积公式.15.0<m <132【解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx 得,﹣5=12k ,∴k=﹣512;由y=﹣512x 平移m (m >0)个单位后得到的直线l 所对应的函数关系式为y=﹣512x+m (m >0), 设直线l 与x 轴、y 轴分别交于点A 、B ,(如图所示)当x=0时,y=m ;当y=0时,x=125m ,∴A (125m ,0),B (0,m ),即OA=125m ,OB=m ,在Rt △OAB 中,AB=√OA 2+OB 2=√(125m)2+m 2=135m , 过点O 作OD ⊥AB 于D ,∵S △ABO =12OD•AB=12OA•OB ,∴12OD•135m =12×125m×m ,∵m >0,解得OD=1213m ,由直线与圆的位置关系可知1213m <6,解得m <132,故答案为0<m <132.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m 的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.16.3x ﹣2【分析】先根据整式的除法法则进行计算,再利用整式的乘法法则进行计算,最后合并同类项.【详解】原式=﹣3x2+4x﹣3x+3x2﹣2+2x,=3x﹣2.【点睛】本题主要考查整式的乘法,除法,减法运算法则,解决本题的关键是要熟练掌握整式乘法,除法,减法运算法则.17.2,3【解析】【分析】根据题意得出不等式组,解不等式组求得其解集即可.【详解】根据题意得21222473xxx-⎧≤-+⎪⎨⎪-<-⎩①②,解不等式①,得:x≤3,解不等式②,得:x>1,则不等式组的解集为1<x≤3,∴x可取的整数值是2,3.【点睛】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.18.图略. A(-3,-2)B′(1,-2)C′(2,1) D′(-2,1)【解析】本题主要考查了图形的平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.根据网格结构找出点A、B、C、D对应点A′、B′、C′、D′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标即可.解:由题意得,各点坐标分别为A(-3,-2)B′(1,-2)C′(2,1) D′(-2,1).19.(1)此次共调查了500位学生;(2)填表如下:骑自行车:150人,坐公共汽车:225人,其他:75人;(3)如图见解析.【解析】【分析】(1)由条形统计图可以得出步行的人数为50人,占所抽查的人数的10%,就可以求出调查的总人数.(2)用总人数乘以骑自行车的百分比就求出骑自行车的人数,总人数乘以坐公共汽车的百分比就求出坐公共汽车的人数.总人数﹣步行人数﹣骑自行车人数﹣坐公共汽车人数=其他人数.(3)由(2)骑自行车的人数就可以补全条形统计图.【详解】(1)50÷10%=500(位)答:此次共调查了500位学生.(2)填表如下:骑自行车:500×30%=150人,坐公共汽车:500×45%=225人,其他:500﹣50﹣150﹣225=75人.故答案为:150,225,75.(3)如图【点睛】本题考查了条形统计图,统计表,扇形统计图的运用,解答本题的关键是求出调查的总人数.20.(1)57;(2)2049;(3)袋中有3个红球被换成了黄球.【解析】【分析】(1)直接利用概率公式计算可得;(2)先列表得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得;(3)设有x个红球被换成了黄球,根据颜色是一白一黄的概率为27列出关于x的方程,解之可得.【详解】(1)∵袋中共有7个小球,其中红球有5个,∴从袋中随机摸出一个球是红球的概率为57;(2)列表如下:由表知共有49种等可能结果,其中两次摸出的球恰好颜色不同的有20种结果,∴两次摸出的球恰好颜色不同的概率为20 49(3)设有x个红球被换成了黄球.根据题意,得:222 427x x+=,解得:x=3,即袋中有3个红球被换成了黄球.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)见解析;(2)见解析.【解析】【分析】(1)根据矩形性质得出∠B =90°,AD =BC ,AD ∥BC ,推出∠DAE =∠AFB ,求出AF =AD ,根据AAS 证出即可;(2)有全等推出DE =AB =DC ,根据HL 证△DEF ≌△DCF ,根据全等三角形的性质推出即可.【详解】(1)∵四边形ABCD 是矩形,∴∠B =90°,AD =BC ,AD ∥BC ,∴∠DAE =∠AFB ,∵DE ⊥AF ,∴∠DEA =∠B =90°,∵AF =BC ,∴AF =AD ,在△DEA 和△ABF 中∵,DAE AFB AED BAD FA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DEA ≌△ABF (AAS );(2)证明:∵由(1)知△ABF ≌△DEA ,∴DE =AB ,∵四边形ABCD 是矩形,∴∠C =90°,DC =AB ,∴DC =DE .∵∠C =∠DEF =90°∴在Rt △DEF 和Rt △DCF 中,DF DF DE DC =⎧⎨=⎩∴Rt △DEF ≌Rt △DCF (HL )∴∠EDF =∠CDF ,∴DF是∠EDC的平分线.【点睛】本题考查了矩形性质,全等三角形的性质和判定,平行线性质等知识点,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,22.(1)每天可销售30件商品,商场获得的日盈利是1500元;(2)每件商品售价为160元时,商场日盈利达到1600元.【分析】(1)先求出提高的价格170-130=40元,就可以求出此时销售减少的数量,就可以求出销售的数量,在由每件利润×件数就可以得出日利润;(2)设每件商品的售价为x元,则每天销售商品的件数为70-(x-130)=200-x件,根据“总利润=单件利润×销售量”得出函数关系式,再配方即可得其最值情况.【详解】解:(1)由题意得:每天销售的数量为70-(170-130)=30件,日盈利为:30(170-120)=1500元,故每天销售的数量为30件,日盈利为1500元.(2)设每件商品的售价为x元,则每天销售商品的件数为70-(x-130)=200-x件,则商场的日盈利w=(x-120)(200-x)=-x2+320x-24000=-(x-160)2+1600,∴当x=160时,w取得最大值,最大值为1600,答:当每件商品的销售价定为160元时,能使商场的日盈利最多,1600元..【点睛】本题考查了列一元二次方程解实际问题的运用,解答时灵活运用销售问题的数量关系是解答的关键.23.1)DE是⊙O的切线;(2【解析】试题分析:(1)连接OD,根据等边三角形的性质得出AB=BC,∠B=∠C=60°,从而得出△OBD是等边三角形,∠BOD=∠C,再证OD∥AC,得出DE⊥OD,即可得出结论;(2)先证明△OCF是等边三角形,得出CF=OC=2,再利用三角函数即可求出FH.试题解析:(1)DE是⊙O的切线;理由如下:连接OD,如图1所示:∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60°,∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴∠BOD=∠C,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(2)连接OF,如图2所示:∵OC=OF,∠C=60°,∴△OCF是等边三角形,∴CF=OC=1 2BC=12AB=2,∵FH⊥BC,∴∠FHC=90°,∴FH=CF•sin∠C=2×2考点:切线的判定.24.(1)点C坐标为(﹣1,2);(2)符合条件的点D坐标为(0,5)或(2,1)或(﹣2,﹣1).【解析】【分析】(1)首先把A(a,1),B(1,b)代入y=3x-和y=1522x+可以得到方程组,解方程组即可算出a、b的值,继而得到A、B两点的坐标,再把B点坐标代入双曲线y=kx(x>0)上,即可算出k值,再根据中点坐标公式算出C点坐标;(2)此题分三个情况:①四边形OCDB是平行四边形,②四边形OCBD是平行四边形,③四边形BODC是平行四边形.根据点的平移规律可得到D点坐标.【详解】(1)依题意得31151,23ab-⎧=⎪⎪⎨⎪=⨯+⎪⎩解得33. ab=-⎧⎨=⎩∴A(﹣3,1),B(1,3),∵点B在双曲线y=kx(x>0)上,∴k=1×3=3,∵点C为线段AB的中点,∴点C坐标为3113,22-++⎛⎫⎪⎝⎭,即为(﹣1,2);(2)将线段OC平移,使点O(0,0)移到点B(1,3),则点C(﹣1,2)移到点D(0,5),此时四边形OCDB是平行四边形;将线段OC平移,使点C(﹣1,2)移到点B(1,3),则点O(0,0)移到点D(2,1),此时四边形OCBD是平行四边形;线段BO平移,使点B(1,3)移到点C(﹣1,2),则点O(0,0)移到点D(﹣2,﹣1),此时四边形BODC是平行四边形.综上所述,符合条件的点D坐标为(0,5)或(2,1)或(﹣2,﹣1).【点睛】此题主要考查了反比例函数的综合应用,关键是掌握凡是图象经过的点必能满足解析式.。
