变压器绕组变形试验精品PPT课件

合集下载

变压器绕组变形诊断幻灯片

变压器绕组变形诊断幻灯片


专注今天,好好努力,剩下的交给时 间。21.1.1121.1.1120:4620:46:0520:46:05Jan-21

牢记安全之责,善谋安全之策,力务 安全之 实。2021年1月 11日星 期一8时46分5秒Monday, January 11, 2021

相信相信得力量。21.1.112021年1月11日星期 一8时46分5秒 21.1.11
➢ 1)Am相在200kHz有反相谐振峰。
➢ 2)据了解2003年发生过10kV母 线三相短路故障。

树立质量法制观念、提高全员质量意 识。21.1.1121.1.11Monday, January 11, 2021

人生得意须尽欢,莫使金樽空对月。20:46:0520:46:0520:461/11/2021 8:46:05 PM

爱情,亲情,友情,让人无法割舍。21.1.112021年1月11日 星期一 8时46分5秒21.1.11
谢谢大家!
➢ 2) 2号主变变形图谱及短路阻抗数据比 较相差较大。
幸福2号主变短路阻抗数据
➢ ΔX=2.05%
➢ ➢
4.6公园1、2号主变绕组变形图谱
➢ 1)公园2号主变在运输过程中发生过溜 放。
➢ 2)经诊断公园2号主变绕组有位移问题。 ➢ 3)返厂进行了处理。
4.7北庭2号主变中压侧绕组经变形 测试,怀疑有轻度变形问题

踏实肯干,努力奋斗。2021年1月11日 下午8时46分21.1.1121.1.11

追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2021年1月11日 星期一 下午8时46分5秒20:46:0521.1.11

变压器绕组变形讲课

变压器绕组变形讲课

• 二.变压器绕组变形测试原理 • 1.变压器绕组变形试验目前主要采用频率响应法, 其主要优点为不用放油吊罩,不用打开围屏拔出 绕组,大多数情况下不用跟原始数据比较便能诊 断110kV及以上变压器绕组是否发生变形。 • 2.用频率响应分析法检测变压器绕组变形,主要 是通过检测变压器各个绕组的幅频响应特性,并 对检测结果进行纵向或横向比较,根据幅频响应 特性的差异来判断变压器是否发生绕组变形。频 率响应分析法的基本检测回路见图1
• 5.变压器短路故障如果发生在变压器出口附近, 将承受不均匀巨大的轴向和径向电动力的作用, 在短路电流作用下,初始故障的表现形式大多数 表现为内绕组形状改变(尤其是自耦变压器); 如果绕组内部结构有薄弱环节必然会产生绕组变 形现象。 • 6.线圈发生变形并不表示马上要出事故,但变形 部位在长期工作电压下绝缘会发生损伤,慢慢导 致破坏最后发展为事故;基至在正常运行条件下 因局部放电的长期作用也有可能发生绝缘击穿。
• 3.图1中L代表绕组单位长 度的分布电感、K代表绕 组单位长度的分布电容、 C代表绕组单位长度对地 分布电容,V1、V2分别为 等效网络的激励端电压和 响应端电压,VS为正弦波 激励信号源电压,RS为信 号源输出阻抗,R为匹配 电阻。
• 4.在绕组一端加入电压信号Us(可依次输出不同频率的正 弦波信号)通过数字化记录设备同时检测不同扫描频率下 绕组两端对地信号U1(n)和U2(n)并进行相应处理, 得到绕组的传递函数H(n)=20lg(n)/V1(n);若绕组发生 变形,绕组内部的分布电感、分布电容等参数必然改变, 导致其等效网络传递函数H(jω)的零点和极点发生变化, 使网络的频率响应特性发生变化。 • 5.由于每台变压器都对应有自已的响应特性,所以绕组变 形后其内部参数变化,将导致传递函数的变化。绕组变形 前的频率响应特性是分析和比较的基础。分析和比较变压 器的频率响应特性,就可以发现变压器绕组是否发生了变 形。

变压器绕组变形测试技术及其应用讲义

变压器绕组变形测试技术及其应用讲义

绕组变形测试技术。
表 1.1 1990~1997 年变压器短路损坏事故统计表
年份
1990 1991 1992 1993 1994 1995 1996 1997
事故总台次
34 56 76 69 57 59 58 55
短路事故台次
2
3
18 22 21 29 29 21
短路事故占总事故比例(%)
6
5
24 32 37 49 50 38
2004 年 12 月 14 日,国家发改委发布了电力行业标准 DL/T911-2004《电力变压

器绕组变形的频率响应分析法》,该标准适用于 6kV 及以上电压等级电力变压器及其他特 殊用途的变压器。 2 绕组变形的测量方法
变压器绕组发生局部的机械变形后,其内部的电感、电容分布参数必然发生相对变化。 这是开展变压器变形测试的依据和基础。
动力更容易使绕组破坏或变形。
短路故障电流冲击是变压器绕组变形的最主要外因。
众所周知,电力变压器线圈是以绝缘垫块隔开的铜或铝线段所构成的。这种系统的动
特性在发生突发短路时是变化的。因为绝缘垫块的弹性与其压紧程度有关,即与作用力有

关。电动力本身也不是恒定不变的,而是按照复杂的规律变化。虽然对短路时作用在变压 器线圈上的电动力的研究始于四十年代,但是由于动态过程分析的复杂性,到目前为止尚 不能用理论计算结果正确反映出变压器承受突发短路电流冲击的能力。
当变压器绕组出现短路时,会因其承受不了短路电流冲击力而发生变形。近几年来, 对全国 110kV 及以上的电力变压器事故统计分析表明,因绕组承受短路能力不够已成为电 力变压器事故的首要内部原因,严重影响电力变压器的安全、可靠运行。

1.3 绕组变形的危害 绕组变形是电力变压器安全运行的一大隐患。多台变压器的实际试验经验表明,绕组

大型电力变压器频响法绕组变形状态感知技术_电力技术讲座课件PPT

大型电力变压器频响法绕组变形状态感知技术_电力技术讲座课件PPT
低压A相、B相绕组变形照片
4
1.2 变压器绕组变形典型故障案例
2008年11月2日,220kVX变电站#2主变遭受10kV母线短路电流冲击,一次短路电流达30kA。 频响法绕组变形测试结果显示:低压侧C相绕组严重变形,A、B相绕组有轻度变形。分析故障 原因在于:主变在遭受近区短路后,绕组受到短路电流产生的电动力冲击发生了明显变形现象。
无线通讯
无线低功耗检测电路
Vs V1
V2
上位机
激励端
检测距离最小化
信号连线最短化
A
B
C
响应端
A
B
C
相相 相
绕绕 绕
组组 组
中性点
变压器
功能:目前频响法绕组变形检测均是采用有源供电、长距 离信号连线的方式开展测试。一方面,现场电源质量难以 满足高精度信号测量的要求;另一方面,长距离信号连线 的杂散效应显著降低信号测量精度。本装置基于无线低功 耗板载架构设计,能够与绕组测量端就近连接,避免现场 取电困难、信号长距离传输畸变等不利因素的影响,实现 绕组变形多测点的分布式无线检测,提高检测准确性。
时费力
✓ 频响信号注入和获取 ✓ 强激励信号技术 ✓ 高灵敏度耦合传感器技
术 ✓ 绕组状态评估算法
9
目 录
CONTENTS
01 现状分析 02 离线检测提升 03 在线监测探索
2.1 频响法离线检测现存问题
频率响应法是检测变压器绕组变形的有效方法,目前多是采用有源供电、长距离信号连线的方式 开展测试。测试现场取电困难、电源质量无法满足高精度测试要求的问题时有发生,长距离信号 连线叠加杂散参数降低数据准确度及一致性的问题亟待解决。
技术缺陷 1) 测量精度低,没有明确判据