2021-2022学年广东省茂名市茂南区重点中学中考数学模试卷含解析
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A.0.72×106平方米B.7.2×106平方米C.72×104平方米D.7.2×105平方米2.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×1053.下列图形中,不是轴对称图形的是()A.B.C.D.4.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2y 8 3 0 ﹣1 0则抛物线的顶点坐标是()A.(﹣1,3)B.(0,0)C.(1,﹣1)D.(2,0)5.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是()①13EAEC,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)A.1个B.2个C.3个D.4个6.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h7.下列四个实数中是无理数的是( )A.2.5 B.C.π D.1.4148.由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是()A.4 B.5 C.6 D.79.tan30°的值为()A.B.C.D.10.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是()A.135°B.115°C.65°D.50°11.若分式11x-有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1D.x≠012.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()成绩(环)7 8 9 10次数 1 4 3 2A.8、8 B.8、8.5 C.8、9 D.8、10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB (指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.14.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°15.225abπ-的系数是_____,次数是_____.16.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.17.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=62,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_____.18.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.(6分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).21.(6分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)22.(8分)如图,直线4y x =+与双曲线0ky k x=≠()相交于1A a -(,)、B 两点. (1)a = ,点B 坐标为 .(2)在x 轴上找一点P ,在y 轴上找一点Q ,使BP PQ QA ++的值最小,求出点P Q 、两点坐标23.(8分)如图,矩形ABCD 中,E 是AD 的中点,延长CE ,BA 交于点F ,连接AC ,DF .求证:四边形ACDF 是平行四边形;当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.24.(10分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲 乙 价格(万元/台) 7 5 每台日产量(个)10060(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?25.(10分)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标; (3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.26.(12分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF .,GH .填空:∠AHC ∠ACG ;(填“>”或“<”或“=”)线段AC ,AG ,AH 什么关系?请说明理由;设AE =m ,①△AGH 的面积S 有变化吗?如果变化.请求出S 与m 的函数关系式;如果不变化,请求出定值. ②请直接写出使△CGH 是等腰三角形的m 值.27.(12分)如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙O 相交于点F .若EF 的长为2π,则图中阴影部分的面积为_____.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D 【解析】试题分析:把一个数记成a×10n (1≤a<10,n 整数位数少1)的形式,叫做科学记数法. ∴此题可记为1.2×105平方米. 考点:科学记数法 2、B 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】将6500000用科学记数法表示为:6.5×106. 故答案选B. 【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式. 3、A 【解析】观察四个选项图形,根据轴对称图形的概念即可得出结论. 【详解】根据轴对称图形的概念,可知:选项A 中的图形不是轴对称图形. 故选A . 【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合. 4、C 【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标. 详解:当0x =或2x =时,0y =,当1x =时,1y =-,04201c a b c a b c =⎧⎪∴++=⎨⎪++=-⎩,解得120a b c =⎧⎪=-⎨⎪=⎩ ,∴二次函数解析式为222(1)1y x x x =-=--, ∴抛物线的顶点坐标为()1,1-,故选C .点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键. 5、C 【解析】①如图,由平行线等分线段定理(或分线段成比例定理)易得:13EA OA EC OC '='=; ②设过点B 且与y 轴平行的直线交AC 于点G ,则S △ABC =S △AGB +S △BCG ,易得:S △AED =12,△AED ∽△AGB 且相似比=1,所以,△AED ≌△AGB ,所以,S △AGB =12,又易得G 为AC 中点,所以,S △AGB =S △BGC =12,从而得结论;③易知,BG=DE=1,又△BGC ∽△FEC ,列比例式可得结论;④易知,点B 的位置会随着点A 在直线x=1上的位置变化而相应的发生变化,所以④错误. 【详解】解:①如图,∵OE ∥AA'∥CC',且OA'=1,OC'=1, ∴13EA OA EC OC '='=, 故 ①正确;②设过点B 且与y 轴平行的直线交AC 于点G (如图),则S △ABC =S △AGB +S △BCG , ∵DE=1,OA'=1, ∴S △AED =12×1×1=12,∵OE ∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=12,同理得:G为AC中点,∴S△ABG=S△BCG=12,∴S△ABC=1,故②正确;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴13 BG CGEF CE==,∴EF=1.即OF=5,故③正确;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故④错误;故选C.【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.6、C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.7、C【解析】本题主要考查了无理数的定义.根据无理数的定义:无限不循环小数是无理数即可求解.解:A、2.5是有理数,故选项错误;B、是有理数,故选项错误;C、π是无理数,故选项正确;D、1.414是有理数,故选项错误.故选C.8、C【解析】试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1.