变压器绕组变形测试讲义

变压器绕组变形测试讲义

讲义变压器绕组变形测试技术及其应用Transformer Winding Deformation Test Technology & Application临沂供电公司目录1 前言1.1 什么是绕组变形?1.2 绕组变形的原因1.3 绕组变形的危害2 绕组变形的测量方法2.1 阻抗法2.2 低压脉冲法2.3 频率响应法3 频率响应法的原理3.1.1 变压器线圈的等值电路3.1.2 空心电感的电感量计算及变化分析3.2 绕组变形种类以及变形在等值电路中的等效分析3.2.1 整体变形3.2.2 局部变形4 变压器绕组变形测试仪4.1 测试仪组成4.2 主要技术参数4.3 特点5 现场测试过程中的注意事项5.1 对测试环境的要求5.2 对变压器状态的要求5.2.1对引线、周围接地体和金属悬浮物的要求5.2.2 对分接位置的要求5.2.3 对接地的要求5.2 测试接线方式5.2.1 YN接线5.2.2 Y接线5.2.3 对于Δ接线5.2.4 有平衡绕组的变压器5.2.5 套管末屏取信号的问题5.2.6 其它注意事项6 绕组变形波形分析6.1 频率响应图谱的特征6.1.1 差异是绝对的6.1.2 具有相对的一致性6.1.3 低压绕组的一致性较好6.1.4 厂用变压器的一致性较差6.1.5 三相变压器的一致性较好6.2 变形测试的判断6.2.1 低压绕组为主,高、中压绕组为辅6.2.2 横向比较为主,纵向比较为辅6.2.3 低频段为主,中、高频段为辅6.2.4 波形观察为主,相关系数判断为辅6.2.5 综合判断6.3 绕组变形程度的分类6.4 变压器绕组变形判断程序7 绕组变形测试仪的检验8绕组变形测试实例9利用频率响应法辅以阻抗电压法进行变压器绕组变形测试的应用研究1 前言变压器是电力系统中重要的设备之一,它的正常与否直接影响电力系统的安全运行。

近年来变压器短路故障呈现上升趋势,造成变压器绕组损坏的几率增加,严重威胁变压器的正常运行。

变压器绕组变形试验PPT课件

变压器绕组变形试验PPT课件

频率响应法:
-
7
绕组变形频率响应法
在绕组的一端输入扫频电压信号Vs(依次输入不同频率的正弦波电 压信号),通过数字化记录设备同时检测不同扫描频率下绕组两端 的对地电压信号Vi(n)和Vo(n),得到被测变压器绕组的传递函数
H(n):
-
8
频率响应法接线
YN接线
Y接线
-
9
频率响应法接线
△接线
△外接线
变压器绕组变形试验
-
1
绕组变形定义
指电力变压器绕组在机械力或电动力作用下发生的 轴向或径向尺寸变化,通常表现为绕组局部扭曲、 鼓包或移位等特征。变压器在遭受短路电流冲击或 在运输过程中遭受冲撞时,均有可能发生绕组变形 现象,它将直接影响变压器的安全运行。
-
2
绕组变形的原因
短路故障电流冲击是变压器绕组变形的最主要外因。
-
10
频率响应法的变形程度判断
-
11
频率响应法的变形程度判断
➢从波峰和波谷的频率分布
位置以及分布数量均存在差
异,可判定变压器在遭受突
发性短路电流冲击后绕组变
形。
-
12
频率响应法的形程度判断
a 当频响特性曲线低频段(1kHz~100kHz)的谐振峰发 生明显变化时,通常预示着绕组的电感变化或发生整 体变形现象。
b 当频响特性曲线中频段(50kHz~600kHz)的谐振峰发 生明显变化时,通常预示着绕组发生扭曲和鼓包等局 部变形现象。
c 当频响特性曲线高频段(>600kHz)的谐振峰发生明显 变化时,通常预示着绕组的对地电容改变。
-
13
绕组变形低电压电抗法
低电压电抗法的试验接线与短路试验接线相同。通 常将绕组对中的较低电压侧短路(以下称短接侧),从 绕组对中的较高电压侧(以下称加压侧)施加额定频率 的交流电压,进行试验。

变压器绕组变形试验培训PPT课件

变压器绕组变形试验培训PPT课件

变形测试周期
※ 110kV以上变压器在出厂时和投运前,应进行
频率响应试验和低电压阻抗测试,以判断变压 器在安装和运输中是否发生绕组变形,同时提 供该变压器今后运行时需要测试绕组变形时比 较用的原始数据。 ※在变压器遭受近区短路后,除有足够的理由确 认变压器无变形外,应进行频率响应试验或低 电压阻抗测试,
低压脉冲测试
改良低压脉冲测试
※从某个绕组的一端对地注入低压脉冲信号,
会传递到绕组的另一端,同时测量两端的时域 信号,并通过计算转换到频域,并计算传递函 数。 ※通过比较同一绕组不同时期,同一变压器同一 电压等级绕组不同相间,同类变压器同类绕组 的频率响应,判断被试绕组是否有变形情况。 因此原理与绕组的频率响应测试是基本相同一 致的。
部分电容法
❖绕组电容与绕组尺寸、相对位置、绝缘介质相
关,绕组的等值电容量直接反映出了各绕组间、 绕组对铁心、绕组对箱体及地的相对位置和绕 组的自身结构等。当绕组发生相对位移时,电 容值改变,从而可判断其是否有结构变化。
❖由于绕组电容值是一个分布参数,对严重的变
形和绕组的整体窜动,灵敏度较高。而对鼓包、 扭曲等故障表现为灵敏度很差,只能作为补充 测试方法。
频响法变压器绕组变形测试结果分析
幅频响应特性曲线低频段:(1kHz~100kHz) 的波峰和波谷发生明显变化,则预示绕 组可能发生整体变形,包括匝间或饼间 短路的情况。频率低时,绕组的对地电 容及饼间电容所形成的容抗较大,而感 抗较小,
频响法变压器绕组变形测试结果分析
幅频响应特性曲线中频段: (100kHz~500kHz)的波峰和波谷 发生明显变化,则通常预示绕组发 生扭曲和鼓包等局部变形现象。
的测量精度内
短路阻抗测试注意事项

变压器绕组变形课件

变压器绕组变形课件
• 纵向比较法是指对同一台变压器、同一绕 组、同一分接开关位置、不同时期的频率 响应特性进行比较,根据频率响应特性的 变化分析绕组变形的程度。
( d B t d) t - y t dn t - y n 0 1 -1 0 2
1 . L a lx 0 2 . L a lx 0
-2 0
• (2)横向比较法
Rs
Cs Cb Cs Cg Cs Cg Cg Cs Cs Cg Cg Cs Cb
Vi
R Vo
Cg为绕组对地电容、Cb为套管对电容、 Ls为线圈电感、Rs为扫频信号输出电阻、 R为匹配电阻
Vi为扫频输入信号,Vo为响应输出信号,它实 际上代表流经Ro的电流,则Vo/Vi的比值就代表了 一种电抗的变化。如果绕组发生了轴向、径向尺 寸变化等变形现象,势必会改变网络的Ls、Cs、 Cg等分布参数,导致其传递函数H(jω )的零点和 极点分布发生变化。因此,变压器绕组的变形是 可以通过比较变压器绕组的频率响应来诊断的。
2、发生绕组变形原因
短路故障电流冲击 变 压 器 绕 组 变 形
在运输、安装或者吊罩大 修过程中受到意外冲撞
多次过流动作
绕组承受短路能力不够
3、测试目的
• 绕组变形会直接影响变压器的绝缘结构,或造成 内部结构松动间接影响到绝缘,危害变压器的正 常运行。 • 积极开展变压器绕组变形诊断工作,及时发现那 些有绕组变形的变压器,并有计划地进行吊罩检 查和检修,不但可节省大量的人力、物力,对防 止变压器事故的发生也有及其重要的作用。
2.0 R LF 1.0或0.6 R MF 1.0
R LF 2.0和R MF 1.0和R HF 0.6
注:RLF为曲线在低频段(1kHz ~100KHz)内的相关系数; RMF为曲线在中频段(100KHz ~600KHz)内的相关系数; RHF为曲线在高频段(600KHz ~1000KHz)内的相关系数 。