故选C.9、D【解析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.10、B【解析】由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= 12∠AOB,然后根据圆内接四边形的性质求解.【详解】解:在圆上取点P,连接PA、PB. ∵OA=OB,∴∠OAB=∠OBA=25°,∴∠AOB=180°−2×25°=130°,∴∠P=12∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键.11、C【解析】分式分母不为0,所以10x -≠,解得1x ≠.故选:C.12、B【解析】根据众数和中位数的概念求解.【详解】由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为892+=8.5(环), 故选:B .【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、4【解析】连接OP OB 、,把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为BOP △的面积的2倍.【详解】解:连接OP 、OB ,∵图形BAP 的面积=△AOB 的面积+△BOP 的面积+扇形OAP 的面积,图形BCP 的面积=△BOC 的面积+扇形OCP 的面积−△BOP 的面积,又∵点P 是半圆弧AC 的中点,OA =OC ,∴扇形OAP 的面积=扇形OCP 的面积,△AOB 的面积=△BOC 的面积,∴两部分面积之差的绝对值是2 4.BOP S OP OC =⋅=点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.14、B .【解析】试题分析:根据AE 是⊙O 的切线,A 为切点,AB 是⊙O 的直径,可以先得出∠BAD 为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B ,从而得到∠ADB 的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B .考点:圆的基本性质、切线的性质.15、25π- 1 【解析】根据单项式系数及次数的定义进行解答即可.【详解】 根据单项式系数和次数的定义可知,﹣225ab π的系数是25π-,次数是1. 【点睛】本题考查了单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.16、 (-1,0)【解析】根据已知条件由图中可以得到B 12,B 22)2,B 3所在的正方形的对角线长为(2)3;B 4所在的正方形的对角线长为(2)4;B 5所在的正方形的对角线长为(2)5;可推出B 6所在的正方形的对角线长为(2)6=1.又因为B 6在x 轴负半轴,所以B 6(-1,0).解:如图所示∵正方形OBB 1C ,∴OB 12,B 1所在的象限为第一象限;∴OB 2=2)2,B 2在x 轴正半轴;∴OB 3=2)3,B 3所在的象限为第四象限;∴OB 4=2)4,B 4在y 轴负半轴;∴OB 5=2)5,B 5所在的象限为第三象限;∴OB 6=2)6=1,B 6在x 轴负半轴.∴B 6(-1,0).故答案为(-1,0).17、163【解析】【分析】如图,作A 关于BC 的对称点A',连接AA',交BC 于F ,过A'作AE ⊥AC 于E ,交BC 于D ,则AD=A'D ,此时AD+DE 的值最小,就是A'E 的长,根据相似三角形对应边的比可得结论.【详解】如图,作A 关于BC 的对称点A',连接AA',交BC 于F ,过A'作AE ⊥AC 于E ,交BC 于D ,则AD=A'D ,此时AD+DE 的值最小,就是A'E 的长;Rt △ABC 中,∠BAC=90°,AB=3,2,∴()22362+, S △ABC =12AB•AC=12BC•AF ,∴3×62=9AF,AF=22,∴AA'=2AF=42,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴''AA BCA E AC=,∴42'62A E=,∴A'E=163,即AD+DE的最小值是163,故答案为163.【点睛】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.18、2 3【解析】根据概率的概念直接求得. 【详解】解:4÷6=2 3 .故答案为:2 3 .【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)14;(2)112.【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为14;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为112.20、【解析】过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD=tanCDCAD∠=3x,根据AD+BD=AB 列方程求解可得.【详解】解:过点C作CD⊥AB于点D,设CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵tanCDCADAD∠=,∴AD=tanCDCAD∠=tan30x︒33,由AD +BD =AB 可得3x +x =10,解得:x =53﹣5,答:飞机飞行的高度为(53﹣5)km .21、客车不能通过限高杆,理由见解析【解析】根据DE ⊥BC ,DF ⊥AB ,得到∠EDF =∠ABC =14°.在Rt △EDF 中,根据cos ∠EDF =DF DE ,求出DF 的值,即可判断.【详解】∵DE ⊥BC ,DF ⊥AB ,∴∠EDF =∠ABC =14°.在Rt △EDF 中,∠DFE =90°,∵cos ∠EDF =DF DE, ∴DF =DE •cos ∠EDF =2.55×cos14°≈2.55×0.97≈2.1.∵限高杆顶端到桥面的距离DF 为2.1米,小于客车高2.5米,∴客车不能通过限高杆.【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.22、 (1)3a =,()31B -,;(1)()20P -,,()02Q ,. 【解析】(1)由点A 在一次函数图象上,将A (-1,a )代入y=x+4,求出a 的值,得到点A 的坐标,再由点A 的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B 坐标;(1)作点A 关于y 轴的对称点A′,作点B 作关于x 轴的对称点B′,连接A′B′,交x 轴于点P ,交y 轴于点Q ,连接PB 、QA .利用待定系数法求出直线A′B′的解析式,进而求出P 、Q 两点坐标.【详解】解:(1)把点A(-1,a)代入一次函数y=x+4,得:a=-1+4,解得:a=3,∴点A的坐标为(-1,3).把点A(-1,3)代入反比例函数y=kx,得:k=-3,∴反比例函数的表达式y=-3x.联立两个函数关系式成方程组得:43 y xyx ==+⎧⎪⎨-⎪⎩解得:13xy-⎧⎨⎩==或31xy-⎧⎨⎩==∴点B的坐标为(-3,1).故答案为3,(-3,1);(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示.∵点B、B′关于x轴对称,点B的坐标为(-3,1),∴点B′的坐标为(-3,-1),PB=PB′,∵点A、A′关于y轴对称,点A的坐标为(-1,3),∴点A′的坐标为(1,3),QA=QA′,∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.设直线A′B′的解析式为y=mx+n,把A′,B′两点代入得:331 m nm n==+⎧⎨-+-⎩解得:12mn⎧⎨⎩=,=∴直线A′B′的解析式为y=x+1.令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),令x=0,则y=1,点Q的坐标为(0,1).【点睛】本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置.本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.23、(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF 是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD .点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.24、(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,【解析】(1)设购买甲种机器x 台(x≥0),则购买乙种机器(6-x )台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x 的不等式,就可以求出x 的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.