变压器绕组变形试验

变压器绕组变形试验

变压器绕组变形试验绕组变形原因:①外部作用力;②出口短路时电磁力的作用;③几十倍短路电流流过绕组会发热,绕组表面绝缘被破坏,绕组机械性能下降;④过电压,包括雷电过电压、操作过电压。

测量方法:采用频响法测量绕组变形,等效示意图如下图所示。

其中,s U 为不同频率的正弦电压,0U 为电压输出,L 、s C 、k C 为变压器结构参数,L 为绕组电感,s C 为饼间电容,k C 为绕组对地电容,Z 为输入阻抗。

频率响应(w)(w)|H(w)|(w)o s U H U ϕ==∠。

输入电压频率包括低频、中频、高频三段,低频段为1~100kHz ,中频段为100~600kHz ,高频段为600~1000kHz 。

低频段时,s C 较大,L 起主要作用,主要反映绕组情况;中频段时,s C 、L 均起作用,峰谷值比较多,主要反映线圈相对位置变化、饼间电容、电感;高频段时L 值较大,k C 、s C 起主要作用,反映绕组引线对地、引线对绕组情况。

大家普遍关注低频段的情况,以低频段结果为主,以高、中频段结果为辅。

从相似性角度看,低压绕组一致性较好。

绕组变形的另一个判据为低压短路阻抗,低压短路阻抗和幅频响应对应结合判断绕组变形。

U s 0绕组变形试验规定:66kV 以上电压等级变压器采用频率响应法,66kV 以下采用低电压短路阻抗法,检修规程中两者都要做;承受短路电流冲击后,要做绕组变形试验。

短路后,绕组受电动力情况:轴线、径向,低压绕组朝贴心压缩,高压绕组向外扩张。

低压绕组整体压缩,高压绕组整体拉伸。

试验设备及接线:试验采用的设备为Rzbx-FR 型变压器绕组变形综合测试仪,如图所示。

设备配套共五根接线,一条输入线,一端为钳夹(红色),另一端分为两个接线端,分别与设备的“信号”、“输入”端相连;一条为输出线,一端为钳夹(黑色),另一端接设备“输出”端;一条为接地线;一条为电源线。