【详解】解:(1)设购买甲种机器x 台(x≥0),则购买乙种机器(6-x)台依题意,得7x+5(6-x)≤34解这个不等式,得x≤2,即x 可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台(2)根据题意,100x+60(6-x)≥380解之得x>12由(1)得x≤2,即12≤x≤2. ∴x 可取1,2俩值.即有以下两种购买方案:购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元; 购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元. ∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案.25、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(1,)+-或317(1,)--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =, ∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-.(注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+,①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得:1t =2t =.综上所述P 的坐标为()1,2--或()1,4-或31,2⎛+- ⎝⎭或31,2⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.26、(1)=;(2)结论:AC 2=AG •AH .理由见解析;(3)①△AGH 的面积不变.②m 的值为83或2或8﹣.. 【解析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG ;(2)结论:AC 2=AG•AH .只要证明△AHC ∽△ACG 即可解决问题;(3)①△AGH 的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD 是正方形,∴AB =CB =CD =DA =4,∠D =∠DAB =90°∠DAC =∠BAC =43°,∴AC∵∠DAC =∠AHC +∠ACH =43°,∠ACH +∠ACG =43°,∴∠AHC =∠ACG .故答案为=.(2)结论:AC 2=AG •AH .理由:∵∠AHC =∠ACG ,∠CAH =∠CAG =133°,∴△AHC ∽△ACG , ∴AH AC AC AG=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=12•AH•AG=12AC2=12×(42)2=1.∴△AGH的面积为1.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴12 BC BEAH AE==,∴AE=23AB=83.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴BE BCAE AH==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC 上取一点M ,使得BM =BE ,∴∠BME =∠BEM =43°,∵∠BME =∠MCE +∠MEC ,∴∠MCE =∠MEC =22.3°,∴CM =EM ,设BM =BE =m ,则CM =EM 2m ,∴m +2m =4,∴m =4(2﹣1),∴AE =4﹣4(2﹣1)=8﹣42,综上所述,满足条件的m 的值为83或2或8﹣2. 【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.27、S 阴影=2﹣2. 【解析】由切线的性质和平行四边形的性质得到BA ⊥AC ,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE ,根据弧长公式求出弧长,得到半径,即可求出结果.【详解】如图,连接AC ,∵CD 与⊙A 相切,∴CD ⊥AC ,在平行四边形ABCD 中,∵AB=DC,AB ∥CD ∥BC ,∴BA ⊥AC ,∵AB=AC,∴∠ACB=∠B=45°,∵AD∥BC,∴∠FAE=∠B=45°,∴∠DAC=∠ACB=45°=∠FAE,∴EF EC=∴EF的长度为45= 1802Rππ解得R=2,S阴=S△ACD-S扇形=2214522-=2-23602ππ⨯⨯【点睛】此题主要考查圆内的面积计算,解题的关键是熟知平行四边形的性质、切线的性质、弧长计算及扇形面积的计算.。
2021年茂名市初二数学上期中第一次模拟试题及答案
一、选择题1.若a ,b 是等腰ABC 的两边长,且满足()2370a b -+-=,此三角形的周长是( )A .13B .13或17C .17D .202.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2019=( )A .22017B .22018C .22019D .220203.如图,是一个 3×4 的网格(由 12 个小正方形组成,虚线交点称之格点)图中有一个三角形,三个顶点都在格点上,在网格中可以画出( )个与此三角形关于某直线对称的格点三角形.A .6B .7C .8D .94.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm5.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠B .AB BD =C .AC AD =D .CAB DAB ∠=∠ 6.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等 7.如图,已知AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .∠B =2∠DAC C .AD 平分∠EDCD .ED +AC >AD 8.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL 9.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°10.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52αC .2αD .32α11.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(60B ∠=)的斜边AB 上,两块三角板的直角边交于点M .如果75BDE ∠=,那么AMD ∠的度数是( )A .75°B .80°C .85°D .90° 12.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( )A .3cmB .10cmC .4cmD .6cm 二、填空题13.若一条长为24cm 的细线能围成一边长等于6cm 的等腰三角形,则该等腰三角形的腰长为__________cm .14.如图,一棵大树在一次强台风中于距地面5米处倒下,则这棵树在折断前的高度为________米.15.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____16.如图,已知ABC DCB ∠=∠,则需添加的一个条件是______可使ACB DBC ≌.(只写一个即可,不添加辅助线).17.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.18.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 19.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.20.如图,已知ABC 的角平分线BD ,CE 相交于点O ,∠A=60°,则∠BOC=__________.三、解答题21.如图,在△ABC 中,AB =AC ,点D 在△ABC 内,BD =BC ,∠DBC =60°,点E 在△ABC 外,∠CBE =150°,∠ACE =60°.(1)求∠ADC 的度数.(2)判断△ACE 的形状并加以证明.(3)连接DE ,若DE ⊥CD ,AD =1,求DE 的长.22.如图,在平面直角坐标系中,(1,5)A -,(1,0)B -,(4,3)C -.(1)作出ABC 关于y 轴的对称图形A B C ''';(2)写出点A ',B ',C '的坐标;(3)在y 轴上找一点P ,使PA PC +最短(不写作法).23.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.24.如图,已知Rt ABC △中,90ACB ︒∠=,CA CB =,D 是AC 上一点,E 在BC 的延长线上,且CE CD =,BD 的延长线与AE 交于点F .求证:BF AE ⊥.25.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长.26.如图,ABC 中,AD 是高,,AE BF 是角平分线,它们相交于点,80O CAB ∠=︒,60C ∠=°,求DAE ∠和BOA ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据绝对值非负性的性质以及平方的非负性可知a 和b 的值,然后根据等腰三角形的性质分情况计算即可;【详解】∵ ()2370a b -+-=, ∴ a=3,b=7,若腰为3时,3+3<7,三角形不成立;若腰为7时,则周长为7+7+3=17,故选:C .【点睛】本题考查了非负性的性质以及等腰三角形的性质,熟练掌握知识点是解题的关键;. 2.B解析:B【分析】根据等边三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及a 2=2a 1,得出a 3=4a 1=4,a 4=8a 1=8,a 5=16a 1=16,进而得出答案.【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=2,a3=4a1=22,a4=8a1=32,a5=16a1=42,,以此类推:a2019=22018.故选:B.【点睛】此题主要考查了等边三角形的性质以及含30度角的直角三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16…进而发现规律是解题关键.3.B解析:B【分析】先确定对称轴,再找到对称点进而可以找到符合题意的对称三角形即可.【详解】解:如图,左右对称的有4个,如图,上下对称的有1个,如图,关于正方形的对角线对称的有2个,∴一共有7个与原三角形关于某直线对称的格点三角形,故选:B .【点睛】本题考查了轴对称图形的性质,找到正确的对称轴,画出相应的对称三角形是解决本题的关键.4.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.5.B解析:B【分析】根据已知条件可得∠ABC=∠ABD=90°,AB=AB ,结合全等三角形的判定定理依次对各个选项判断.【详解】解:∵AB CD ⊥,∴∠ABC=∠ABD=90°,∵AB=AB ,∴若添加ACB ADB ∠=∠,可借助AAS 证明ABC ABD △≌△,A 选项不符合题意;若添加AB BD =,无法证明ABC ABD △≌△,B 选项符合题意;若添加AC AD =,可借助HL 证明ABC ABD △≌△,C 选项不符合题意;若添加CAB DAB ∠=∠,可借助ASA 证明ABC ABD △≌△,D 选项不符合题意; 故选:B .【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定定理,并能结合题上已知条件选取合适的定理是解题关键.6.B解析:B【分析】先分别写出这些定理的逆命题,再进行判断即可.【详解】解:A .直角三角形的两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;B .全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C .两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;D .角平分线上的点到角两边的距离相等的逆命题是到角两边的距离相等的点在角平分线上,是真命题.故选:B .【点睛】此题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.7.B解析:B【分析】利用角平分线的性质定理判断A ;利用直角三角形两锐角互余判断B ;证明△AED ≌△ACD ,由此判断C ;利用三角形三边关系得到AC+CD>AD ,由此判断D .【详解】∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE=DC ,∠BAD=∠DAC ,∵BD+DC=BC ,∴BD+ED=BC ,故A 正确;∵∠C=90︒,∴∠B+∠BAC=90︒,∴∠B+2∠DAC=90︒,故B 错误;∵DE ⊥AB ,∴∠AED=∠C=90︒,又∵∠BAD=∠DAC ,DE=CD ,∴△AED≌△ACD,∴∠ADE=∠ADC,∴AD平分∠EDC,故C正确;在△ACD中,AC+CD>AD,∴ED+AC>AD,故D正确;故选:B.【点睛】此题考查三角形的三边关系,角平分线的性质定理,全等三角形的判定及性质,直角三角形两锐角互余的性质,熟记各知识点并应用解决问题是解题的关键.8.C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.9.C解析:C【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB=90°,∴∠A+∠B=90°,∵△CDB′是由△CDB翻折得到,∴∠CB′D=∠B,∵∠CB′D =∠A +∠ADB′=∠A +20°,∴∠A +∠A +20°=90°,解得∠A =35°.故选:C .【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.11.D解析:D【分析】由题意得:∠A=30°,∠FDE=45°,利用平角等于180°,可得到∠ADF 的度数,在△AMD 中,利用三角形内角和为180°,可以求出∠AMD 的度数.【详解】解:∵∠B=60°,∴∠A=30°,∵∠BDE=75°,∠FDE=45°,∴∠ADF=180°-75°-45°=60°,∴∠AMD=180°-30°-60°=90°,故选D.【点睛】此题主要考查了三角形的内角和定理的应用,题目比较简单,关键是要注意角之间的关系.12.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm,7cm,∴第三边长的取值范围为7-3<x<7+3,即4<x<10,只有D符合题意,故选:D.【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.二、填空题13.【分析】分两种情况根据等腰三角形的性质及三角形的三边关系解答【详解】分两种情况:当6cm的边为腰时底边长=24-6-6=12(cm)∵6+6=12故不能构成三角形;当6cm的边为底边时腰长=(cm)解析:9【分析】分两种情况,根据等腰三角形的性质及三角形的三边关系解答.【详解】分两种情况:当6cm的边为腰时,底边长=24-6-6=12(cm),∵6+6=12,故不能构成三角形;当6cm的边为底边时,腰长=1(246)92⨯-=(cm),由于6+9>9,故能构成三角形,故答案为:9.【点睛】此题考查等腰三角形的性质:两腰相等,依据三角形三边关系,解题中运用分类思想解答.14.15【分析】如图在Rt△ABC中∠ABC=30°由此即可得到AB=2AC而根据题意找到CA=5米由此即可求出AB也就可以求出大树在折断前的高度【详解】如图在Rt△ABC中∵∠ABC=30°∴AB=2解析:15【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就可以求出大树在折断前的高度.【详解】如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,∵CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故答案为:15.【点睛】本题主要利用定理−−在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.15.1<AC<17【分析】作出图形延长AD至E使DE=AD然后利用边角边证明△ABD和△ECD全等根据全等三角形对应边相等可得AB=CE再利用三角形的任意两边之和大于第三边三角形的任意两边之差小于第三边解析:1<AC<17【分析】作出图形,延长AD至E,使DE=AD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得AB=CE,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出AC的取值范围.【详解】如图,延长AD至E,使DE=AD,∵AD 是△ABC 的中线,∴BD =CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ECD (SAS ),∴AB =CE ,∵AD =4,∴AE =4+4=8,∵AC +CE >AC >CE -AE ,∴9-8<AC <8+9,∴1<AC <17,故答案为:1<AC <17.【点睛】本题考查了全等三角形的判定与性质,三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,“遇中线,加倍延”构造出全等三角形是解题的关键.16.AB=DC (答案不唯一)【分析】因为和公共边BC 根据全等证明方法即可求得【详解】当AB=DC 时根据全等证明方法SAS 可证故答案为:AB=DC (答案不唯一)【点睛】本题考查三角形全等的判定条件掌握五种解析:AB=DC (答案不唯一)【分析】因为ABC DCB ∠=∠和公共边BC ,根据全等证明方法即可求得.