接线方式分为四种方式(如下图):对于有中性点引出的星形接线,O 端输入(红色钳夹)、A 端测量(黑色钳夹),O 端输入(红色钳夹)、B 端测量(黑色钳夹),O 端输入(红色钳夹)、C 端测量(黑色钳夹);对于无中性点引出的星形接线,A 端输入、B端测试,B端输入、C端测试,C端输入、A端测试;对于角形接线,a端输入、b端测试,b端输入、c端测试,c端输入、a端测试;对于单项变压器,x端输入、a端测试,y端输入、b端测试,z端输入、c端测试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢分析相关绕组对参数变化与异常绕组对参数变 化的对应性。
➢结合测量绕组的直流电阻、绕组对和绕组对地的等 值电容、变压器的空载电流、空载损耗、局部放电, 进行绕组频率响应的分析、等试验综合分析
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
反措要求:变压器采用半硬铜、自粘性换位导线、用 硬绝缘筒绕制线圈以及加密线圈的内外撑条等措施来 提高变压器抗短路能力,都是基于提高抗径向短路能 力考虑的。
绕组变形的原因
在运输、安装或者吊罩大修过程中受到意外冲撞 继电保护不完善,动作失灵 绕组动热稳定性能差,抗短路能力不够
绕组变形危害
绕组变形是电力变压器安全运行的一大隐患。多台 变压器的实际经验表明,绕组变形后,绝缘试验和 油的试验都难于发现,所以表现为潜伏性故障。
变压器绕组变形试验
绕组变形定义
指电力变压器绕组在机械力或电动力作用下发生的 轴向或径向尺寸变化,通常表现为绕组局部扭曲、 鼓包或移位等特征。变压器在遭受短路电流冲击或 在运输过程中遭受冲撞时,均有可能发生绕组变形 现象,它将直接影响变压器的安全运行。
绕组变形的原因
短路故障电流冲击是变压器绕组变形的最主要外因。
检测时机:
a) 变压器出厂试验前的全部绝缘试验通过后。 b) 变压器经运输到现场安装就位后。 c) 变压器在运行中经受短路电流冲击后,可根据短 路电流的大小、持续时间、累积短路次数决定。
绕组变形低电压电抗法判断方法
➢建立包含出厂、交接和现场首次试验值的原始 资料数据库。 ➢每次检测后,均应分析同一参数的三个单相 值的互差(横比)和同一参数值与原始数据和上 一次测试数据的相比之差(纵比) ➢分析纵、横比值的变化趋势
➢绝缘距离发生改变,固体绝缘受到损伤,导致局部放 电发生。当遇到雷电过电压作用时有可能发生匝间、饼 间击穿,导致突发性绝缘事故,甚至在正常运行电压下 ,因局部放电长期作用而发生绝缘击穿事故。
➢绕组机械性能下降,当再次遭受短路事故时,将承 受不住巨大的电动力作用而发生损坏。
变压器绕组变形等值电路
绕组变形的主要方法
常规方法: (如测量变压比、直流电阻等)因测量灵敏度太 低,用以诊断变压器绕组变形是比较困难的
电容法:双绕组变压器(内低外高)为例, 用电桥进行变压器绕组连同套管的介损时 ,可测量并计算出低压绕组对地集中电容 CL、高低压绕组间电容CHL和高压绕组对 地电容CH
低电压阻抗法:通过测量变压器绕组在50Hz下的阻 抗或漏抗,由阻抗或漏抗的变化来判断变压器绕组是 否发生了危及运行的变形,如匝间短路、开路、线圈 位移等。
频率响应法:
绕组变形频率响应法
在绕组的一端输入扫频电压信号Vs(依次输入不同频率的正弦波 电压信号),通过数字化记录设备同时检测不同扫描频率下绕组两 端的对地电压信号Vi(n)和Vo(n),得到被测变压器绕组的传递函 数H(n):
频率响应法接线
YN接线
Y接线
频率响应法接线
△接线
△外接线
频率响应法的变形程度判断
c 当频响特性曲线高频段(>600kHz)的谐振峰发生明显 变化时,通常预示着绕组的对地电容改变。
绕组变形低电压电抗法
低电压电抗法的试验接线与短路试验接线相同。通 常将绕组对中的较低电压侧短路(以下称短接侧),从 绕组对中的较高电压侧(以下称加压侧)施加额定频率响应法的变形程度判断
➢从波峰和波谷的频率分布 位置以及分布数量均存在差 异,可判定变压器在遭受突 发性短路电流冲击后绕组变 形。
频率响应法的变形程度判断
a 当频响特性曲线低频段(1kHz~100kHz)的谐振峰发 生明显变化时,通常预示着绕组的电感变化或发生整 体变形现象。
b 当频响特性曲线中频段(50kHz~600kHz)的谐振峰发 生明显变化时,通常预示着绕组发生扭曲和鼓包等局 部变形现象。
相关文档
最新文档