【详解】当AB=DC 时根据全等证明方法SAS 可证ACB DBC ≌故答案为:AB=DC (答案不唯一)【点睛】本题考查三角形全等的判定条件,掌握五种全等证明方法是解题的关键.17.AD=BD 【分析】要判定△BCD ≌△ACD 已知∠1=∠2CD 是公共边具备了一边一角对应相等注意SAS 的条件;两边及夹角对相等只能选AD=BD 【详解】解:由图可知只能是AD=BD 才能组成SAS 故答案为解析:AD=BD要判定△BCD ≌△ACD ,已知∠1=∠2,CD 是公共边,具备了一边一角对应相等,注意“SAS”的条件;两边及夹角对相等,只能选AD=BD.【详解】解:由图可知,只能是AD=BD ,才能组成“SAS”,故答案为:AD=BD.【点睛】本题考查了全等的判定,掌握“SAS”的条件是两边及夹角对相等是解题的关键.18.2b 【分析】先根据三角形三边关系确定>0<0再去绝对值化简即可【详解】∵是△ABC 的三边长∴>0<0=+=2b 故答案填:2b 【点睛】本题主要考查三角形三边关系绝对值的性质和化简问题根据三角形三边关系解析:2b【分析】先根据三角形三边关系,确定a b c +->0,()a b c -+<0,再去绝对值化简即可.【详解】∵,,a b c 是△ABC 的三边长∴a b c +->0,()a b c -+<0,a b c a c b +-+--=a b c +-+b c a +-=2b ,故答案填:2b .【点睛】本题主要考查三角形三边关系、绝对值的性质和化简问题,根据三角形三边关系定理正确去绝对值是解决本题的关键.19.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.20.【分析】根据三角形的内角和定理角平分线的定义即可得【详解】BDCE 是的角平分线故答案为:【点睛】本题考查了三角形的内角和定理角平分线的定义熟练掌握角平分线的定义是解题关键解析:120︒【分析】根据三角形的内角和定理、角平分线的定义即可得.【详解】60A ∠=︒,180120ABC ACB A ∴∠+∠=︒-∠=︒,BD 、CE 是ABC 的角平分线,11,22OBC ABC OCB ACB ∴∠=∠∠=∠, ()1602OBC OCB ABC ACB +=∠+∠∴=∠∠︒, ()180********OBC OCB BOC ∠=︒-︒∴∠+∠=︒=-︒,故答案为:120︒.【点睛】本题考查了三角形的内角和定理、角平分线的定义,熟练掌握角平分线的定义是解题关键.三、解答题21.(1)150°;(2)等边三角形,见解析;(3)2【分析】(1)首先证明△DBC 是等边三角形,推出∠BDC =60°,DB =DC ,再证明△ADB ≌△ADC ,推出∠ADB =∠ADC 即可解决问题;(2)利用ASA 证明△ACD ≌△ECB 得到AC =CE ,结合∠ACE =60°可得△ACE 是等边三角形;(3)首先证明△DEB 是含有30度角的直角三角形,求出EB 与DE 的关系,利用全等三角形的性质即可解决问题.【详解】(1)解:∵BD =BC ,∠DBC =60°,∴△DBC 是等边三角形.∴DB =DC ,∠BDC =∠DBC =∠DCB =60°.在△ADB 和△ADC 中,∵AC=AB AD=AD DC=DB ⎧⎪⎨⎪⎩,∴△ADC≌△ADB(SSS).∴∠ADC=∠ADB.∴∠ADC=12(360°﹣60°)=150°.(2)解:△ACE是等边三角形.理由如下:∵∠ACE=∠DCB=60°,∴∠ACD=∠ECB.∵∠CBE=150°,∠ADC═150°,∴∠ADC=∠EBC.在△ACD和△ECB中,∵ACD=ECB CD=CBADC=EBC ∠∠⎧⎪⎨⎪∠∠⎩,∴△ACD≌△ECB(ASA).∴AC=CE.∵∠ACE=60°,∴△ACE是等边三角形.(3)解:连接DE.∵DE⊥CD,∴∠EDC=90°.∵∠BDC=60°,∴∠EDB=30°.∵∠CBE=150°,∠DBC=60°,∴∠DBE=90°.∴EB=12DE.∵△ACD≌△ECB,AD=1,∴EB=AD=1,∴DE=2EB=2.【点睛】本题考查全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型. 22.(1)见解析;(2)(1,5)A ',(1,0)B ',3)(4,C ';(3)见解析【分析】(1)根据轴对称的性质确定点,,A B C ''',顺次连线即可得到图形;(2)根据点的位置直接得解;(3)连接AC '与y 轴交于一点即为点P ,连接PC ,此时AP+PC 最短.【详解】解:(1)如图所示,A B C '''为所求作.(2)由图可得,(1,5)A ',(1,0)B ',4,3)C '.(3)如图所示,点P 即为所求作.【得解】此题考查轴对称的性质,轴对称作图,点的坐标,最短路径问题,正确理解轴对称的性质作出图形是解题的关键.23.(1)PA=PB ;(2)成立证明见解析;(3)OA=BC+OC【分析】(1)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(2)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(3)仿照(2)的解法得出△APD ≌△BPC ,从而得出AD=BC ,再根据HL 得出Rt △OPD ≌△RtOPC ,得出OC=OD ,继而得出结论.【详解】(1)作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C , ∴PC=PD ,∵∠MON=90°,∴∠APB=90°,∠CPD=90°,∴∠APD+∠BPD=90°,∠BPC+∠BPD=90° ∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(2)(1)中的结论还成立理由如下:如图2,作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C , ∴PC=PD ,∵∠MON=60°,∴∠APB=120°,在四边形OCPD 中,∠CPD=360°-90°-90°-60°=120°, ∴∠APD+∠BPD=120°,∠BPC+∠BPD=120° ∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(3)OA=2BC-OB .理由如下:如图3,作PD ⊥OM 于点D ,同(2),可证△APD ≌△BPC ,∴AD=BC ,点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,在Rt △OPD 和RtOPC 中,PC PD OP OP =⎧⎨=⎩∴Rt △OPD ≌△RtOPC ,∴OC=OD ,∴OA-AD=OD=OC ,∴OA-BC=OC ,∴OA=BC+OC .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、灵活运用类比思想是解题的关键.24.证明见解析【分析】根据题意可以得到△ACE ≌△BCD ,然后根据全等三角形的性质和垂直的定义可以证明结论成立.【详解】证明:∵90ACB ︒∠=∴90ACE BCD ︒∠=∠=在ACE △和BCD △中,CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩∴()ACE BCD SAS =∴CAE CBD ∠=∠∵Rt ACE △中,90CAE E ︒∠+∠=,∴90CBD E ︒∠+∠=,∴90BFE ︒∠=∴BF AE ⊥【点睛】本题考查了全等三角形的判定与性质、垂直的定义,解题的关键是明确题意,利用全等三角形的判定和性质、数形结合的思想作答.25.周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.26.10DAE ∠=︒,120BOA ∠=︒【分析】根据垂直的定义、角平分线的定义、三角形内角和定理及三角形的外角性质计算即可.【详解】解:80,CAB ∠=︒且AE 平分,CAB ∠1402CAE CAB ∴∠=∠=︒, 又60,C AD BC ∠=︒⊥,9030,CAD C ∴∠=︒-∠=︒10DAE CAE CAD ∴∠=∠-∠=︒;60,40C CAE ∠=︒∠=︒,100BEO C CAE ∴∠=∠+∠=︒,又180,ABC C CAB ∠+∠+∠=︒40,ABC ∴∠=︒ BF 平分,ABC ∠120,2OBE ABC ∴∠=∠=︒ 120BOA OBE BEO ∴∠=∠+∠=︒.【点睛】本题考查的是三角形内角和定理、三角形的高和角平分线的定义以及三角形的外角性质,掌握三角形内角和等于180°是解题的关键.。
2021-2022年茂名市初三数学下期中第一次模拟试题及答案
过点D作DE⊥AB′于点E,过点C作CF⊥AB,
∵△ABC中,∠CAB=∠B=30°, ,
∴AC=BC,AF= AB= ,
∴AC=AF÷cos∠CAB= ÷ =2,
由折叠的性质得:AB′= ,∠B′=∠B=30°,
∵∠B′CD=∠CAB+∠B=60°,
∴∠CDB′=90°,
∵B′C=AB′−AC=2 −2,
三、解答题
21.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿着AB以每秒1cm的速度向点B移动;同时点Q从点B出发沿着BC以每秒2cm的速度向点C运动.设△DPQ的面积为S,运动时间为t秒.
(1)用含t的代数式表示出BP的长为cm,CQ的长为cm;
(2)写出S与t之问的函数关系式;
A.①④B.②④C.①③D.②③
3.下列函数中,当 时, 随 增大而增大的是()
A. B. C. D.
4.已知二次函数y=(m+2) ,当x<0时,y随x的增大而增大,则m的值为()
A. B. C. D.2
5.如图为二次函数y=ax2+bx+c的图象,其对称轴为x=1,在下列结论中:
①abc>0;②若方程ax2+bx+c=0的根是x1、x2,则x1+x2<0;③4a+2b+c<0;④当x>1时,y随x的增大而增大.正确的有()
∴顶点为
把 代入
∴
∴
∴
故选:C
【点睛】
本题考查的是抛物线与x轴的交点问题,根据题意得出抛物线的对称轴方程是解答此题的关键.
2.A
解析:A
【分析】
根据题意首先求得抛物线的对称轴,然后由抛物线的轴对称性质和二次函数的性质解答.
2021年茂名市初三数学下期中第一次模拟试题及答案
故选:B.
【点睛】
此题主要考查了反比例函数图象上的点的坐标特征,熟练掌握是解题的关键.
二、填空题
13.【分析】根据已知条件得出再把化成然后代值计算即可得出答案【详解】∵∴∴故答案为:【点睛】此题考查了比例的性质熟练掌握比例的性质是解题的关键
解析:
【分析】
根据已知条件得出 ,再把 化成 ,然后代值计算即可得出答案.
【详解】
∵ ,
∴ ,
∴ .
故答案为: .
【点睛】
此题考查了比例的性质,熟练掌握比例的性质是解题的关键.
14.25【分析】连接EO可知EO⊥ED延长DE到点F作BF⊥DF根据题意可知△DEO∽△DFB在△EFB中根据勾股定理求解得出半径的长然后再根据圆的面积公式求解即可;【详解】如图:连接EO可知EO⊥ED
A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0
二、填空题
13.如果x:y=3:2,那么 的值是__.
14.如图,点 是正方形 的中心, 与 相切于点 ,连接 若 ,则 的面积是________________.
15.如图,在 中, ,若 , , ,则 的长是______.
16.如图,点A在反比例函数 (k≠0)的图像上,点B在x轴的负半轴上,直线AB交y轴与点C,若 ,△AOB的面积为12,则k的值为_______.
17.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y= 的图象经过A、B两点,则菱形ABCD的面积是_____;
18.如图,直线 过原点分别交反比例函数 ,于A.B,过点A作 轴,垂足为C,则△ 的面积为______.
19.如图,Rt△AOB的一条直角边OB在x轴上,双曲线 经过斜边OA的中点C,与另一直角边交于点D,若 ,则k的值为______.
广东省茂名市2021年中考数学模拟试卷(I)卷
广东省茂名市2021年中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)计算2×(﹣3)3+4×(﹣3)的结果等于()A . -18B . -27C . -24D . -662. (2分)(2016·苏州) 下列运算结果正确的是()A . a+2b=3abB . 3a2﹣2a2=1C . a2•a4=a8D . (﹣a2b)3÷(a3b)2=﹣b3. (2分)(2020·辽阳模拟) 下列图形中既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分)“一列汽车已晚点6分钟,如果将速度每小时加快10千米,那么继续行驶20千米可准时到达.”如果设客车原来的速度为x千米/时,那么解决这个问题所列出的方程是()A . -=6B . -=C . -=6D . -=5. (2分) (2017八下·仁寿期中) 已知一次函数和的图像都经过点A(-2,0)且与y轴分别交于B,C两点,那么△ABC的面积为()A . 2B . 3C . 4D . 66. (2分)(2017·衡阳模拟) 如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC 上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A . 150°B . 210°C . 105°D . 75°7. (2分)(2017·邹城模拟) 函数y= 的自变量x的取值范围在数轴上可表示为()A .B .C .D .8. (2分)(2014·桂林) 在下列的四个几何体中,同一几何体的主视图与俯视图相同的是()A .B .C .D .9. (2分)如图,图中三角形的个数共有()A . 1个B . 2个C . 3个D . 4个10. (2分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A . 3B . 4C . 5D . 611. (2分)在数轴上,到表示-1的点的距离等于6的点表示的数是()A . 5B . -7C . 5或-7D . 812. (2分)炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A .B .C .D .13. (2分)(2020·河南模拟) 如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,FG平分∠EFD交AB 于点G,若∠BEF=70°,则∠AGF的度数为()A . 35°B . 45°C . 55°D . 65°14. (2分)等腰三角形的两条边是方程x2-13x+36=0的两根,则这个三角形的周长是()A . 17B . 22C . 13D . 17或2215. (2分)下列命题中,正确的个数是()①等边三角形都相似;②直角三角形都相似;③等腰三角形都相似;④锐角三角形都相似;⑤等腰三角形都全等;⑥有一个角相等的等腰三角形相似;⑦有一个钝角相等的两个等腰三角形相似;⑧全等三角形相似.A . 2个B . 3个C . 4个D . 5个16. (2分)(2019·朝阳) 已知二次函数的图象如图所示,现给出下列结论:①;② ;③ ;④ .其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题: (共3题;共3分)17. (1分)(2019·天府新模拟) 计算:﹣| |=________.18. (1分)(2016·安徽) 因式分解:a3﹣a=________.19. (1分)(2020·营口模拟) 如图,直角三角形的直角顶点在坐标原点,,若点在反比例函数的图象上,则经过点的反比例函数解析式为________;三、计算题: (共2题;共10分)20. (5分) (2018六上·普陀期末) .21. (5分)(2017·长春模拟) 计算:﹣14﹣(1﹣0.5)× ×[2﹣(﹣3)2].四、解答题: (共6题;共53分)22. (5分)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.23. (5分)如图,直线分别与直线,交于点E,F. 平分,平分,且∥ .求证:∥ .24. (12分)(2020·抚顺) 为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为小时,将它分为4个等级:A(),B(),C(),D(),并根据调查结果绘制了如两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了________名学生;(2)在扇形统计图中,等级所对应的扇形的圆心角为________°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.25. (10分)(2012·湛江) 某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示.从2009年开始,该市荔枝种植面积y(万亩)随着时间x(年)逐年成直线上升,y与x之间的函数关系如图所示.(1)求y与x之间的函数关系式(不必注明自变量x的取值范围);(2)该市2012年荔枝种植面积为多少万亩?26. (10分)(2014·宁波) 如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)27. (11分) (2019九上·深圳期中) 如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边向OA终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ =y.(1)直接写出y关于t的函数解析式及t的取值范围:________;(2)当PQ=3 时,求t的值;(3)连接OB交PQ于点D,若双曲线经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题: (共3题;共3分)17-1、18-1、19-1、三、计算题: (共2题;共10分)20-1、21-1、四、解答题: (共6题;共53分)22-1、23-1、24-1、24-2、24-3、24-4、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
茂名市2021年数学中考一模试卷A卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分)下列各数中,是负数的是()
A . -(-3)
B . -|-3|
C . (-3)2
D . |-3|
2. (2分) (2019七上·瑞安期中) 国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法表示为()
A . 25.8×103平方米
B . 2.58×103平方米
C . 2.58×104平方米
D . 2.58×105平方米
3. (2分) (2018八上·汽开区期末) 计算a5·a3正确的是()
A . a2
B . a8
C . a10
D . a15
4. (2分)(2017·河北模拟) 使有意义的x的取值范围是()
A . x≥
B . x>
C . x>﹣
D . x≥﹣
5. (2分)如图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是()
A .
B .
C .
D .
6. (2分)(2018·南山模拟) 下列图形既是轴对称图形,又是中心对称图形的是()
A .
B .
C .
D .
7. (2分)不等式组的解集是()
A . x≥﹣1
B . x<5
C . ﹣1≤x<5
D . x≤﹣1或x>5
8. (2分)(2017·微山模拟) 如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中
一条上,若∠1=42°32′,则∠2的度数()
A . 17°28′
B . 18°28′
C . 27°28′
D . 27°32′
9. (2分)甲、乙两名同学在参加体育中考前各作了5次投掷实心球的测试,甲、乙所测得的成绩的平均数相同,且甲、乙成绩的方差分别为0.62、0.72,那么()
A . 甲、乙成绩一样稳定
B . 甲成绩更稳定
C . 乙成绩更稳定
D . 不能确定谁的成绩更稳定
10. (2分)(2019·南通) 如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到,与BC,AC分别交于点D,E.设,的面积为,则与的函数图象大致为()
A .
B .
C .
D .
11. (2分)如图,⊙O是四边形ABCD的内切圆,下列结论一定正确的有()个:
①AF=BG;②CG=CH;③AB+CD=AD+BC;④BG<CG.
A . 1
B . 2
C . 3
D . 4
12. (2分) (2017九上·西湖期中) 已知坐标平面上有两个二次函数,
的图形,其中、为整数.判断将二次函数的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠().
A . 向左平移单位
B . 向右平移单位
C . 向左平移单位
D . 向右平移单位
二、填空题 (共6题;共6分)
13. (1分)(2018·南开模拟) 分解因式:x3y-2x2y+xy=________.
14. (1分)(2017·沭阳模拟) 若一个圆锥的底面半径为5cm,其侧面展开图的圆心角为120°,则圆锥的母线长是________cm.
15. (1分)设(1+x)2(1﹣x)=a+bx+cx2+dx3 ,则a+b+c+d=________ .
16. (1分)(2020·虹口模拟) 如图,在Rt△ABC中,∠C=90°,AC=1,BC=2,点D为边AB上一动点,正方形DEFG的顶点E、F都在边BC上,联结BG ,tan∠DGB=________.
17. (1分) (2019九上·济阳期末) △ABC中,AB=CB,AC=10,S△ABC=60,E为AB上一动点,连结CE,过A作AF⊥CE于F,连结BF,则BF的最小值是________.
18. (1分)(2020·宁波模拟) 已知:如图,矩形OABC中,点B的坐标为,双曲线的一支与矩形两边AB,BC分别交于点E,F. 若将△BEF沿直线EF对折,B点落在y轴上的点D处,则点D的坐标是________
三、解答题 (共8题;共76分)
19. (5分)(2017·蒙阴模拟) 计算:()﹣1﹣(﹣2014)0﹣2cos45°+ .
20. (5分)(2016·阿坝) 如图,在一次测量活动中,小丽站在离树底部E处5m的B处仰望树顶C,仰角为30°,已知小丽的眼睛离地面的距离AB为1.65m,那么这棵树大约有多高?(结果精确到0.1m,参考数据:
≈1.73)
21. (8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:
(1)
本次检测抽取了大、中、小学生共________ 名,其中小学生________ 名.
(2)
根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为________ 名.
(3)
比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.
22. (10分) (2019九上·枣阳期末) 一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.
(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;
(2)求摸出的两个小球号码之和等于4的概率.
23. (10分) (2018九下·游仙模拟) 如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.
(1)若△ABD≌△BFO,求BQ的长;
(2)求证:FQ=BQ
24. (11分) (2018九上·惠来期中) 中秋节前夕,某公司的李会计受公司委派去超市购买若干盒美心月饼,超市给出了该种月饼不同购买数量的价格优惠,如图,折线ABCD表示购买这种月饼每盒的价格y(元)与盒数x(盒)之间的函数关系.
(1)当购买这种月饼盒数不超过10盒时,一盒月饼的价格为________元;
(2)求出当10<x<25时,y与x之间的函数关系式;
(3)当时李会计支付了3600元购买这种月饼,那么李会计买了多少盒这种月饼?
25. (17分)(2017·江东模拟) 如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E 的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2 ,(这里规定:线段是面积为0的三角形)
解答下列问题:
(1)
当x=2s时,y=________cm2;当x= s时,y=________cm2.
(2)
当5≤x≤14 时,求y与x之间的函数关系式.
(3)
当动点P在线段BC上运动时,求出 S梯形ABCD时x的值.
(4)
直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.
26. (10分)(2017·新乡模拟) 抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.
(1)
如图1,若P(1,﹣3),B(4,0).
①求该抛物线的解析式;
②若D是抛物线上一点,满足∠DPO=∠P OB,求点D的坐标;
(2)
如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共6题;共6分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共8题;共76分)
19-1、
20-1、21-1、21-2、21-3、
22-1、22-2、
23-1、
23-2、24-1、
24-2、24-3、
25-1、
25-2、25-3、
25-4、
26-1、
26-2、。